1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 12 * the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 * 18 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner 19 */ 20 21 /* 22 * UBI wear-leveling unit. 23 * 24 * This unit is responsible for wear-leveling. It works in terms of physical 25 * eraseblocks and erase counters and knows nothing about logical eraseblocks, 26 * volumes, etc. From this unit's perspective all physical eraseblocks are of 27 * two types - used and free. Used physical eraseblocks are those that were 28 * "get" by the 'ubi_wl_get_peb()' function, and free physical eraseblocks are 29 * those that were put by the 'ubi_wl_put_peb()' function. 30 * 31 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter 32 * header. The rest of the physical eraseblock contains only 0xFF bytes. 33 * 34 * When physical eraseblocks are returned to the WL unit by means of the 35 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is 36 * done asynchronously in context of the per-UBI device background thread, 37 * which is also managed by the WL unit. 38 * 39 * The wear-leveling is ensured by means of moving the contents of used 40 * physical eraseblocks with low erase counter to free physical eraseblocks 41 * with high erase counter. 42 * 43 * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick 44 * an "optimal" physical eraseblock. For example, when it is known that the 45 * physical eraseblock will be "put" soon because it contains short-term data, 46 * the WL unit may pick a free physical eraseblock with low erase counter, and 47 * so forth. 48 * 49 * If the WL unit fails to erase a physical eraseblock, it marks it as bad. 50 * 51 * This unit is also responsible for scrubbing. If a bit-flip is detected in a 52 * physical eraseblock, it has to be moved. Technically this is the same as 53 * moving it for wear-leveling reasons. 54 * 55 * As it was said, for the UBI unit all physical eraseblocks are either "free" 56 * or "used". Free eraseblock are kept in the @wl->free RB-tree, while used 57 * eraseblocks are kept in a set of different RB-trees: @wl->used, 58 * @wl->prot.pnum, @wl->prot.aec, and @wl->scrub. 59 * 60 * Note, in this implementation, we keep a small in-RAM object for each physical 61 * eraseblock. This is surely not a scalable solution. But it appears to be good 62 * enough for moderately large flashes and it is simple. In future, one may 63 * re-work this unit and make it more scalable. 64 * 65 * At the moment this unit does not utilize the sequence number, which was 66 * introduced relatively recently. But it would be wise to do this because the 67 * sequence number of a logical eraseblock characterizes how old is it. For 68 * example, when we move a PEB with low erase counter, and we need to pick the 69 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we 70 * pick target PEB with an average EC if our PEB is not very "old". This is a 71 * room for future re-works of the WL unit. 72 * 73 * FIXME: looks too complex, should be simplified (later). 74 */ 75 76 #ifdef UBI_LINUX 77 #include <linux/slab.h> 78 #include <linux/crc32.h> 79 #include <linux/freezer.h> 80 #include <linux/kthread.h> 81 #endif 82 83 #include <ubi_uboot.h> 84 #include "ubi.h" 85 86 /* Number of physical eraseblocks reserved for wear-leveling purposes */ 87 #define WL_RESERVED_PEBS 1 88 89 /* 90 * How many erase cycles are short term, unknown, and long term physical 91 * eraseblocks protected. 92 */ 93 #define ST_PROTECTION 16 94 #define U_PROTECTION 10 95 #define LT_PROTECTION 4 96 97 /* 98 * Maximum difference between two erase counters. If this threshold is 99 * exceeded, the WL unit starts moving data from used physical eraseblocks with 100 * low erase counter to free physical eraseblocks with high erase counter. 101 */ 102 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD 103 104 /* 105 * When a physical eraseblock is moved, the WL unit has to pick the target 106 * physical eraseblock to move to. The simplest way would be just to pick the 107 * one with the highest erase counter. But in certain workloads this could lead 108 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a 109 * situation when the picked physical eraseblock is constantly erased after the 110 * data is written to it. So, we have a constant which limits the highest erase 111 * counter of the free physical eraseblock to pick. Namely, the WL unit does 112 * not pick eraseblocks with erase counter greater then the lowest erase 113 * counter plus %WL_FREE_MAX_DIFF. 114 */ 115 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD) 116 117 /* 118 * Maximum number of consecutive background thread failures which is enough to 119 * switch to read-only mode. 120 */ 121 #define WL_MAX_FAILURES 32 122 123 /** 124 * struct ubi_wl_prot_entry - PEB protection entry. 125 * @rb_pnum: link in the @wl->prot.pnum RB-tree 126 * @rb_aec: link in the @wl->prot.aec RB-tree 127 * @abs_ec: the absolute erase counter value when the protection ends 128 * @e: the wear-leveling entry of the physical eraseblock under protection 129 * 130 * When the WL unit returns a physical eraseblock, the physical eraseblock is 131 * protected from being moved for some "time". For this reason, the physical 132 * eraseblock is not directly moved from the @wl->free tree to the @wl->used 133 * tree. There is one more tree in between where this physical eraseblock is 134 * temporarily stored (@wl->prot). 135 * 136 * All this protection stuff is needed because: 137 * o we don't want to move physical eraseblocks just after we have given them 138 * to the user; instead, we first want to let users fill them up with data; 139 * 140 * o there is a chance that the user will put the physical eraseblock very 141 * soon, so it makes sense not to move it for some time, but wait; this is 142 * especially important in case of "short term" physical eraseblocks. 143 * 144 * Physical eraseblocks stay protected only for limited time. But the "time" is 145 * measured in erase cycles in this case. This is implemented with help of the 146 * absolute erase counter (@wl->abs_ec). When it reaches certain value, the 147 * physical eraseblocks are moved from the protection trees (@wl->prot.*) to 148 * the @wl->used tree. 149 * 150 * Protected physical eraseblocks are searched by physical eraseblock number 151 * (when they are put) and by the absolute erase counter (to check if it is 152 * time to move them to the @wl->used tree). So there are actually 2 RB-trees 153 * storing the protected physical eraseblocks: @wl->prot.pnum and 154 * @wl->prot.aec. They are referred to as the "protection" trees. The 155 * first one is indexed by the physical eraseblock number. The second one is 156 * indexed by the absolute erase counter. Both trees store 157 * &struct ubi_wl_prot_entry objects. 158 * 159 * Each physical eraseblock has 2 main states: free and used. The former state 160 * corresponds to the @wl->free tree. The latter state is split up on several 161 * sub-states: 162 * o the WL movement is allowed (@wl->used tree); 163 * o the WL movement is temporarily prohibited (@wl->prot.pnum and 164 * @wl->prot.aec trees); 165 * o scrubbing is needed (@wl->scrub tree). 166 * 167 * Depending on the sub-state, wear-leveling entries of the used physical 168 * eraseblocks may be kept in one of those trees. 169 */ 170 struct ubi_wl_prot_entry { 171 struct rb_node rb_pnum; 172 struct rb_node rb_aec; 173 unsigned long long abs_ec; 174 struct ubi_wl_entry *e; 175 }; 176 177 /** 178 * struct ubi_work - UBI work description data structure. 179 * @list: a link in the list of pending works 180 * @func: worker function 181 * @priv: private data of the worker function 182 * 183 * @e: physical eraseblock to erase 184 * @torture: if the physical eraseblock has to be tortured 185 * 186 * The @func pointer points to the worker function. If the @cancel argument is 187 * not zero, the worker has to free the resources and exit immediately. The 188 * worker has to return zero in case of success and a negative error code in 189 * case of failure. 190 */ 191 struct ubi_work { 192 struct list_head list; 193 int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel); 194 /* The below fields are only relevant to erasure works */ 195 struct ubi_wl_entry *e; 196 int torture; 197 }; 198 199 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 200 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec); 201 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e, 202 struct rb_root *root); 203 #else 204 #define paranoid_check_ec(ubi, pnum, ec) 0 205 #define paranoid_check_in_wl_tree(e, root) 206 #endif 207 208 /** 209 * wl_tree_add - add a wear-leveling entry to a WL RB-tree. 210 * @e: the wear-leveling entry to add 211 * @root: the root of the tree 212 * 213 * Note, we use (erase counter, physical eraseblock number) pairs as keys in 214 * the @ubi->used and @ubi->free RB-trees. 215 */ 216 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root) 217 { 218 struct rb_node **p, *parent = NULL; 219 220 p = &root->rb_node; 221 while (*p) { 222 struct ubi_wl_entry *e1; 223 224 parent = *p; 225 e1 = rb_entry(parent, struct ubi_wl_entry, rb); 226 227 if (e->ec < e1->ec) 228 p = &(*p)->rb_left; 229 else if (e->ec > e1->ec) 230 p = &(*p)->rb_right; 231 else { 232 ubi_assert(e->pnum != e1->pnum); 233 if (e->pnum < e1->pnum) 234 p = &(*p)->rb_left; 235 else 236 p = &(*p)->rb_right; 237 } 238 } 239 240 rb_link_node(&e->rb, parent, p); 241 rb_insert_color(&e->rb, root); 242 } 243 244 /** 245 * do_work - do one pending work. 246 * @ubi: UBI device description object 247 * 248 * This function returns zero in case of success and a negative error code in 249 * case of failure. 250 */ 251 static int do_work(struct ubi_device *ubi) 252 { 253 int err; 254 struct ubi_work *wrk; 255 256 cond_resched(); 257 258 /* 259 * @ubi->work_sem is used to synchronize with the workers. Workers take 260 * it in read mode, so many of them may be doing works at a time. But 261 * the queue flush code has to be sure the whole queue of works is 262 * done, and it takes the mutex in write mode. 263 */ 264 down_read(&ubi->work_sem); 265 spin_lock(&ubi->wl_lock); 266 if (list_empty(&ubi->works)) { 267 spin_unlock(&ubi->wl_lock); 268 up_read(&ubi->work_sem); 269 return 0; 270 } 271 272 wrk = list_entry(ubi->works.next, struct ubi_work, list); 273 list_del(&wrk->list); 274 ubi->works_count -= 1; 275 ubi_assert(ubi->works_count >= 0); 276 spin_unlock(&ubi->wl_lock); 277 278 /* 279 * Call the worker function. Do not touch the work structure 280 * after this call as it will have been freed or reused by that 281 * time by the worker function. 282 */ 283 err = wrk->func(ubi, wrk, 0); 284 if (err) 285 ubi_err("work failed with error code %d", err); 286 up_read(&ubi->work_sem); 287 288 return err; 289 } 290 291 /** 292 * produce_free_peb - produce a free physical eraseblock. 293 * @ubi: UBI device description object 294 * 295 * This function tries to make a free PEB by means of synchronous execution of 296 * pending works. This may be needed if, for example the background thread is 297 * disabled. Returns zero in case of success and a negative error code in case 298 * of failure. 299 */ 300 static int produce_free_peb(struct ubi_device *ubi) 301 { 302 int err; 303 304 spin_lock(&ubi->wl_lock); 305 while (!ubi->free.rb_node) { 306 spin_unlock(&ubi->wl_lock); 307 308 dbg_wl("do one work synchronously"); 309 err = do_work(ubi); 310 if (err) 311 return err; 312 313 spin_lock(&ubi->wl_lock); 314 } 315 spin_unlock(&ubi->wl_lock); 316 317 return 0; 318 } 319 320 /** 321 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree. 322 * @e: the wear-leveling entry to check 323 * @root: the root of the tree 324 * 325 * This function returns non-zero if @e is in the @root RB-tree and zero if it 326 * is not. 327 */ 328 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) 329 { 330 struct rb_node *p; 331 332 p = root->rb_node; 333 while (p) { 334 struct ubi_wl_entry *e1; 335 336 e1 = rb_entry(p, struct ubi_wl_entry, rb); 337 338 if (e->pnum == e1->pnum) { 339 ubi_assert(e == e1); 340 return 1; 341 } 342 343 if (e->ec < e1->ec) 344 p = p->rb_left; 345 else if (e->ec > e1->ec) 346 p = p->rb_right; 347 else { 348 ubi_assert(e->pnum != e1->pnum); 349 if (e->pnum < e1->pnum) 350 p = p->rb_left; 351 else 352 p = p->rb_right; 353 } 354 } 355 356 return 0; 357 } 358 359 /** 360 * prot_tree_add - add physical eraseblock to protection trees. 361 * @ubi: UBI device description object 362 * @e: the physical eraseblock to add 363 * @pe: protection entry object to use 364 * @abs_ec: absolute erase counter value when this physical eraseblock has 365 * to be removed from the protection trees. 366 * 367 * @wl->lock has to be locked. 368 */ 369 static void prot_tree_add(struct ubi_device *ubi, struct ubi_wl_entry *e, 370 struct ubi_wl_prot_entry *pe, int abs_ec) 371 { 372 struct rb_node **p, *parent = NULL; 373 struct ubi_wl_prot_entry *pe1; 374 375 pe->e = e; 376 pe->abs_ec = ubi->abs_ec + abs_ec; 377 378 p = &ubi->prot.pnum.rb_node; 379 while (*p) { 380 parent = *p; 381 pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_pnum); 382 383 if (e->pnum < pe1->e->pnum) 384 p = &(*p)->rb_left; 385 else 386 p = &(*p)->rb_right; 387 } 388 rb_link_node(&pe->rb_pnum, parent, p); 389 rb_insert_color(&pe->rb_pnum, &ubi->prot.pnum); 390 391 p = &ubi->prot.aec.rb_node; 392 parent = NULL; 393 while (*p) { 394 parent = *p; 395 pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_aec); 396 397 if (pe->abs_ec < pe1->abs_ec) 398 p = &(*p)->rb_left; 399 else 400 p = &(*p)->rb_right; 401 } 402 rb_link_node(&pe->rb_aec, parent, p); 403 rb_insert_color(&pe->rb_aec, &ubi->prot.aec); 404 } 405 406 /** 407 * find_wl_entry - find wear-leveling entry closest to certain erase counter. 408 * @root: the RB-tree where to look for 409 * @max: highest possible erase counter 410 * 411 * This function looks for a wear leveling entry with erase counter closest to 412 * @max and less then @max. 413 */ 414 static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max) 415 { 416 struct rb_node *p; 417 struct ubi_wl_entry *e; 418 419 e = rb_entry(rb_first(root), struct ubi_wl_entry, rb); 420 max += e->ec; 421 422 p = root->rb_node; 423 while (p) { 424 struct ubi_wl_entry *e1; 425 426 e1 = rb_entry(p, struct ubi_wl_entry, rb); 427 if (e1->ec >= max) 428 p = p->rb_left; 429 else { 430 p = p->rb_right; 431 e = e1; 432 } 433 } 434 435 return e; 436 } 437 438 /** 439 * ubi_wl_get_peb - get a physical eraseblock. 440 * @ubi: UBI device description object 441 * @dtype: type of data which will be stored in this physical eraseblock 442 * 443 * This function returns a physical eraseblock in case of success and a 444 * negative error code in case of failure. Might sleep. 445 */ 446 int ubi_wl_get_peb(struct ubi_device *ubi, int dtype) 447 { 448 int err, protect, medium_ec; 449 struct ubi_wl_entry *e, *first, *last; 450 struct ubi_wl_prot_entry *pe; 451 452 ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM || 453 dtype == UBI_UNKNOWN); 454 455 pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_NOFS); 456 if (!pe) 457 return -ENOMEM; 458 459 retry: 460 spin_lock(&ubi->wl_lock); 461 if (!ubi->free.rb_node) { 462 if (ubi->works_count == 0) { 463 ubi_assert(list_empty(&ubi->works)); 464 ubi_err("no free eraseblocks"); 465 spin_unlock(&ubi->wl_lock); 466 kfree(pe); 467 return -ENOSPC; 468 } 469 spin_unlock(&ubi->wl_lock); 470 471 err = produce_free_peb(ubi); 472 if (err < 0) { 473 kfree(pe); 474 return err; 475 } 476 goto retry; 477 } 478 479 switch (dtype) { 480 case UBI_LONGTERM: 481 /* 482 * For long term data we pick a physical eraseblock 483 * with high erase counter. But the highest erase 484 * counter we can pick is bounded by the the lowest 485 * erase counter plus %WL_FREE_MAX_DIFF. 486 */ 487 e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); 488 protect = LT_PROTECTION; 489 break; 490 case UBI_UNKNOWN: 491 /* 492 * For unknown data we pick a physical eraseblock with 493 * medium erase counter. But we by no means can pick a 494 * physical eraseblock with erase counter greater or 495 * equivalent than the lowest erase counter plus 496 * %WL_FREE_MAX_DIFF. 497 */ 498 first = rb_entry(rb_first(&ubi->free), 499 struct ubi_wl_entry, rb); 500 last = rb_entry(rb_last(&ubi->free), 501 struct ubi_wl_entry, rb); 502 503 if (last->ec - first->ec < WL_FREE_MAX_DIFF) 504 e = rb_entry(ubi->free.rb_node, 505 struct ubi_wl_entry, rb); 506 else { 507 medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2; 508 e = find_wl_entry(&ubi->free, medium_ec); 509 } 510 protect = U_PROTECTION; 511 break; 512 case UBI_SHORTTERM: 513 /* 514 * For short term data we pick a physical eraseblock 515 * with the lowest erase counter as we expect it will 516 * be erased soon. 517 */ 518 e = rb_entry(rb_first(&ubi->free), 519 struct ubi_wl_entry, rb); 520 protect = ST_PROTECTION; 521 break; 522 default: 523 protect = 0; 524 e = NULL; 525 BUG(); 526 } 527 528 /* 529 * Move the physical eraseblock to the protection trees where it will 530 * be protected from being moved for some time. 531 */ 532 paranoid_check_in_wl_tree(e, &ubi->free); 533 rb_erase(&e->rb, &ubi->free); 534 prot_tree_add(ubi, e, pe, protect); 535 536 dbg_wl("PEB %d EC %d, protection %d", e->pnum, e->ec, protect); 537 spin_unlock(&ubi->wl_lock); 538 539 return e->pnum; 540 } 541 542 /** 543 * prot_tree_del - remove a physical eraseblock from the protection trees 544 * @ubi: UBI device description object 545 * @pnum: the physical eraseblock to remove 546 * 547 * This function returns PEB @pnum from the protection trees and returns zero 548 * in case of success and %-ENODEV if the PEB was not found in the protection 549 * trees. 550 */ 551 static int prot_tree_del(struct ubi_device *ubi, int pnum) 552 { 553 struct rb_node *p; 554 struct ubi_wl_prot_entry *pe = NULL; 555 556 p = ubi->prot.pnum.rb_node; 557 while (p) { 558 559 pe = rb_entry(p, struct ubi_wl_prot_entry, rb_pnum); 560 561 if (pnum == pe->e->pnum) 562 goto found; 563 564 if (pnum < pe->e->pnum) 565 p = p->rb_left; 566 else 567 p = p->rb_right; 568 } 569 570 return -ENODEV; 571 572 found: 573 ubi_assert(pe->e->pnum == pnum); 574 rb_erase(&pe->rb_aec, &ubi->prot.aec); 575 rb_erase(&pe->rb_pnum, &ubi->prot.pnum); 576 kfree(pe); 577 return 0; 578 } 579 580 /** 581 * sync_erase - synchronously erase a physical eraseblock. 582 * @ubi: UBI device description object 583 * @e: the the physical eraseblock to erase 584 * @torture: if the physical eraseblock has to be tortured 585 * 586 * This function returns zero in case of success and a negative error code in 587 * case of failure. 588 */ 589 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, int torture) 590 { 591 int err; 592 struct ubi_ec_hdr *ec_hdr; 593 unsigned long long ec = e->ec; 594 595 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); 596 597 err = paranoid_check_ec(ubi, e->pnum, e->ec); 598 if (err > 0) 599 return -EINVAL; 600 601 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 602 if (!ec_hdr) 603 return -ENOMEM; 604 605 err = ubi_io_sync_erase(ubi, e->pnum, torture); 606 if (err < 0) 607 goto out_free; 608 609 ec += err; 610 if (ec > UBI_MAX_ERASECOUNTER) { 611 /* 612 * Erase counter overflow. Upgrade UBI and use 64-bit 613 * erase counters internally. 614 */ 615 ubi_err("erase counter overflow at PEB %d, EC %llu", 616 e->pnum, ec); 617 err = -EINVAL; 618 goto out_free; 619 } 620 621 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec); 622 623 ec_hdr->ec = cpu_to_be64(ec); 624 625 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr); 626 if (err) 627 goto out_free; 628 629 e->ec = ec; 630 spin_lock(&ubi->wl_lock); 631 if (e->ec > ubi->max_ec) 632 ubi->max_ec = e->ec; 633 spin_unlock(&ubi->wl_lock); 634 635 out_free: 636 kfree(ec_hdr); 637 return err; 638 } 639 640 /** 641 * check_protection_over - check if it is time to stop protecting some 642 * physical eraseblocks. 643 * @ubi: UBI device description object 644 * 645 * This function is called after each erase operation, when the absolute erase 646 * counter is incremented, to check if some physical eraseblock have not to be 647 * protected any longer. These physical eraseblocks are moved from the 648 * protection trees to the used tree. 649 */ 650 static void check_protection_over(struct ubi_device *ubi) 651 { 652 struct ubi_wl_prot_entry *pe; 653 654 /* 655 * There may be several protected physical eraseblock to remove, 656 * process them all. 657 */ 658 while (1) { 659 spin_lock(&ubi->wl_lock); 660 if (!ubi->prot.aec.rb_node) { 661 spin_unlock(&ubi->wl_lock); 662 break; 663 } 664 665 pe = rb_entry(rb_first(&ubi->prot.aec), 666 struct ubi_wl_prot_entry, rb_aec); 667 668 if (pe->abs_ec > ubi->abs_ec) { 669 spin_unlock(&ubi->wl_lock); 670 break; 671 } 672 673 dbg_wl("PEB %d protection over, abs_ec %llu, PEB abs_ec %llu", 674 pe->e->pnum, ubi->abs_ec, pe->abs_ec); 675 rb_erase(&pe->rb_aec, &ubi->prot.aec); 676 rb_erase(&pe->rb_pnum, &ubi->prot.pnum); 677 wl_tree_add(pe->e, &ubi->used); 678 spin_unlock(&ubi->wl_lock); 679 680 kfree(pe); 681 cond_resched(); 682 } 683 } 684 685 /** 686 * schedule_ubi_work - schedule a work. 687 * @ubi: UBI device description object 688 * @wrk: the work to schedule 689 * 690 * This function enqueues a work defined by @wrk to the tail of the pending 691 * works list. 692 */ 693 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 694 { 695 spin_lock(&ubi->wl_lock); 696 list_add_tail(&wrk->list, &ubi->works); 697 ubi_assert(ubi->works_count >= 0); 698 ubi->works_count += 1; 699 700 /* 701 * U-Boot special: We have no bgt_thread in U-Boot! 702 * So just call do_work() here directly. 703 */ 704 do_work(ubi); 705 706 spin_unlock(&ubi->wl_lock); 707 } 708 709 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 710 int cancel); 711 712 /** 713 * schedule_erase - schedule an erase work. 714 * @ubi: UBI device description object 715 * @e: the WL entry of the physical eraseblock to erase 716 * @torture: if the physical eraseblock has to be tortured 717 * 718 * This function returns zero in case of success and a %-ENOMEM in case of 719 * failure. 720 */ 721 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 722 int torture) 723 { 724 struct ubi_work *wl_wrk; 725 726 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", 727 e->pnum, e->ec, torture); 728 729 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 730 if (!wl_wrk) 731 return -ENOMEM; 732 733 wl_wrk->func = &erase_worker; 734 wl_wrk->e = e; 735 wl_wrk->torture = torture; 736 737 schedule_ubi_work(ubi, wl_wrk); 738 return 0; 739 } 740 741 /** 742 * wear_leveling_worker - wear-leveling worker function. 743 * @ubi: UBI device description object 744 * @wrk: the work object 745 * @cancel: non-zero if the worker has to free memory and exit 746 * 747 * This function copies a more worn out physical eraseblock to a less worn out 748 * one. Returns zero in case of success and a negative error code in case of 749 * failure. 750 */ 751 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, 752 int cancel) 753 { 754 int err, put = 0, scrubbing = 0, protect = 0; 755 struct ubi_wl_prot_entry *uninitialized_var(pe); 756 struct ubi_wl_entry *e1, *e2; 757 struct ubi_vid_hdr *vid_hdr; 758 759 kfree(wrk); 760 761 if (cancel) 762 return 0; 763 764 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 765 if (!vid_hdr) 766 return -ENOMEM; 767 768 mutex_lock(&ubi->move_mutex); 769 spin_lock(&ubi->wl_lock); 770 ubi_assert(!ubi->move_from && !ubi->move_to); 771 ubi_assert(!ubi->move_to_put); 772 773 if (!ubi->free.rb_node || 774 (!ubi->used.rb_node && !ubi->scrub.rb_node)) { 775 /* 776 * No free physical eraseblocks? Well, they must be waiting in 777 * the queue to be erased. Cancel movement - it will be 778 * triggered again when a free physical eraseblock appears. 779 * 780 * No used physical eraseblocks? They must be temporarily 781 * protected from being moved. They will be moved to the 782 * @ubi->used tree later and the wear-leveling will be 783 * triggered again. 784 */ 785 dbg_wl("cancel WL, a list is empty: free %d, used %d", 786 !ubi->free.rb_node, !ubi->used.rb_node); 787 goto out_cancel; 788 } 789 790 if (!ubi->scrub.rb_node) { 791 /* 792 * Now pick the least worn-out used physical eraseblock and a 793 * highly worn-out free physical eraseblock. If the erase 794 * counters differ much enough, start wear-leveling. 795 */ 796 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb); 797 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); 798 799 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { 800 dbg_wl("no WL needed: min used EC %d, max free EC %d", 801 e1->ec, e2->ec); 802 goto out_cancel; 803 } 804 paranoid_check_in_wl_tree(e1, &ubi->used); 805 rb_erase(&e1->rb, &ubi->used); 806 dbg_wl("move PEB %d EC %d to PEB %d EC %d", 807 e1->pnum, e1->ec, e2->pnum, e2->ec); 808 } else { 809 /* Perform scrubbing */ 810 scrubbing = 1; 811 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, rb); 812 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); 813 paranoid_check_in_wl_tree(e1, &ubi->scrub); 814 rb_erase(&e1->rb, &ubi->scrub); 815 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); 816 } 817 818 paranoid_check_in_wl_tree(e2, &ubi->free); 819 rb_erase(&e2->rb, &ubi->free); 820 ubi->move_from = e1; 821 ubi->move_to = e2; 822 spin_unlock(&ubi->wl_lock); 823 824 /* 825 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum. 826 * We so far do not know which logical eraseblock our physical 827 * eraseblock (@e1) belongs to. We have to read the volume identifier 828 * header first. 829 * 830 * Note, we are protected from this PEB being unmapped and erased. The 831 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB 832 * which is being moved was unmapped. 833 */ 834 835 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0); 836 if (err && err != UBI_IO_BITFLIPS) { 837 if (err == UBI_IO_PEB_FREE) { 838 /* 839 * We are trying to move PEB without a VID header. UBI 840 * always write VID headers shortly after the PEB was 841 * given, so we have a situation when it did not have 842 * chance to write it down because it was preempted. 843 * Just re-schedule the work, so that next time it will 844 * likely have the VID header in place. 845 */ 846 dbg_wl("PEB %d has no VID header", e1->pnum); 847 goto out_not_moved; 848 } 849 850 ubi_err("error %d while reading VID header from PEB %d", 851 err, e1->pnum); 852 if (err > 0) 853 err = -EIO; 854 goto out_error; 855 } 856 857 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr); 858 if (err) { 859 860 if (err < 0) 861 goto out_error; 862 if (err == 1) 863 goto out_not_moved; 864 865 /* 866 * For some reason the LEB was not moved - it might be because 867 * the volume is being deleted. We should prevent this PEB from 868 * being selected for wear-levelling movement for some "time", 869 * so put it to the protection tree. 870 */ 871 872 dbg_wl("cancelled moving PEB %d", e1->pnum); 873 pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_NOFS); 874 if (!pe) { 875 err = -ENOMEM; 876 goto out_error; 877 } 878 879 protect = 1; 880 } 881 882 ubi_free_vid_hdr(ubi, vid_hdr); 883 spin_lock(&ubi->wl_lock); 884 if (protect) 885 prot_tree_add(ubi, e1, pe, protect); 886 if (!ubi->move_to_put) 887 wl_tree_add(e2, &ubi->used); 888 else 889 put = 1; 890 ubi->move_from = ubi->move_to = NULL; 891 ubi->move_to_put = ubi->wl_scheduled = 0; 892 spin_unlock(&ubi->wl_lock); 893 894 if (put) { 895 /* 896 * Well, the target PEB was put meanwhile, schedule it for 897 * erasure. 898 */ 899 dbg_wl("PEB %d was put meanwhile, erase", e2->pnum); 900 err = schedule_erase(ubi, e2, 0); 901 if (err) 902 goto out_error; 903 } 904 905 if (!protect) { 906 err = schedule_erase(ubi, e1, 0); 907 if (err) 908 goto out_error; 909 } 910 911 912 dbg_wl("done"); 913 mutex_unlock(&ubi->move_mutex); 914 return 0; 915 916 /* 917 * For some reasons the LEB was not moved, might be an error, might be 918 * something else. @e1 was not changed, so return it back. @e2 might 919 * be changed, schedule it for erasure. 920 */ 921 out_not_moved: 922 ubi_free_vid_hdr(ubi, vid_hdr); 923 spin_lock(&ubi->wl_lock); 924 if (scrubbing) 925 wl_tree_add(e1, &ubi->scrub); 926 else 927 wl_tree_add(e1, &ubi->used); 928 ubi->move_from = ubi->move_to = NULL; 929 ubi->move_to_put = ubi->wl_scheduled = 0; 930 spin_unlock(&ubi->wl_lock); 931 932 err = schedule_erase(ubi, e2, 0); 933 if (err) 934 goto out_error; 935 936 mutex_unlock(&ubi->move_mutex); 937 return 0; 938 939 out_error: 940 ubi_err("error %d while moving PEB %d to PEB %d", 941 err, e1->pnum, e2->pnum); 942 943 ubi_free_vid_hdr(ubi, vid_hdr); 944 spin_lock(&ubi->wl_lock); 945 ubi->move_from = ubi->move_to = NULL; 946 ubi->move_to_put = ubi->wl_scheduled = 0; 947 spin_unlock(&ubi->wl_lock); 948 949 kmem_cache_free(ubi_wl_entry_slab, e1); 950 kmem_cache_free(ubi_wl_entry_slab, e2); 951 ubi_ro_mode(ubi); 952 953 mutex_unlock(&ubi->move_mutex); 954 return err; 955 956 out_cancel: 957 ubi->wl_scheduled = 0; 958 spin_unlock(&ubi->wl_lock); 959 mutex_unlock(&ubi->move_mutex); 960 ubi_free_vid_hdr(ubi, vid_hdr); 961 return 0; 962 } 963 964 /** 965 * ensure_wear_leveling - schedule wear-leveling if it is needed. 966 * @ubi: UBI device description object 967 * 968 * This function checks if it is time to start wear-leveling and schedules it 969 * if yes. This function returns zero in case of success and a negative error 970 * code in case of failure. 971 */ 972 static int ensure_wear_leveling(struct ubi_device *ubi) 973 { 974 int err = 0; 975 struct ubi_wl_entry *e1; 976 struct ubi_wl_entry *e2; 977 struct ubi_work *wrk; 978 979 spin_lock(&ubi->wl_lock); 980 if (ubi->wl_scheduled) 981 /* Wear-leveling is already in the work queue */ 982 goto out_unlock; 983 984 /* 985 * If the ubi->scrub tree is not empty, scrubbing is needed, and the 986 * the WL worker has to be scheduled anyway. 987 */ 988 if (!ubi->scrub.rb_node) { 989 if (!ubi->used.rb_node || !ubi->free.rb_node) 990 /* No physical eraseblocks - no deal */ 991 goto out_unlock; 992 993 /* 994 * We schedule wear-leveling only if the difference between the 995 * lowest erase counter of used physical eraseblocks and a high 996 * erase counter of free physical eraseblocks is greater then 997 * %UBI_WL_THRESHOLD. 998 */ 999 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb); 1000 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); 1001 1002 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) 1003 goto out_unlock; 1004 dbg_wl("schedule wear-leveling"); 1005 } else 1006 dbg_wl("schedule scrubbing"); 1007 1008 ubi->wl_scheduled = 1; 1009 spin_unlock(&ubi->wl_lock); 1010 1011 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 1012 if (!wrk) { 1013 err = -ENOMEM; 1014 goto out_cancel; 1015 } 1016 1017 wrk->func = &wear_leveling_worker; 1018 schedule_ubi_work(ubi, wrk); 1019 return err; 1020 1021 out_cancel: 1022 spin_lock(&ubi->wl_lock); 1023 ubi->wl_scheduled = 0; 1024 out_unlock: 1025 spin_unlock(&ubi->wl_lock); 1026 return err; 1027 } 1028 1029 /** 1030 * erase_worker - physical eraseblock erase worker function. 1031 * @ubi: UBI device description object 1032 * @wl_wrk: the work object 1033 * @cancel: non-zero if the worker has to free memory and exit 1034 * 1035 * This function erases a physical eraseblock and perform torture testing if 1036 * needed. It also takes care about marking the physical eraseblock bad if 1037 * needed. Returns zero in case of success and a negative error code in case of 1038 * failure. 1039 */ 1040 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 1041 int cancel) 1042 { 1043 struct ubi_wl_entry *e = wl_wrk->e; 1044 int pnum = e->pnum, err, need; 1045 1046 if (cancel) { 1047 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec); 1048 kfree(wl_wrk); 1049 kmem_cache_free(ubi_wl_entry_slab, e); 1050 return 0; 1051 } 1052 1053 dbg_wl("erase PEB %d EC %d", pnum, e->ec); 1054 1055 err = sync_erase(ubi, e, wl_wrk->torture); 1056 if (!err) { 1057 /* Fine, we've erased it successfully */ 1058 kfree(wl_wrk); 1059 1060 spin_lock(&ubi->wl_lock); 1061 ubi->abs_ec += 1; 1062 wl_tree_add(e, &ubi->free); 1063 spin_unlock(&ubi->wl_lock); 1064 1065 /* 1066 * One more erase operation has happened, take care about protected 1067 * physical eraseblocks. 1068 */ 1069 check_protection_over(ubi); 1070 1071 /* And take care about wear-leveling */ 1072 err = ensure_wear_leveling(ubi); 1073 return err; 1074 } 1075 1076 ubi_err("failed to erase PEB %d, error %d", pnum, err); 1077 kfree(wl_wrk); 1078 kmem_cache_free(ubi_wl_entry_slab, e); 1079 1080 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN || 1081 err == -EBUSY) { 1082 int err1; 1083 1084 /* Re-schedule the LEB for erasure */ 1085 err1 = schedule_erase(ubi, e, 0); 1086 if (err1) { 1087 err = err1; 1088 goto out_ro; 1089 } 1090 return err; 1091 } else if (err != -EIO) { 1092 /* 1093 * If this is not %-EIO, we have no idea what to do. Scheduling 1094 * this physical eraseblock for erasure again would cause 1095 * errors again and again. Well, lets switch to RO mode. 1096 */ 1097 goto out_ro; 1098 } 1099 1100 /* It is %-EIO, the PEB went bad */ 1101 1102 if (!ubi->bad_allowed) { 1103 ubi_err("bad physical eraseblock %d detected", pnum); 1104 goto out_ro; 1105 } 1106 1107 spin_lock(&ubi->volumes_lock); 1108 need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1; 1109 if (need > 0) { 1110 need = ubi->avail_pebs >= need ? need : ubi->avail_pebs; 1111 ubi->avail_pebs -= need; 1112 ubi->rsvd_pebs += need; 1113 ubi->beb_rsvd_pebs += need; 1114 if (need > 0) 1115 ubi_msg("reserve more %d PEBs", need); 1116 } 1117 1118 if (ubi->beb_rsvd_pebs == 0) { 1119 spin_unlock(&ubi->volumes_lock); 1120 ubi_err("no reserved physical eraseblocks"); 1121 goto out_ro; 1122 } 1123 1124 spin_unlock(&ubi->volumes_lock); 1125 ubi_msg("mark PEB %d as bad", pnum); 1126 1127 err = ubi_io_mark_bad(ubi, pnum); 1128 if (err) 1129 goto out_ro; 1130 1131 spin_lock(&ubi->volumes_lock); 1132 ubi->beb_rsvd_pebs -= 1; 1133 ubi->bad_peb_count += 1; 1134 ubi->good_peb_count -= 1; 1135 ubi_calculate_reserved(ubi); 1136 if (ubi->beb_rsvd_pebs == 0) 1137 ubi_warn("last PEB from the reserved pool was used"); 1138 spin_unlock(&ubi->volumes_lock); 1139 1140 return err; 1141 1142 out_ro: 1143 ubi_ro_mode(ubi); 1144 return err; 1145 } 1146 1147 /** 1148 * ubi_wl_put_peb - return a physical eraseblock to the wear-leveling unit. 1149 * @ubi: UBI device description object 1150 * @pnum: physical eraseblock to return 1151 * @torture: if this physical eraseblock has to be tortured 1152 * 1153 * This function is called to return physical eraseblock @pnum to the pool of 1154 * free physical eraseblocks. The @torture flag has to be set if an I/O error 1155 * occurred to this @pnum and it has to be tested. This function returns zero 1156 * in case of success, and a negative error code in case of failure. 1157 */ 1158 int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture) 1159 { 1160 int err; 1161 struct ubi_wl_entry *e; 1162 1163 dbg_wl("PEB %d", pnum); 1164 ubi_assert(pnum >= 0); 1165 ubi_assert(pnum < ubi->peb_count); 1166 1167 retry: 1168 spin_lock(&ubi->wl_lock); 1169 e = ubi->lookuptbl[pnum]; 1170 if (e == ubi->move_from) { 1171 /* 1172 * User is putting the physical eraseblock which was selected to 1173 * be moved. It will be scheduled for erasure in the 1174 * wear-leveling worker. 1175 */ 1176 dbg_wl("PEB %d is being moved, wait", pnum); 1177 spin_unlock(&ubi->wl_lock); 1178 1179 /* Wait for the WL worker by taking the @ubi->move_mutex */ 1180 mutex_lock(&ubi->move_mutex); 1181 mutex_unlock(&ubi->move_mutex); 1182 goto retry; 1183 } else if (e == ubi->move_to) { 1184 /* 1185 * User is putting the physical eraseblock which was selected 1186 * as the target the data is moved to. It may happen if the EBA 1187 * unit already re-mapped the LEB in 'ubi_eba_copy_leb()' but 1188 * the WL unit has not put the PEB to the "used" tree yet, but 1189 * it is about to do this. So we just set a flag which will 1190 * tell the WL worker that the PEB is not needed anymore and 1191 * should be scheduled for erasure. 1192 */ 1193 dbg_wl("PEB %d is the target of data moving", pnum); 1194 ubi_assert(!ubi->move_to_put); 1195 ubi->move_to_put = 1; 1196 spin_unlock(&ubi->wl_lock); 1197 return 0; 1198 } else { 1199 if (in_wl_tree(e, &ubi->used)) { 1200 paranoid_check_in_wl_tree(e, &ubi->used); 1201 rb_erase(&e->rb, &ubi->used); 1202 } else if (in_wl_tree(e, &ubi->scrub)) { 1203 paranoid_check_in_wl_tree(e, &ubi->scrub); 1204 rb_erase(&e->rb, &ubi->scrub); 1205 } else { 1206 err = prot_tree_del(ubi, e->pnum); 1207 if (err) { 1208 ubi_err("PEB %d not found", pnum); 1209 ubi_ro_mode(ubi); 1210 spin_unlock(&ubi->wl_lock); 1211 return err; 1212 } 1213 } 1214 } 1215 spin_unlock(&ubi->wl_lock); 1216 1217 err = schedule_erase(ubi, e, torture); 1218 if (err) { 1219 spin_lock(&ubi->wl_lock); 1220 wl_tree_add(e, &ubi->used); 1221 spin_unlock(&ubi->wl_lock); 1222 } 1223 1224 return err; 1225 } 1226 1227 /** 1228 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing. 1229 * @ubi: UBI device description object 1230 * @pnum: the physical eraseblock to schedule 1231 * 1232 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock 1233 * needs scrubbing. This function schedules a physical eraseblock for 1234 * scrubbing which is done in background. This function returns zero in case of 1235 * success and a negative error code in case of failure. 1236 */ 1237 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) 1238 { 1239 struct ubi_wl_entry *e; 1240 1241 ubi_msg("schedule PEB %d for scrubbing", pnum); 1242 1243 retry: 1244 spin_lock(&ubi->wl_lock); 1245 e = ubi->lookuptbl[pnum]; 1246 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub)) { 1247 spin_unlock(&ubi->wl_lock); 1248 return 0; 1249 } 1250 1251 if (e == ubi->move_to) { 1252 /* 1253 * This physical eraseblock was used to move data to. The data 1254 * was moved but the PEB was not yet inserted to the proper 1255 * tree. We should just wait a little and let the WL worker 1256 * proceed. 1257 */ 1258 spin_unlock(&ubi->wl_lock); 1259 dbg_wl("the PEB %d is not in proper tree, retry", pnum); 1260 yield(); 1261 goto retry; 1262 } 1263 1264 if (in_wl_tree(e, &ubi->used)) { 1265 paranoid_check_in_wl_tree(e, &ubi->used); 1266 rb_erase(&e->rb, &ubi->used); 1267 } else { 1268 int err; 1269 1270 err = prot_tree_del(ubi, e->pnum); 1271 if (err) { 1272 ubi_err("PEB %d not found", pnum); 1273 ubi_ro_mode(ubi); 1274 spin_unlock(&ubi->wl_lock); 1275 return err; 1276 } 1277 } 1278 1279 wl_tree_add(e, &ubi->scrub); 1280 spin_unlock(&ubi->wl_lock); 1281 1282 /* 1283 * Technically scrubbing is the same as wear-leveling, so it is done 1284 * by the WL worker. 1285 */ 1286 return ensure_wear_leveling(ubi); 1287 } 1288 1289 /** 1290 * ubi_wl_flush - flush all pending works. 1291 * @ubi: UBI device description object 1292 * 1293 * This function returns zero in case of success and a negative error code in 1294 * case of failure. 1295 */ 1296 int ubi_wl_flush(struct ubi_device *ubi) 1297 { 1298 int err; 1299 1300 /* 1301 * Erase while the pending works queue is not empty, but not more then 1302 * the number of currently pending works. 1303 */ 1304 dbg_wl("flush (%d pending works)", ubi->works_count); 1305 while (ubi->works_count) { 1306 err = do_work(ubi); 1307 if (err) 1308 return err; 1309 } 1310 1311 /* 1312 * Make sure all the works which have been done in parallel are 1313 * finished. 1314 */ 1315 down_write(&ubi->work_sem); 1316 up_write(&ubi->work_sem); 1317 1318 /* 1319 * And in case last was the WL worker and it cancelled the LEB 1320 * movement, flush again. 1321 */ 1322 while (ubi->works_count) { 1323 dbg_wl("flush more (%d pending works)", ubi->works_count); 1324 err = do_work(ubi); 1325 if (err) 1326 return err; 1327 } 1328 1329 return 0; 1330 } 1331 1332 /** 1333 * tree_destroy - destroy an RB-tree. 1334 * @root: the root of the tree to destroy 1335 */ 1336 static void tree_destroy(struct rb_root *root) 1337 { 1338 struct rb_node *rb; 1339 struct ubi_wl_entry *e; 1340 1341 rb = root->rb_node; 1342 while (rb) { 1343 if (rb->rb_left) 1344 rb = rb->rb_left; 1345 else if (rb->rb_right) 1346 rb = rb->rb_right; 1347 else { 1348 e = rb_entry(rb, struct ubi_wl_entry, rb); 1349 1350 rb = rb_parent(rb); 1351 if (rb) { 1352 if (rb->rb_left == &e->rb) 1353 rb->rb_left = NULL; 1354 else 1355 rb->rb_right = NULL; 1356 } 1357 1358 kmem_cache_free(ubi_wl_entry_slab, e); 1359 } 1360 } 1361 } 1362 1363 /** 1364 * ubi_thread - UBI background thread. 1365 * @u: the UBI device description object pointer 1366 */ 1367 int ubi_thread(void *u) 1368 { 1369 int failures = 0; 1370 struct ubi_device *ubi = u; 1371 1372 ubi_msg("background thread \"%s\" started, PID %d", 1373 ubi->bgt_name, task_pid_nr(current)); 1374 1375 set_freezable(); 1376 for (;;) { 1377 int err; 1378 1379 if (kthread_should_stop()) 1380 break; 1381 1382 if (try_to_freeze()) 1383 continue; 1384 1385 spin_lock(&ubi->wl_lock); 1386 if (list_empty(&ubi->works) || ubi->ro_mode || 1387 !ubi->thread_enabled) { 1388 set_current_state(TASK_INTERRUPTIBLE); 1389 spin_unlock(&ubi->wl_lock); 1390 schedule(); 1391 continue; 1392 } 1393 spin_unlock(&ubi->wl_lock); 1394 1395 err = do_work(ubi); 1396 if (err) { 1397 ubi_err("%s: work failed with error code %d", 1398 ubi->bgt_name, err); 1399 if (failures++ > WL_MAX_FAILURES) { 1400 /* 1401 * Too many failures, disable the thread and 1402 * switch to read-only mode. 1403 */ 1404 ubi_msg("%s: %d consecutive failures", 1405 ubi->bgt_name, WL_MAX_FAILURES); 1406 ubi_ro_mode(ubi); 1407 break; 1408 } 1409 } else 1410 failures = 0; 1411 1412 cond_resched(); 1413 } 1414 1415 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name); 1416 return 0; 1417 } 1418 1419 /** 1420 * cancel_pending - cancel all pending works. 1421 * @ubi: UBI device description object 1422 */ 1423 static void cancel_pending(struct ubi_device *ubi) 1424 { 1425 while (!list_empty(&ubi->works)) { 1426 struct ubi_work *wrk; 1427 1428 wrk = list_entry(ubi->works.next, struct ubi_work, list); 1429 list_del(&wrk->list); 1430 wrk->func(ubi, wrk, 1); 1431 ubi->works_count -= 1; 1432 ubi_assert(ubi->works_count >= 0); 1433 } 1434 } 1435 1436 /** 1437 * ubi_wl_init_scan - initialize the wear-leveling unit using scanning 1438 * information. 1439 * @ubi: UBI device description object 1440 * @si: scanning information 1441 * 1442 * This function returns zero in case of success, and a negative error code in 1443 * case of failure. 1444 */ 1445 int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si) 1446 { 1447 int err; 1448 struct rb_node *rb1, *rb2; 1449 struct ubi_scan_volume *sv; 1450 struct ubi_scan_leb *seb, *tmp; 1451 struct ubi_wl_entry *e; 1452 1453 1454 ubi->used = ubi->free = ubi->scrub = RB_ROOT; 1455 ubi->prot.pnum = ubi->prot.aec = RB_ROOT; 1456 spin_lock_init(&ubi->wl_lock); 1457 mutex_init(&ubi->move_mutex); 1458 init_rwsem(&ubi->work_sem); 1459 ubi->max_ec = si->max_ec; 1460 INIT_LIST_HEAD(&ubi->works); 1461 1462 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); 1463 1464 err = -ENOMEM; 1465 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL); 1466 if (!ubi->lookuptbl) 1467 return err; 1468 1469 list_for_each_entry_safe(seb, tmp, &si->erase, u.list) { 1470 cond_resched(); 1471 1472 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1473 if (!e) 1474 goto out_free; 1475 1476 e->pnum = seb->pnum; 1477 e->ec = seb->ec; 1478 ubi->lookuptbl[e->pnum] = e; 1479 if (schedule_erase(ubi, e, 0)) { 1480 kmem_cache_free(ubi_wl_entry_slab, e); 1481 goto out_free; 1482 } 1483 } 1484 1485 list_for_each_entry(seb, &si->free, u.list) { 1486 cond_resched(); 1487 1488 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1489 if (!e) 1490 goto out_free; 1491 1492 e->pnum = seb->pnum; 1493 e->ec = seb->ec; 1494 ubi_assert(e->ec >= 0); 1495 wl_tree_add(e, &ubi->free); 1496 ubi->lookuptbl[e->pnum] = e; 1497 } 1498 1499 list_for_each_entry(seb, &si->corr, u.list) { 1500 cond_resched(); 1501 1502 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1503 if (!e) 1504 goto out_free; 1505 1506 e->pnum = seb->pnum; 1507 e->ec = seb->ec; 1508 ubi->lookuptbl[e->pnum] = e; 1509 if (schedule_erase(ubi, e, 0)) { 1510 kmem_cache_free(ubi_wl_entry_slab, e); 1511 goto out_free; 1512 } 1513 } 1514 1515 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { 1516 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { 1517 cond_resched(); 1518 1519 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1520 if (!e) 1521 goto out_free; 1522 1523 e->pnum = seb->pnum; 1524 e->ec = seb->ec; 1525 ubi->lookuptbl[e->pnum] = e; 1526 if (!seb->scrub) { 1527 dbg_wl("add PEB %d EC %d to the used tree", 1528 e->pnum, e->ec); 1529 wl_tree_add(e, &ubi->used); 1530 } else { 1531 dbg_wl("add PEB %d EC %d to the scrub tree", 1532 e->pnum, e->ec); 1533 wl_tree_add(e, &ubi->scrub); 1534 } 1535 } 1536 } 1537 1538 if (ubi->avail_pebs < WL_RESERVED_PEBS) { 1539 ubi_err("no enough physical eraseblocks (%d, need %d)", 1540 ubi->avail_pebs, WL_RESERVED_PEBS); 1541 err = -ENOSPC; 1542 goto out_free; 1543 } 1544 ubi->avail_pebs -= WL_RESERVED_PEBS; 1545 ubi->rsvd_pebs += WL_RESERVED_PEBS; 1546 1547 /* Schedule wear-leveling if needed */ 1548 err = ensure_wear_leveling(ubi); 1549 if (err) 1550 goto out_free; 1551 1552 return 0; 1553 1554 out_free: 1555 cancel_pending(ubi); 1556 tree_destroy(&ubi->used); 1557 tree_destroy(&ubi->free); 1558 tree_destroy(&ubi->scrub); 1559 kfree(ubi->lookuptbl); 1560 return err; 1561 } 1562 1563 /** 1564 * protection_trees_destroy - destroy the protection RB-trees. 1565 * @ubi: UBI device description object 1566 */ 1567 static void protection_trees_destroy(struct ubi_device *ubi) 1568 { 1569 struct rb_node *rb; 1570 struct ubi_wl_prot_entry *pe; 1571 1572 rb = ubi->prot.aec.rb_node; 1573 while (rb) { 1574 if (rb->rb_left) 1575 rb = rb->rb_left; 1576 else if (rb->rb_right) 1577 rb = rb->rb_right; 1578 else { 1579 pe = rb_entry(rb, struct ubi_wl_prot_entry, rb_aec); 1580 1581 rb = rb_parent(rb); 1582 if (rb) { 1583 if (rb->rb_left == &pe->rb_aec) 1584 rb->rb_left = NULL; 1585 else 1586 rb->rb_right = NULL; 1587 } 1588 1589 kmem_cache_free(ubi_wl_entry_slab, pe->e); 1590 kfree(pe); 1591 } 1592 } 1593 } 1594 1595 /** 1596 * ubi_wl_close - close the wear-leveling unit. 1597 * @ubi: UBI device description object 1598 */ 1599 void ubi_wl_close(struct ubi_device *ubi) 1600 { 1601 dbg_wl("close the UBI wear-leveling unit"); 1602 1603 cancel_pending(ubi); 1604 protection_trees_destroy(ubi); 1605 tree_destroy(&ubi->used); 1606 tree_destroy(&ubi->free); 1607 tree_destroy(&ubi->scrub); 1608 kfree(ubi->lookuptbl); 1609 } 1610 1611 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 1612 1613 /** 1614 * paranoid_check_ec - make sure that the erase counter of a physical eraseblock 1615 * is correct. 1616 * @ubi: UBI device description object 1617 * @pnum: the physical eraseblock number to check 1618 * @ec: the erase counter to check 1619 * 1620 * This function returns zero if the erase counter of physical eraseblock @pnum 1621 * is equivalent to @ec, %1 if not, and a negative error code if an error 1622 * occurred. 1623 */ 1624 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec) 1625 { 1626 int err; 1627 long long read_ec; 1628 struct ubi_ec_hdr *ec_hdr; 1629 1630 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 1631 if (!ec_hdr) 1632 return -ENOMEM; 1633 1634 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); 1635 if (err && err != UBI_IO_BITFLIPS) { 1636 /* The header does not have to exist */ 1637 err = 0; 1638 goto out_free; 1639 } 1640 1641 read_ec = be64_to_cpu(ec_hdr->ec); 1642 if (ec != read_ec) { 1643 ubi_err("paranoid check failed for PEB %d", pnum); 1644 ubi_err("read EC is %lld, should be %d", read_ec, ec); 1645 ubi_dbg_dump_stack(); 1646 err = 1; 1647 } else 1648 err = 0; 1649 1650 out_free: 1651 kfree(ec_hdr); 1652 return err; 1653 } 1654 1655 /** 1656 * paranoid_check_in_wl_tree - make sure that a wear-leveling entry is present 1657 * in a WL RB-tree. 1658 * @e: the wear-leveling entry to check 1659 * @root: the root of the tree 1660 * 1661 * This function returns zero if @e is in the @root RB-tree and %1 if it 1662 * is not. 1663 */ 1664 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e, 1665 struct rb_root *root) 1666 { 1667 if (in_wl_tree(e, root)) 1668 return 0; 1669 1670 ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ", 1671 e->pnum, e->ec, root); 1672 ubi_dbg_dump_stack(); 1673 return 1; 1674 } 1675 1676 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */ 1677