xref: /openbmc/u-boot/drivers/mtd/ubi/wl.c (revision d9b88d25)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * SPDX-License-Identifier:	GPL-2.0+
5  *
6  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
7  */
8 
9 /*
10  * UBI wear-leveling sub-system.
11  *
12  * This sub-system is responsible for wear-leveling. It works in terms of
13  * physical eraseblocks and erase counters and knows nothing about logical
14  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
15  * eraseblocks are of two types - used and free. Used physical eraseblocks are
16  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
17  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
18  *
19  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
20  * header. The rest of the physical eraseblock contains only %0xFF bytes.
21  *
22  * When physical eraseblocks are returned to the WL sub-system by means of the
23  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
24  * done asynchronously in context of the per-UBI device background thread,
25  * which is also managed by the WL sub-system.
26  *
27  * The wear-leveling is ensured by means of moving the contents of used
28  * physical eraseblocks with low erase counter to free physical eraseblocks
29  * with high erase counter.
30  *
31  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
32  * bad.
33  *
34  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
35  * in a physical eraseblock, it has to be moved. Technically this is the same
36  * as moving it for wear-leveling reasons.
37  *
38  * As it was said, for the UBI sub-system all physical eraseblocks are either
39  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
40  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
41  * RB-trees, as well as (temporarily) in the @wl->pq queue.
42  *
43  * When the WL sub-system returns a physical eraseblock, the physical
44  * eraseblock is protected from being moved for some "time". For this reason,
45  * the physical eraseblock is not directly moved from the @wl->free tree to the
46  * @wl->used tree. There is a protection queue in between where this
47  * physical eraseblock is temporarily stored (@wl->pq).
48  *
49  * All this protection stuff is needed because:
50  *  o we don't want to move physical eraseblocks just after we have given them
51  *    to the user; instead, we first want to let users fill them up with data;
52  *
53  *  o there is a chance that the user will put the physical eraseblock very
54  *    soon, so it makes sense not to move it for some time, but wait.
55  *
56  * Physical eraseblocks stay protected only for limited time. But the "time" is
57  * measured in erase cycles in this case. This is implemented with help of the
58  * protection queue. Eraseblocks are put to the tail of this queue when they
59  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
60  * head of the queue on each erase operation (for any eraseblock). So the
61  * length of the queue defines how may (global) erase cycles PEBs are protected.
62  *
63  * To put it differently, each physical eraseblock has 2 main states: free and
64  * used. The former state corresponds to the @wl->free tree. The latter state
65  * is split up on several sub-states:
66  * o the WL movement is allowed (@wl->used tree);
67  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
68  *   erroneous - e.g., there was a read error;
69  * o the WL movement is temporarily prohibited (@wl->pq queue);
70  * o scrubbing is needed (@wl->scrub tree).
71  *
72  * Depending on the sub-state, wear-leveling entries of the used physical
73  * eraseblocks may be kept in one of those structures.
74  *
75  * Note, in this implementation, we keep a small in-RAM object for each physical
76  * eraseblock. This is surely not a scalable solution. But it appears to be good
77  * enough for moderately large flashes and it is simple. In future, one may
78  * re-work this sub-system and make it more scalable.
79  *
80  * At the moment this sub-system does not utilize the sequence number, which
81  * was introduced relatively recently. But it would be wise to do this because
82  * the sequence number of a logical eraseblock characterizes how old is it. For
83  * example, when we move a PEB with low erase counter, and we need to pick the
84  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
85  * pick target PEB with an average EC if our PEB is not very "old". This is a
86  * room for future re-works of the WL sub-system.
87  */
88 
89 #ifndef __UBOOT__
90 #include <linux/slab.h>
91 #include <linux/crc32.h>
92 #include <linux/freezer.h>
93 #include <linux/kthread.h>
94 #else
95 #include <ubi_uboot.h>
96 #endif
97 
98 #include "ubi.h"
99 #include "wl.h"
100 
101 /* Number of physical eraseblocks reserved for wear-leveling purposes */
102 #define WL_RESERVED_PEBS 1
103 
104 /*
105  * Maximum difference between two erase counters. If this threshold is
106  * exceeded, the WL sub-system starts moving data from used physical
107  * eraseblocks with low erase counter to free physical eraseblocks with high
108  * erase counter.
109  */
110 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
111 
112 /*
113  * When a physical eraseblock is moved, the WL sub-system has to pick the target
114  * physical eraseblock to move to. The simplest way would be just to pick the
115  * one with the highest erase counter. But in certain workloads this could lead
116  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
117  * situation when the picked physical eraseblock is constantly erased after the
118  * data is written to it. So, we have a constant which limits the highest erase
119  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
120  * does not pick eraseblocks with erase counter greater than the lowest erase
121  * counter plus %WL_FREE_MAX_DIFF.
122  */
123 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
124 
125 /*
126  * Maximum number of consecutive background thread failures which is enough to
127  * switch to read-only mode.
128  */
129 #define WL_MAX_FAILURES 32
130 
131 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
132 static int self_check_in_wl_tree(const struct ubi_device *ubi,
133 				 struct ubi_wl_entry *e, struct rb_root *root);
134 static int self_check_in_pq(const struct ubi_device *ubi,
135 			    struct ubi_wl_entry *e);
136 
137 /**
138  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
139  * @e: the wear-leveling entry to add
140  * @root: the root of the tree
141  *
142  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
143  * the @ubi->used and @ubi->free RB-trees.
144  */
145 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
146 {
147 	struct rb_node **p, *parent = NULL;
148 
149 	p = &root->rb_node;
150 	while (*p) {
151 		struct ubi_wl_entry *e1;
152 
153 		parent = *p;
154 		e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
155 
156 		if (e->ec < e1->ec)
157 			p = &(*p)->rb_left;
158 		else if (e->ec > e1->ec)
159 			p = &(*p)->rb_right;
160 		else {
161 			ubi_assert(e->pnum != e1->pnum);
162 			if (e->pnum < e1->pnum)
163 				p = &(*p)->rb_left;
164 			else
165 				p = &(*p)->rb_right;
166 		}
167 	}
168 
169 	rb_link_node(&e->u.rb, parent, p);
170 	rb_insert_color(&e->u.rb, root);
171 }
172 
173 /**
174  * wl_tree_destroy - destroy a wear-leveling entry.
175  * @ubi: UBI device description object
176  * @e: the wear-leveling entry to add
177  *
178  * This function destroys a wear leveling entry and removes
179  * the reference from the lookup table.
180  */
181 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
182 {
183 	ubi->lookuptbl[e->pnum] = NULL;
184 	kmem_cache_free(ubi_wl_entry_slab, e);
185 }
186 
187 /**
188  * do_work - do one pending work.
189  * @ubi: UBI device description object
190  *
191  * This function returns zero in case of success and a negative error code in
192  * case of failure.
193  */
194 #ifndef __UBOOT__
195 static int do_work(struct ubi_device *ubi)
196 #else
197 int do_work(struct ubi_device *ubi)
198 #endif
199 {
200 	int err;
201 	struct ubi_work *wrk;
202 
203 	cond_resched();
204 
205 	/*
206 	 * @ubi->work_sem is used to synchronize with the workers. Workers take
207 	 * it in read mode, so many of them may be doing works at a time. But
208 	 * the queue flush code has to be sure the whole queue of works is
209 	 * done, and it takes the mutex in write mode.
210 	 */
211 	down_read(&ubi->work_sem);
212 	spin_lock(&ubi->wl_lock);
213 	if (list_empty(&ubi->works)) {
214 		spin_unlock(&ubi->wl_lock);
215 		up_read(&ubi->work_sem);
216 		return 0;
217 	}
218 
219 	wrk = list_entry(ubi->works.next, struct ubi_work, list);
220 	list_del(&wrk->list);
221 	ubi->works_count -= 1;
222 	ubi_assert(ubi->works_count >= 0);
223 	spin_unlock(&ubi->wl_lock);
224 
225 	/*
226 	 * Call the worker function. Do not touch the work structure
227 	 * after this call as it will have been freed or reused by that
228 	 * time by the worker function.
229 	 */
230 	err = wrk->func(ubi, wrk, 0);
231 	if (err)
232 		ubi_err(ubi, "work failed with error code %d", err);
233 	up_read(&ubi->work_sem);
234 
235 	return err;
236 }
237 
238 /**
239  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
240  * @e: the wear-leveling entry to check
241  * @root: the root of the tree
242  *
243  * This function returns non-zero if @e is in the @root RB-tree and zero if it
244  * is not.
245  */
246 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
247 {
248 	struct rb_node *p;
249 
250 	p = root->rb_node;
251 	while (p) {
252 		struct ubi_wl_entry *e1;
253 
254 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
255 
256 		if (e->pnum == e1->pnum) {
257 			ubi_assert(e == e1);
258 			return 1;
259 		}
260 
261 		if (e->ec < e1->ec)
262 			p = p->rb_left;
263 		else if (e->ec > e1->ec)
264 			p = p->rb_right;
265 		else {
266 			ubi_assert(e->pnum != e1->pnum);
267 			if (e->pnum < e1->pnum)
268 				p = p->rb_left;
269 			else
270 				p = p->rb_right;
271 		}
272 	}
273 
274 	return 0;
275 }
276 
277 /**
278  * prot_queue_add - add physical eraseblock to the protection queue.
279  * @ubi: UBI device description object
280  * @e: the physical eraseblock to add
281  *
282  * This function adds @e to the tail of the protection queue @ubi->pq, where
283  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
284  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
285  * be locked.
286  */
287 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
288 {
289 	int pq_tail = ubi->pq_head - 1;
290 
291 	if (pq_tail < 0)
292 		pq_tail = UBI_PROT_QUEUE_LEN - 1;
293 	ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
294 	list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
295 	dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
296 }
297 
298 /**
299  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
300  * @ubi: UBI device description object
301  * @root: the RB-tree where to look for
302  * @diff: maximum possible difference from the smallest erase counter
303  *
304  * This function looks for a wear leveling entry with erase counter closest to
305  * min + @diff, where min is the smallest erase counter.
306  */
307 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
308 					  struct rb_root *root, int diff)
309 {
310 	struct rb_node *p;
311 	struct ubi_wl_entry *e, *prev_e = NULL;
312 	int max;
313 
314 	e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
315 	max = e->ec + diff;
316 
317 	p = root->rb_node;
318 	while (p) {
319 		struct ubi_wl_entry *e1;
320 
321 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
322 		if (e1->ec >= max)
323 			p = p->rb_left;
324 		else {
325 			p = p->rb_right;
326 			prev_e = e;
327 			e = e1;
328 		}
329 	}
330 
331 	/* If no fastmap has been written and this WL entry can be used
332 	 * as anchor PEB, hold it back and return the second best WL entry
333 	 * such that fastmap can use the anchor PEB later. */
334 	if (prev_e && !ubi->fm_disabled &&
335 	    !ubi->fm && e->pnum < UBI_FM_MAX_START)
336 		return prev_e;
337 
338 	return e;
339 }
340 
341 /**
342  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
343  * @ubi: UBI device description object
344  * @root: the RB-tree where to look for
345  *
346  * This function looks for a wear leveling entry with medium erase counter,
347  * but not greater or equivalent than the lowest erase counter plus
348  * %WL_FREE_MAX_DIFF/2.
349  */
350 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
351 					       struct rb_root *root)
352 {
353 	struct ubi_wl_entry *e, *first, *last;
354 
355 	first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
356 	last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
357 
358 	if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
359 		e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
360 
361 		/* If no fastmap has been written and this WL entry can be used
362 		 * as anchor PEB, hold it back and return the second best
363 		 * WL entry such that fastmap can use the anchor PEB later. */
364 		e = may_reserve_for_fm(ubi, e, root);
365 	} else
366 		e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
367 
368 	return e;
369 }
370 
371 /**
372  * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
373  * refill_wl_user_pool().
374  * @ubi: UBI device description object
375  *
376  * This function returns a a wear leveling entry in case of success and
377  * NULL in case of failure.
378  */
379 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
380 {
381 	struct ubi_wl_entry *e;
382 
383 	e = find_mean_wl_entry(ubi, &ubi->free);
384 	if (!e) {
385 		ubi_err(ubi, "no free eraseblocks");
386 		return NULL;
387 	}
388 
389 	self_check_in_wl_tree(ubi, e, &ubi->free);
390 
391 	/*
392 	 * Move the physical eraseblock to the protection queue where it will
393 	 * be protected from being moved for some time.
394 	 */
395 	rb_erase(&e->u.rb, &ubi->free);
396 	ubi->free_count--;
397 	dbg_wl("PEB %d EC %d", e->pnum, e->ec);
398 
399 	return e;
400 }
401 
402 /**
403  * prot_queue_del - remove a physical eraseblock from the protection queue.
404  * @ubi: UBI device description object
405  * @pnum: the physical eraseblock to remove
406  *
407  * This function deletes PEB @pnum from the protection queue and returns zero
408  * in case of success and %-ENODEV if the PEB was not found.
409  */
410 static int prot_queue_del(struct ubi_device *ubi, int pnum)
411 {
412 	struct ubi_wl_entry *e;
413 
414 	e = ubi->lookuptbl[pnum];
415 	if (!e)
416 		return -ENODEV;
417 
418 	if (self_check_in_pq(ubi, e))
419 		return -ENODEV;
420 
421 	list_del(&e->u.list);
422 	dbg_wl("deleted PEB %d from the protection queue", e->pnum);
423 	return 0;
424 }
425 
426 /**
427  * sync_erase - synchronously erase a physical eraseblock.
428  * @ubi: UBI device description object
429  * @e: the the physical eraseblock to erase
430  * @torture: if the physical eraseblock has to be tortured
431  *
432  * This function returns zero in case of success and a negative error code in
433  * case of failure.
434  */
435 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
436 		      int torture)
437 {
438 	int err;
439 	struct ubi_ec_hdr *ec_hdr;
440 	unsigned long long ec = e->ec;
441 
442 	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
443 
444 	err = self_check_ec(ubi, e->pnum, e->ec);
445 	if (err)
446 		return -EINVAL;
447 
448 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
449 	if (!ec_hdr)
450 		return -ENOMEM;
451 
452 	err = ubi_io_sync_erase(ubi, e->pnum, torture);
453 	if (err < 0)
454 		goto out_free;
455 
456 	ec += err;
457 	if (ec > UBI_MAX_ERASECOUNTER) {
458 		/*
459 		 * Erase counter overflow. Upgrade UBI and use 64-bit
460 		 * erase counters internally.
461 		 */
462 		ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
463 			e->pnum, ec);
464 		err = -EINVAL;
465 		goto out_free;
466 	}
467 
468 	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
469 
470 	ec_hdr->ec = cpu_to_be64(ec);
471 
472 	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
473 	if (err)
474 		goto out_free;
475 
476 	e->ec = ec;
477 	spin_lock(&ubi->wl_lock);
478 	if (e->ec > ubi->max_ec)
479 		ubi->max_ec = e->ec;
480 	spin_unlock(&ubi->wl_lock);
481 
482 out_free:
483 	kfree(ec_hdr);
484 	return err;
485 }
486 
487 /**
488  * serve_prot_queue - check if it is time to stop protecting PEBs.
489  * @ubi: UBI device description object
490  *
491  * This function is called after each erase operation and removes PEBs from the
492  * tail of the protection queue. These PEBs have been protected for long enough
493  * and should be moved to the used tree.
494  */
495 static void serve_prot_queue(struct ubi_device *ubi)
496 {
497 	struct ubi_wl_entry *e, *tmp;
498 	int count;
499 
500 	/*
501 	 * There may be several protected physical eraseblock to remove,
502 	 * process them all.
503 	 */
504 repeat:
505 	count = 0;
506 	spin_lock(&ubi->wl_lock);
507 	list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
508 		dbg_wl("PEB %d EC %d protection over, move to used tree",
509 			e->pnum, e->ec);
510 
511 		list_del(&e->u.list);
512 		wl_tree_add(e, &ubi->used);
513 		if (count++ > 32) {
514 			/*
515 			 * Let's be nice and avoid holding the spinlock for
516 			 * too long.
517 			 */
518 			spin_unlock(&ubi->wl_lock);
519 			cond_resched();
520 			goto repeat;
521 		}
522 	}
523 
524 	ubi->pq_head += 1;
525 	if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
526 		ubi->pq_head = 0;
527 	ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
528 	spin_unlock(&ubi->wl_lock);
529 }
530 
531 /**
532  * __schedule_ubi_work - schedule a work.
533  * @ubi: UBI device description object
534  * @wrk: the work to schedule
535  *
536  * This function adds a work defined by @wrk to the tail of the pending works
537  * list. Can only be used if ubi->work_sem is already held in read mode!
538  */
539 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
540 {
541 	spin_lock(&ubi->wl_lock);
542 	list_add_tail(&wrk->list, &ubi->works);
543 	ubi_assert(ubi->works_count >= 0);
544 	ubi->works_count += 1;
545 #ifndef __UBOOT__
546 	if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
547 		wake_up_process(ubi->bgt_thread);
548 #else
549 	int err;
550 	/*
551 	 * U-Boot special: We have no bgt_thread in U-Boot!
552 	 * So just call do_work() here directly.
553 	 */
554 	err = do_work(ubi);
555 	if (err) {
556 		ubi_err(ubi, "%s: work failed with error code %d",
557 			ubi->bgt_name, err);
558 	}
559 #endif
560 	spin_unlock(&ubi->wl_lock);
561 }
562 
563 /**
564  * schedule_ubi_work - schedule a work.
565  * @ubi: UBI device description object
566  * @wrk: the work to schedule
567  *
568  * This function adds a work defined by @wrk to the tail of the pending works
569  * list.
570  */
571 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
572 {
573 	down_read(&ubi->work_sem);
574 	__schedule_ubi_work(ubi, wrk);
575 	up_read(&ubi->work_sem);
576 }
577 
578 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
579 			int shutdown);
580 
581 /**
582  * schedule_erase - schedule an erase work.
583  * @ubi: UBI device description object
584  * @e: the WL entry of the physical eraseblock to erase
585  * @vol_id: the volume ID that last used this PEB
586  * @lnum: the last used logical eraseblock number for the PEB
587  * @torture: if the physical eraseblock has to be tortured
588  *
589  * This function returns zero in case of success and a %-ENOMEM in case of
590  * failure.
591  */
592 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
593 			  int vol_id, int lnum, int torture)
594 {
595 	struct ubi_work *wl_wrk;
596 
597 	ubi_assert(e);
598 
599 	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
600 	       e->pnum, e->ec, torture);
601 
602 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
603 	if (!wl_wrk)
604 		return -ENOMEM;
605 
606 	wl_wrk->func = &erase_worker;
607 	wl_wrk->e = e;
608 	wl_wrk->vol_id = vol_id;
609 	wl_wrk->lnum = lnum;
610 	wl_wrk->torture = torture;
611 
612 	schedule_ubi_work(ubi, wl_wrk);
613 	return 0;
614 }
615 
616 /**
617  * do_sync_erase - run the erase worker synchronously.
618  * @ubi: UBI device description object
619  * @e: the WL entry of the physical eraseblock to erase
620  * @vol_id: the volume ID that last used this PEB
621  * @lnum: the last used logical eraseblock number for the PEB
622  * @torture: if the physical eraseblock has to be tortured
623  *
624  */
625 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
626 			 int vol_id, int lnum, int torture)
627 {
628 	struct ubi_work *wl_wrk;
629 
630 	dbg_wl("sync erase of PEB %i", e->pnum);
631 
632 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
633 	if (!wl_wrk)
634 		return -ENOMEM;
635 
636 	wl_wrk->e = e;
637 	wl_wrk->vol_id = vol_id;
638 	wl_wrk->lnum = lnum;
639 	wl_wrk->torture = torture;
640 
641 	return erase_worker(ubi, wl_wrk, 0);
642 }
643 
644 /**
645  * wear_leveling_worker - wear-leveling worker function.
646  * @ubi: UBI device description object
647  * @wrk: the work object
648  * @shutdown: non-zero if the worker has to free memory and exit
649  * because the WL-subsystem is shutting down
650  *
651  * This function copies a more worn out physical eraseblock to a less worn out
652  * one. Returns zero in case of success and a negative error code in case of
653  * failure.
654  */
655 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
656 				int shutdown)
657 {
658 	int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
659 	int vol_id = -1, lnum = -1;
660 #ifdef CONFIG_MTD_UBI_FASTMAP
661 	int anchor = wrk->anchor;
662 #endif
663 	struct ubi_wl_entry *e1, *e2;
664 	struct ubi_vid_hdr *vid_hdr;
665 
666 	kfree(wrk);
667 	if (shutdown)
668 		return 0;
669 
670 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
671 	if (!vid_hdr)
672 		return -ENOMEM;
673 
674 	mutex_lock(&ubi->move_mutex);
675 	spin_lock(&ubi->wl_lock);
676 	ubi_assert(!ubi->move_from && !ubi->move_to);
677 	ubi_assert(!ubi->move_to_put);
678 
679 	if (!ubi->free.rb_node ||
680 	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
681 		/*
682 		 * No free physical eraseblocks? Well, they must be waiting in
683 		 * the queue to be erased. Cancel movement - it will be
684 		 * triggered again when a free physical eraseblock appears.
685 		 *
686 		 * No used physical eraseblocks? They must be temporarily
687 		 * protected from being moved. They will be moved to the
688 		 * @ubi->used tree later and the wear-leveling will be
689 		 * triggered again.
690 		 */
691 		dbg_wl("cancel WL, a list is empty: free %d, used %d",
692 		       !ubi->free.rb_node, !ubi->used.rb_node);
693 		goto out_cancel;
694 	}
695 
696 #ifdef CONFIG_MTD_UBI_FASTMAP
697 	/* Check whether we need to produce an anchor PEB */
698 	if (!anchor)
699 		anchor = !anchor_pebs_avalible(&ubi->free);
700 
701 	if (anchor) {
702 		e1 = find_anchor_wl_entry(&ubi->used);
703 		if (!e1)
704 			goto out_cancel;
705 		e2 = get_peb_for_wl(ubi);
706 		if (!e2)
707 			goto out_cancel;
708 
709 		self_check_in_wl_tree(ubi, e1, &ubi->used);
710 		rb_erase(&e1->u.rb, &ubi->used);
711 		dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
712 	} else if (!ubi->scrub.rb_node) {
713 #else
714 	if (!ubi->scrub.rb_node) {
715 #endif
716 		/*
717 		 * Now pick the least worn-out used physical eraseblock and a
718 		 * highly worn-out free physical eraseblock. If the erase
719 		 * counters differ much enough, start wear-leveling.
720 		 */
721 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
722 		e2 = get_peb_for_wl(ubi);
723 		if (!e2)
724 			goto out_cancel;
725 
726 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
727 			dbg_wl("no WL needed: min used EC %d, max free EC %d",
728 			       e1->ec, e2->ec);
729 
730 			/* Give the unused PEB back */
731 			wl_tree_add(e2, &ubi->free);
732 			ubi->free_count++;
733 			goto out_cancel;
734 		}
735 		self_check_in_wl_tree(ubi, e1, &ubi->used);
736 		rb_erase(&e1->u.rb, &ubi->used);
737 		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
738 		       e1->pnum, e1->ec, e2->pnum, e2->ec);
739 	} else {
740 		/* Perform scrubbing */
741 		scrubbing = 1;
742 		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
743 		e2 = get_peb_for_wl(ubi);
744 		if (!e2)
745 			goto out_cancel;
746 
747 		self_check_in_wl_tree(ubi, e1, &ubi->scrub);
748 		rb_erase(&e1->u.rb, &ubi->scrub);
749 		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
750 	}
751 
752 	ubi->move_from = e1;
753 	ubi->move_to = e2;
754 	spin_unlock(&ubi->wl_lock);
755 
756 	/*
757 	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
758 	 * We so far do not know which logical eraseblock our physical
759 	 * eraseblock (@e1) belongs to. We have to read the volume identifier
760 	 * header first.
761 	 *
762 	 * Note, we are protected from this PEB being unmapped and erased. The
763 	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
764 	 * which is being moved was unmapped.
765 	 */
766 
767 	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
768 	if (err && err != UBI_IO_BITFLIPS) {
769 		if (err == UBI_IO_FF) {
770 			/*
771 			 * We are trying to move PEB without a VID header. UBI
772 			 * always write VID headers shortly after the PEB was
773 			 * given, so we have a situation when it has not yet
774 			 * had a chance to write it, because it was preempted.
775 			 * So add this PEB to the protection queue so far,
776 			 * because presumably more data will be written there
777 			 * (including the missing VID header), and then we'll
778 			 * move it.
779 			 */
780 			dbg_wl("PEB %d has no VID header", e1->pnum);
781 			protect = 1;
782 			goto out_not_moved;
783 		} else if (err == UBI_IO_FF_BITFLIPS) {
784 			/*
785 			 * The same situation as %UBI_IO_FF, but bit-flips were
786 			 * detected. It is better to schedule this PEB for
787 			 * scrubbing.
788 			 */
789 			dbg_wl("PEB %d has no VID header but has bit-flips",
790 			       e1->pnum);
791 			scrubbing = 1;
792 			goto out_not_moved;
793 		}
794 
795 		ubi_err(ubi, "error %d while reading VID header from PEB %d",
796 			err, e1->pnum);
797 		goto out_error;
798 	}
799 
800 	vol_id = be32_to_cpu(vid_hdr->vol_id);
801 	lnum = be32_to_cpu(vid_hdr->lnum);
802 
803 	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
804 	if (err) {
805 		if (err == MOVE_CANCEL_RACE) {
806 			/*
807 			 * The LEB has not been moved because the volume is
808 			 * being deleted or the PEB has been put meanwhile. We
809 			 * should prevent this PEB from being selected for
810 			 * wear-leveling movement again, so put it to the
811 			 * protection queue.
812 			 */
813 			protect = 1;
814 			goto out_not_moved;
815 		}
816 		if (err == MOVE_RETRY) {
817 			scrubbing = 1;
818 			goto out_not_moved;
819 		}
820 		if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
821 		    err == MOVE_TARGET_RD_ERR) {
822 			/*
823 			 * Target PEB had bit-flips or write error - torture it.
824 			 */
825 			torture = 1;
826 			goto out_not_moved;
827 		}
828 
829 		if (err == MOVE_SOURCE_RD_ERR) {
830 			/*
831 			 * An error happened while reading the source PEB. Do
832 			 * not switch to R/O mode in this case, and give the
833 			 * upper layers a possibility to recover from this,
834 			 * e.g. by unmapping corresponding LEB. Instead, just
835 			 * put this PEB to the @ubi->erroneous list to prevent
836 			 * UBI from trying to move it over and over again.
837 			 */
838 			if (ubi->erroneous_peb_count > ubi->max_erroneous) {
839 				ubi_err(ubi, "too many erroneous eraseblocks (%d)",
840 					ubi->erroneous_peb_count);
841 				goto out_error;
842 			}
843 			erroneous = 1;
844 			goto out_not_moved;
845 		}
846 
847 		if (err < 0)
848 			goto out_error;
849 
850 		ubi_assert(0);
851 	}
852 
853 	/* The PEB has been successfully moved */
854 	if (scrubbing)
855 		ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
856 			e1->pnum, vol_id, lnum, e2->pnum);
857 	ubi_free_vid_hdr(ubi, vid_hdr);
858 
859 	spin_lock(&ubi->wl_lock);
860 	if (!ubi->move_to_put) {
861 		wl_tree_add(e2, &ubi->used);
862 		e2 = NULL;
863 	}
864 	ubi->move_from = ubi->move_to = NULL;
865 	ubi->move_to_put = ubi->wl_scheduled = 0;
866 	spin_unlock(&ubi->wl_lock);
867 
868 	err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
869 	if (err) {
870 		if (e2)
871 			wl_entry_destroy(ubi, e2);
872 		goto out_ro;
873 	}
874 
875 	if (e2) {
876 		/*
877 		 * Well, the target PEB was put meanwhile, schedule it for
878 		 * erasure.
879 		 */
880 		dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
881 		       e2->pnum, vol_id, lnum);
882 		err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
883 		if (err)
884 			goto out_ro;
885 	}
886 
887 	dbg_wl("done");
888 	mutex_unlock(&ubi->move_mutex);
889 	return 0;
890 
891 	/*
892 	 * For some reasons the LEB was not moved, might be an error, might be
893 	 * something else. @e1 was not changed, so return it back. @e2 might
894 	 * have been changed, schedule it for erasure.
895 	 */
896 out_not_moved:
897 	if (vol_id != -1)
898 		dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
899 		       e1->pnum, vol_id, lnum, e2->pnum, err);
900 	else
901 		dbg_wl("cancel moving PEB %d to PEB %d (%d)",
902 		       e1->pnum, e2->pnum, err);
903 	spin_lock(&ubi->wl_lock);
904 	if (protect)
905 		prot_queue_add(ubi, e1);
906 	else if (erroneous) {
907 		wl_tree_add(e1, &ubi->erroneous);
908 		ubi->erroneous_peb_count += 1;
909 	} else if (scrubbing)
910 		wl_tree_add(e1, &ubi->scrub);
911 	else
912 		wl_tree_add(e1, &ubi->used);
913 	ubi_assert(!ubi->move_to_put);
914 	ubi->move_from = ubi->move_to = NULL;
915 	ubi->wl_scheduled = 0;
916 	spin_unlock(&ubi->wl_lock);
917 
918 	ubi_free_vid_hdr(ubi, vid_hdr);
919 	err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
920 	if (err)
921 		goto out_ro;
922 
923 	mutex_unlock(&ubi->move_mutex);
924 	return 0;
925 
926 out_error:
927 	if (vol_id != -1)
928 		ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
929 			err, e1->pnum, e2->pnum);
930 	else
931 		ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
932 			err, e1->pnum, vol_id, lnum, e2->pnum);
933 	spin_lock(&ubi->wl_lock);
934 	ubi->move_from = ubi->move_to = NULL;
935 	ubi->move_to_put = ubi->wl_scheduled = 0;
936 	spin_unlock(&ubi->wl_lock);
937 
938 	ubi_free_vid_hdr(ubi, vid_hdr);
939 	wl_entry_destroy(ubi, e1);
940 	wl_entry_destroy(ubi, e2);
941 
942 out_ro:
943 	ubi_ro_mode(ubi);
944 	mutex_unlock(&ubi->move_mutex);
945 	ubi_assert(err != 0);
946 	return err < 0 ? err : -EIO;
947 
948 out_cancel:
949 	ubi->wl_scheduled = 0;
950 	spin_unlock(&ubi->wl_lock);
951 	mutex_unlock(&ubi->move_mutex);
952 	ubi_free_vid_hdr(ubi, vid_hdr);
953 	return 0;
954 }
955 
956 /**
957  * ensure_wear_leveling - schedule wear-leveling if it is needed.
958  * @ubi: UBI device description object
959  * @nested: set to non-zero if this function is called from UBI worker
960  *
961  * This function checks if it is time to start wear-leveling and schedules it
962  * if yes. This function returns zero in case of success and a negative error
963  * code in case of failure.
964  */
965 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
966 {
967 	int err = 0;
968 	struct ubi_wl_entry *e1;
969 	struct ubi_wl_entry *e2;
970 	struct ubi_work *wrk;
971 
972 	spin_lock(&ubi->wl_lock);
973 	if (ubi->wl_scheduled)
974 		/* Wear-leveling is already in the work queue */
975 		goto out_unlock;
976 
977 	/*
978 	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
979 	 * the WL worker has to be scheduled anyway.
980 	 */
981 	if (!ubi->scrub.rb_node) {
982 		if (!ubi->used.rb_node || !ubi->free.rb_node)
983 			/* No physical eraseblocks - no deal */
984 			goto out_unlock;
985 
986 		/*
987 		 * We schedule wear-leveling only if the difference between the
988 		 * lowest erase counter of used physical eraseblocks and a high
989 		 * erase counter of free physical eraseblocks is greater than
990 		 * %UBI_WL_THRESHOLD.
991 		 */
992 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
993 		e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
994 
995 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
996 			goto out_unlock;
997 		dbg_wl("schedule wear-leveling");
998 	} else
999 		dbg_wl("schedule scrubbing");
1000 
1001 	ubi->wl_scheduled = 1;
1002 	spin_unlock(&ubi->wl_lock);
1003 
1004 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1005 	if (!wrk) {
1006 		err = -ENOMEM;
1007 		goto out_cancel;
1008 	}
1009 
1010 	wrk->anchor = 0;
1011 	wrk->func = &wear_leveling_worker;
1012 	if (nested)
1013 		__schedule_ubi_work(ubi, wrk);
1014 	else
1015 		schedule_ubi_work(ubi, wrk);
1016 	return err;
1017 
1018 out_cancel:
1019 	spin_lock(&ubi->wl_lock);
1020 	ubi->wl_scheduled = 0;
1021 out_unlock:
1022 	spin_unlock(&ubi->wl_lock);
1023 	return err;
1024 }
1025 
1026 /**
1027  * erase_worker - physical eraseblock erase worker function.
1028  * @ubi: UBI device description object
1029  * @wl_wrk: the work object
1030  * @shutdown: non-zero if the worker has to free memory and exit
1031  * because the WL sub-system is shutting down
1032  *
1033  * This function erases a physical eraseblock and perform torture testing if
1034  * needed. It also takes care about marking the physical eraseblock bad if
1035  * needed. Returns zero in case of success and a negative error code in case of
1036  * failure.
1037  */
1038 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1039 			int shutdown)
1040 {
1041 	struct ubi_wl_entry *e = wl_wrk->e;
1042 	int pnum = e->pnum;
1043 	int vol_id = wl_wrk->vol_id;
1044 	int lnum = wl_wrk->lnum;
1045 	int err, available_consumed = 0;
1046 
1047 	if (shutdown) {
1048 		dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1049 		kfree(wl_wrk);
1050 		wl_entry_destroy(ubi, e);
1051 		return 0;
1052 	}
1053 
1054 	dbg_wl("erase PEB %d EC %d LEB %d:%d",
1055 	       pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1056 
1057 	err = sync_erase(ubi, e, wl_wrk->torture);
1058 	if (!err) {
1059 		/* Fine, we've erased it successfully */
1060 		kfree(wl_wrk);
1061 
1062 		spin_lock(&ubi->wl_lock);
1063 		wl_tree_add(e, &ubi->free);
1064 		ubi->free_count++;
1065 		spin_unlock(&ubi->wl_lock);
1066 
1067 		/*
1068 		 * One more erase operation has happened, take care about
1069 		 * protected physical eraseblocks.
1070 		 */
1071 		serve_prot_queue(ubi);
1072 
1073 		/* And take care about wear-leveling */
1074 		err = ensure_wear_leveling(ubi, 1);
1075 		return err;
1076 	}
1077 
1078 	ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1079 	kfree(wl_wrk);
1080 
1081 	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1082 	    err == -EBUSY) {
1083 		int err1;
1084 
1085 		/* Re-schedule the LEB for erasure */
1086 		err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1087 		if (err1) {
1088 			err = err1;
1089 			goto out_ro;
1090 		}
1091 		return err;
1092 	}
1093 
1094 	wl_entry_destroy(ubi, e);
1095 	if (err != -EIO)
1096 		/*
1097 		 * If this is not %-EIO, we have no idea what to do. Scheduling
1098 		 * this physical eraseblock for erasure again would cause
1099 		 * errors again and again. Well, lets switch to R/O mode.
1100 		 */
1101 		goto out_ro;
1102 
1103 	/* It is %-EIO, the PEB went bad */
1104 
1105 	if (!ubi->bad_allowed) {
1106 		ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1107 		goto out_ro;
1108 	}
1109 
1110 	spin_lock(&ubi->volumes_lock);
1111 	if (ubi->beb_rsvd_pebs == 0) {
1112 		if (ubi->avail_pebs == 0) {
1113 			spin_unlock(&ubi->volumes_lock);
1114 			ubi_err(ubi, "no reserved/available physical eraseblocks");
1115 			goto out_ro;
1116 		}
1117 		ubi->avail_pebs -= 1;
1118 		available_consumed = 1;
1119 	}
1120 	spin_unlock(&ubi->volumes_lock);
1121 
1122 	ubi_msg(ubi, "mark PEB %d as bad", pnum);
1123 	err = ubi_io_mark_bad(ubi, pnum);
1124 	if (err)
1125 		goto out_ro;
1126 
1127 	spin_lock(&ubi->volumes_lock);
1128 	if (ubi->beb_rsvd_pebs > 0) {
1129 		if (available_consumed) {
1130 			/*
1131 			 * The amount of reserved PEBs increased since we last
1132 			 * checked.
1133 			 */
1134 			ubi->avail_pebs += 1;
1135 			available_consumed = 0;
1136 		}
1137 		ubi->beb_rsvd_pebs -= 1;
1138 	}
1139 	ubi->bad_peb_count += 1;
1140 	ubi->good_peb_count -= 1;
1141 	ubi_calculate_reserved(ubi);
1142 	if (available_consumed)
1143 		ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1144 	else if (ubi->beb_rsvd_pebs)
1145 		ubi_msg(ubi, "%d PEBs left in the reserve",
1146 			ubi->beb_rsvd_pebs);
1147 	else
1148 		ubi_warn(ubi, "last PEB from the reserve was used");
1149 	spin_unlock(&ubi->volumes_lock);
1150 
1151 	return err;
1152 
1153 out_ro:
1154 	if (available_consumed) {
1155 		spin_lock(&ubi->volumes_lock);
1156 		ubi->avail_pebs += 1;
1157 		spin_unlock(&ubi->volumes_lock);
1158 	}
1159 	ubi_ro_mode(ubi);
1160 	return err;
1161 }
1162 
1163 /**
1164  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1165  * @ubi: UBI device description object
1166  * @vol_id: the volume ID that last used this PEB
1167  * @lnum: the last used logical eraseblock number for the PEB
1168  * @pnum: physical eraseblock to return
1169  * @torture: if this physical eraseblock has to be tortured
1170  *
1171  * This function is called to return physical eraseblock @pnum to the pool of
1172  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1173  * occurred to this @pnum and it has to be tested. This function returns zero
1174  * in case of success, and a negative error code in case of failure.
1175  */
1176 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1177 		   int pnum, int torture)
1178 {
1179 	int err;
1180 	struct ubi_wl_entry *e;
1181 
1182 	dbg_wl("PEB %d", pnum);
1183 	ubi_assert(pnum >= 0);
1184 	ubi_assert(pnum < ubi->peb_count);
1185 
1186 	down_read(&ubi->fm_protect);
1187 
1188 retry:
1189 	spin_lock(&ubi->wl_lock);
1190 	e = ubi->lookuptbl[pnum];
1191 	if (e == ubi->move_from) {
1192 		/*
1193 		 * User is putting the physical eraseblock which was selected to
1194 		 * be moved. It will be scheduled for erasure in the
1195 		 * wear-leveling worker.
1196 		 */
1197 		dbg_wl("PEB %d is being moved, wait", pnum);
1198 		spin_unlock(&ubi->wl_lock);
1199 
1200 		/* Wait for the WL worker by taking the @ubi->move_mutex */
1201 		mutex_lock(&ubi->move_mutex);
1202 		mutex_unlock(&ubi->move_mutex);
1203 		goto retry;
1204 	} else if (e == ubi->move_to) {
1205 		/*
1206 		 * User is putting the physical eraseblock which was selected
1207 		 * as the target the data is moved to. It may happen if the EBA
1208 		 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1209 		 * but the WL sub-system has not put the PEB to the "used" tree
1210 		 * yet, but it is about to do this. So we just set a flag which
1211 		 * will tell the WL worker that the PEB is not needed anymore
1212 		 * and should be scheduled for erasure.
1213 		 */
1214 		dbg_wl("PEB %d is the target of data moving", pnum);
1215 		ubi_assert(!ubi->move_to_put);
1216 		ubi->move_to_put = 1;
1217 		spin_unlock(&ubi->wl_lock);
1218 		up_read(&ubi->fm_protect);
1219 		return 0;
1220 	} else {
1221 		if (in_wl_tree(e, &ubi->used)) {
1222 			self_check_in_wl_tree(ubi, e, &ubi->used);
1223 			rb_erase(&e->u.rb, &ubi->used);
1224 		} else if (in_wl_tree(e, &ubi->scrub)) {
1225 			self_check_in_wl_tree(ubi, e, &ubi->scrub);
1226 			rb_erase(&e->u.rb, &ubi->scrub);
1227 		} else if (in_wl_tree(e, &ubi->erroneous)) {
1228 			self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1229 			rb_erase(&e->u.rb, &ubi->erroneous);
1230 			ubi->erroneous_peb_count -= 1;
1231 			ubi_assert(ubi->erroneous_peb_count >= 0);
1232 			/* Erroneous PEBs should be tortured */
1233 			torture = 1;
1234 		} else {
1235 			err = prot_queue_del(ubi, e->pnum);
1236 			if (err) {
1237 				ubi_err(ubi, "PEB %d not found", pnum);
1238 				ubi_ro_mode(ubi);
1239 				spin_unlock(&ubi->wl_lock);
1240 				up_read(&ubi->fm_protect);
1241 				return err;
1242 			}
1243 		}
1244 	}
1245 	spin_unlock(&ubi->wl_lock);
1246 
1247 	err = schedule_erase(ubi, e, vol_id, lnum, torture);
1248 	if (err) {
1249 		spin_lock(&ubi->wl_lock);
1250 		wl_tree_add(e, &ubi->used);
1251 		spin_unlock(&ubi->wl_lock);
1252 	}
1253 
1254 	up_read(&ubi->fm_protect);
1255 	return err;
1256 }
1257 
1258 /**
1259  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1260  * @ubi: UBI device description object
1261  * @pnum: the physical eraseblock to schedule
1262  *
1263  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1264  * needs scrubbing. This function schedules a physical eraseblock for
1265  * scrubbing which is done in background. This function returns zero in case of
1266  * success and a negative error code in case of failure.
1267  */
1268 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1269 {
1270 	struct ubi_wl_entry *e;
1271 
1272 	ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1273 
1274 retry:
1275 	spin_lock(&ubi->wl_lock);
1276 	e = ubi->lookuptbl[pnum];
1277 	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1278 				   in_wl_tree(e, &ubi->erroneous)) {
1279 		spin_unlock(&ubi->wl_lock);
1280 		return 0;
1281 	}
1282 
1283 	if (e == ubi->move_to) {
1284 		/*
1285 		 * This physical eraseblock was used to move data to. The data
1286 		 * was moved but the PEB was not yet inserted to the proper
1287 		 * tree. We should just wait a little and let the WL worker
1288 		 * proceed.
1289 		 */
1290 		spin_unlock(&ubi->wl_lock);
1291 		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1292 		yield();
1293 		goto retry;
1294 	}
1295 
1296 	if (in_wl_tree(e, &ubi->used)) {
1297 		self_check_in_wl_tree(ubi, e, &ubi->used);
1298 		rb_erase(&e->u.rb, &ubi->used);
1299 	} else {
1300 		int err;
1301 
1302 		err = prot_queue_del(ubi, e->pnum);
1303 		if (err) {
1304 			ubi_err(ubi, "PEB %d not found", pnum);
1305 			ubi_ro_mode(ubi);
1306 			spin_unlock(&ubi->wl_lock);
1307 			return err;
1308 		}
1309 	}
1310 
1311 	wl_tree_add(e, &ubi->scrub);
1312 	spin_unlock(&ubi->wl_lock);
1313 
1314 	/*
1315 	 * Technically scrubbing is the same as wear-leveling, so it is done
1316 	 * by the WL worker.
1317 	 */
1318 	return ensure_wear_leveling(ubi, 0);
1319 }
1320 
1321 /**
1322  * ubi_wl_flush - flush all pending works.
1323  * @ubi: UBI device description object
1324  * @vol_id: the volume id to flush for
1325  * @lnum: the logical eraseblock number to flush for
1326  *
1327  * This function executes all pending works for a particular volume id /
1328  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1329  * acts as a wildcard for all of the corresponding volume numbers or logical
1330  * eraseblock numbers. It returns zero in case of success and a negative error
1331  * code in case of failure.
1332  */
1333 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1334 {
1335 	int err = 0;
1336 	int found = 1;
1337 
1338 	/*
1339 	 * Erase while the pending works queue is not empty, but not more than
1340 	 * the number of currently pending works.
1341 	 */
1342 	dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1343 	       vol_id, lnum, ubi->works_count);
1344 
1345 	while (found) {
1346 		struct ubi_work *wrk, *tmp;
1347 		found = 0;
1348 
1349 		down_read(&ubi->work_sem);
1350 		spin_lock(&ubi->wl_lock);
1351 		list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1352 			if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1353 			    (lnum == UBI_ALL || wrk->lnum == lnum)) {
1354 				list_del(&wrk->list);
1355 				ubi->works_count -= 1;
1356 				ubi_assert(ubi->works_count >= 0);
1357 				spin_unlock(&ubi->wl_lock);
1358 
1359 				err = wrk->func(ubi, wrk, 0);
1360 				if (err) {
1361 					up_read(&ubi->work_sem);
1362 					return err;
1363 				}
1364 
1365 				spin_lock(&ubi->wl_lock);
1366 				found = 1;
1367 				break;
1368 			}
1369 		}
1370 		spin_unlock(&ubi->wl_lock);
1371 		up_read(&ubi->work_sem);
1372 	}
1373 
1374 	/*
1375 	 * Make sure all the works which have been done in parallel are
1376 	 * finished.
1377 	 */
1378 	down_write(&ubi->work_sem);
1379 	up_write(&ubi->work_sem);
1380 
1381 	return err;
1382 }
1383 
1384 /**
1385  * tree_destroy - destroy an RB-tree.
1386  * @ubi: UBI device description object
1387  * @root: the root of the tree to destroy
1388  */
1389 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1390 {
1391 	struct rb_node *rb;
1392 	struct ubi_wl_entry *e;
1393 
1394 	rb = root->rb_node;
1395 	while (rb) {
1396 		if (rb->rb_left)
1397 			rb = rb->rb_left;
1398 		else if (rb->rb_right)
1399 			rb = rb->rb_right;
1400 		else {
1401 			e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1402 
1403 			rb = rb_parent(rb);
1404 			if (rb) {
1405 				if (rb->rb_left == &e->u.rb)
1406 					rb->rb_left = NULL;
1407 				else
1408 					rb->rb_right = NULL;
1409 			}
1410 
1411 			wl_entry_destroy(ubi, e);
1412 		}
1413 	}
1414 }
1415 
1416 /**
1417  * ubi_thread - UBI background thread.
1418  * @u: the UBI device description object pointer
1419  */
1420 int ubi_thread(void *u)
1421 {
1422 	int failures = 0;
1423 	struct ubi_device *ubi = u;
1424 
1425 	ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1426 		ubi->bgt_name, task_pid_nr(current));
1427 
1428 	set_freezable();
1429 	for (;;) {
1430 		int err;
1431 
1432 		if (kthread_should_stop())
1433 			break;
1434 
1435 		if (try_to_freeze())
1436 			continue;
1437 
1438 		spin_lock(&ubi->wl_lock);
1439 		if (list_empty(&ubi->works) || ubi->ro_mode ||
1440 		    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1441 			set_current_state(TASK_INTERRUPTIBLE);
1442 			spin_unlock(&ubi->wl_lock);
1443 			schedule();
1444 			continue;
1445 		}
1446 		spin_unlock(&ubi->wl_lock);
1447 
1448 		err = do_work(ubi);
1449 		if (err) {
1450 			ubi_err(ubi, "%s: work failed with error code %d",
1451 				ubi->bgt_name, err);
1452 			if (failures++ > WL_MAX_FAILURES) {
1453 				/*
1454 				 * Too many failures, disable the thread and
1455 				 * switch to read-only mode.
1456 				 */
1457 				ubi_msg(ubi, "%s: %d consecutive failures",
1458 					ubi->bgt_name, WL_MAX_FAILURES);
1459 				ubi_ro_mode(ubi);
1460 				ubi->thread_enabled = 0;
1461 				continue;
1462 			}
1463 		} else
1464 			failures = 0;
1465 
1466 		cond_resched();
1467 	}
1468 
1469 	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1470 	return 0;
1471 }
1472 
1473 /**
1474  * shutdown_work - shutdown all pending works.
1475  * @ubi: UBI device description object
1476  */
1477 static void shutdown_work(struct ubi_device *ubi)
1478 {
1479 #ifdef CONFIG_MTD_UBI_FASTMAP
1480 #ifndef __UBOOT__
1481 	flush_work(&ubi->fm_work);
1482 #else
1483 	/* in U-Boot, we have all work done */
1484 #endif
1485 #endif
1486 	while (!list_empty(&ubi->works)) {
1487 		struct ubi_work *wrk;
1488 
1489 		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1490 		list_del(&wrk->list);
1491 		wrk->func(ubi, wrk, 1);
1492 		ubi->works_count -= 1;
1493 		ubi_assert(ubi->works_count >= 0);
1494 	}
1495 }
1496 
1497 /**
1498  * ubi_wl_init - initialize the WL sub-system using attaching information.
1499  * @ubi: UBI device description object
1500  * @ai: attaching information
1501  *
1502  * This function returns zero in case of success, and a negative error code in
1503  * case of failure.
1504  */
1505 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1506 {
1507 	int err, i, reserved_pebs, found_pebs = 0;
1508 	struct rb_node *rb1, *rb2;
1509 	struct ubi_ainf_volume *av;
1510 	struct ubi_ainf_peb *aeb, *tmp;
1511 	struct ubi_wl_entry *e;
1512 
1513 	ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1514 	spin_lock_init(&ubi->wl_lock);
1515 	mutex_init(&ubi->move_mutex);
1516 	init_rwsem(&ubi->work_sem);
1517 	ubi->max_ec = ai->max_ec;
1518 	INIT_LIST_HEAD(&ubi->works);
1519 
1520 	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1521 
1522 	err = -ENOMEM;
1523 	ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1524 	if (!ubi->lookuptbl)
1525 		return err;
1526 
1527 	for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1528 		INIT_LIST_HEAD(&ubi->pq[i]);
1529 	ubi->pq_head = 0;
1530 
1531 	ubi->free_count = 0;
1532 	list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1533 		cond_resched();
1534 
1535 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1536 		if (!e)
1537 			goto out_free;
1538 
1539 		e->pnum = aeb->pnum;
1540 		e->ec = aeb->ec;
1541 		ubi->lookuptbl[e->pnum] = e;
1542 		if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1543 			wl_entry_destroy(ubi, e);
1544 			goto out_free;
1545 		}
1546 
1547 		found_pebs++;
1548 	}
1549 
1550 	list_for_each_entry(aeb, &ai->free, u.list) {
1551 		cond_resched();
1552 
1553 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1554 		if (!e)
1555 			goto out_free;
1556 
1557 		e->pnum = aeb->pnum;
1558 		e->ec = aeb->ec;
1559 		ubi_assert(e->ec >= 0);
1560 
1561 		wl_tree_add(e, &ubi->free);
1562 		ubi->free_count++;
1563 
1564 		ubi->lookuptbl[e->pnum] = e;
1565 
1566 		found_pebs++;
1567 	}
1568 
1569 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1570 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1571 			cond_resched();
1572 
1573 			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1574 			if (!e)
1575 				goto out_free;
1576 
1577 			e->pnum = aeb->pnum;
1578 			e->ec = aeb->ec;
1579 			ubi->lookuptbl[e->pnum] = e;
1580 
1581 			if (!aeb->scrub) {
1582 				dbg_wl("add PEB %d EC %d to the used tree",
1583 				       e->pnum, e->ec);
1584 				wl_tree_add(e, &ubi->used);
1585 			} else {
1586 				dbg_wl("add PEB %d EC %d to the scrub tree",
1587 				       e->pnum, e->ec);
1588 				wl_tree_add(e, &ubi->scrub);
1589 			}
1590 
1591 			found_pebs++;
1592 		}
1593 	}
1594 
1595 	dbg_wl("found %i PEBs", found_pebs);
1596 
1597 	if (ubi->fm) {
1598 		ubi_assert(ubi->good_peb_count ==
1599 			   found_pebs + ubi->fm->used_blocks);
1600 
1601 		for (i = 0; i < ubi->fm->used_blocks; i++) {
1602 			e = ubi->fm->e[i];
1603 			ubi->lookuptbl[e->pnum] = e;
1604 		}
1605 	}
1606 	else
1607 		ubi_assert(ubi->good_peb_count == found_pebs);
1608 
1609 	reserved_pebs = WL_RESERVED_PEBS;
1610 	ubi_fastmap_init(ubi, &reserved_pebs);
1611 
1612 	if (ubi->avail_pebs < reserved_pebs) {
1613 		ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1614 			ubi->avail_pebs, reserved_pebs);
1615 		if (ubi->corr_peb_count)
1616 			ubi_err(ubi, "%d PEBs are corrupted and not used",
1617 				ubi->corr_peb_count);
1618 		goto out_free;
1619 	}
1620 	ubi->avail_pebs -= reserved_pebs;
1621 	ubi->rsvd_pebs += reserved_pebs;
1622 
1623 	/* Schedule wear-leveling if needed */
1624 	err = ensure_wear_leveling(ubi, 0);
1625 	if (err)
1626 		goto out_free;
1627 
1628 	return 0;
1629 
1630 out_free:
1631 	shutdown_work(ubi);
1632 	tree_destroy(ubi, &ubi->used);
1633 	tree_destroy(ubi, &ubi->free);
1634 	tree_destroy(ubi, &ubi->scrub);
1635 	kfree(ubi->lookuptbl);
1636 	return err;
1637 }
1638 
1639 /**
1640  * protection_queue_destroy - destroy the protection queue.
1641  * @ubi: UBI device description object
1642  */
1643 static void protection_queue_destroy(struct ubi_device *ubi)
1644 {
1645 	int i;
1646 	struct ubi_wl_entry *e, *tmp;
1647 
1648 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1649 		list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1650 			list_del(&e->u.list);
1651 			wl_entry_destroy(ubi, e);
1652 		}
1653 	}
1654 }
1655 
1656 /**
1657  * ubi_wl_close - close the wear-leveling sub-system.
1658  * @ubi: UBI device description object
1659  */
1660 void ubi_wl_close(struct ubi_device *ubi)
1661 {
1662 	dbg_wl("close the WL sub-system");
1663 	ubi_fastmap_close(ubi);
1664 	shutdown_work(ubi);
1665 	protection_queue_destroy(ubi);
1666 	tree_destroy(ubi, &ubi->used);
1667 	tree_destroy(ubi, &ubi->erroneous);
1668 	tree_destroy(ubi, &ubi->free);
1669 	tree_destroy(ubi, &ubi->scrub);
1670 	kfree(ubi->lookuptbl);
1671 }
1672 
1673 /**
1674  * self_check_ec - make sure that the erase counter of a PEB is correct.
1675  * @ubi: UBI device description object
1676  * @pnum: the physical eraseblock number to check
1677  * @ec: the erase counter to check
1678  *
1679  * This function returns zero if the erase counter of physical eraseblock @pnum
1680  * is equivalent to @ec, and a negative error code if not or if an error
1681  * occurred.
1682  */
1683 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1684 {
1685 	int err;
1686 	long long read_ec;
1687 	struct ubi_ec_hdr *ec_hdr;
1688 
1689 	if (!ubi_dbg_chk_gen(ubi))
1690 		return 0;
1691 
1692 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1693 	if (!ec_hdr)
1694 		return -ENOMEM;
1695 
1696 	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1697 	if (err && err != UBI_IO_BITFLIPS) {
1698 		/* The header does not have to exist */
1699 		err = 0;
1700 		goto out_free;
1701 	}
1702 
1703 	read_ec = be64_to_cpu(ec_hdr->ec);
1704 	if (ec != read_ec && read_ec - ec > 1) {
1705 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1706 		ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
1707 		dump_stack();
1708 		err = 1;
1709 	} else
1710 		err = 0;
1711 
1712 out_free:
1713 	kfree(ec_hdr);
1714 	return err;
1715 }
1716 
1717 /**
1718  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1719  * @ubi: UBI device description object
1720  * @e: the wear-leveling entry to check
1721  * @root: the root of the tree
1722  *
1723  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1724  * is not.
1725  */
1726 static int self_check_in_wl_tree(const struct ubi_device *ubi,
1727 				 struct ubi_wl_entry *e, struct rb_root *root)
1728 {
1729 	if (!ubi_dbg_chk_gen(ubi))
1730 		return 0;
1731 
1732 	if (in_wl_tree(e, root))
1733 		return 0;
1734 
1735 	ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
1736 		e->pnum, e->ec, root);
1737 	dump_stack();
1738 	return -EINVAL;
1739 }
1740 
1741 /**
1742  * self_check_in_pq - check if wear-leveling entry is in the protection
1743  *                        queue.
1744  * @ubi: UBI device description object
1745  * @e: the wear-leveling entry to check
1746  *
1747  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
1748  */
1749 static int self_check_in_pq(const struct ubi_device *ubi,
1750 			    struct ubi_wl_entry *e)
1751 {
1752 	struct ubi_wl_entry *p;
1753 	int i;
1754 
1755 	if (!ubi_dbg_chk_gen(ubi))
1756 		return 0;
1757 
1758 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1759 		list_for_each_entry(p, &ubi->pq[i], u.list)
1760 			if (p == e)
1761 				return 0;
1762 
1763 	ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
1764 		e->pnum, e->ec);
1765 	dump_stack();
1766 	return -EINVAL;
1767 }
1768 #ifndef CONFIG_MTD_UBI_FASTMAP
1769 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
1770 {
1771 	struct ubi_wl_entry *e;
1772 
1773 	e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1774 	self_check_in_wl_tree(ubi, e, &ubi->free);
1775 	ubi->free_count--;
1776 	ubi_assert(ubi->free_count >= 0);
1777 	rb_erase(&e->u.rb, &ubi->free);
1778 
1779 	return e;
1780 }
1781 
1782 /**
1783  * produce_free_peb - produce a free physical eraseblock.
1784  * @ubi: UBI device description object
1785  *
1786  * This function tries to make a free PEB by means of synchronous execution of
1787  * pending works. This may be needed if, for example the background thread is
1788  * disabled. Returns zero in case of success and a negative error code in case
1789  * of failure.
1790  */
1791 static int produce_free_peb(struct ubi_device *ubi)
1792 {
1793 	int err;
1794 
1795 	while (!ubi->free.rb_node && ubi->works_count) {
1796 		spin_unlock(&ubi->wl_lock);
1797 
1798 		dbg_wl("do one work synchronously");
1799 		err = do_work(ubi);
1800 
1801 		spin_lock(&ubi->wl_lock);
1802 		if (err)
1803 			return err;
1804 	}
1805 
1806 	return 0;
1807 }
1808 
1809 /**
1810  * ubi_wl_get_peb - get a physical eraseblock.
1811  * @ubi: UBI device description object
1812  *
1813  * This function returns a physical eraseblock in case of success and a
1814  * negative error code in case of failure.
1815  * Returns with ubi->fm_eba_sem held in read mode!
1816  */
1817 int ubi_wl_get_peb(struct ubi_device *ubi)
1818 {
1819 	int err;
1820 	struct ubi_wl_entry *e;
1821 
1822 retry:
1823 	down_read(&ubi->fm_eba_sem);
1824 	spin_lock(&ubi->wl_lock);
1825 	if (!ubi->free.rb_node) {
1826 		if (ubi->works_count == 0) {
1827 			ubi_err(ubi, "no free eraseblocks");
1828 			ubi_assert(list_empty(&ubi->works));
1829 			spin_unlock(&ubi->wl_lock);
1830 			return -ENOSPC;
1831 		}
1832 
1833 		err = produce_free_peb(ubi);
1834 		if (err < 0) {
1835 			spin_unlock(&ubi->wl_lock);
1836 			return err;
1837 		}
1838 		spin_unlock(&ubi->wl_lock);
1839 		up_read(&ubi->fm_eba_sem);
1840 		goto retry;
1841 
1842 	}
1843 	e = wl_get_wle(ubi);
1844 	prot_queue_add(ubi, e);
1845 	spin_unlock(&ubi->wl_lock);
1846 
1847 	err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
1848 				    ubi->peb_size - ubi->vid_hdr_aloffset);
1849 	if (err) {
1850 		ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
1851 		return err;
1852 	}
1853 
1854 	return e->pnum;
1855 }
1856 #else
1857 #include "fastmap-wl.c"
1858 #endif
1859