xref: /openbmc/u-boot/drivers/mtd/ubi/wl.c (revision ff94bc40)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * SPDX-License-Identifier:	GPL-2.0+
5  *
6  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
7  */
8 
9 /*
10  * UBI wear-leveling sub-system.
11  *
12  * This sub-system is responsible for wear-leveling. It works in terms of
13  * physical eraseblocks and erase counters and knows nothing about logical
14  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
15  * eraseblocks are of two types - used and free. Used physical eraseblocks are
16  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
17  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
18  *
19  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
20  * header. The rest of the physical eraseblock contains only %0xFF bytes.
21  *
22  * When physical eraseblocks are returned to the WL sub-system by means of the
23  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
24  * done asynchronously in context of the per-UBI device background thread,
25  * which is also managed by the WL sub-system.
26  *
27  * The wear-leveling is ensured by means of moving the contents of used
28  * physical eraseblocks with low erase counter to free physical eraseblocks
29  * with high erase counter.
30  *
31  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
32  * bad.
33  *
34  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
35  * in a physical eraseblock, it has to be moved. Technically this is the same
36  * as moving it for wear-leveling reasons.
37  *
38  * As it was said, for the UBI sub-system all physical eraseblocks are either
39  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
40  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
41  * RB-trees, as well as (temporarily) in the @wl->pq queue.
42  *
43  * When the WL sub-system returns a physical eraseblock, the physical
44  * eraseblock is protected from being moved for some "time". For this reason,
45  * the physical eraseblock is not directly moved from the @wl->free tree to the
46  * @wl->used tree. There is a protection queue in between where this
47  * physical eraseblock is temporarily stored (@wl->pq).
48  *
49  * All this protection stuff is needed because:
50  *  o we don't want to move physical eraseblocks just after we have given them
51  *    to the user; instead, we first want to let users fill them up with data;
52  *
53  *  o there is a chance that the user will put the physical eraseblock very
54  *    soon, so it makes sense not to move it for some time, but wait.
55  *
56  * Physical eraseblocks stay protected only for limited time. But the "time" is
57  * measured in erase cycles in this case. This is implemented with help of the
58  * protection queue. Eraseblocks are put to the tail of this queue when they
59  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
60  * head of the queue on each erase operation (for any eraseblock). So the
61  * length of the queue defines how may (global) erase cycles PEBs are protected.
62  *
63  * To put it differently, each physical eraseblock has 2 main states: free and
64  * used. The former state corresponds to the @wl->free tree. The latter state
65  * is split up on several sub-states:
66  * o the WL movement is allowed (@wl->used tree);
67  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
68  *   erroneous - e.g., there was a read error;
69  * o the WL movement is temporarily prohibited (@wl->pq queue);
70  * o scrubbing is needed (@wl->scrub tree).
71  *
72  * Depending on the sub-state, wear-leveling entries of the used physical
73  * eraseblocks may be kept in one of those structures.
74  *
75  * Note, in this implementation, we keep a small in-RAM object for each physical
76  * eraseblock. This is surely not a scalable solution. But it appears to be good
77  * enough for moderately large flashes and it is simple. In future, one may
78  * re-work this sub-system and make it more scalable.
79  *
80  * At the moment this sub-system does not utilize the sequence number, which
81  * was introduced relatively recently. But it would be wise to do this because
82  * the sequence number of a logical eraseblock characterizes how old is it. For
83  * example, when we move a PEB with low erase counter, and we need to pick the
84  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
85  * pick target PEB with an average EC if our PEB is not very "old". This is a
86  * room for future re-works of the WL sub-system.
87  */
88 
89 #define __UBOOT__
90 #ifndef __UBOOT__
91 #include <linux/slab.h>
92 #include <linux/crc32.h>
93 #include <linux/freezer.h>
94 #include <linux/kthread.h>
95 #else
96 #include <ubi_uboot.h>
97 #endif
98 
99 #include "ubi.h"
100 
101 /* Number of physical eraseblocks reserved for wear-leveling purposes */
102 #define WL_RESERVED_PEBS 1
103 
104 /*
105  * Maximum difference between two erase counters. If this threshold is
106  * exceeded, the WL sub-system starts moving data from used physical
107  * eraseblocks with low erase counter to free physical eraseblocks with high
108  * erase counter.
109  */
110 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
111 
112 /*
113  * When a physical eraseblock is moved, the WL sub-system has to pick the target
114  * physical eraseblock to move to. The simplest way would be just to pick the
115  * one with the highest erase counter. But in certain workloads this could lead
116  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
117  * situation when the picked physical eraseblock is constantly erased after the
118  * data is written to it. So, we have a constant which limits the highest erase
119  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
120  * does not pick eraseblocks with erase counter greater than the lowest erase
121  * counter plus %WL_FREE_MAX_DIFF.
122  */
123 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
124 
125 /*
126  * Maximum number of consecutive background thread failures which is enough to
127  * switch to read-only mode.
128  */
129 #define WL_MAX_FAILURES 32
130 
131 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
132 static int self_check_in_wl_tree(const struct ubi_device *ubi,
133 				 struct ubi_wl_entry *e, struct rb_root *root);
134 static int self_check_in_pq(const struct ubi_device *ubi,
135 			    struct ubi_wl_entry *e);
136 
137 #ifdef CONFIG_MTD_UBI_FASTMAP
138 #ifndef __UBOOT__
139 /**
140  * update_fastmap_work_fn - calls ubi_update_fastmap from a work queue
141  * @wrk: the work description object
142  */
143 static void update_fastmap_work_fn(struct work_struct *wrk)
144 {
145 	struct ubi_device *ubi = container_of(wrk, struct ubi_device, fm_work);
146 	ubi_update_fastmap(ubi);
147 }
148 #endif
149 
150 /**
151  *  ubi_ubi_is_fm_block - returns 1 if a PEB is currently used in a fastmap.
152  *  @ubi: UBI device description object
153  *  @pnum: the to be checked PEB
154  */
155 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
156 {
157 	int i;
158 
159 	if (!ubi->fm)
160 		return 0;
161 
162 	for (i = 0; i < ubi->fm->used_blocks; i++)
163 		if (ubi->fm->e[i]->pnum == pnum)
164 			return 1;
165 
166 	return 0;
167 }
168 #else
169 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
170 {
171 	return 0;
172 }
173 #endif
174 
175 /**
176  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
177  * @e: the wear-leveling entry to add
178  * @root: the root of the tree
179  *
180  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
181  * the @ubi->used and @ubi->free RB-trees.
182  */
183 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
184 {
185 	struct rb_node **p, *parent = NULL;
186 
187 	p = &root->rb_node;
188 	while (*p) {
189 		struct ubi_wl_entry *e1;
190 
191 		parent = *p;
192 		e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
193 
194 		if (e->ec < e1->ec)
195 			p = &(*p)->rb_left;
196 		else if (e->ec > e1->ec)
197 			p = &(*p)->rb_right;
198 		else {
199 			ubi_assert(e->pnum != e1->pnum);
200 			if (e->pnum < e1->pnum)
201 				p = &(*p)->rb_left;
202 			else
203 				p = &(*p)->rb_right;
204 		}
205 	}
206 
207 	rb_link_node(&e->u.rb, parent, p);
208 	rb_insert_color(&e->u.rb, root);
209 }
210 
211 /**
212  * do_work - do one pending work.
213  * @ubi: UBI device description object
214  *
215  * This function returns zero in case of success and a negative error code in
216  * case of failure.
217  */
218 static int do_work(struct ubi_device *ubi)
219 {
220 	int err;
221 	struct ubi_work *wrk;
222 
223 	cond_resched();
224 
225 	/*
226 	 * @ubi->work_sem is used to synchronize with the workers. Workers take
227 	 * it in read mode, so many of them may be doing works at a time. But
228 	 * the queue flush code has to be sure the whole queue of works is
229 	 * done, and it takes the mutex in write mode.
230 	 */
231 	down_read(&ubi->work_sem);
232 	spin_lock(&ubi->wl_lock);
233 	if (list_empty(&ubi->works)) {
234 		spin_unlock(&ubi->wl_lock);
235 		up_read(&ubi->work_sem);
236 		return 0;
237 	}
238 
239 	wrk = list_entry(ubi->works.next, struct ubi_work, list);
240 	list_del(&wrk->list);
241 	ubi->works_count -= 1;
242 	ubi_assert(ubi->works_count >= 0);
243 	spin_unlock(&ubi->wl_lock);
244 
245 	/*
246 	 * Call the worker function. Do not touch the work structure
247 	 * after this call as it will have been freed or reused by that
248 	 * time by the worker function.
249 	 */
250 	err = wrk->func(ubi, wrk, 0);
251 	if (err)
252 		ubi_err("work failed with error code %d", err);
253 	up_read(&ubi->work_sem);
254 
255 	return err;
256 }
257 
258 /**
259  * produce_free_peb - produce a free physical eraseblock.
260  * @ubi: UBI device description object
261  *
262  * This function tries to make a free PEB by means of synchronous execution of
263  * pending works. This may be needed if, for example the background thread is
264  * disabled. Returns zero in case of success and a negative error code in case
265  * of failure.
266  */
267 static int produce_free_peb(struct ubi_device *ubi)
268 {
269 	int err;
270 
271 	while (!ubi->free.rb_node) {
272 		spin_unlock(&ubi->wl_lock);
273 
274 		dbg_wl("do one work synchronously");
275 		err = do_work(ubi);
276 
277 		spin_lock(&ubi->wl_lock);
278 		if (err)
279 			return err;
280 	}
281 
282 	return 0;
283 }
284 
285 /**
286  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
287  * @e: the wear-leveling entry to check
288  * @root: the root of the tree
289  *
290  * This function returns non-zero if @e is in the @root RB-tree and zero if it
291  * is not.
292  */
293 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
294 {
295 	struct rb_node *p;
296 
297 	p = root->rb_node;
298 	while (p) {
299 		struct ubi_wl_entry *e1;
300 
301 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
302 
303 		if (e->pnum == e1->pnum) {
304 			ubi_assert(e == e1);
305 			return 1;
306 		}
307 
308 		if (e->ec < e1->ec)
309 			p = p->rb_left;
310 		else if (e->ec > e1->ec)
311 			p = p->rb_right;
312 		else {
313 			ubi_assert(e->pnum != e1->pnum);
314 			if (e->pnum < e1->pnum)
315 				p = p->rb_left;
316 			else
317 				p = p->rb_right;
318 		}
319 	}
320 
321 	return 0;
322 }
323 
324 /**
325  * prot_queue_add - add physical eraseblock to the protection queue.
326  * @ubi: UBI device description object
327  * @e: the physical eraseblock to add
328  *
329  * This function adds @e to the tail of the protection queue @ubi->pq, where
330  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
331  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
332  * be locked.
333  */
334 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
335 {
336 	int pq_tail = ubi->pq_head - 1;
337 
338 	if (pq_tail < 0)
339 		pq_tail = UBI_PROT_QUEUE_LEN - 1;
340 	ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
341 	list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
342 	dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
343 }
344 
345 /**
346  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
347  * @ubi: UBI device description object
348  * @root: the RB-tree where to look for
349  * @diff: maximum possible difference from the smallest erase counter
350  *
351  * This function looks for a wear leveling entry with erase counter closest to
352  * min + @diff, where min is the smallest erase counter.
353  */
354 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
355 					  struct rb_root *root, int diff)
356 {
357 	struct rb_node *p;
358 	struct ubi_wl_entry *e, *prev_e = NULL;
359 	int max;
360 
361 	e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
362 	max = e->ec + diff;
363 
364 	p = root->rb_node;
365 	while (p) {
366 		struct ubi_wl_entry *e1;
367 
368 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
369 		if (e1->ec >= max)
370 			p = p->rb_left;
371 		else {
372 			p = p->rb_right;
373 			prev_e = e;
374 			e = e1;
375 		}
376 	}
377 
378 	/* If no fastmap has been written and this WL entry can be used
379 	 * as anchor PEB, hold it back and return the second best WL entry
380 	 * such that fastmap can use the anchor PEB later. */
381 	if (prev_e && !ubi->fm_disabled &&
382 	    !ubi->fm && e->pnum < UBI_FM_MAX_START)
383 		return prev_e;
384 
385 	return e;
386 }
387 
388 /**
389  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
390  * @ubi: UBI device description object
391  * @root: the RB-tree where to look for
392  *
393  * This function looks for a wear leveling entry with medium erase counter,
394  * but not greater or equivalent than the lowest erase counter plus
395  * %WL_FREE_MAX_DIFF/2.
396  */
397 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
398 					       struct rb_root *root)
399 {
400 	struct ubi_wl_entry *e, *first, *last;
401 
402 	first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
403 	last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
404 
405 	if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
406 		e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
407 
408 #ifdef CONFIG_MTD_UBI_FASTMAP
409 		/* If no fastmap has been written and this WL entry can be used
410 		 * as anchor PEB, hold it back and return the second best
411 		 * WL entry such that fastmap can use the anchor PEB later. */
412 		if (e && !ubi->fm_disabled && !ubi->fm &&
413 		    e->pnum < UBI_FM_MAX_START)
414 			e = rb_entry(rb_next(root->rb_node),
415 				     struct ubi_wl_entry, u.rb);
416 #endif
417 	} else
418 		e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
419 
420 	return e;
421 }
422 
423 #ifdef CONFIG_MTD_UBI_FASTMAP
424 /**
425  * find_anchor_wl_entry - find wear-leveling entry to used as anchor PEB.
426  * @root: the RB-tree where to look for
427  */
428 static struct ubi_wl_entry *find_anchor_wl_entry(struct rb_root *root)
429 {
430 	struct rb_node *p;
431 	struct ubi_wl_entry *e, *victim = NULL;
432 	int max_ec = UBI_MAX_ERASECOUNTER;
433 
434 	ubi_rb_for_each_entry(p, e, root, u.rb) {
435 		if (e->pnum < UBI_FM_MAX_START && e->ec < max_ec) {
436 			victim = e;
437 			max_ec = e->ec;
438 		}
439 	}
440 
441 	return victim;
442 }
443 
444 static int anchor_pebs_avalible(struct rb_root *root)
445 {
446 	struct rb_node *p;
447 	struct ubi_wl_entry *e;
448 
449 	ubi_rb_for_each_entry(p, e, root, u.rb)
450 		if (e->pnum < UBI_FM_MAX_START)
451 			return 1;
452 
453 	return 0;
454 }
455 
456 /**
457  * ubi_wl_get_fm_peb - find a physical erase block with a given maximal number.
458  * @ubi: UBI device description object
459  * @anchor: This PEB will be used as anchor PEB by fastmap
460  *
461  * The function returns a physical erase block with a given maximal number
462  * and removes it from the wl subsystem.
463  * Must be called with wl_lock held!
464  */
465 struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor)
466 {
467 	struct ubi_wl_entry *e = NULL;
468 
469 	if (!ubi->free.rb_node || (ubi->free_count - ubi->beb_rsvd_pebs < 1))
470 		goto out;
471 
472 	if (anchor)
473 		e = find_anchor_wl_entry(&ubi->free);
474 	else
475 		e = find_mean_wl_entry(ubi, &ubi->free);
476 
477 	if (!e)
478 		goto out;
479 
480 	self_check_in_wl_tree(ubi, e, &ubi->free);
481 
482 	/* remove it from the free list,
483 	 * the wl subsystem does no longer know this erase block */
484 	rb_erase(&e->u.rb, &ubi->free);
485 	ubi->free_count--;
486 out:
487 	return e;
488 }
489 #endif
490 
491 /**
492  * __wl_get_peb - get a physical eraseblock.
493  * @ubi: UBI device description object
494  *
495  * This function returns a physical eraseblock in case of success and a
496  * negative error code in case of failure.
497  */
498 static int __wl_get_peb(struct ubi_device *ubi)
499 {
500 	int err;
501 	struct ubi_wl_entry *e;
502 
503 retry:
504 	if (!ubi->free.rb_node) {
505 		if (ubi->works_count == 0) {
506 			ubi_err("no free eraseblocks");
507 			ubi_assert(list_empty(&ubi->works));
508 			return -ENOSPC;
509 		}
510 
511 		err = produce_free_peb(ubi);
512 		if (err < 0)
513 			return err;
514 		goto retry;
515 	}
516 
517 	e = find_mean_wl_entry(ubi, &ubi->free);
518 	if (!e) {
519 		ubi_err("no free eraseblocks");
520 		return -ENOSPC;
521 	}
522 
523 	self_check_in_wl_tree(ubi, e, &ubi->free);
524 
525 	/*
526 	 * Move the physical eraseblock to the protection queue where it will
527 	 * be protected from being moved for some time.
528 	 */
529 	rb_erase(&e->u.rb, &ubi->free);
530 	ubi->free_count--;
531 	dbg_wl("PEB %d EC %d", e->pnum, e->ec);
532 #ifndef CONFIG_MTD_UBI_FASTMAP
533 	/* We have to enqueue e only if fastmap is disabled,
534 	 * is fastmap enabled prot_queue_add() will be called by
535 	 * ubi_wl_get_peb() after removing e from the pool. */
536 	prot_queue_add(ubi, e);
537 #endif
538 	return e->pnum;
539 }
540 
541 #ifdef CONFIG_MTD_UBI_FASTMAP
542 /**
543  * return_unused_pool_pebs - returns unused PEB to the free tree.
544  * @ubi: UBI device description object
545  * @pool: fastmap pool description object
546  */
547 static void return_unused_pool_pebs(struct ubi_device *ubi,
548 				    struct ubi_fm_pool *pool)
549 {
550 	int i;
551 	struct ubi_wl_entry *e;
552 
553 	for (i = pool->used; i < pool->size; i++) {
554 		e = ubi->lookuptbl[pool->pebs[i]];
555 		wl_tree_add(e, &ubi->free);
556 		ubi->free_count++;
557 	}
558 }
559 
560 /**
561  * refill_wl_pool - refills all the fastmap pool used by the
562  * WL sub-system.
563  * @ubi: UBI device description object
564  */
565 static void refill_wl_pool(struct ubi_device *ubi)
566 {
567 	struct ubi_wl_entry *e;
568 	struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
569 
570 	return_unused_pool_pebs(ubi, pool);
571 
572 	for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
573 		if (!ubi->free.rb_node ||
574 		   (ubi->free_count - ubi->beb_rsvd_pebs < 5))
575 			break;
576 
577 		e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
578 		self_check_in_wl_tree(ubi, e, &ubi->free);
579 		rb_erase(&e->u.rb, &ubi->free);
580 		ubi->free_count--;
581 
582 		pool->pebs[pool->size] = e->pnum;
583 	}
584 	pool->used = 0;
585 }
586 
587 /**
588  * refill_wl_user_pool - refills all the fastmap pool used by ubi_wl_get_peb.
589  * @ubi: UBI device description object
590  */
591 static void refill_wl_user_pool(struct ubi_device *ubi)
592 {
593 	struct ubi_fm_pool *pool = &ubi->fm_pool;
594 
595 	return_unused_pool_pebs(ubi, pool);
596 
597 	for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
598 		pool->pebs[pool->size] = __wl_get_peb(ubi);
599 		if (pool->pebs[pool->size] < 0)
600 			break;
601 	}
602 	pool->used = 0;
603 }
604 
605 /**
606  * ubi_refill_pools - refills all fastmap PEB pools.
607  * @ubi: UBI device description object
608  */
609 void ubi_refill_pools(struct ubi_device *ubi)
610 {
611 	spin_lock(&ubi->wl_lock);
612 	refill_wl_pool(ubi);
613 	refill_wl_user_pool(ubi);
614 	spin_unlock(&ubi->wl_lock);
615 }
616 
617 /* ubi_wl_get_peb - works exaclty like __wl_get_peb but keeps track of
618  * the fastmap pool.
619  */
620 int ubi_wl_get_peb(struct ubi_device *ubi)
621 {
622 	int ret;
623 	struct ubi_fm_pool *pool = &ubi->fm_pool;
624 	struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool;
625 
626 	if (!pool->size || !wl_pool->size || pool->used == pool->size ||
627 	    wl_pool->used == wl_pool->size)
628 		ubi_update_fastmap(ubi);
629 
630 	/* we got not a single free PEB */
631 	if (!pool->size)
632 		ret = -ENOSPC;
633 	else {
634 		spin_lock(&ubi->wl_lock);
635 		ret = pool->pebs[pool->used++];
636 		prot_queue_add(ubi, ubi->lookuptbl[ret]);
637 		spin_unlock(&ubi->wl_lock);
638 	}
639 
640 	return ret;
641 }
642 
643 /* get_peb_for_wl - returns a PEB to be used internally by the WL sub-system.
644  *
645  * @ubi: UBI device description object
646  */
647 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
648 {
649 	struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
650 	int pnum;
651 
652 	if (pool->used == pool->size || !pool->size) {
653 		/* We cannot update the fastmap here because this
654 		 * function is called in atomic context.
655 		 * Let's fail here and refill/update it as soon as possible. */
656 #ifndef __UBOOT__
657 		schedule_work(&ubi->fm_work);
658 #else
659 		/* In U-Boot we must call this directly */
660 	        ubi_update_fastmap(ubi);
661 #endif
662 		return NULL;
663 	} else {
664 		pnum = pool->pebs[pool->used++];
665 		return ubi->lookuptbl[pnum];
666 	}
667 }
668 #else
669 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
670 {
671 	struct ubi_wl_entry *e;
672 
673 	e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
674 	self_check_in_wl_tree(ubi, e, &ubi->free);
675 	rb_erase(&e->u.rb, &ubi->free);
676 
677 	return e;
678 }
679 
680 int ubi_wl_get_peb(struct ubi_device *ubi)
681 {
682 	int peb, err;
683 
684 	spin_lock(&ubi->wl_lock);
685 	peb = __wl_get_peb(ubi);
686 	spin_unlock(&ubi->wl_lock);
687 
688 	err = ubi_self_check_all_ff(ubi, peb, ubi->vid_hdr_aloffset,
689 				    ubi->peb_size - ubi->vid_hdr_aloffset);
690 	if (err) {
691 		ubi_err("new PEB %d does not contain all 0xFF bytes", peb);
692 		return err;
693 	}
694 
695 	return peb;
696 }
697 #endif
698 
699 /**
700  * prot_queue_del - remove a physical eraseblock from the protection queue.
701  * @ubi: UBI device description object
702  * @pnum: the physical eraseblock to remove
703  *
704  * This function deletes PEB @pnum from the protection queue and returns zero
705  * in case of success and %-ENODEV if the PEB was not found.
706  */
707 static int prot_queue_del(struct ubi_device *ubi, int pnum)
708 {
709 	struct ubi_wl_entry *e;
710 
711 	e = ubi->lookuptbl[pnum];
712 	if (!e)
713 		return -ENODEV;
714 
715 	if (self_check_in_pq(ubi, e))
716 		return -ENODEV;
717 
718 	list_del(&e->u.list);
719 	dbg_wl("deleted PEB %d from the protection queue", e->pnum);
720 	return 0;
721 }
722 
723 /**
724  * sync_erase - synchronously erase a physical eraseblock.
725  * @ubi: UBI device description object
726  * @e: the the physical eraseblock to erase
727  * @torture: if the physical eraseblock has to be tortured
728  *
729  * This function returns zero in case of success and a negative error code in
730  * case of failure.
731  */
732 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
733 		      int torture)
734 {
735 	int err;
736 	struct ubi_ec_hdr *ec_hdr;
737 	unsigned long long ec = e->ec;
738 
739 	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
740 
741 	err = self_check_ec(ubi, e->pnum, e->ec);
742 	if (err)
743 		return -EINVAL;
744 
745 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
746 	if (!ec_hdr)
747 		return -ENOMEM;
748 
749 	err = ubi_io_sync_erase(ubi, e->pnum, torture);
750 	if (err < 0)
751 		goto out_free;
752 
753 	ec += err;
754 	if (ec > UBI_MAX_ERASECOUNTER) {
755 		/*
756 		 * Erase counter overflow. Upgrade UBI and use 64-bit
757 		 * erase counters internally.
758 		 */
759 		ubi_err("erase counter overflow at PEB %d, EC %llu",
760 			e->pnum, ec);
761 		err = -EINVAL;
762 		goto out_free;
763 	}
764 
765 	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
766 
767 	ec_hdr->ec = cpu_to_be64(ec);
768 
769 	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
770 	if (err)
771 		goto out_free;
772 
773 	e->ec = ec;
774 	spin_lock(&ubi->wl_lock);
775 	if (e->ec > ubi->max_ec)
776 		ubi->max_ec = e->ec;
777 	spin_unlock(&ubi->wl_lock);
778 
779 out_free:
780 	kfree(ec_hdr);
781 	return err;
782 }
783 
784 /**
785  * serve_prot_queue - check if it is time to stop protecting PEBs.
786  * @ubi: UBI device description object
787  *
788  * This function is called after each erase operation and removes PEBs from the
789  * tail of the protection queue. These PEBs have been protected for long enough
790  * and should be moved to the used tree.
791  */
792 static void serve_prot_queue(struct ubi_device *ubi)
793 {
794 	struct ubi_wl_entry *e, *tmp;
795 	int count;
796 
797 	/*
798 	 * There may be several protected physical eraseblock to remove,
799 	 * process them all.
800 	 */
801 repeat:
802 	count = 0;
803 	spin_lock(&ubi->wl_lock);
804 	list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
805 		dbg_wl("PEB %d EC %d protection over, move to used tree",
806 			e->pnum, e->ec);
807 
808 		list_del(&e->u.list);
809 		wl_tree_add(e, &ubi->used);
810 		if (count++ > 32) {
811 			/*
812 			 * Let's be nice and avoid holding the spinlock for
813 			 * too long.
814 			 */
815 			spin_unlock(&ubi->wl_lock);
816 			cond_resched();
817 			goto repeat;
818 		}
819 	}
820 
821 	ubi->pq_head += 1;
822 	if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
823 		ubi->pq_head = 0;
824 	ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
825 	spin_unlock(&ubi->wl_lock);
826 }
827 
828 /**
829  * __schedule_ubi_work - schedule a work.
830  * @ubi: UBI device description object
831  * @wrk: the work to schedule
832  *
833  * This function adds a work defined by @wrk to the tail of the pending works
834  * list. Can only be used of ubi->work_sem is already held in read mode!
835  */
836 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
837 {
838 	spin_lock(&ubi->wl_lock);
839 	list_add_tail(&wrk->list, &ubi->works);
840 	ubi_assert(ubi->works_count >= 0);
841 	ubi->works_count += 1;
842 #ifndef __UBOOT__
843 	if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
844 		wake_up_process(ubi->bgt_thread);
845 #else
846 	/*
847 	 * U-Boot special: We have no bgt_thread in U-Boot!
848 	 * So just call do_work() here directly.
849 	 */
850 	do_work(ubi);
851 #endif
852 	spin_unlock(&ubi->wl_lock);
853 }
854 
855 /**
856  * schedule_ubi_work - schedule a work.
857  * @ubi: UBI device description object
858  * @wrk: the work to schedule
859  *
860  * This function adds a work defined by @wrk to the tail of the pending works
861  * list.
862  */
863 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
864 {
865 	down_read(&ubi->work_sem);
866 	__schedule_ubi_work(ubi, wrk);
867 	up_read(&ubi->work_sem);
868 }
869 
870 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
871 			int cancel);
872 
873 #ifdef CONFIG_MTD_UBI_FASTMAP
874 /**
875  * ubi_is_erase_work - checks whether a work is erase work.
876  * @wrk: The work object to be checked
877  */
878 int ubi_is_erase_work(struct ubi_work *wrk)
879 {
880 	return wrk->func == erase_worker;
881 }
882 #endif
883 
884 /**
885  * schedule_erase - schedule an erase work.
886  * @ubi: UBI device description object
887  * @e: the WL entry of the physical eraseblock to erase
888  * @vol_id: the volume ID that last used this PEB
889  * @lnum: the last used logical eraseblock number for the PEB
890  * @torture: if the physical eraseblock has to be tortured
891  *
892  * This function returns zero in case of success and a %-ENOMEM in case of
893  * failure.
894  */
895 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
896 			  int vol_id, int lnum, int torture)
897 {
898 	struct ubi_work *wl_wrk;
899 
900 	ubi_assert(e);
901 	ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
902 
903 	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
904 	       e->pnum, e->ec, torture);
905 
906 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
907 	if (!wl_wrk)
908 		return -ENOMEM;
909 
910 	wl_wrk->func = &erase_worker;
911 	wl_wrk->e = e;
912 	wl_wrk->vol_id = vol_id;
913 	wl_wrk->lnum = lnum;
914 	wl_wrk->torture = torture;
915 
916 	schedule_ubi_work(ubi, wl_wrk);
917 	return 0;
918 }
919 
920 /**
921  * do_sync_erase - run the erase worker synchronously.
922  * @ubi: UBI device description object
923  * @e: the WL entry of the physical eraseblock to erase
924  * @vol_id: the volume ID that last used this PEB
925  * @lnum: the last used logical eraseblock number for the PEB
926  * @torture: if the physical eraseblock has to be tortured
927  *
928  */
929 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
930 			 int vol_id, int lnum, int torture)
931 {
932 	struct ubi_work *wl_wrk;
933 
934 	dbg_wl("sync erase of PEB %i", e->pnum);
935 
936 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
937 	if (!wl_wrk)
938 		return -ENOMEM;
939 
940 	wl_wrk->e = e;
941 	wl_wrk->vol_id = vol_id;
942 	wl_wrk->lnum = lnum;
943 	wl_wrk->torture = torture;
944 
945 	return erase_worker(ubi, wl_wrk, 0);
946 }
947 
948 #ifdef CONFIG_MTD_UBI_FASTMAP
949 /**
950  * ubi_wl_put_fm_peb - returns a PEB used in a fastmap to the wear-leveling
951  * sub-system.
952  * see: ubi_wl_put_peb()
953  *
954  * @ubi: UBI device description object
955  * @fm_e: physical eraseblock to return
956  * @lnum: the last used logical eraseblock number for the PEB
957  * @torture: if this physical eraseblock has to be tortured
958  */
959 int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *fm_e,
960 		      int lnum, int torture)
961 {
962 	struct ubi_wl_entry *e;
963 	int vol_id, pnum = fm_e->pnum;
964 
965 	dbg_wl("PEB %d", pnum);
966 
967 	ubi_assert(pnum >= 0);
968 	ubi_assert(pnum < ubi->peb_count);
969 
970 	spin_lock(&ubi->wl_lock);
971 	e = ubi->lookuptbl[pnum];
972 
973 	/* This can happen if we recovered from a fastmap the very
974 	 * first time and writing now a new one. In this case the wl system
975 	 * has never seen any PEB used by the original fastmap.
976 	 */
977 	if (!e) {
978 		e = fm_e;
979 		ubi_assert(e->ec >= 0);
980 		ubi->lookuptbl[pnum] = e;
981 	} else {
982 		e->ec = fm_e->ec;
983 		kfree(fm_e);
984 	}
985 
986 	spin_unlock(&ubi->wl_lock);
987 
988 	vol_id = lnum ? UBI_FM_DATA_VOLUME_ID : UBI_FM_SB_VOLUME_ID;
989 	return schedule_erase(ubi, e, vol_id, lnum, torture);
990 }
991 #endif
992 
993 /**
994  * wear_leveling_worker - wear-leveling worker function.
995  * @ubi: UBI device description object
996  * @wrk: the work object
997  * @cancel: non-zero if the worker has to free memory and exit
998  *
999  * This function copies a more worn out physical eraseblock to a less worn out
1000  * one. Returns zero in case of success and a negative error code in case of
1001  * failure.
1002  */
1003 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
1004 				int cancel)
1005 {
1006 	int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
1007 	int vol_id = -1, uninitialized_var(lnum);
1008 #ifdef CONFIG_MTD_UBI_FASTMAP
1009 	int anchor = wrk->anchor;
1010 #endif
1011 	struct ubi_wl_entry *e1, *e2;
1012 	struct ubi_vid_hdr *vid_hdr;
1013 
1014 	kfree(wrk);
1015 	if (cancel)
1016 		return 0;
1017 
1018 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1019 	if (!vid_hdr)
1020 		return -ENOMEM;
1021 
1022 	mutex_lock(&ubi->move_mutex);
1023 	spin_lock(&ubi->wl_lock);
1024 	ubi_assert(!ubi->move_from && !ubi->move_to);
1025 	ubi_assert(!ubi->move_to_put);
1026 
1027 	if (!ubi->free.rb_node ||
1028 	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
1029 		/*
1030 		 * No free physical eraseblocks? Well, they must be waiting in
1031 		 * the queue to be erased. Cancel movement - it will be
1032 		 * triggered again when a free physical eraseblock appears.
1033 		 *
1034 		 * No used physical eraseblocks? They must be temporarily
1035 		 * protected from being moved. They will be moved to the
1036 		 * @ubi->used tree later and the wear-leveling will be
1037 		 * triggered again.
1038 		 */
1039 		dbg_wl("cancel WL, a list is empty: free %d, used %d",
1040 		       !ubi->free.rb_node, !ubi->used.rb_node);
1041 		goto out_cancel;
1042 	}
1043 
1044 #ifdef CONFIG_MTD_UBI_FASTMAP
1045 	/* Check whether we need to produce an anchor PEB */
1046 	if (!anchor)
1047 		anchor = !anchor_pebs_avalible(&ubi->free);
1048 
1049 	if (anchor) {
1050 		e1 = find_anchor_wl_entry(&ubi->used);
1051 		if (!e1)
1052 			goto out_cancel;
1053 		e2 = get_peb_for_wl(ubi);
1054 		if (!e2)
1055 			goto out_cancel;
1056 
1057 		self_check_in_wl_tree(ubi, e1, &ubi->used);
1058 		rb_erase(&e1->u.rb, &ubi->used);
1059 		dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
1060 	} else if (!ubi->scrub.rb_node) {
1061 #else
1062 	if (!ubi->scrub.rb_node) {
1063 #endif
1064 		/*
1065 		 * Now pick the least worn-out used physical eraseblock and a
1066 		 * highly worn-out free physical eraseblock. If the erase
1067 		 * counters differ much enough, start wear-leveling.
1068 		 */
1069 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1070 		e2 = get_peb_for_wl(ubi);
1071 		if (!e2)
1072 			goto out_cancel;
1073 
1074 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
1075 			dbg_wl("no WL needed: min used EC %d, max free EC %d",
1076 			       e1->ec, e2->ec);
1077 
1078 			/* Give the unused PEB back */
1079 			wl_tree_add(e2, &ubi->free);
1080 			goto out_cancel;
1081 		}
1082 		self_check_in_wl_tree(ubi, e1, &ubi->used);
1083 		rb_erase(&e1->u.rb, &ubi->used);
1084 		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
1085 		       e1->pnum, e1->ec, e2->pnum, e2->ec);
1086 	} else {
1087 		/* Perform scrubbing */
1088 		scrubbing = 1;
1089 		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
1090 		e2 = get_peb_for_wl(ubi);
1091 		if (!e2)
1092 			goto out_cancel;
1093 
1094 		self_check_in_wl_tree(ubi, e1, &ubi->scrub);
1095 		rb_erase(&e1->u.rb, &ubi->scrub);
1096 		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
1097 	}
1098 
1099 	ubi->move_from = e1;
1100 	ubi->move_to = e2;
1101 	spin_unlock(&ubi->wl_lock);
1102 
1103 	/*
1104 	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
1105 	 * We so far do not know which logical eraseblock our physical
1106 	 * eraseblock (@e1) belongs to. We have to read the volume identifier
1107 	 * header first.
1108 	 *
1109 	 * Note, we are protected from this PEB being unmapped and erased. The
1110 	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
1111 	 * which is being moved was unmapped.
1112 	 */
1113 
1114 	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
1115 	if (err && err != UBI_IO_BITFLIPS) {
1116 		if (err == UBI_IO_FF) {
1117 			/*
1118 			 * We are trying to move PEB without a VID header. UBI
1119 			 * always write VID headers shortly after the PEB was
1120 			 * given, so we have a situation when it has not yet
1121 			 * had a chance to write it, because it was preempted.
1122 			 * So add this PEB to the protection queue so far,
1123 			 * because presumably more data will be written there
1124 			 * (including the missing VID header), and then we'll
1125 			 * move it.
1126 			 */
1127 			dbg_wl("PEB %d has no VID header", e1->pnum);
1128 			protect = 1;
1129 			goto out_not_moved;
1130 		} else if (err == UBI_IO_FF_BITFLIPS) {
1131 			/*
1132 			 * The same situation as %UBI_IO_FF, but bit-flips were
1133 			 * detected. It is better to schedule this PEB for
1134 			 * scrubbing.
1135 			 */
1136 			dbg_wl("PEB %d has no VID header but has bit-flips",
1137 			       e1->pnum);
1138 			scrubbing = 1;
1139 			goto out_not_moved;
1140 		}
1141 
1142 		ubi_err("error %d while reading VID header from PEB %d",
1143 			err, e1->pnum);
1144 		goto out_error;
1145 	}
1146 
1147 	vol_id = be32_to_cpu(vid_hdr->vol_id);
1148 	lnum = be32_to_cpu(vid_hdr->lnum);
1149 
1150 	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
1151 	if (err) {
1152 		if (err == MOVE_CANCEL_RACE) {
1153 			/*
1154 			 * The LEB has not been moved because the volume is
1155 			 * being deleted or the PEB has been put meanwhile. We
1156 			 * should prevent this PEB from being selected for
1157 			 * wear-leveling movement again, so put it to the
1158 			 * protection queue.
1159 			 */
1160 			protect = 1;
1161 			goto out_not_moved;
1162 		}
1163 		if (err == MOVE_RETRY) {
1164 			scrubbing = 1;
1165 			goto out_not_moved;
1166 		}
1167 		if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
1168 		    err == MOVE_TARGET_RD_ERR) {
1169 			/*
1170 			 * Target PEB had bit-flips or write error - torture it.
1171 			 */
1172 			torture = 1;
1173 			goto out_not_moved;
1174 		}
1175 
1176 		if (err == MOVE_SOURCE_RD_ERR) {
1177 			/*
1178 			 * An error happened while reading the source PEB. Do
1179 			 * not switch to R/O mode in this case, and give the
1180 			 * upper layers a possibility to recover from this,
1181 			 * e.g. by unmapping corresponding LEB. Instead, just
1182 			 * put this PEB to the @ubi->erroneous list to prevent
1183 			 * UBI from trying to move it over and over again.
1184 			 */
1185 			if (ubi->erroneous_peb_count > ubi->max_erroneous) {
1186 				ubi_err("too many erroneous eraseblocks (%d)",
1187 					ubi->erroneous_peb_count);
1188 				goto out_error;
1189 			}
1190 			erroneous = 1;
1191 			goto out_not_moved;
1192 		}
1193 
1194 		if (err < 0)
1195 			goto out_error;
1196 
1197 		ubi_assert(0);
1198 	}
1199 
1200 	/* The PEB has been successfully moved */
1201 	if (scrubbing)
1202 		ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
1203 			e1->pnum, vol_id, lnum, e2->pnum);
1204 	ubi_free_vid_hdr(ubi, vid_hdr);
1205 
1206 	spin_lock(&ubi->wl_lock);
1207 	if (!ubi->move_to_put) {
1208 		wl_tree_add(e2, &ubi->used);
1209 		e2 = NULL;
1210 	}
1211 	ubi->move_from = ubi->move_to = NULL;
1212 	ubi->move_to_put = ubi->wl_scheduled = 0;
1213 	spin_unlock(&ubi->wl_lock);
1214 
1215 	err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
1216 	if (err) {
1217 		kmem_cache_free(ubi_wl_entry_slab, e1);
1218 		if (e2)
1219 			kmem_cache_free(ubi_wl_entry_slab, e2);
1220 		goto out_ro;
1221 	}
1222 
1223 	if (e2) {
1224 		/*
1225 		 * Well, the target PEB was put meanwhile, schedule it for
1226 		 * erasure.
1227 		 */
1228 		dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
1229 		       e2->pnum, vol_id, lnum);
1230 		err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
1231 		if (err) {
1232 			kmem_cache_free(ubi_wl_entry_slab, e2);
1233 			goto out_ro;
1234 		}
1235 	}
1236 
1237 	dbg_wl("done");
1238 	mutex_unlock(&ubi->move_mutex);
1239 	return 0;
1240 
1241 	/*
1242 	 * For some reasons the LEB was not moved, might be an error, might be
1243 	 * something else. @e1 was not changed, so return it back. @e2 might
1244 	 * have been changed, schedule it for erasure.
1245 	 */
1246 out_not_moved:
1247 	if (vol_id != -1)
1248 		dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
1249 		       e1->pnum, vol_id, lnum, e2->pnum, err);
1250 	else
1251 		dbg_wl("cancel moving PEB %d to PEB %d (%d)",
1252 		       e1->pnum, e2->pnum, err);
1253 	spin_lock(&ubi->wl_lock);
1254 	if (protect)
1255 		prot_queue_add(ubi, e1);
1256 	else if (erroneous) {
1257 		wl_tree_add(e1, &ubi->erroneous);
1258 		ubi->erroneous_peb_count += 1;
1259 	} else if (scrubbing)
1260 		wl_tree_add(e1, &ubi->scrub);
1261 	else
1262 		wl_tree_add(e1, &ubi->used);
1263 	ubi_assert(!ubi->move_to_put);
1264 	ubi->move_from = ubi->move_to = NULL;
1265 	ubi->wl_scheduled = 0;
1266 	spin_unlock(&ubi->wl_lock);
1267 
1268 	ubi_free_vid_hdr(ubi, vid_hdr);
1269 	err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
1270 	if (err) {
1271 		kmem_cache_free(ubi_wl_entry_slab, e2);
1272 		goto out_ro;
1273 	}
1274 	mutex_unlock(&ubi->move_mutex);
1275 	return 0;
1276 
1277 out_error:
1278 	if (vol_id != -1)
1279 		ubi_err("error %d while moving PEB %d to PEB %d",
1280 			err, e1->pnum, e2->pnum);
1281 	else
1282 		ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d",
1283 			err, e1->pnum, vol_id, lnum, e2->pnum);
1284 	spin_lock(&ubi->wl_lock);
1285 	ubi->move_from = ubi->move_to = NULL;
1286 	ubi->move_to_put = ubi->wl_scheduled = 0;
1287 	spin_unlock(&ubi->wl_lock);
1288 
1289 	ubi_free_vid_hdr(ubi, vid_hdr);
1290 	kmem_cache_free(ubi_wl_entry_slab, e1);
1291 	kmem_cache_free(ubi_wl_entry_slab, e2);
1292 
1293 out_ro:
1294 	ubi_ro_mode(ubi);
1295 	mutex_unlock(&ubi->move_mutex);
1296 	ubi_assert(err != 0);
1297 	return err < 0 ? err : -EIO;
1298 
1299 out_cancel:
1300 	ubi->wl_scheduled = 0;
1301 	spin_unlock(&ubi->wl_lock);
1302 	mutex_unlock(&ubi->move_mutex);
1303 	ubi_free_vid_hdr(ubi, vid_hdr);
1304 	return 0;
1305 }
1306 
1307 /**
1308  * ensure_wear_leveling - schedule wear-leveling if it is needed.
1309  * @ubi: UBI device description object
1310  * @nested: set to non-zero if this function is called from UBI worker
1311  *
1312  * This function checks if it is time to start wear-leveling and schedules it
1313  * if yes. This function returns zero in case of success and a negative error
1314  * code in case of failure.
1315  */
1316 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1317 {
1318 	int err = 0;
1319 	struct ubi_wl_entry *e1;
1320 	struct ubi_wl_entry *e2;
1321 	struct ubi_work *wrk;
1322 
1323 	spin_lock(&ubi->wl_lock);
1324 	if (ubi->wl_scheduled)
1325 		/* Wear-leveling is already in the work queue */
1326 		goto out_unlock;
1327 
1328 	/*
1329 	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1330 	 * the WL worker has to be scheduled anyway.
1331 	 */
1332 	if (!ubi->scrub.rb_node) {
1333 		if (!ubi->used.rb_node || !ubi->free.rb_node)
1334 			/* No physical eraseblocks - no deal */
1335 			goto out_unlock;
1336 
1337 		/*
1338 		 * We schedule wear-leveling only if the difference between the
1339 		 * lowest erase counter of used physical eraseblocks and a high
1340 		 * erase counter of free physical eraseblocks is greater than
1341 		 * %UBI_WL_THRESHOLD.
1342 		 */
1343 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1344 		e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1345 
1346 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1347 			goto out_unlock;
1348 		dbg_wl("schedule wear-leveling");
1349 	} else
1350 		dbg_wl("schedule scrubbing");
1351 
1352 	ubi->wl_scheduled = 1;
1353 	spin_unlock(&ubi->wl_lock);
1354 
1355 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1356 	if (!wrk) {
1357 		err = -ENOMEM;
1358 		goto out_cancel;
1359 	}
1360 
1361 	wrk->anchor = 0;
1362 	wrk->func = &wear_leveling_worker;
1363 	if (nested)
1364 		__schedule_ubi_work(ubi, wrk);
1365 	else
1366 		schedule_ubi_work(ubi, wrk);
1367 	return err;
1368 
1369 out_cancel:
1370 	spin_lock(&ubi->wl_lock);
1371 	ubi->wl_scheduled = 0;
1372 out_unlock:
1373 	spin_unlock(&ubi->wl_lock);
1374 	return err;
1375 }
1376 
1377 #ifdef CONFIG_MTD_UBI_FASTMAP
1378 /**
1379  * ubi_ensure_anchor_pebs - schedule wear-leveling to produce an anchor PEB.
1380  * @ubi: UBI device description object
1381  */
1382 int ubi_ensure_anchor_pebs(struct ubi_device *ubi)
1383 {
1384 	struct ubi_work *wrk;
1385 
1386 	spin_lock(&ubi->wl_lock);
1387 	if (ubi->wl_scheduled) {
1388 		spin_unlock(&ubi->wl_lock);
1389 		return 0;
1390 	}
1391 	ubi->wl_scheduled = 1;
1392 	spin_unlock(&ubi->wl_lock);
1393 
1394 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1395 	if (!wrk) {
1396 		spin_lock(&ubi->wl_lock);
1397 		ubi->wl_scheduled = 0;
1398 		spin_unlock(&ubi->wl_lock);
1399 		return -ENOMEM;
1400 	}
1401 
1402 	wrk->anchor = 1;
1403 	wrk->func = &wear_leveling_worker;
1404 	schedule_ubi_work(ubi, wrk);
1405 	return 0;
1406 }
1407 #endif
1408 
1409 /**
1410  * erase_worker - physical eraseblock erase worker function.
1411  * @ubi: UBI device description object
1412  * @wl_wrk: the work object
1413  * @cancel: non-zero if the worker has to free memory and exit
1414  *
1415  * This function erases a physical eraseblock and perform torture testing if
1416  * needed. It also takes care about marking the physical eraseblock bad if
1417  * needed. Returns zero in case of success and a negative error code in case of
1418  * failure.
1419  */
1420 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1421 			int cancel)
1422 {
1423 	struct ubi_wl_entry *e = wl_wrk->e;
1424 	int pnum = e->pnum;
1425 	int vol_id = wl_wrk->vol_id;
1426 	int lnum = wl_wrk->lnum;
1427 	int err, available_consumed = 0;
1428 
1429 	if (cancel) {
1430 		dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1431 		kfree(wl_wrk);
1432 		kmem_cache_free(ubi_wl_entry_slab, e);
1433 		return 0;
1434 	}
1435 
1436 	dbg_wl("erase PEB %d EC %d LEB %d:%d",
1437 	       pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1438 
1439 	ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1440 
1441 	err = sync_erase(ubi, e, wl_wrk->torture);
1442 	if (!err) {
1443 		/* Fine, we've erased it successfully */
1444 		kfree(wl_wrk);
1445 
1446 		spin_lock(&ubi->wl_lock);
1447 		wl_tree_add(e, &ubi->free);
1448 		ubi->free_count++;
1449 		spin_unlock(&ubi->wl_lock);
1450 
1451 		/*
1452 		 * One more erase operation has happened, take care about
1453 		 * protected physical eraseblocks.
1454 		 */
1455 		serve_prot_queue(ubi);
1456 
1457 		/* And take care about wear-leveling */
1458 		err = ensure_wear_leveling(ubi, 1);
1459 		return err;
1460 	}
1461 
1462 	ubi_err("failed to erase PEB %d, error %d", pnum, err);
1463 	kfree(wl_wrk);
1464 
1465 	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1466 	    err == -EBUSY) {
1467 		int err1;
1468 
1469 		/* Re-schedule the LEB for erasure */
1470 		err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1471 		if (err1) {
1472 			err = err1;
1473 			goto out_ro;
1474 		}
1475 		return err;
1476 	}
1477 
1478 	kmem_cache_free(ubi_wl_entry_slab, e);
1479 	if (err != -EIO)
1480 		/*
1481 		 * If this is not %-EIO, we have no idea what to do. Scheduling
1482 		 * this physical eraseblock for erasure again would cause
1483 		 * errors again and again. Well, lets switch to R/O mode.
1484 		 */
1485 		goto out_ro;
1486 
1487 	/* It is %-EIO, the PEB went bad */
1488 
1489 	if (!ubi->bad_allowed) {
1490 		ubi_err("bad physical eraseblock %d detected", pnum);
1491 		goto out_ro;
1492 	}
1493 
1494 	spin_lock(&ubi->volumes_lock);
1495 	if (ubi->beb_rsvd_pebs == 0) {
1496 		if (ubi->avail_pebs == 0) {
1497 			spin_unlock(&ubi->volumes_lock);
1498 			ubi_err("no reserved/available physical eraseblocks");
1499 			goto out_ro;
1500 		}
1501 		ubi->avail_pebs -= 1;
1502 		available_consumed = 1;
1503 	}
1504 	spin_unlock(&ubi->volumes_lock);
1505 
1506 	ubi_msg("mark PEB %d as bad", pnum);
1507 	err = ubi_io_mark_bad(ubi, pnum);
1508 	if (err)
1509 		goto out_ro;
1510 
1511 	spin_lock(&ubi->volumes_lock);
1512 	if (ubi->beb_rsvd_pebs > 0) {
1513 		if (available_consumed) {
1514 			/*
1515 			 * The amount of reserved PEBs increased since we last
1516 			 * checked.
1517 			 */
1518 			ubi->avail_pebs += 1;
1519 			available_consumed = 0;
1520 		}
1521 		ubi->beb_rsvd_pebs -= 1;
1522 	}
1523 	ubi->bad_peb_count += 1;
1524 	ubi->good_peb_count -= 1;
1525 	ubi_calculate_reserved(ubi);
1526 	if (available_consumed)
1527 		ubi_warn("no PEBs in the reserved pool, used an available PEB");
1528 	else if (ubi->beb_rsvd_pebs)
1529 		ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs);
1530 	else
1531 		ubi_warn("last PEB from the reserve was used");
1532 	spin_unlock(&ubi->volumes_lock);
1533 
1534 	return err;
1535 
1536 out_ro:
1537 	if (available_consumed) {
1538 		spin_lock(&ubi->volumes_lock);
1539 		ubi->avail_pebs += 1;
1540 		spin_unlock(&ubi->volumes_lock);
1541 	}
1542 	ubi_ro_mode(ubi);
1543 	return err;
1544 }
1545 
1546 /**
1547  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1548  * @ubi: UBI device description object
1549  * @vol_id: the volume ID that last used this PEB
1550  * @lnum: the last used logical eraseblock number for the PEB
1551  * @pnum: physical eraseblock to return
1552  * @torture: if this physical eraseblock has to be tortured
1553  *
1554  * This function is called to return physical eraseblock @pnum to the pool of
1555  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1556  * occurred to this @pnum and it has to be tested. This function returns zero
1557  * in case of success, and a negative error code in case of failure.
1558  */
1559 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1560 		   int pnum, int torture)
1561 {
1562 	int err;
1563 	struct ubi_wl_entry *e;
1564 
1565 	dbg_wl("PEB %d", pnum);
1566 	ubi_assert(pnum >= 0);
1567 	ubi_assert(pnum < ubi->peb_count);
1568 
1569 retry:
1570 	spin_lock(&ubi->wl_lock);
1571 	e = ubi->lookuptbl[pnum];
1572 	if (e == ubi->move_from) {
1573 		/*
1574 		 * User is putting the physical eraseblock which was selected to
1575 		 * be moved. It will be scheduled for erasure in the
1576 		 * wear-leveling worker.
1577 		 */
1578 		dbg_wl("PEB %d is being moved, wait", pnum);
1579 		spin_unlock(&ubi->wl_lock);
1580 
1581 		/* Wait for the WL worker by taking the @ubi->move_mutex */
1582 		mutex_lock(&ubi->move_mutex);
1583 		mutex_unlock(&ubi->move_mutex);
1584 		goto retry;
1585 	} else if (e == ubi->move_to) {
1586 		/*
1587 		 * User is putting the physical eraseblock which was selected
1588 		 * as the target the data is moved to. It may happen if the EBA
1589 		 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1590 		 * but the WL sub-system has not put the PEB to the "used" tree
1591 		 * yet, but it is about to do this. So we just set a flag which
1592 		 * will tell the WL worker that the PEB is not needed anymore
1593 		 * and should be scheduled for erasure.
1594 		 */
1595 		dbg_wl("PEB %d is the target of data moving", pnum);
1596 		ubi_assert(!ubi->move_to_put);
1597 		ubi->move_to_put = 1;
1598 		spin_unlock(&ubi->wl_lock);
1599 		return 0;
1600 	} else {
1601 		if (in_wl_tree(e, &ubi->used)) {
1602 			self_check_in_wl_tree(ubi, e, &ubi->used);
1603 			rb_erase(&e->u.rb, &ubi->used);
1604 		} else if (in_wl_tree(e, &ubi->scrub)) {
1605 			self_check_in_wl_tree(ubi, e, &ubi->scrub);
1606 			rb_erase(&e->u.rb, &ubi->scrub);
1607 		} else if (in_wl_tree(e, &ubi->erroneous)) {
1608 			self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1609 			rb_erase(&e->u.rb, &ubi->erroneous);
1610 			ubi->erroneous_peb_count -= 1;
1611 			ubi_assert(ubi->erroneous_peb_count >= 0);
1612 			/* Erroneous PEBs should be tortured */
1613 			torture = 1;
1614 		} else {
1615 			err = prot_queue_del(ubi, e->pnum);
1616 			if (err) {
1617 				ubi_err("PEB %d not found", pnum);
1618 				ubi_ro_mode(ubi);
1619 				spin_unlock(&ubi->wl_lock);
1620 				return err;
1621 			}
1622 		}
1623 	}
1624 	spin_unlock(&ubi->wl_lock);
1625 
1626 	err = schedule_erase(ubi, e, vol_id, lnum, torture);
1627 	if (err) {
1628 		spin_lock(&ubi->wl_lock);
1629 		wl_tree_add(e, &ubi->used);
1630 		spin_unlock(&ubi->wl_lock);
1631 	}
1632 
1633 	return err;
1634 }
1635 
1636 /**
1637  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1638  * @ubi: UBI device description object
1639  * @pnum: the physical eraseblock to schedule
1640  *
1641  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1642  * needs scrubbing. This function schedules a physical eraseblock for
1643  * scrubbing which is done in background. This function returns zero in case of
1644  * success and a negative error code in case of failure.
1645  */
1646 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1647 {
1648 	struct ubi_wl_entry *e;
1649 
1650 	ubi_msg("schedule PEB %d for scrubbing", pnum);
1651 
1652 retry:
1653 	spin_lock(&ubi->wl_lock);
1654 	e = ubi->lookuptbl[pnum];
1655 	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1656 				   in_wl_tree(e, &ubi->erroneous)) {
1657 		spin_unlock(&ubi->wl_lock);
1658 		return 0;
1659 	}
1660 
1661 	if (e == ubi->move_to) {
1662 		/*
1663 		 * This physical eraseblock was used to move data to. The data
1664 		 * was moved but the PEB was not yet inserted to the proper
1665 		 * tree. We should just wait a little and let the WL worker
1666 		 * proceed.
1667 		 */
1668 		spin_unlock(&ubi->wl_lock);
1669 		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1670 		yield();
1671 		goto retry;
1672 	}
1673 
1674 	if (in_wl_tree(e, &ubi->used)) {
1675 		self_check_in_wl_tree(ubi, e, &ubi->used);
1676 		rb_erase(&e->u.rb, &ubi->used);
1677 	} else {
1678 		int err;
1679 
1680 		err = prot_queue_del(ubi, e->pnum);
1681 		if (err) {
1682 			ubi_err("PEB %d not found", pnum);
1683 			ubi_ro_mode(ubi);
1684 			spin_unlock(&ubi->wl_lock);
1685 			return err;
1686 		}
1687 	}
1688 
1689 	wl_tree_add(e, &ubi->scrub);
1690 	spin_unlock(&ubi->wl_lock);
1691 
1692 	/*
1693 	 * Technically scrubbing is the same as wear-leveling, so it is done
1694 	 * by the WL worker.
1695 	 */
1696 	return ensure_wear_leveling(ubi, 0);
1697 }
1698 
1699 /**
1700  * ubi_wl_flush - flush all pending works.
1701  * @ubi: UBI device description object
1702  * @vol_id: the volume id to flush for
1703  * @lnum: the logical eraseblock number to flush for
1704  *
1705  * This function executes all pending works for a particular volume id /
1706  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1707  * acts as a wildcard for all of the corresponding volume numbers or logical
1708  * eraseblock numbers. It returns zero in case of success and a negative error
1709  * code in case of failure.
1710  */
1711 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1712 {
1713 	int err = 0;
1714 	int found = 1;
1715 
1716 	/*
1717 	 * Erase while the pending works queue is not empty, but not more than
1718 	 * the number of currently pending works.
1719 	 */
1720 	dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1721 	       vol_id, lnum, ubi->works_count);
1722 
1723 	while (found) {
1724 		struct ubi_work *wrk;
1725 		found = 0;
1726 
1727 		down_read(&ubi->work_sem);
1728 		spin_lock(&ubi->wl_lock);
1729 		list_for_each_entry(wrk, &ubi->works, list) {
1730 			if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1731 			    (lnum == UBI_ALL || wrk->lnum == lnum)) {
1732 				list_del(&wrk->list);
1733 				ubi->works_count -= 1;
1734 				ubi_assert(ubi->works_count >= 0);
1735 				spin_unlock(&ubi->wl_lock);
1736 
1737 				err = wrk->func(ubi, wrk, 0);
1738 				if (err) {
1739 					up_read(&ubi->work_sem);
1740 					return err;
1741 				}
1742 
1743 				spin_lock(&ubi->wl_lock);
1744 				found = 1;
1745 				break;
1746 			}
1747 		}
1748 		spin_unlock(&ubi->wl_lock);
1749 		up_read(&ubi->work_sem);
1750 	}
1751 
1752 	/*
1753 	 * Make sure all the works which have been done in parallel are
1754 	 * finished.
1755 	 */
1756 	down_write(&ubi->work_sem);
1757 	up_write(&ubi->work_sem);
1758 
1759 	return err;
1760 }
1761 
1762 /**
1763  * tree_destroy - destroy an RB-tree.
1764  * @root: the root of the tree to destroy
1765  */
1766 static void tree_destroy(struct rb_root *root)
1767 {
1768 	struct rb_node *rb;
1769 	struct ubi_wl_entry *e;
1770 
1771 	rb = root->rb_node;
1772 	while (rb) {
1773 		if (rb->rb_left)
1774 			rb = rb->rb_left;
1775 		else if (rb->rb_right)
1776 			rb = rb->rb_right;
1777 		else {
1778 			e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1779 
1780 			rb = rb_parent(rb);
1781 			if (rb) {
1782 				if (rb->rb_left == &e->u.rb)
1783 					rb->rb_left = NULL;
1784 				else
1785 					rb->rb_right = NULL;
1786 			}
1787 
1788 			kmem_cache_free(ubi_wl_entry_slab, e);
1789 		}
1790 	}
1791 }
1792 
1793 /**
1794  * ubi_thread - UBI background thread.
1795  * @u: the UBI device description object pointer
1796  */
1797 int ubi_thread(void *u)
1798 {
1799 	int failures = 0;
1800 	struct ubi_device *ubi = u;
1801 
1802 	ubi_msg("background thread \"%s\" started, PID %d",
1803 		ubi->bgt_name, task_pid_nr(current));
1804 
1805 	set_freezable();
1806 	for (;;) {
1807 		int err;
1808 
1809 		if (kthread_should_stop())
1810 			break;
1811 
1812 		if (try_to_freeze())
1813 			continue;
1814 
1815 		spin_lock(&ubi->wl_lock);
1816 		if (list_empty(&ubi->works) || ubi->ro_mode ||
1817 		    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1818 			set_current_state(TASK_INTERRUPTIBLE);
1819 			spin_unlock(&ubi->wl_lock);
1820 			schedule();
1821 			continue;
1822 		}
1823 		spin_unlock(&ubi->wl_lock);
1824 
1825 		err = do_work(ubi);
1826 		if (err) {
1827 			ubi_err("%s: work failed with error code %d",
1828 				ubi->bgt_name, err);
1829 			if (failures++ > WL_MAX_FAILURES) {
1830 				/*
1831 				 * Too many failures, disable the thread and
1832 				 * switch to read-only mode.
1833 				 */
1834 				ubi_msg("%s: %d consecutive failures",
1835 					ubi->bgt_name, WL_MAX_FAILURES);
1836 				ubi_ro_mode(ubi);
1837 				ubi->thread_enabled = 0;
1838 				continue;
1839 			}
1840 		} else
1841 			failures = 0;
1842 
1843 		cond_resched();
1844 	}
1845 
1846 	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1847 	return 0;
1848 }
1849 
1850 /**
1851  * cancel_pending - cancel all pending works.
1852  * @ubi: UBI device description object
1853  */
1854 static void cancel_pending(struct ubi_device *ubi)
1855 {
1856 	while (!list_empty(&ubi->works)) {
1857 		struct ubi_work *wrk;
1858 
1859 		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1860 		list_del(&wrk->list);
1861 		wrk->func(ubi, wrk, 1);
1862 		ubi->works_count -= 1;
1863 		ubi_assert(ubi->works_count >= 0);
1864 	}
1865 }
1866 
1867 /**
1868  * ubi_wl_init - initialize the WL sub-system using attaching information.
1869  * @ubi: UBI device description object
1870  * @ai: attaching information
1871  *
1872  * This function returns zero in case of success, and a negative error code in
1873  * case of failure.
1874  */
1875 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1876 {
1877 	int err, i, reserved_pebs, found_pebs = 0;
1878 	struct rb_node *rb1, *rb2;
1879 	struct ubi_ainf_volume *av;
1880 	struct ubi_ainf_peb *aeb, *tmp;
1881 	struct ubi_wl_entry *e;
1882 
1883 	ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1884 	spin_lock_init(&ubi->wl_lock);
1885 	mutex_init(&ubi->move_mutex);
1886 	init_rwsem(&ubi->work_sem);
1887 	ubi->max_ec = ai->max_ec;
1888 	INIT_LIST_HEAD(&ubi->works);
1889 #ifndef __UBOOT__
1890 #ifdef CONFIG_MTD_UBI_FASTMAP
1891 	INIT_WORK(&ubi->fm_work, update_fastmap_work_fn);
1892 #endif
1893 #endif
1894 
1895 	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1896 
1897 	err = -ENOMEM;
1898 	ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1899 	if (!ubi->lookuptbl)
1900 		return err;
1901 
1902 	for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1903 		INIT_LIST_HEAD(&ubi->pq[i]);
1904 	ubi->pq_head = 0;
1905 
1906 	list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1907 		cond_resched();
1908 
1909 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1910 		if (!e)
1911 			goto out_free;
1912 
1913 		e->pnum = aeb->pnum;
1914 		e->ec = aeb->ec;
1915 		ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1916 		ubi->lookuptbl[e->pnum] = e;
1917 		if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1918 			kmem_cache_free(ubi_wl_entry_slab, e);
1919 			goto out_free;
1920 		}
1921 
1922 		found_pebs++;
1923 	}
1924 
1925 	ubi->free_count = 0;
1926 	list_for_each_entry(aeb, &ai->free, u.list) {
1927 		cond_resched();
1928 
1929 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1930 		if (!e)
1931 			goto out_free;
1932 
1933 		e->pnum = aeb->pnum;
1934 		e->ec = aeb->ec;
1935 		ubi_assert(e->ec >= 0);
1936 		ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1937 
1938 		wl_tree_add(e, &ubi->free);
1939 		ubi->free_count++;
1940 
1941 		ubi->lookuptbl[e->pnum] = e;
1942 
1943 		found_pebs++;
1944 	}
1945 
1946 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1947 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1948 			cond_resched();
1949 
1950 			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1951 			if (!e)
1952 				goto out_free;
1953 
1954 			e->pnum = aeb->pnum;
1955 			e->ec = aeb->ec;
1956 			ubi->lookuptbl[e->pnum] = e;
1957 
1958 			if (!aeb->scrub) {
1959 				dbg_wl("add PEB %d EC %d to the used tree",
1960 				       e->pnum, e->ec);
1961 				wl_tree_add(e, &ubi->used);
1962 			} else {
1963 				dbg_wl("add PEB %d EC %d to the scrub tree",
1964 				       e->pnum, e->ec);
1965 				wl_tree_add(e, &ubi->scrub);
1966 			}
1967 
1968 			found_pebs++;
1969 		}
1970 	}
1971 
1972 	dbg_wl("found %i PEBs", found_pebs);
1973 
1974 	if (ubi->fm)
1975 		ubi_assert(ubi->good_peb_count == \
1976 			   found_pebs + ubi->fm->used_blocks);
1977 	else
1978 		ubi_assert(ubi->good_peb_count == found_pebs);
1979 
1980 	reserved_pebs = WL_RESERVED_PEBS;
1981 #ifdef CONFIG_MTD_UBI_FASTMAP
1982 	/* Reserve enough LEBs to store two fastmaps. */
1983 	reserved_pebs += (ubi->fm_size / ubi->leb_size) * 2;
1984 #endif
1985 
1986 	if (ubi->avail_pebs < reserved_pebs) {
1987 		ubi_err("no enough physical eraseblocks (%d, need %d)",
1988 			ubi->avail_pebs, reserved_pebs);
1989 		if (ubi->corr_peb_count)
1990 			ubi_err("%d PEBs are corrupted and not used",
1991 				ubi->corr_peb_count);
1992 		goto out_free;
1993 	}
1994 	ubi->avail_pebs -= reserved_pebs;
1995 	ubi->rsvd_pebs += reserved_pebs;
1996 
1997 	/* Schedule wear-leveling if needed */
1998 	err = ensure_wear_leveling(ubi, 0);
1999 	if (err)
2000 		goto out_free;
2001 
2002 	return 0;
2003 
2004 out_free:
2005 	cancel_pending(ubi);
2006 	tree_destroy(&ubi->used);
2007 	tree_destroy(&ubi->free);
2008 	tree_destroy(&ubi->scrub);
2009 	kfree(ubi->lookuptbl);
2010 	return err;
2011 }
2012 
2013 /**
2014  * protection_queue_destroy - destroy the protection queue.
2015  * @ubi: UBI device description object
2016  */
2017 static void protection_queue_destroy(struct ubi_device *ubi)
2018 {
2019 	int i;
2020 	struct ubi_wl_entry *e, *tmp;
2021 
2022 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
2023 		list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
2024 			list_del(&e->u.list);
2025 			kmem_cache_free(ubi_wl_entry_slab, e);
2026 		}
2027 	}
2028 }
2029 
2030 /**
2031  * ubi_wl_close - close the wear-leveling sub-system.
2032  * @ubi: UBI device description object
2033  */
2034 void ubi_wl_close(struct ubi_device *ubi)
2035 {
2036 	dbg_wl("close the WL sub-system");
2037 	cancel_pending(ubi);
2038 	protection_queue_destroy(ubi);
2039 	tree_destroy(&ubi->used);
2040 	tree_destroy(&ubi->erroneous);
2041 	tree_destroy(&ubi->free);
2042 	tree_destroy(&ubi->scrub);
2043 	kfree(ubi->lookuptbl);
2044 }
2045 
2046 /**
2047  * self_check_ec - make sure that the erase counter of a PEB is correct.
2048  * @ubi: UBI device description object
2049  * @pnum: the physical eraseblock number to check
2050  * @ec: the erase counter to check
2051  *
2052  * This function returns zero if the erase counter of physical eraseblock @pnum
2053  * is equivalent to @ec, and a negative error code if not or if an error
2054  * occurred.
2055  */
2056 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
2057 {
2058 	int err;
2059 	long long read_ec;
2060 	struct ubi_ec_hdr *ec_hdr;
2061 
2062 	if (!ubi_dbg_chk_gen(ubi))
2063 		return 0;
2064 
2065 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
2066 	if (!ec_hdr)
2067 		return -ENOMEM;
2068 
2069 	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2070 	if (err && err != UBI_IO_BITFLIPS) {
2071 		/* The header does not have to exist */
2072 		err = 0;
2073 		goto out_free;
2074 	}
2075 
2076 	read_ec = be64_to_cpu(ec_hdr->ec);
2077 	if (ec != read_ec && read_ec - ec > 1) {
2078 		ubi_err("self-check failed for PEB %d", pnum);
2079 		ubi_err("read EC is %lld, should be %d", read_ec, ec);
2080 		dump_stack();
2081 		err = 1;
2082 	} else
2083 		err = 0;
2084 
2085 out_free:
2086 	kfree(ec_hdr);
2087 	return err;
2088 }
2089 
2090 /**
2091  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2092  * @ubi: UBI device description object
2093  * @e: the wear-leveling entry to check
2094  * @root: the root of the tree
2095  *
2096  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2097  * is not.
2098  */
2099 static int self_check_in_wl_tree(const struct ubi_device *ubi,
2100 				 struct ubi_wl_entry *e, struct rb_root *root)
2101 {
2102 	if (!ubi_dbg_chk_gen(ubi))
2103 		return 0;
2104 
2105 	if (in_wl_tree(e, root))
2106 		return 0;
2107 
2108 	ubi_err("self-check failed for PEB %d, EC %d, RB-tree %p ",
2109 		e->pnum, e->ec, root);
2110 	dump_stack();
2111 	return -EINVAL;
2112 }
2113 
2114 /**
2115  * self_check_in_pq - check if wear-leveling entry is in the protection
2116  *                        queue.
2117  * @ubi: UBI device description object
2118  * @e: the wear-leveling entry to check
2119  *
2120  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2121  */
2122 static int self_check_in_pq(const struct ubi_device *ubi,
2123 			    struct ubi_wl_entry *e)
2124 {
2125 	struct ubi_wl_entry *p;
2126 	int i;
2127 
2128 	if (!ubi_dbg_chk_gen(ubi))
2129 		return 0;
2130 
2131 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
2132 		list_for_each_entry(p, &ubi->pq[i], u.list)
2133 			if (p == e)
2134 				return 0;
2135 
2136 	ubi_err("self-check failed for PEB %d, EC %d, Protect queue",
2137 		e->pnum, e->ec);
2138 	dump_stack();
2139 	return -EINVAL;
2140 }
2141