xref: /openbmc/u-boot/drivers/net/altera_tse.c (revision e89516f0)
1 /*
2  * Altera 10/100/1000 triple speed ethernet mac driver
3  *
4  * Copyright (C) 2008 Altera Corporation.
5  * Copyright (C) 2010 Thomas Chou <thomas@wytron.com.tw>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <config.h>
12 #include <common.h>
13 #include <malloc.h>
14 #include <net.h>
15 #include <command.h>
16 #include <asm/cache.h>
17 #include <asm/dma-mapping.h>
18 #include <miiphy.h>
19 #include "altera_tse.h"
20 
21 /* sgdma debug - print descriptor */
22 static void alt_sgdma_print_desc(volatile struct alt_sgdma_descriptor *desc)
23 {
24 	debug("SGDMA DEBUG :\n");
25 	debug("desc->source : 0x%x \n", (unsigned int)desc->source);
26 	debug("desc->destination : 0x%x \n", (unsigned int)desc->destination);
27 	debug("desc->next : 0x%x \n", (unsigned int)desc->next);
28 	debug("desc->source_pad : 0x%x \n", (unsigned int)desc->source_pad);
29 	debug("desc->destination_pad : 0x%x \n",
30 	      (unsigned int)desc->destination_pad);
31 	debug("desc->next_pad : 0x%x \n", (unsigned int)desc->next_pad);
32 	debug("desc->bytes_to_transfer : 0x%x \n",
33 	      (unsigned int)desc->bytes_to_transfer);
34 	debug("desc->actual_bytes_transferred : 0x%x \n",
35 	      (unsigned int)desc->actual_bytes_transferred);
36 	debug("desc->descriptor_status : 0x%x \n",
37 	      (unsigned int)desc->descriptor_status);
38 	debug("desc->descriptor_control : 0x%x \n",
39 	      (unsigned int)desc->descriptor_control);
40 }
41 
42 /* This is a generic routine that the SGDMA mode-specific routines
43  * call to populate a descriptor.
44  * arg1	    :pointer to first SGDMA descriptor.
45  * arg2	    :pointer to next  SGDMA descriptor.
46  * arg3	    :Address to where data to be written.
47  * arg4	    :Address from where data to be read.
48  * arg5	    :no of byte to transaction.
49  * arg6	    :variable indicating to generate start of packet or not
50  * arg7	    :read fixed
51  * arg8	    :write fixed
52  * arg9	    :read burst
53  * arg10    :write burst
54  * arg11    :atlantic_channel number
55  */
56 static void alt_sgdma_construct_descriptor_burst(
57 	volatile struct alt_sgdma_descriptor *desc,
58 	volatile struct alt_sgdma_descriptor *next,
59 	unsigned int *read_addr,
60 	unsigned int *write_addr,
61 	unsigned short length_or_eop,
62 	int generate_eop,
63 	int read_fixed,
64 	int write_fixed_or_sop,
65 	int read_burst,
66 	int write_burst,
67 	unsigned char atlantic_channel)
68 {
69 	/*
70 	 * Mark the "next" descriptor as "not" owned by hardware. This prevents
71 	 * The SGDMA controller from continuing to process the chain. This is
72 	 * done as a single IO write to bypass cache, without flushing
73 	 * the entire descriptor, since only the 8-bit descriptor status must
74 	 * be flushed.
75 	 */
76 	if (!next)
77 		debug("Next descriptor not defined!!\n");
78 
79 	next->descriptor_control = (next->descriptor_control &
80 		~ALT_SGDMA_DESCRIPTOR_CONTROL_OWNED_BY_HW_MSK);
81 
82 	desc->source = (unsigned int *)((unsigned int)read_addr & 0x1FFFFFFF);
83 	desc->destination =
84 	    (unsigned int *)((unsigned int)write_addr & 0x1FFFFFFF);
85 	desc->next = (unsigned int *)((unsigned int)next & 0x1FFFFFFF);
86 	desc->source_pad = 0x0;
87 	desc->destination_pad = 0x0;
88 	desc->next_pad = 0x0;
89 	desc->bytes_to_transfer = length_or_eop;
90 	desc->actual_bytes_transferred = 0;
91 	desc->descriptor_status = 0x0;
92 
93 	/* SGDMA burst not currently supported */
94 	desc->read_burst = 0;
95 	desc->write_burst = 0;
96 
97 	/*
98 	 * Set the descriptor control block as follows:
99 	 * - Set "owned by hardware" bit
100 	 * - Optionally set "generate EOP" bit
101 	 * - Optionally set the "read from fixed address" bit
102 	 * - Optionally set the "write to fixed address bit (which serves
103 	 *   serves as a "generate SOP" control bit in memory-to-stream mode).
104 	 * - Set the 4-bit atlantic channel, if specified
105 	 *
106 	 * Note this step is performed after all other descriptor information
107 	 * has been filled out so that, if the controller already happens to be
108 	 * pointing at this descriptor, it will not run (via the "owned by
109 	 * hardware" bit) until all other descriptor has been set up.
110 	 */
111 
112 	desc->descriptor_control =
113 	    ((ALT_SGDMA_DESCRIPTOR_CONTROL_OWNED_BY_HW_MSK) |
114 	     (generate_eop ?
115 	      ALT_SGDMA_DESCRIPTOR_CONTROL_GENERATE_EOP_MSK : 0x0) |
116 	     (read_fixed ?
117 	      ALT_SGDMA_DESCRIPTOR_CONTROL_READ_FIXED_ADDRESS_MSK : 0x0) |
118 	     (write_fixed_or_sop ?
119 	      ALT_SGDMA_DESCRIPTOR_CONTROL_WRITE_FIXED_ADDRESS_MSK : 0x0) |
120 	     (atlantic_channel ? ((atlantic_channel & 0x0F) << 3) : 0)
121 		    );
122 }
123 
124 static int alt_sgdma_do_sync_transfer(volatile struct alt_sgdma_registers *dev,
125 			       volatile struct alt_sgdma_descriptor *desc)
126 {
127 	unsigned int status;
128 	int counter = 0;
129 
130 	/* Wait for any pending transfers to complete */
131 	alt_sgdma_print_desc(desc);
132 	status = dev->status;
133 
134 	counter = 0;
135 	while (dev->status & ALT_SGDMA_STATUS_BUSY_MSK) {
136 		if (counter++ > ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
137 			break;
138 	}
139 
140 	if (counter >= ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
141 		debug("Timeout waiting sgdma in do sync!\n");
142 
143 	/*
144 	 * Clear any (previous) status register information
145 	 * that might occlude our error checking later.
146 	 */
147 	dev->status = 0xFF;
148 
149 	/* Point the controller at the descriptor */
150 	dev->next_descriptor_pointer = (unsigned int)desc & 0x1FFFFFFF;
151 	debug("next desc in sgdma 0x%x\n",
152 	      (unsigned int)dev->next_descriptor_pointer);
153 
154 	/*
155 	 * Set up SGDMA controller to:
156 	 * - Disable interrupt generation
157 	 * - Run once a valid descriptor is written to controller
158 	 * - Stop on an error with any particular descriptor
159 	 */
160 	dev->control = (ALT_SGDMA_CONTROL_RUN_MSK |
161 			ALT_SGDMA_CONTROL_STOP_DMA_ER_MSK);
162 
163 	/* Wait for the descriptor (chain) to complete */
164 	status = dev->status;
165 	debug("wait for sgdma....");
166 	while (dev->status & ALT_SGDMA_STATUS_BUSY_MSK)
167 		;
168 	debug("done\n");
169 
170 	/* Clear Run */
171 	dev->control = (dev->control & (~ALT_SGDMA_CONTROL_RUN_MSK));
172 
173 	/* Get & clear status register contents */
174 	status = dev->status;
175 	dev->status = 0xFF;
176 
177 	/* we really should check if the transfer completes properly */
178 	debug("tx sgdma status = 0x%x", status);
179 	return 0;
180 }
181 
182 static int alt_sgdma_do_async_transfer(volatile struct alt_sgdma_registers *dev,
183 				volatile struct alt_sgdma_descriptor *desc)
184 {
185 	unsigned int status;
186 	int counter = 0;
187 
188 	/* Wait for any pending transfers to complete */
189 	alt_sgdma_print_desc(desc);
190 	status = dev->status;
191 
192 	counter = 0;
193 	while (dev->status & ALT_SGDMA_STATUS_BUSY_MSK) {
194 		if (counter++ > ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
195 			break;
196 	}
197 
198 	if (counter >= ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
199 		debug("Timeout waiting sgdma in do async!\n");
200 
201 	/*
202 	 * Clear any (previous) status register information
203 	 * that might occlude our error checking later.
204 	 */
205 	dev->status = 0xFF;
206 
207 	/* Point the controller at the descriptor */
208 	dev->next_descriptor_pointer = (unsigned int)desc & 0x1FFFFFFF;
209 
210 	/*
211 	 * Set up SGDMA controller to:
212 	 * - Disable interrupt generation
213 	 * - Run once a valid descriptor is written to controller
214 	 * - Stop on an error with any particular descriptor
215 	 */
216 	dev->control = (ALT_SGDMA_CONTROL_RUN_MSK |
217 			ALT_SGDMA_CONTROL_STOP_DMA_ER_MSK);
218 
219 	/* we really should check if the transfer completes properly */
220 	return 0;
221 }
222 
223 /* u-boot interface */
224 static int tse_adjust_link(struct altera_tse_priv *priv)
225 {
226 	unsigned int refvar;
227 
228 	refvar = priv->mac_dev->command_config.image;
229 
230 	if (!(priv->duplexity))
231 		refvar |= ALTERA_TSE_CMD_HD_ENA_MSK;
232 	else
233 		refvar &= ~ALTERA_TSE_CMD_HD_ENA_MSK;
234 
235 	switch (priv->speed) {
236 	case 1000:
237 		refvar |= ALTERA_TSE_CMD_ETH_SPEED_MSK;
238 		refvar &= ~ALTERA_TSE_CMD_ENA_10_MSK;
239 		break;
240 	case 100:
241 		refvar &= ~ALTERA_TSE_CMD_ETH_SPEED_MSK;
242 		refvar &= ~ALTERA_TSE_CMD_ENA_10_MSK;
243 		break;
244 	case 10:
245 		refvar &= ~ALTERA_TSE_CMD_ETH_SPEED_MSK;
246 		refvar |= ALTERA_TSE_CMD_ENA_10_MSK;
247 		break;
248 	}
249 	priv->mac_dev->command_config.image = refvar;
250 
251 	return 0;
252 }
253 
254 static int tse_eth_send(struct eth_device *dev,
255 			volatile void *packet, int length)
256 {
257 	struct altera_tse_priv *priv = dev->priv;
258 	volatile struct alt_sgdma_registers *tx_sgdma = priv->sgdma_tx;
259 	volatile struct alt_sgdma_descriptor *tx_desc =
260 	    (volatile struct alt_sgdma_descriptor *)priv->tx_desc;
261 
262 	volatile struct alt_sgdma_descriptor *tx_desc_cur =
263 	    (volatile struct alt_sgdma_descriptor *)&tx_desc[0];
264 
265 	flush_dcache((unsigned long)packet, length);
266 	alt_sgdma_construct_descriptor_burst(
267 		(volatile struct alt_sgdma_descriptor *)&tx_desc[0],
268 		(volatile struct alt_sgdma_descriptor *)&tx_desc[1],
269 		(unsigned int *)packet,	/* read addr */
270 		(unsigned int *)0,
271 		length,	/* length or EOP ,will change for each tx */
272 		0x1,	/* gen eop */
273 		0x0,	/* read fixed */
274 		0x1,	/* write fixed or sop */
275 		0x0,	/* read burst */
276 		0x0,	/* write burst */
277 		0x0	/* channel */
278 		);
279 	debug("TX Packet @ 0x%x,0x%x bytes", (unsigned int)packet, length);
280 
281 	/* send the packet */
282 	debug("sending packet\n");
283 	alt_sgdma_do_sync_transfer(tx_sgdma, tx_desc_cur);
284 	debug("sent %d bytes\n", tx_desc_cur->actual_bytes_transferred);
285 	return tx_desc_cur->actual_bytes_transferred;
286 }
287 
288 static int tse_eth_rx(struct eth_device *dev)
289 {
290 	int packet_length = 0;
291 	struct altera_tse_priv *priv = dev->priv;
292 	volatile struct alt_sgdma_descriptor *rx_desc =
293 	    (volatile struct alt_sgdma_descriptor *)priv->rx_desc;
294 	volatile struct alt_sgdma_descriptor *rx_desc_cur = &rx_desc[0];
295 
296 	if (rx_desc_cur->descriptor_status &
297 	    ALT_SGDMA_DESCRIPTOR_STATUS_TERMINATED_BY_EOP_MSK) {
298 		debug("got packet\n");
299 		packet_length = rx_desc->actual_bytes_transferred;
300 		NetReceive(NetRxPackets[0], packet_length);
301 
302 		/* start descriptor again */
303 		flush_dcache((unsigned long)(NetRxPackets[0]), PKTSIZE_ALIGN);
304 		alt_sgdma_construct_descriptor_burst(
305 			(volatile struct alt_sgdma_descriptor *)&rx_desc[0],
306 			(volatile struct alt_sgdma_descriptor *)&rx_desc[1],
307 			(unsigned int)0x0,	/* read addr */
308 			(unsigned int *)NetRxPackets[0],
309 			0x0,	/* length or EOP */
310 			0x0,	/* gen eop */
311 			0x0,	/* read fixed */
312 			0x0,	/* write fixed or sop */
313 			0x0,	/* read burst */
314 			0x0,	/* write burst */
315 			0x0	/* channel */
316 		    );
317 
318 		/* setup the sgdma */
319 		alt_sgdma_do_async_transfer(priv->sgdma_rx, &rx_desc[0]);
320 	}
321 
322 	return -1;
323 }
324 
325 static void tse_eth_halt(struct eth_device *dev)
326 {
327 	/* don't do anything! */
328 	/* this gets called after each uboot  */
329 	/* network command.  don't need to reset the thing all of the time */
330 }
331 
332 static void tse_eth_reset(struct eth_device *dev)
333 {
334 	/* stop sgdmas, disable tse receive */
335 	struct altera_tse_priv *priv = dev->priv;
336 	volatile struct alt_tse_mac *mac_dev = priv->mac_dev;
337 	volatile struct alt_sgdma_registers *rx_sgdma = priv->sgdma_rx;
338 	volatile struct alt_sgdma_registers *tx_sgdma = priv->sgdma_tx;
339 	int counter;
340 	volatile struct alt_sgdma_descriptor *rx_desc =
341 	    (volatile struct alt_sgdma_descriptor *)&priv->rx_desc[0];
342 
343 	/* clear rx desc & wait for sgdma to complete */
344 	rx_desc->descriptor_control = 0;
345 	rx_sgdma->control = 0;
346 	counter = 0;
347 	while (rx_sgdma->status & ALT_SGDMA_STATUS_BUSY_MSK) {
348 		if (counter++ > ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
349 			break;
350 	}
351 
352 	if (counter >= ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR) {
353 		debug("Timeout waiting for rx sgdma!\n");
354 		rx_sgdma->control &= ALT_SGDMA_CONTROL_SOFTWARERESET_MSK;
355 		rx_sgdma->control &= ALT_SGDMA_CONTROL_SOFTWARERESET_MSK;
356 	}
357 
358 	counter = 0;
359 	tx_sgdma->control = 0;
360 	while (tx_sgdma->status & ALT_SGDMA_STATUS_BUSY_MSK) {
361 		if (counter++ > ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
362 			break;
363 	}
364 
365 	if (counter >= ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR) {
366 		debug("Timeout waiting for tx sgdma!\n");
367 		tx_sgdma->control &= ALT_SGDMA_CONTROL_SOFTWARERESET_MSK;
368 		tx_sgdma->control &= ALT_SGDMA_CONTROL_SOFTWARERESET_MSK;
369 	}
370 	/* reset the mac */
371 	mac_dev->command_config.bits.transmit_enable = 1;
372 	mac_dev->command_config.bits.receive_enable = 1;
373 	mac_dev->command_config.bits.software_reset = 1;
374 
375 	counter = 0;
376 	while (mac_dev->command_config.bits.software_reset) {
377 		if (counter++ > ALT_TSE_SW_RESET_WATCHDOG_CNTR)
378 			break;
379 	}
380 
381 	if (counter >= ALT_TSE_SW_RESET_WATCHDOG_CNTR)
382 		debug("TSEMAC SW reset bit never cleared!\n");
383 }
384 
385 static int tse_mdio_read(struct altera_tse_priv *priv, unsigned int regnum)
386 {
387 	volatile struct alt_tse_mac *mac_dev;
388 	unsigned int *mdio_regs;
389 	unsigned int data;
390 	u16 value;
391 
392 	mac_dev = priv->mac_dev;
393 
394 	/* set mdio address */
395 	mac_dev->mdio_phy1_addr = priv->phyaddr;
396 	mdio_regs = (unsigned int *)&mac_dev->mdio_phy1;
397 
398 	/* get the data */
399 	data = mdio_regs[regnum];
400 
401 	value = data & 0xffff;
402 
403 	return value;
404 }
405 
406 static int tse_mdio_write(struct altera_tse_priv *priv, unsigned int regnum,
407 		   unsigned int value)
408 {
409 	volatile struct alt_tse_mac *mac_dev;
410 	unsigned int *mdio_regs;
411 	unsigned int data;
412 
413 	mac_dev = priv->mac_dev;
414 
415 	/* set mdio address */
416 	mac_dev->mdio_phy1_addr = priv->phyaddr;
417 	mdio_regs = (unsigned int *)&mac_dev->mdio_phy1;
418 
419 	/* get the data */
420 	data = (unsigned int)value;
421 
422 	mdio_regs[regnum] = data;
423 
424 	return 0;
425 }
426 
427 /* MDIO access to phy */
428 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) && !defined(BITBANGMII)
429 static int altera_tse_miiphy_write(const char *devname, unsigned char addr,
430 				   unsigned char reg, unsigned short value)
431 {
432 	struct eth_device *dev;
433 	struct altera_tse_priv *priv;
434 	dev = eth_get_dev_by_name(devname);
435 	priv = dev->priv;
436 
437 	tse_mdio_write(priv, (uint) reg, (uint) value);
438 
439 	return 0;
440 }
441 
442 static int altera_tse_miiphy_read(const char *devname, unsigned char addr,
443 				  unsigned char reg, unsigned short *value)
444 {
445 	struct eth_device *dev;
446 	struct altera_tse_priv *priv;
447 	volatile struct alt_tse_mac *mac_dev;
448 	unsigned int *mdio_regs;
449 
450 	dev = eth_get_dev_by_name(devname);
451 	priv = dev->priv;
452 
453 	mac_dev = priv->mac_dev;
454 	mac_dev->mdio_phy1_addr = (int)addr;
455 	mdio_regs = (unsigned int *)&mac_dev->mdio_phy1;
456 
457 	*value = 0xffff & mdio_regs[reg];
458 
459 	return 0;
460 
461 }
462 #endif
463 
464 /*
465  * Also copied from tsec.c
466  */
467 /* Parse the status register for link, and then do
468  * auto-negotiation
469  */
470 static uint mii_parse_sr(uint mii_reg, struct altera_tse_priv *priv)
471 {
472 	/*
473 	 * Wait if the link is up, and autonegotiation is in progress
474 	 * (ie - we're capable and it's not done)
475 	 */
476 	mii_reg = tse_mdio_read(priv, MIIM_STATUS);
477 
478 	if (!(mii_reg & MIIM_STATUS_LINK) && (mii_reg & BMSR_ANEGCAPABLE)
479 	    && !(mii_reg & BMSR_ANEGCOMPLETE)) {
480 		int i = 0;
481 
482 		puts("Waiting for PHY auto negotiation to complete");
483 		while (!(mii_reg & BMSR_ANEGCOMPLETE)) {
484 			/*
485 			 * Timeout reached ?
486 			 */
487 			if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
488 				puts(" TIMEOUT !\n");
489 				priv->link = 0;
490 				return 0;
491 			}
492 
493 			if ((i++ % 1000) == 0)
494 				putc('.');
495 			udelay(1000);	/* 1 ms */
496 			mii_reg = tse_mdio_read(priv, MIIM_STATUS);
497 		}
498 		puts(" done\n");
499 		priv->link = 1;
500 		udelay(500000);	/* another 500 ms (results in faster booting) */
501 	} else {
502 		if (mii_reg & MIIM_STATUS_LINK) {
503 			debug("Link is up\n");
504 			priv->link = 1;
505 		} else {
506 			debug("Link is down\n");
507 			priv->link = 0;
508 		}
509 	}
510 
511 	return 0;
512 }
513 
514 /* Parse the 88E1011's status register for speed and duplex
515  * information
516  */
517 static uint mii_parse_88E1011_psr(uint mii_reg, struct altera_tse_priv *priv)
518 {
519 	uint speed;
520 
521 	mii_reg = tse_mdio_read(priv, MIIM_88E1011_PHY_STATUS);
522 
523 	if ((mii_reg & MIIM_88E1011_PHYSTAT_LINK) &&
524 	    !(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
525 		int i = 0;
526 
527 		puts("Waiting for PHY realtime link");
528 		while (!(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
529 			/* Timeout reached ? */
530 			if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
531 				puts(" TIMEOUT !\n");
532 				priv->link = 0;
533 				break;
534 			}
535 
536 			if ((i++ == 1000) == 0) {
537 				i = 0;
538 				puts(".");
539 			}
540 			udelay(1000);	/* 1 ms */
541 			mii_reg = tse_mdio_read(priv, MIIM_88E1011_PHY_STATUS);
542 		}
543 		puts(" done\n");
544 		udelay(500000);	/* another 500 ms (results in faster booting) */
545 	} else {
546 		if (mii_reg & MIIM_88E1011_PHYSTAT_LINK)
547 			priv->link = 1;
548 		else
549 			priv->link = 0;
550 	}
551 
552 	if (mii_reg & MIIM_88E1011_PHYSTAT_DUPLEX)
553 		priv->duplexity = 1;
554 	else
555 		priv->duplexity = 0;
556 
557 	speed = (mii_reg & MIIM_88E1011_PHYSTAT_SPEED);
558 
559 	switch (speed) {
560 	case MIIM_88E1011_PHYSTAT_GBIT:
561 		priv->speed = 1000;
562 		debug("PHY Speed is 1000Mbit\n");
563 		break;
564 	case MIIM_88E1011_PHYSTAT_100:
565 		debug("PHY Speed is 100Mbit\n");
566 		priv->speed = 100;
567 		break;
568 	default:
569 		debug("PHY Speed is 10Mbit\n");
570 		priv->speed = 10;
571 	}
572 
573 	return 0;
574 }
575 
576 static uint mii_m88e1111s_setmode_sr(uint mii_reg, struct altera_tse_priv *priv)
577 {
578 	uint mii_data = tse_mdio_read(priv, mii_reg);
579 	mii_data &= 0xfff0;
580 	mii_data |= 0xb;
581 	return mii_data;
582 }
583 
584 static uint mii_m88e1111s_setmode_cr(uint mii_reg, struct altera_tse_priv *priv)
585 {
586 	uint mii_data = tse_mdio_read(priv, mii_reg);
587 	mii_data &= ~0x82;
588 	mii_data |= 0x82;
589 	return mii_data;
590 }
591 
592 /*
593  * Returns which value to write to the control register.
594  * For 10/100, the value is slightly different
595  */
596 static uint mii_cr_init(uint mii_reg, struct altera_tse_priv *priv)
597 {
598 	return MIIM_CONTROL_INIT;
599 }
600 
601 /*
602  * PHY & MDIO code
603  * Need to add SGMII stuff
604  *
605  */
606 
607 static struct phy_info phy_info_M88E1111S = {
608 	0x01410cc,
609 	"Marvell 88E1111S",
610 	4,
611 	(struct phy_cmd[]){	/* config */
612 			   /* Reset and configure the PHY */
613 			   {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
614 			   {MIIM_88E1111_PHY_EXT_SR, 0x848f,
615 			    &mii_m88e1111s_setmode_sr},
616 			   /* Delay RGMII TX and RX */
617 			   {MIIM_88E1111_PHY_EXT_CR, 0x0cd2,
618 			    &mii_m88e1111s_setmode_cr},
619 			   {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
620 			   {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
621 			   {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
622 			   {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
623 			   {miim_end,}
624 			   },
625 	(struct phy_cmd[]){	/* startup */
626 			   /* Status is read once to clear old link state */
627 			   {MIIM_STATUS, miim_read, NULL},
628 			   /* Auto-negotiate */
629 			   {MIIM_STATUS, miim_read, &mii_parse_sr},
630 			   /* Read the status */
631 			   {MIIM_88E1011_PHY_STATUS, miim_read,
632 			    &mii_parse_88E1011_psr},
633 			   {miim_end,}
634 			   },
635 	(struct phy_cmd[]){	/* shutdown */
636 			   {miim_end,}
637 			   },
638 };
639 
640 /* a generic flavor.  */
641 static struct phy_info phy_info_generic = {
642 	0,
643 	"Unknown/Generic PHY",
644 	32,
645 	(struct phy_cmd[]){	/* config */
646 			   {MII_BMCR, BMCR_RESET, NULL},
647 			   {MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART, NULL},
648 			   {miim_end,}
649 			   },
650 	(struct phy_cmd[]){	/* startup */
651 			   {MII_BMSR, miim_read, NULL},
652 			   {MII_BMSR, miim_read, &mii_parse_sr},
653 			   {miim_end,}
654 			   },
655 	(struct phy_cmd[]){	/* shutdown */
656 			   {miim_end,}
657 			   }
658 };
659 
660 static struct phy_info *phy_info[] = {
661 	&phy_info_M88E1111S,
662 	NULL
663 };
664 
665  /* Grab the identifier of the device's PHY, and search through
666   * all of the known PHYs to see if one matches.	 If so, return
667   * it, if not, return NULL
668   */
669 static struct phy_info *get_phy_info(struct eth_device *dev)
670 {
671 	struct altera_tse_priv *priv = (struct altera_tse_priv *)dev->priv;
672 	uint phy_reg, phy_ID;
673 	int i;
674 	struct phy_info *theInfo = NULL;
675 
676 	/* Grab the bits from PHYIR1, and put them in the upper half */
677 	phy_reg = tse_mdio_read(priv, MIIM_PHYIR1);
678 	phy_ID = (phy_reg & 0xffff) << 16;
679 
680 	/* Grab the bits from PHYIR2, and put them in the lower half */
681 	phy_reg = tse_mdio_read(priv, MIIM_PHYIR2);
682 	phy_ID |= (phy_reg & 0xffff);
683 
684 	/* loop through all the known PHY types, and find one that */
685 	/* matches the ID we read from the PHY. */
686 	for (i = 0; phy_info[i]; i++) {
687 		if (phy_info[i]->id == (phy_ID >> phy_info[i]->shift)) {
688 			theInfo = phy_info[i];
689 			break;
690 		}
691 	}
692 
693 	if (theInfo == NULL) {
694 		theInfo = &phy_info_generic;
695 		debug("%s: No support for PHY id %x; assuming generic\n",
696 		      dev->name, phy_ID);
697 	} else
698 		debug("%s: PHY is %s (%x)\n", dev->name, theInfo->name, phy_ID);
699 
700 	return theInfo;
701 }
702 
703 /* Execute the given series of commands on the given device's
704  * PHY, running functions as necessary
705  */
706 static void phy_run_commands(struct altera_tse_priv *priv, struct phy_cmd *cmd)
707 {
708 	int i;
709 	uint result;
710 
711 	for (i = 0; cmd->mii_reg != miim_end; i++) {
712 		if (cmd->mii_data == miim_read) {
713 			result = tse_mdio_read(priv, cmd->mii_reg);
714 
715 			if (cmd->funct != NULL)
716 				(*(cmd->funct)) (result, priv);
717 
718 		} else {
719 			if (cmd->funct != NULL)
720 				result = (*(cmd->funct)) (cmd->mii_reg, priv);
721 			else
722 				result = cmd->mii_data;
723 
724 			tse_mdio_write(priv, cmd->mii_reg, result);
725 
726 		}
727 		cmd++;
728 	}
729 }
730 
731 /* Phy init code */
732 static int init_phy(struct eth_device *dev)
733 {
734 	struct altera_tse_priv *priv = (struct altera_tse_priv *)dev->priv;
735 	struct phy_info *curphy;
736 
737 	/* Get the cmd structure corresponding to the attached
738 	 * PHY */
739 	curphy = get_phy_info(dev);
740 
741 	if (curphy == NULL) {
742 		priv->phyinfo = NULL;
743 		debug("%s: No PHY found\n", dev->name);
744 
745 		return 0;
746 	} else
747 		debug("%s found\n", curphy->name);
748 	priv->phyinfo = curphy;
749 
750 	phy_run_commands(priv, priv->phyinfo->config);
751 
752 	return 1;
753 }
754 
755 static int tse_set_mac_address(struct eth_device *dev)
756 {
757 	struct altera_tse_priv *priv = dev->priv;
758 	volatile struct alt_tse_mac *mac_dev = priv->mac_dev;
759 
760 	debug("Setting MAC address to 0x%02x%02x%02x%02x%02x%02x\n",
761 	      dev->enetaddr[5], dev->enetaddr[4],
762 	      dev->enetaddr[3], dev->enetaddr[2],
763 	      dev->enetaddr[1], dev->enetaddr[0]);
764 	mac_dev->mac_addr_0 = ((dev->enetaddr[3]) << 24 |
765 			       (dev->enetaddr[2]) << 16 |
766 			       (dev->enetaddr[1]) << 8 | (dev->enetaddr[0]));
767 
768 	mac_dev->mac_addr_1 = ((dev->enetaddr[5] << 8 |
769 				(dev->enetaddr[4])) & 0xFFFF);
770 
771 	/* Set the MAC address */
772 	mac_dev->supp_mac_addr_0_0 = mac_dev->mac_addr_0;
773 	mac_dev->supp_mac_addr_0_1 = mac_dev->mac_addr_1;
774 
775 	/* Set the MAC address */
776 	mac_dev->supp_mac_addr_1_0 = mac_dev->mac_addr_0;
777 	mac_dev->supp_mac_addr_1_1 = mac_dev->mac_addr_1;
778 
779 	/* Set the MAC address */
780 	mac_dev->supp_mac_addr_2_0 = mac_dev->mac_addr_0;
781 	mac_dev->supp_mac_addr_2_1 = mac_dev->mac_addr_1;
782 
783 	/* Set the MAC address */
784 	mac_dev->supp_mac_addr_3_0 = mac_dev->mac_addr_0;
785 	mac_dev->supp_mac_addr_3_1 = mac_dev->mac_addr_1;
786 	return 0;
787 }
788 
789 static int tse_eth_init(struct eth_device *dev, bd_t * bd)
790 {
791 	int dat;
792 	struct altera_tse_priv *priv = dev->priv;
793 	volatile struct alt_tse_mac *mac_dev = priv->mac_dev;
794 	volatile struct alt_sgdma_descriptor *tx_desc = priv->tx_desc;
795 	volatile struct alt_sgdma_descriptor *rx_desc = priv->rx_desc;
796 	volatile struct alt_sgdma_descriptor *rx_desc_cur =
797 	    (volatile struct alt_sgdma_descriptor *)&rx_desc[0];
798 
799 	/* stop controller */
800 	debug("Reseting TSE & SGDMAs\n");
801 	tse_eth_reset(dev);
802 
803 	/* start the phy */
804 	debug("Configuring PHY\n");
805 	phy_run_commands(priv, priv->phyinfo->startup);
806 
807 	/* need to create sgdma */
808 	debug("Configuring tx desc\n");
809 	alt_sgdma_construct_descriptor_burst(
810 		(volatile struct alt_sgdma_descriptor *)&tx_desc[0],
811 		(volatile struct alt_sgdma_descriptor *)&tx_desc[1],
812 		(unsigned int *)NULL,	/* read addr */
813 		(unsigned int *)0,
814 		0,	/* length or EOP ,will change for each tx */
815 		0x1,	/* gen eop */
816 		0x0,	/* read fixed */
817 		0x1,	/* write fixed or sop */
818 		0x0,	/* read burst */
819 		0x0,	/* write burst */
820 		0x0	/* channel */
821 		);
822 	debug("Configuring rx desc\n");
823 	flush_dcache((unsigned long)(NetRxPackets[0]), PKTSIZE_ALIGN);
824 	alt_sgdma_construct_descriptor_burst(
825 		(volatile struct alt_sgdma_descriptor *)&rx_desc[0],
826 		(volatile struct alt_sgdma_descriptor *)&rx_desc[1],
827 		(unsigned int)0x0,	/* read addr */
828 		(unsigned int *)NetRxPackets[0],
829 		0x0,	/* length or EOP */
830 		0x0,	/* gen eop */
831 		0x0,	/* read fixed */
832 		0x0,	/* write fixed or sop */
833 		0x0,	/* read burst */
834 		0x0,	/* write burst */
835 		0x0	/* channel */
836 		);
837 	/* start rx async transfer */
838 	debug("Starting rx sgdma\n");
839 	alt_sgdma_do_async_transfer(priv->sgdma_rx, rx_desc_cur);
840 
841 	/* start TSE */
842 	debug("Configuring TSE Mac\n");
843 	/* Initialize MAC registers */
844 	mac_dev->max_frame_length = PKTSIZE_ALIGN;
845 	mac_dev->rx_almost_empty_threshold = 8;
846 	mac_dev->rx_almost_full_threshold = 8;
847 	mac_dev->tx_almost_empty_threshold = 8;
848 	mac_dev->tx_almost_full_threshold = 3;
849 	mac_dev->tx_sel_empty_threshold =
850 	    CONFIG_SYS_ALTERA_TSE_TX_FIFO - 16;
851 	mac_dev->tx_sel_full_threshold = 0;
852 	mac_dev->rx_sel_empty_threshold =
853 	    CONFIG_SYS_ALTERA_TSE_TX_FIFO - 16;
854 	mac_dev->rx_sel_full_threshold = 0;
855 
856 	/* NO Shift */
857 	mac_dev->rx_cmd_stat.bits.rx_shift16 = 0;
858 	mac_dev->tx_cmd_stat.bits.tx_shift16 = 0;
859 
860 	/* enable MAC */
861 	dat = 0;
862 	dat = ALTERA_TSE_CMD_TX_ENA_MSK | ALTERA_TSE_CMD_RX_ENA_MSK;
863 
864 	mac_dev->command_config.image = dat;
865 
866 	/* configure the TSE core  */
867 	/*  -- output clocks,  */
868 	/*  -- and later config stuff for SGMII */
869 	if (priv->link) {
870 		debug("Adjusting TSE to link speed\n");
871 		tse_adjust_link(priv);
872 	}
873 
874 	return priv->link ? 0 : -1;
875 }
876 
877 /* TSE init code */
878 int altera_tse_initialize(u8 dev_num, int mac_base,
879 			  int sgdma_rx_base, int sgdma_tx_base)
880 {
881 	struct altera_tse_priv *priv;
882 	struct eth_device *dev;
883 	struct alt_sgdma_descriptor *rx_desc;
884 	struct alt_sgdma_descriptor *tx_desc;
885 	unsigned long dma_handle;
886 
887 	dev = (struct eth_device *)malloc(sizeof *dev);
888 
889 	if (NULL == dev)
890 		return 0;
891 
892 	memset(dev, 0, sizeof *dev);
893 
894 	priv = malloc(sizeof(*priv));
895 
896 	if (!priv) {
897 		free(dev);
898 		return 0;
899 	}
900 	tx_desc = dma_alloc_coherent(sizeof(*tx_desc) * (3 + PKTBUFSRX),
901 				     &dma_handle);
902 	rx_desc = tx_desc + 2;
903 	debug("tx desc: address = 0x%x\n", (unsigned int)tx_desc);
904 	debug("rx desc: address = 0x%x\n", (unsigned int)rx_desc);
905 
906 	if (!tx_desc) {
907 		free(priv);
908 		free(dev);
909 		return 0;
910 	}
911 	memset(rx_desc, 0, (sizeof *rx_desc) * (PKTBUFSRX + 1));
912 	memset(tx_desc, 0, (sizeof *tx_desc) * 2);
913 
914 	/* initialize tse priv */
915 	priv->mac_dev = (volatile struct alt_tse_mac *)mac_base;
916 	priv->sgdma_rx = (volatile struct alt_sgdma_registers *)sgdma_rx_base;
917 	priv->sgdma_tx = (volatile struct alt_sgdma_registers *)sgdma_tx_base;
918 	priv->phyaddr = CONFIG_SYS_ALTERA_TSE_PHY_ADDR;
919 	priv->flags = CONFIG_SYS_ALTERA_TSE_FLAGS;
920 	priv->rx_desc = rx_desc;
921 	priv->tx_desc = tx_desc;
922 
923 	/* init eth structure */
924 	dev->priv = priv;
925 	dev->init = tse_eth_init;
926 	dev->halt = tse_eth_halt;
927 	dev->send = tse_eth_send;
928 	dev->recv = tse_eth_rx;
929 	dev->write_hwaddr = tse_set_mac_address;
930 	sprintf(dev->name, "%s-%hu", "ALTERA_TSE", dev_num);
931 
932 	eth_register(dev);
933 
934 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) && !defined(BITBANGMII)
935 	miiphy_register(dev->name, altera_tse_miiphy_read,
936 			altera_tse_miiphy_write);
937 #endif
938 
939 	init_phy(dev);
940 
941 	return 1;
942 }
943