xref: /openbmc/u-boot/drivers/net/altera_tse.c (revision 50a47d05)
1 /*
2  * Altera 10/100/1000 triple speed ethernet mac driver
3  *
4  * Copyright (C) 2008 Altera Corporation.
5  * Copyright (C) 2010 Thomas Chou <thomas@wytron.com.tw>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <config.h>
12 #include <common.h>
13 #include <malloc.h>
14 #include <net.h>
15 #include <command.h>
16 #include <asm/cache.h>
17 #include <asm/dma-mapping.h>
18 #include <miiphy.h>
19 #include "altera_tse.h"
20 
21 /* sgdma debug - print descriptor */
22 static void alt_sgdma_print_desc(volatile struct alt_sgdma_descriptor *desc)
23 {
24 	debug("SGDMA DEBUG :\n");
25 	debug("desc->source : 0x%x \n", (unsigned int)desc->source);
26 	debug("desc->destination : 0x%x \n", (unsigned int)desc->destination);
27 	debug("desc->next : 0x%x \n", (unsigned int)desc->next);
28 	debug("desc->source_pad : 0x%x \n", (unsigned int)desc->source_pad);
29 	debug("desc->destination_pad : 0x%x \n",
30 	      (unsigned int)desc->destination_pad);
31 	debug("desc->next_pad : 0x%x \n", (unsigned int)desc->next_pad);
32 	debug("desc->bytes_to_transfer : 0x%x \n",
33 	      (unsigned int)desc->bytes_to_transfer);
34 	debug("desc->actual_bytes_transferred : 0x%x \n",
35 	      (unsigned int)desc->actual_bytes_transferred);
36 	debug("desc->descriptor_status : 0x%x \n",
37 	      (unsigned int)desc->descriptor_status);
38 	debug("desc->descriptor_control : 0x%x \n",
39 	      (unsigned int)desc->descriptor_control);
40 }
41 
42 /* This is a generic routine that the SGDMA mode-specific routines
43  * call to populate a descriptor.
44  * arg1	    :pointer to first SGDMA descriptor.
45  * arg2	    :pointer to next  SGDMA descriptor.
46  * arg3	    :Address to where data to be written.
47  * arg4	    :Address from where data to be read.
48  * arg5	    :no of byte to transaction.
49  * arg6	    :variable indicating to generate start of packet or not
50  * arg7	    :read fixed
51  * arg8	    :write fixed
52  * arg9	    :read burst
53  * arg10    :write burst
54  * arg11    :atlantic_channel number
55  */
56 static void alt_sgdma_construct_descriptor_burst(
57 	volatile struct alt_sgdma_descriptor *desc,
58 	volatile struct alt_sgdma_descriptor *next,
59 	unsigned int *read_addr,
60 	unsigned int *write_addr,
61 	unsigned short length_or_eop,
62 	int generate_eop,
63 	int read_fixed,
64 	int write_fixed_or_sop,
65 	int read_burst,
66 	int write_burst,
67 	unsigned char atlantic_channel)
68 {
69 	/*
70 	 * Mark the "next" descriptor as "not" owned by hardware. This prevents
71 	 * The SGDMA controller from continuing to process the chain. This is
72 	 * done as a single IO write to bypass cache, without flushing
73 	 * the entire descriptor, since only the 8-bit descriptor status must
74 	 * be flushed.
75 	 */
76 	if (!next)
77 		debug("Next descriptor not defined!!\n");
78 
79 	next->descriptor_control = (next->descriptor_control &
80 		~ALT_SGDMA_DESCRIPTOR_CONTROL_OWNED_BY_HW_MSK);
81 
82 	desc->source = (unsigned int *)((unsigned int)read_addr & 0x1FFFFFFF);
83 	desc->destination =
84 	    (unsigned int *)((unsigned int)write_addr & 0x1FFFFFFF);
85 	desc->next = (unsigned int *)((unsigned int)next & 0x1FFFFFFF);
86 	desc->source_pad = 0x0;
87 	desc->destination_pad = 0x0;
88 	desc->next_pad = 0x0;
89 	desc->bytes_to_transfer = length_or_eop;
90 	desc->actual_bytes_transferred = 0;
91 	desc->descriptor_status = 0x0;
92 
93 	/* SGDMA burst not currently supported */
94 	desc->read_burst = 0;
95 	desc->write_burst = 0;
96 
97 	/*
98 	 * Set the descriptor control block as follows:
99 	 * - Set "owned by hardware" bit
100 	 * - Optionally set "generate EOP" bit
101 	 * - Optionally set the "read from fixed address" bit
102 	 * - Optionally set the "write to fixed address bit (which serves
103 	 *   serves as a "generate SOP" control bit in memory-to-stream mode).
104 	 * - Set the 4-bit atlantic channel, if specified
105 	 *
106 	 * Note this step is performed after all other descriptor information
107 	 * has been filled out so that, if the controller already happens to be
108 	 * pointing at this descriptor, it will not run (via the "owned by
109 	 * hardware" bit) until all other descriptor has been set up.
110 	 */
111 
112 	desc->descriptor_control =
113 	    ((ALT_SGDMA_DESCRIPTOR_CONTROL_OWNED_BY_HW_MSK) |
114 	     (generate_eop ?
115 	      ALT_SGDMA_DESCRIPTOR_CONTROL_GENERATE_EOP_MSK : 0x0) |
116 	     (read_fixed ?
117 	      ALT_SGDMA_DESCRIPTOR_CONTROL_READ_FIXED_ADDRESS_MSK : 0x0) |
118 	     (write_fixed_or_sop ?
119 	      ALT_SGDMA_DESCRIPTOR_CONTROL_WRITE_FIXED_ADDRESS_MSK : 0x0) |
120 	     (atlantic_channel ? ((atlantic_channel & 0x0F) << 3) : 0)
121 		    );
122 }
123 
124 static int alt_sgdma_do_sync_transfer(volatile struct alt_sgdma_registers *dev,
125 			       volatile struct alt_sgdma_descriptor *desc)
126 {
127 	unsigned int status;
128 	int counter = 0;
129 
130 	/* Wait for any pending transfers to complete */
131 	alt_sgdma_print_desc(desc);
132 	status = dev->status;
133 
134 	counter = 0;
135 	while (dev->status & ALT_SGDMA_STATUS_BUSY_MSK) {
136 		if (counter++ > ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
137 			break;
138 	}
139 
140 	if (counter >= ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
141 		debug("Timeout waiting sgdma in do sync!\n");
142 
143 	/*
144 	 * Clear any (previous) status register information
145 	 * that might occlude our error checking later.
146 	 */
147 	dev->status = 0xFF;
148 
149 	/* Point the controller at the descriptor */
150 	dev->next_descriptor_pointer = (unsigned int)desc & 0x1FFFFFFF;
151 	debug("next desc in sgdma 0x%x\n",
152 	      (unsigned int)dev->next_descriptor_pointer);
153 
154 	/*
155 	 * Set up SGDMA controller to:
156 	 * - Disable interrupt generation
157 	 * - Run once a valid descriptor is written to controller
158 	 * - Stop on an error with any particular descriptor
159 	 */
160 	dev->control = (ALT_SGDMA_CONTROL_RUN_MSK |
161 			ALT_SGDMA_CONTROL_STOP_DMA_ER_MSK);
162 
163 	/* Wait for the descriptor (chain) to complete */
164 	status = dev->status;
165 	debug("wait for sgdma....");
166 	while (dev->status & ALT_SGDMA_STATUS_BUSY_MSK)
167 		;
168 	debug("done\n");
169 
170 	/* Clear Run */
171 	dev->control = (dev->control & (~ALT_SGDMA_CONTROL_RUN_MSK));
172 
173 	/* Get & clear status register contents */
174 	status = dev->status;
175 	dev->status = 0xFF;
176 
177 	/* we really should check if the transfer completes properly */
178 	debug("tx sgdma status = 0x%x", status);
179 	return 0;
180 }
181 
182 static int alt_sgdma_do_async_transfer(volatile struct alt_sgdma_registers *dev,
183 				volatile struct alt_sgdma_descriptor *desc)
184 {
185 	unsigned int status;
186 	int counter = 0;
187 
188 	/* Wait for any pending transfers to complete */
189 	alt_sgdma_print_desc(desc);
190 	status = dev->status;
191 
192 	counter = 0;
193 	while (dev->status & ALT_SGDMA_STATUS_BUSY_MSK) {
194 		if (counter++ > ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
195 			break;
196 	}
197 
198 	if (counter >= ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
199 		debug("Timeout waiting sgdma in do async!\n");
200 
201 	/*
202 	 * Clear the RUN bit in the control register. This is needed
203 	 * to restart the SGDMA engine later on.
204 	 */
205 	dev->control = 0;
206 
207 	/*
208 	 * Clear any (previous) status register information
209 	 * that might occlude our error checking later.
210 	 */
211 	dev->status = 0xFF;
212 
213 	/* Point the controller at the descriptor */
214 	dev->next_descriptor_pointer = (unsigned int)desc & 0x1FFFFFFF;
215 
216 	/*
217 	 * Set up SGDMA controller to:
218 	 * - Disable interrupt generation
219 	 * - Run once a valid descriptor is written to controller
220 	 * - Stop on an error with any particular descriptor
221 	 */
222 	dev->control = (ALT_SGDMA_CONTROL_RUN_MSK |
223 			ALT_SGDMA_CONTROL_STOP_DMA_ER_MSK);
224 
225 	/* we really should check if the transfer completes properly */
226 	return 0;
227 }
228 
229 /* u-boot interface */
230 static int tse_adjust_link(struct altera_tse_priv *priv)
231 {
232 	unsigned int refvar;
233 
234 	refvar = priv->mac_dev->command_config.image;
235 
236 	if (!(priv->duplexity))
237 		refvar |= ALTERA_TSE_CMD_HD_ENA_MSK;
238 	else
239 		refvar &= ~ALTERA_TSE_CMD_HD_ENA_MSK;
240 
241 	switch (priv->speed) {
242 	case 1000:
243 		refvar |= ALTERA_TSE_CMD_ETH_SPEED_MSK;
244 		refvar &= ~ALTERA_TSE_CMD_ENA_10_MSK;
245 		break;
246 	case 100:
247 		refvar &= ~ALTERA_TSE_CMD_ETH_SPEED_MSK;
248 		refvar &= ~ALTERA_TSE_CMD_ENA_10_MSK;
249 		break;
250 	case 10:
251 		refvar &= ~ALTERA_TSE_CMD_ETH_SPEED_MSK;
252 		refvar |= ALTERA_TSE_CMD_ENA_10_MSK;
253 		break;
254 	}
255 	priv->mac_dev->command_config.image = refvar;
256 
257 	return 0;
258 }
259 
260 static int tse_eth_send(struct eth_device *dev,
261 			volatile void *packet, int length)
262 {
263 	struct altera_tse_priv *priv = dev->priv;
264 	volatile struct alt_sgdma_registers *tx_sgdma = priv->sgdma_tx;
265 	volatile struct alt_sgdma_descriptor *tx_desc =
266 	    (volatile struct alt_sgdma_descriptor *)priv->tx_desc;
267 
268 	volatile struct alt_sgdma_descriptor *tx_desc_cur =
269 	    (volatile struct alt_sgdma_descriptor *)&tx_desc[0];
270 
271 	flush_dcache_range((unsigned long)packet,
272 			(unsigned long)packet + length);
273 	alt_sgdma_construct_descriptor_burst(
274 		(volatile struct alt_sgdma_descriptor *)&tx_desc[0],
275 		(volatile struct alt_sgdma_descriptor *)&tx_desc[1],
276 		(unsigned int *)packet,	/* read addr */
277 		(unsigned int *)0,
278 		length,	/* length or EOP ,will change for each tx */
279 		0x1,	/* gen eop */
280 		0x0,	/* read fixed */
281 		0x1,	/* write fixed or sop */
282 		0x0,	/* read burst */
283 		0x0,	/* write burst */
284 		0x0	/* channel */
285 		);
286 	debug("TX Packet @ 0x%x,0x%x bytes", (unsigned int)packet, length);
287 
288 	/* send the packet */
289 	debug("sending packet\n");
290 	alt_sgdma_do_sync_transfer(tx_sgdma, tx_desc_cur);
291 	debug("sent %d bytes\n", tx_desc_cur->actual_bytes_transferred);
292 	return tx_desc_cur->actual_bytes_transferred;
293 }
294 
295 static int tse_eth_rx(struct eth_device *dev)
296 {
297 	int packet_length = 0;
298 	struct altera_tse_priv *priv = dev->priv;
299 	volatile struct alt_sgdma_descriptor *rx_desc =
300 	    (volatile struct alt_sgdma_descriptor *)priv->rx_desc;
301 	volatile struct alt_sgdma_descriptor *rx_desc_cur = &rx_desc[0];
302 
303 	if (rx_desc_cur->descriptor_status &
304 	    ALT_SGDMA_DESCRIPTOR_STATUS_TERMINATED_BY_EOP_MSK) {
305 		debug("got packet\n");
306 		packet_length = rx_desc->actual_bytes_transferred;
307 		NetReceive(NetRxPackets[0], packet_length);
308 
309 		/* start descriptor again */
310 		flush_dcache_range((unsigned long)(NetRxPackets[0]),
311 			(unsigned long)(NetRxPackets[0]) + PKTSIZE_ALIGN);
312 		alt_sgdma_construct_descriptor_burst(
313 			(volatile struct alt_sgdma_descriptor *)&rx_desc[0],
314 			(volatile struct alt_sgdma_descriptor *)&rx_desc[1],
315 			(unsigned int)0x0,	/* read addr */
316 			(unsigned int *)NetRxPackets[0],
317 			0x0,	/* length or EOP */
318 			0x0,	/* gen eop */
319 			0x0,	/* read fixed */
320 			0x0,	/* write fixed or sop */
321 			0x0,	/* read burst */
322 			0x0,	/* write burst */
323 			0x0	/* channel */
324 		    );
325 
326 		/* setup the sgdma */
327 		alt_sgdma_do_async_transfer(priv->sgdma_rx, &rx_desc[0]);
328 
329 		return packet_length;
330 	}
331 
332 	return -1;
333 }
334 
335 static void tse_eth_halt(struct eth_device *dev)
336 {
337 	/* don't do anything! */
338 	/* this gets called after each uboot  */
339 	/* network command.  don't need to reset the thing all of the time */
340 }
341 
342 static void tse_eth_reset(struct eth_device *dev)
343 {
344 	/* stop sgdmas, disable tse receive */
345 	struct altera_tse_priv *priv = dev->priv;
346 	volatile struct alt_tse_mac *mac_dev = priv->mac_dev;
347 	volatile struct alt_sgdma_registers *rx_sgdma = priv->sgdma_rx;
348 	volatile struct alt_sgdma_registers *tx_sgdma = priv->sgdma_tx;
349 	int counter;
350 	volatile struct alt_sgdma_descriptor *rx_desc =
351 	    (volatile struct alt_sgdma_descriptor *)&priv->rx_desc[0];
352 
353 	/* clear rx desc & wait for sgdma to complete */
354 	rx_desc->descriptor_control = 0;
355 	rx_sgdma->control = 0;
356 	counter = 0;
357 	while (rx_sgdma->status & ALT_SGDMA_STATUS_BUSY_MSK) {
358 		if (counter++ > ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
359 			break;
360 	}
361 
362 	if (counter >= ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR) {
363 		debug("Timeout waiting for rx sgdma!\n");
364 		rx_sgdma->control = ALT_SGDMA_CONTROL_SOFTWARERESET_MSK;
365 		rx_sgdma->control = ALT_SGDMA_CONTROL_SOFTWARERESET_MSK;
366 	}
367 
368 	counter = 0;
369 	tx_sgdma->control = 0;
370 	while (tx_sgdma->status & ALT_SGDMA_STATUS_BUSY_MSK) {
371 		if (counter++ > ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
372 			break;
373 	}
374 
375 	if (counter >= ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR) {
376 		debug("Timeout waiting for tx sgdma!\n");
377 		tx_sgdma->control = ALT_SGDMA_CONTROL_SOFTWARERESET_MSK;
378 		tx_sgdma->control = ALT_SGDMA_CONTROL_SOFTWARERESET_MSK;
379 	}
380 	/* reset the mac */
381 	mac_dev->command_config.bits.transmit_enable = 1;
382 	mac_dev->command_config.bits.receive_enable = 1;
383 	mac_dev->command_config.bits.software_reset = 1;
384 
385 	counter = 0;
386 	while (mac_dev->command_config.bits.software_reset) {
387 		if (counter++ > ALT_TSE_SW_RESET_WATCHDOG_CNTR)
388 			break;
389 	}
390 
391 	if (counter >= ALT_TSE_SW_RESET_WATCHDOG_CNTR)
392 		debug("TSEMAC SW reset bit never cleared!\n");
393 }
394 
395 static int tse_mdio_read(struct altera_tse_priv *priv, unsigned int regnum)
396 {
397 	volatile struct alt_tse_mac *mac_dev;
398 	unsigned int *mdio_regs;
399 	unsigned int data;
400 	u16 value;
401 
402 	mac_dev = priv->mac_dev;
403 
404 	/* set mdio address */
405 	mac_dev->mdio_phy1_addr = priv->phyaddr;
406 	mdio_regs = (unsigned int *)&mac_dev->mdio_phy1;
407 
408 	/* get the data */
409 	data = mdio_regs[regnum];
410 
411 	value = data & 0xffff;
412 
413 	return value;
414 }
415 
416 static int tse_mdio_write(struct altera_tse_priv *priv, unsigned int regnum,
417 		   unsigned int value)
418 {
419 	volatile struct alt_tse_mac *mac_dev;
420 	unsigned int *mdio_regs;
421 	unsigned int data;
422 
423 	mac_dev = priv->mac_dev;
424 
425 	/* set mdio address */
426 	mac_dev->mdio_phy1_addr = priv->phyaddr;
427 	mdio_regs = (unsigned int *)&mac_dev->mdio_phy1;
428 
429 	/* get the data */
430 	data = (unsigned int)value;
431 
432 	mdio_regs[regnum] = data;
433 
434 	return 0;
435 }
436 
437 /* MDIO access to phy */
438 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) && !defined(BITBANGMII)
439 static int altera_tse_miiphy_write(const char *devname, unsigned char addr,
440 				   unsigned char reg, unsigned short value)
441 {
442 	struct eth_device *dev;
443 	struct altera_tse_priv *priv;
444 	dev = eth_get_dev_by_name(devname);
445 	priv = dev->priv;
446 
447 	tse_mdio_write(priv, (uint) reg, (uint) value);
448 
449 	return 0;
450 }
451 
452 static int altera_tse_miiphy_read(const char *devname, unsigned char addr,
453 				  unsigned char reg, unsigned short *value)
454 {
455 	struct eth_device *dev;
456 	struct altera_tse_priv *priv;
457 	volatile struct alt_tse_mac *mac_dev;
458 	unsigned int *mdio_regs;
459 
460 	dev = eth_get_dev_by_name(devname);
461 	priv = dev->priv;
462 
463 	mac_dev = priv->mac_dev;
464 	mac_dev->mdio_phy1_addr = (int)addr;
465 	mdio_regs = (unsigned int *)&mac_dev->mdio_phy1;
466 
467 	*value = 0xffff & mdio_regs[reg];
468 
469 	return 0;
470 
471 }
472 #endif
473 
474 /*
475  * Also copied from tsec.c
476  */
477 /* Parse the status register for link, and then do
478  * auto-negotiation
479  */
480 static uint mii_parse_sr(uint mii_reg, struct altera_tse_priv *priv)
481 {
482 	/*
483 	 * Wait if the link is up, and autonegotiation is in progress
484 	 * (ie - we're capable and it's not done)
485 	 */
486 	mii_reg = tse_mdio_read(priv, MIIM_STATUS);
487 
488 	if (!(mii_reg & MIIM_STATUS_LINK) && (mii_reg & BMSR_ANEGCAPABLE)
489 	    && !(mii_reg & BMSR_ANEGCOMPLETE)) {
490 		int i = 0;
491 
492 		puts("Waiting for PHY auto negotiation to complete");
493 		while (!(mii_reg & BMSR_ANEGCOMPLETE)) {
494 			/*
495 			 * Timeout reached ?
496 			 */
497 			if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
498 				puts(" TIMEOUT !\n");
499 				priv->link = 0;
500 				return 0;
501 			}
502 
503 			if ((i++ % 1000) == 0)
504 				putc('.');
505 			udelay(1000);	/* 1 ms */
506 			mii_reg = tse_mdio_read(priv, MIIM_STATUS);
507 		}
508 		puts(" done\n");
509 		priv->link = 1;
510 		udelay(500000);	/* another 500 ms (results in faster booting) */
511 	} else {
512 		if (mii_reg & MIIM_STATUS_LINK) {
513 			debug("Link is up\n");
514 			priv->link = 1;
515 		} else {
516 			debug("Link is down\n");
517 			priv->link = 0;
518 		}
519 	}
520 
521 	return 0;
522 }
523 
524 /* Parse the 88E1011's status register for speed and duplex
525  * information
526  */
527 static uint mii_parse_88E1011_psr(uint mii_reg, struct altera_tse_priv *priv)
528 {
529 	uint speed;
530 
531 	mii_reg = tse_mdio_read(priv, MIIM_88E1011_PHY_STATUS);
532 
533 	if ((mii_reg & MIIM_88E1011_PHYSTAT_LINK) &&
534 	    !(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
535 		int i = 0;
536 
537 		puts("Waiting for PHY realtime link");
538 		while (!(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
539 			/* Timeout reached ? */
540 			if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
541 				puts(" TIMEOUT !\n");
542 				priv->link = 0;
543 				break;
544 			}
545 
546 			if ((i++ == 1000) == 0) {
547 				i = 0;
548 				puts(".");
549 			}
550 			udelay(1000);	/* 1 ms */
551 			mii_reg = tse_mdio_read(priv, MIIM_88E1011_PHY_STATUS);
552 		}
553 		puts(" done\n");
554 		udelay(500000);	/* another 500 ms (results in faster booting) */
555 	} else {
556 		if (mii_reg & MIIM_88E1011_PHYSTAT_LINK)
557 			priv->link = 1;
558 		else
559 			priv->link = 0;
560 	}
561 
562 	if (mii_reg & MIIM_88E1011_PHYSTAT_DUPLEX)
563 		priv->duplexity = 1;
564 	else
565 		priv->duplexity = 0;
566 
567 	speed = (mii_reg & MIIM_88E1011_PHYSTAT_SPEED);
568 
569 	switch (speed) {
570 	case MIIM_88E1011_PHYSTAT_GBIT:
571 		priv->speed = 1000;
572 		debug("PHY Speed is 1000Mbit\n");
573 		break;
574 	case MIIM_88E1011_PHYSTAT_100:
575 		debug("PHY Speed is 100Mbit\n");
576 		priv->speed = 100;
577 		break;
578 	default:
579 		debug("PHY Speed is 10Mbit\n");
580 		priv->speed = 10;
581 	}
582 
583 	return 0;
584 }
585 
586 static uint mii_m88e1111s_setmode_sr(uint mii_reg, struct altera_tse_priv *priv)
587 {
588 	uint mii_data = tse_mdio_read(priv, mii_reg);
589 	mii_data &= 0xfff0;
590 	if ((priv->flags >= 1) && (priv->flags <= 4))
591 		mii_data |= 0xb;
592 	else if (priv->flags == 5)
593 		mii_data |= 0x4;
594 
595 	return mii_data;
596 }
597 
598 static uint mii_m88e1111s_setmode_cr(uint mii_reg, struct altera_tse_priv *priv)
599 {
600 	uint mii_data = tse_mdio_read(priv, mii_reg);
601 	mii_data &= ~0x82;
602 	if ((priv->flags >= 1) && (priv->flags <= 4))
603 		mii_data |= 0x82;
604 
605 	return mii_data;
606 }
607 
608 /*
609  * Returns which value to write to the control register.
610  * For 10/100, the value is slightly different
611  */
612 static uint mii_cr_init(uint mii_reg, struct altera_tse_priv *priv)
613 {
614 	return MIIM_CONTROL_INIT;
615 }
616 
617 /*
618  * PHY & MDIO code
619  * Need to add SGMII stuff
620  *
621  */
622 
623 static struct phy_info phy_info_M88E1111S = {
624 	0x01410cc,
625 	"Marvell 88E1111S",
626 	4,
627 	(struct phy_cmd[]){	/* config */
628 			   /* Reset and configure the PHY */
629 			   {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
630 			   {MIIM_88E1111_PHY_EXT_SR, 0x848f,
631 			    &mii_m88e1111s_setmode_sr},
632 			   /* Delay RGMII TX and RX */
633 			   {MIIM_88E1111_PHY_EXT_CR, 0x0cd2,
634 			    &mii_m88e1111s_setmode_cr},
635 			   {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
636 			   {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
637 			   {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
638 			   {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
639 			   {miim_end,}
640 			   },
641 	(struct phy_cmd[]){	/* startup */
642 			   /* Status is read once to clear old link state */
643 			   {MIIM_STATUS, miim_read, NULL},
644 			   /* Auto-negotiate */
645 			   {MIIM_STATUS, miim_read, &mii_parse_sr},
646 			   /* Read the status */
647 			   {MIIM_88E1011_PHY_STATUS, miim_read,
648 			    &mii_parse_88E1011_psr},
649 			   {miim_end,}
650 			   },
651 	(struct phy_cmd[]){	/* shutdown */
652 			   {miim_end,}
653 			   },
654 };
655 
656 /* a generic flavor.  */
657 static struct phy_info phy_info_generic = {
658 	0,
659 	"Unknown/Generic PHY",
660 	32,
661 	(struct phy_cmd[]){	/* config */
662 			   {MII_BMCR, BMCR_RESET, NULL},
663 			   {MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART, NULL},
664 			   {miim_end,}
665 			   },
666 	(struct phy_cmd[]){	/* startup */
667 			   {MII_BMSR, miim_read, NULL},
668 			   {MII_BMSR, miim_read, &mii_parse_sr},
669 			   {miim_end,}
670 			   },
671 	(struct phy_cmd[]){	/* shutdown */
672 			   {miim_end,}
673 			   }
674 };
675 
676 static struct phy_info *phy_info[] = {
677 	&phy_info_M88E1111S,
678 	NULL
679 };
680 
681  /* Grab the identifier of the device's PHY, and search through
682   * all of the known PHYs to see if one matches.	 If so, return
683   * it, if not, return NULL
684   */
685 static struct phy_info *get_phy_info(struct eth_device *dev)
686 {
687 	struct altera_tse_priv *priv = (struct altera_tse_priv *)dev->priv;
688 	uint phy_reg, phy_ID;
689 	int i;
690 	struct phy_info *theInfo = NULL;
691 
692 	/* Grab the bits from PHYIR1, and put them in the upper half */
693 	phy_reg = tse_mdio_read(priv, MIIM_PHYIR1);
694 	phy_ID = (phy_reg & 0xffff) << 16;
695 
696 	/* Grab the bits from PHYIR2, and put them in the lower half */
697 	phy_reg = tse_mdio_read(priv, MIIM_PHYIR2);
698 	phy_ID |= (phy_reg & 0xffff);
699 
700 	/* loop through all the known PHY types, and find one that */
701 	/* matches the ID we read from the PHY. */
702 	for (i = 0; phy_info[i]; i++) {
703 		if (phy_info[i]->id == (phy_ID >> phy_info[i]->shift)) {
704 			theInfo = phy_info[i];
705 			break;
706 		}
707 	}
708 
709 	if (theInfo == NULL) {
710 		theInfo = &phy_info_generic;
711 		debug("%s: No support for PHY id %x; assuming generic\n",
712 		      dev->name, phy_ID);
713 	} else
714 		debug("%s: PHY is %s (%x)\n", dev->name, theInfo->name, phy_ID);
715 
716 	return theInfo;
717 }
718 
719 /* Execute the given series of commands on the given device's
720  * PHY, running functions as necessary
721  */
722 static void phy_run_commands(struct altera_tse_priv *priv, struct phy_cmd *cmd)
723 {
724 	int i;
725 	uint result;
726 
727 	for (i = 0; cmd->mii_reg != miim_end; i++) {
728 		if (cmd->mii_data == miim_read) {
729 			result = tse_mdio_read(priv, cmd->mii_reg);
730 
731 			if (cmd->funct != NULL)
732 				(*(cmd->funct)) (result, priv);
733 
734 		} else {
735 			if (cmd->funct != NULL)
736 				result = (*(cmd->funct)) (cmd->mii_reg, priv);
737 			else
738 				result = cmd->mii_data;
739 
740 			tse_mdio_write(priv, cmd->mii_reg, result);
741 
742 		}
743 		cmd++;
744 	}
745 }
746 
747 /* Phy init code */
748 static int init_phy(struct eth_device *dev)
749 {
750 	struct altera_tse_priv *priv = (struct altera_tse_priv *)dev->priv;
751 	struct phy_info *curphy;
752 
753 	/* Get the cmd structure corresponding to the attached
754 	 * PHY */
755 	curphy = get_phy_info(dev);
756 
757 	if (curphy == NULL) {
758 		priv->phyinfo = NULL;
759 		debug("%s: No PHY found\n", dev->name);
760 
761 		return 0;
762 	} else
763 		debug("%s found\n", curphy->name);
764 	priv->phyinfo = curphy;
765 
766 	phy_run_commands(priv, priv->phyinfo->config);
767 
768 	return 1;
769 }
770 
771 static int tse_set_mac_address(struct eth_device *dev)
772 {
773 	struct altera_tse_priv *priv = dev->priv;
774 	volatile struct alt_tse_mac *mac_dev = priv->mac_dev;
775 
776 	debug("Setting MAC address to 0x%02x%02x%02x%02x%02x%02x\n",
777 	      dev->enetaddr[5], dev->enetaddr[4],
778 	      dev->enetaddr[3], dev->enetaddr[2],
779 	      dev->enetaddr[1], dev->enetaddr[0]);
780 	mac_dev->mac_addr_0 = ((dev->enetaddr[3]) << 24 |
781 			       (dev->enetaddr[2]) << 16 |
782 			       (dev->enetaddr[1]) << 8 | (dev->enetaddr[0]));
783 
784 	mac_dev->mac_addr_1 = ((dev->enetaddr[5] << 8 |
785 				(dev->enetaddr[4])) & 0xFFFF);
786 
787 	/* Set the MAC address */
788 	mac_dev->supp_mac_addr_0_0 = mac_dev->mac_addr_0;
789 	mac_dev->supp_mac_addr_0_1 = mac_dev->mac_addr_1;
790 
791 	/* Set the MAC address */
792 	mac_dev->supp_mac_addr_1_0 = mac_dev->mac_addr_0;
793 	mac_dev->supp_mac_addr_1_1 = mac_dev->mac_addr_1;
794 
795 	/* Set the MAC address */
796 	mac_dev->supp_mac_addr_2_0 = mac_dev->mac_addr_0;
797 	mac_dev->supp_mac_addr_2_1 = mac_dev->mac_addr_1;
798 
799 	/* Set the MAC address */
800 	mac_dev->supp_mac_addr_3_0 = mac_dev->mac_addr_0;
801 	mac_dev->supp_mac_addr_3_1 = mac_dev->mac_addr_1;
802 	return 0;
803 }
804 
805 static int tse_eth_init(struct eth_device *dev, bd_t * bd)
806 {
807 	int dat;
808 	struct altera_tse_priv *priv = dev->priv;
809 	volatile struct alt_tse_mac *mac_dev = priv->mac_dev;
810 	volatile struct alt_sgdma_descriptor *tx_desc = priv->tx_desc;
811 	volatile struct alt_sgdma_descriptor *rx_desc = priv->rx_desc;
812 	volatile struct alt_sgdma_descriptor *rx_desc_cur =
813 	    (volatile struct alt_sgdma_descriptor *)&rx_desc[0];
814 
815 	/* stop controller */
816 	debug("Reseting TSE & SGDMAs\n");
817 	tse_eth_reset(dev);
818 
819 	/* start the phy */
820 	debug("Configuring PHY\n");
821 	phy_run_commands(priv, priv->phyinfo->startup);
822 
823 	/* need to create sgdma */
824 	debug("Configuring tx desc\n");
825 	alt_sgdma_construct_descriptor_burst(
826 		(volatile struct alt_sgdma_descriptor *)&tx_desc[0],
827 		(volatile struct alt_sgdma_descriptor *)&tx_desc[1],
828 		(unsigned int *)NULL,	/* read addr */
829 		(unsigned int *)0,
830 		0,	/* length or EOP ,will change for each tx */
831 		0x1,	/* gen eop */
832 		0x0,	/* read fixed */
833 		0x1,	/* write fixed or sop */
834 		0x0,	/* read burst */
835 		0x0,	/* write burst */
836 		0x0	/* channel */
837 		);
838 	debug("Configuring rx desc\n");
839 	flush_dcache_range((unsigned long)(NetRxPackets[0]),
840 			(unsigned long)(NetRxPackets[0]) + PKTSIZE_ALIGN);
841 	alt_sgdma_construct_descriptor_burst(
842 		(volatile struct alt_sgdma_descriptor *)&rx_desc[0],
843 		(volatile struct alt_sgdma_descriptor *)&rx_desc[1],
844 		(unsigned int)0x0,	/* read addr */
845 		(unsigned int *)NetRxPackets[0],
846 		0x0,	/* length or EOP */
847 		0x0,	/* gen eop */
848 		0x0,	/* read fixed */
849 		0x0,	/* write fixed or sop */
850 		0x0,	/* read burst */
851 		0x0,	/* write burst */
852 		0x0	/* channel */
853 		);
854 	/* start rx async transfer */
855 	debug("Starting rx sgdma\n");
856 	alt_sgdma_do_async_transfer(priv->sgdma_rx, rx_desc_cur);
857 
858 	/* start TSE */
859 	debug("Configuring TSE Mac\n");
860 	/* Initialize MAC registers */
861 	mac_dev->max_frame_length = PKTSIZE_ALIGN;
862 	mac_dev->rx_almost_empty_threshold = 8;
863 	mac_dev->rx_almost_full_threshold = 8;
864 	mac_dev->tx_almost_empty_threshold = 8;
865 	mac_dev->tx_almost_full_threshold = 3;
866 	mac_dev->tx_sel_empty_threshold =
867 	    CONFIG_SYS_ALTERA_TSE_TX_FIFO - 16;
868 	mac_dev->tx_sel_full_threshold = 0;
869 	mac_dev->rx_sel_empty_threshold =
870 	    CONFIG_SYS_ALTERA_TSE_TX_FIFO - 16;
871 	mac_dev->rx_sel_full_threshold = 0;
872 
873 	/* NO Shift */
874 	mac_dev->rx_cmd_stat.bits.rx_shift16 = 0;
875 	mac_dev->tx_cmd_stat.bits.tx_shift16 = 0;
876 
877 	/* enable MAC */
878 	dat = 0;
879 	dat = ALTERA_TSE_CMD_TX_ENA_MSK | ALTERA_TSE_CMD_RX_ENA_MSK;
880 
881 	mac_dev->command_config.image = dat;
882 
883 	/* configure the TSE core  */
884 	/*  -- output clocks,  */
885 	/*  -- and later config stuff for SGMII */
886 	if (priv->link) {
887 		debug("Adjusting TSE to link speed\n");
888 		tse_adjust_link(priv);
889 	}
890 
891 	return priv->link ? 0 : -1;
892 }
893 
894 /* TSE init code */
895 int altera_tse_initialize(u8 dev_num, int mac_base,
896 			  int sgdma_rx_base, int sgdma_tx_base,
897 			  u32 sgdma_desc_base, u32 sgdma_desc_size)
898 {
899 	struct altera_tse_priv *priv;
900 	struct eth_device *dev;
901 	struct alt_sgdma_descriptor *rx_desc;
902 	struct alt_sgdma_descriptor *tx_desc;
903 	unsigned long dma_handle;
904 
905 	dev = (struct eth_device *)malloc(sizeof *dev);
906 
907 	if (NULL == dev)
908 		return 0;
909 
910 	memset(dev, 0, sizeof *dev);
911 
912 	priv = malloc(sizeof(*priv));
913 
914 	if (!priv) {
915 		free(dev);
916 		return 0;
917 	}
918 	if (sgdma_desc_size) {
919 		if (sgdma_desc_size < (sizeof(*tx_desc) * (3 + PKTBUFSRX))) {
920 			printf("ALTERA_TSE-%hu: "
921 			       "descriptor memory is too small\n", dev_num);
922 			free(priv);
923 			free(dev);
924 			return 0;
925 		}
926 		tx_desc = (struct alt_sgdma_descriptor *)sgdma_desc_base;
927 	} else {
928 		tx_desc = dma_alloc_coherent(sizeof(*tx_desc) * (3 + PKTBUFSRX),
929 					     &dma_handle);
930 	}
931 
932 	rx_desc = tx_desc + 2;
933 	debug("tx desc: address = 0x%x\n", (unsigned int)tx_desc);
934 	debug("rx desc: address = 0x%x\n", (unsigned int)rx_desc);
935 
936 	if (!tx_desc) {
937 		free(priv);
938 		free(dev);
939 		return 0;
940 	}
941 	memset(rx_desc, 0, (sizeof *rx_desc) * (PKTBUFSRX + 1));
942 	memset(tx_desc, 0, (sizeof *tx_desc) * 2);
943 
944 	/* initialize tse priv */
945 	priv->mac_dev = (volatile struct alt_tse_mac *)mac_base;
946 	priv->sgdma_rx = (volatile struct alt_sgdma_registers *)sgdma_rx_base;
947 	priv->sgdma_tx = (volatile struct alt_sgdma_registers *)sgdma_tx_base;
948 	priv->phyaddr = CONFIG_SYS_ALTERA_TSE_PHY_ADDR;
949 	priv->flags = CONFIG_SYS_ALTERA_TSE_FLAGS;
950 	priv->rx_desc = rx_desc;
951 	priv->tx_desc = tx_desc;
952 
953 	/* init eth structure */
954 	dev->priv = priv;
955 	dev->init = tse_eth_init;
956 	dev->halt = tse_eth_halt;
957 	dev->send = tse_eth_send;
958 	dev->recv = tse_eth_rx;
959 	dev->write_hwaddr = tse_set_mac_address;
960 	sprintf(dev->name, "%s-%hu", "ALTERA_TSE", dev_num);
961 
962 	eth_register(dev);
963 
964 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) && !defined(BITBANGMII)
965 	miiphy_register(dev->name, altera_tse_miiphy_read,
966 			altera_tse_miiphy_write);
967 #endif
968 
969 	init_phy(dev);
970 
971 	return 1;
972 }
973