xref: /openbmc/u-boot/drivers/mtd/ubi/wl.c (revision b46694df)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19  */
20 
21 /*
22  * UBI wear-leveling unit.
23  *
24  * This unit is responsible for wear-leveling. It works in terms of physical
25  * eraseblocks and erase counters and knows nothing about logical eraseblocks,
26  * volumes, etc. From this unit's perspective all physical eraseblocks are of
27  * two types - used and free. Used physical eraseblocks are those that were
28  * "get" by the 'ubi_wl_get_peb()' function, and free physical eraseblocks are
29  * those that were put by the 'ubi_wl_put_peb()' function.
30  *
31  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32  * header. The rest of the physical eraseblock contains only 0xFF bytes.
33  *
34  * When physical eraseblocks are returned to the WL unit by means of the
35  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36  * done asynchronously in context of the per-UBI device background thread,
37  * which is also managed by the WL unit.
38  *
39  * The wear-leveling is ensured by means of moving the contents of used
40  * physical eraseblocks with low erase counter to free physical eraseblocks
41  * with high erase counter.
42  *
43  * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
44  * an "optimal" physical eraseblock. For example, when it is known that the
45  * physical eraseblock will be "put" soon because it contains short-term data,
46  * the WL unit may pick a free physical eraseblock with low erase counter, and
47  * so forth.
48  *
49  * If the WL unit fails to erase a physical eraseblock, it marks it as bad.
50  *
51  * This unit is also responsible for scrubbing. If a bit-flip is detected in a
52  * physical eraseblock, it has to be moved. Technically this is the same as
53  * moving it for wear-leveling reasons.
54  *
55  * As it was said, for the UBI unit all physical eraseblocks are either "free"
56  * or "used". Free eraseblock are kept in the @wl->free RB-tree, while used
57  * eraseblocks are kept in a set of different RB-trees: @wl->used,
58  * @wl->prot.pnum, @wl->prot.aec, and @wl->scrub.
59  *
60  * Note, in this implementation, we keep a small in-RAM object for each physical
61  * eraseblock. This is surely not a scalable solution. But it appears to be good
62  * enough for moderately large flashes and it is simple. In future, one may
63  * re-work this unit and make it more scalable.
64  *
65  * At the moment this unit does not utilize the sequence number, which was
66  * introduced relatively recently. But it would be wise to do this because the
67  * sequence number of a logical eraseblock characterizes how old is it. For
68  * example, when we move a PEB with low erase counter, and we need to pick the
69  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
70  * pick target PEB with an average EC if our PEB is not very "old". This is a
71  * room for future re-works of the WL unit.
72  *
73  * FIXME: looks too complex, should be simplified (later).
74  */
75 
76 #ifdef UBI_LINUX
77 #include <linux/slab.h>
78 #include <linux/crc32.h>
79 #include <linux/freezer.h>
80 #include <linux/kthread.h>
81 #endif
82 
83 #include <ubi_uboot.h>
84 #include "ubi.h"
85 
86 /* Number of physical eraseblocks reserved for wear-leveling purposes */
87 #define WL_RESERVED_PEBS 1
88 
89 /*
90  * How many erase cycles are short term, unknown, and long term physical
91  * eraseblocks protected.
92  */
93 #define ST_PROTECTION 16
94 #define U_PROTECTION  10
95 #define LT_PROTECTION 4
96 
97 /*
98  * Maximum difference between two erase counters. If this threshold is
99  * exceeded, the WL unit starts moving data from used physical eraseblocks with
100  * low erase counter to free physical eraseblocks with high erase counter.
101  */
102 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
103 
104 /*
105  * When a physical eraseblock is moved, the WL unit has to pick the target
106  * physical eraseblock to move to. The simplest way would be just to pick the
107  * one with the highest erase counter. But in certain workloads this could lead
108  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
109  * situation when the picked physical eraseblock is constantly erased after the
110  * data is written to it. So, we have a constant which limits the highest erase
111  * counter of the free physical eraseblock to pick. Namely, the WL unit does
112  * not pick eraseblocks with erase counter greater then the lowest erase
113  * counter plus %WL_FREE_MAX_DIFF.
114  */
115 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
116 
117 /*
118  * Maximum number of consecutive background thread failures which is enough to
119  * switch to read-only mode.
120  */
121 #define WL_MAX_FAILURES 32
122 
123 /**
124  * struct ubi_wl_prot_entry - PEB protection entry.
125  * @rb_pnum: link in the @wl->prot.pnum RB-tree
126  * @rb_aec: link in the @wl->prot.aec RB-tree
127  * @abs_ec: the absolute erase counter value when the protection ends
128  * @e: the wear-leveling entry of the physical eraseblock under protection
129  *
130  * When the WL unit returns a physical eraseblock, the physical eraseblock is
131  * protected from being moved for some "time". For this reason, the physical
132  * eraseblock is not directly moved from the @wl->free tree to the @wl->used
133  * tree. There is one more tree in between where this physical eraseblock is
134  * temporarily stored (@wl->prot).
135  *
136  * All this protection stuff is needed because:
137  *  o we don't want to move physical eraseblocks just after we have given them
138  *    to the user; instead, we first want to let users fill them up with data;
139  *
140  *  o there is a chance that the user will put the physical eraseblock very
141  *    soon, so it makes sense not to move it for some time, but wait; this is
142  *    especially important in case of "short term" physical eraseblocks.
143  *
144  * Physical eraseblocks stay protected only for limited time. But the "time" is
145  * measured in erase cycles in this case. This is implemented with help of the
146  * absolute erase counter (@wl->abs_ec). When it reaches certain value, the
147  * physical eraseblocks are moved from the protection trees (@wl->prot.*) to
148  * the @wl->used tree.
149  *
150  * Protected physical eraseblocks are searched by physical eraseblock number
151  * (when they are put) and by the absolute erase counter (to check if it is
152  * time to move them to the @wl->used tree). So there are actually 2 RB-trees
153  * storing the protected physical eraseblocks: @wl->prot.pnum and
154  * @wl->prot.aec. They are referred to as the "protection" trees. The
155  * first one is indexed by the physical eraseblock number. The second one is
156  * indexed by the absolute erase counter. Both trees store
157  * &struct ubi_wl_prot_entry objects.
158  *
159  * Each physical eraseblock has 2 main states: free and used. The former state
160  * corresponds to the @wl->free tree. The latter state is split up on several
161  * sub-states:
162  * o the WL movement is allowed (@wl->used tree);
163  * o the WL movement is temporarily prohibited (@wl->prot.pnum and
164  * @wl->prot.aec trees);
165  * o scrubbing is needed (@wl->scrub tree).
166  *
167  * Depending on the sub-state, wear-leveling entries of the used physical
168  * eraseblocks may be kept in one of those trees.
169  */
170 struct ubi_wl_prot_entry {
171 	struct rb_node rb_pnum;
172 	struct rb_node rb_aec;
173 	unsigned long long abs_ec;
174 	struct ubi_wl_entry *e;
175 };
176 
177 /**
178  * struct ubi_work - UBI work description data structure.
179  * @list: a link in the list of pending works
180  * @func: worker function
181  * @priv: private data of the worker function
182  *
183  * @e: physical eraseblock to erase
184  * @torture: if the physical eraseblock has to be tortured
185  *
186  * The @func pointer points to the worker function. If the @cancel argument is
187  * not zero, the worker has to free the resources and exit immediately. The
188  * worker has to return zero in case of success and a negative error code in
189  * case of failure.
190  */
191 struct ubi_work {
192 	struct list_head list;
193 	int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel);
194 	/* The below fields are only relevant to erasure works */
195 	struct ubi_wl_entry *e;
196 	int torture;
197 };
198 
199 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
200 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec);
201 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
202 				     struct rb_root *root);
203 #else
204 #define paranoid_check_ec(ubi, pnum, ec) 0
205 #define paranoid_check_in_wl_tree(e, root)
206 #endif
207 
208 /**
209  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
210  * @e: the wear-leveling entry to add
211  * @root: the root of the tree
212  *
213  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
214  * the @ubi->used and @ubi->free RB-trees.
215  */
216 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
217 {
218 	struct rb_node **p, *parent = NULL;
219 
220 	p = &root->rb_node;
221 	while (*p) {
222 		struct ubi_wl_entry *e1;
223 
224 		parent = *p;
225 		e1 = rb_entry(parent, struct ubi_wl_entry, rb);
226 
227 		if (e->ec < e1->ec)
228 			p = &(*p)->rb_left;
229 		else if (e->ec > e1->ec)
230 			p = &(*p)->rb_right;
231 		else {
232 			ubi_assert(e->pnum != e1->pnum);
233 			if (e->pnum < e1->pnum)
234 				p = &(*p)->rb_left;
235 			else
236 				p = &(*p)->rb_right;
237 		}
238 	}
239 
240 	rb_link_node(&e->rb, parent, p);
241 	rb_insert_color(&e->rb, root);
242 }
243 
244 /**
245  * do_work - do one pending work.
246  * @ubi: UBI device description object
247  *
248  * This function returns zero in case of success and a negative error code in
249  * case of failure.
250  */
251 static int do_work(struct ubi_device *ubi)
252 {
253 	int err;
254 	struct ubi_work *wrk;
255 
256 	cond_resched();
257 
258 	/*
259 	 * @ubi->work_sem is used to synchronize with the workers. Workers take
260 	 * it in read mode, so many of them may be doing works at a time. But
261 	 * the queue flush code has to be sure the whole queue of works is
262 	 * done, and it takes the mutex in write mode.
263 	 */
264 	down_read(&ubi->work_sem);
265 	spin_lock(&ubi->wl_lock);
266 	if (list_empty(&ubi->works)) {
267 		spin_unlock(&ubi->wl_lock);
268 		up_read(&ubi->work_sem);
269 		return 0;
270 	}
271 
272 	wrk = list_entry(ubi->works.next, struct ubi_work, list);
273 	list_del(&wrk->list);
274 	ubi->works_count -= 1;
275 	ubi_assert(ubi->works_count >= 0);
276 	spin_unlock(&ubi->wl_lock);
277 
278 	/*
279 	 * Call the worker function. Do not touch the work structure
280 	 * after this call as it will have been freed or reused by that
281 	 * time by the worker function.
282 	 */
283 	err = wrk->func(ubi, wrk, 0);
284 	if (err)
285 		ubi_err("work failed with error code %d", err);
286 	up_read(&ubi->work_sem);
287 
288 	return err;
289 }
290 
291 /**
292  * produce_free_peb - produce a free physical eraseblock.
293  * @ubi: UBI device description object
294  *
295  * This function tries to make a free PEB by means of synchronous execution of
296  * pending works. This may be needed if, for example the background thread is
297  * disabled. Returns zero in case of success and a negative error code in case
298  * of failure.
299  */
300 static int produce_free_peb(struct ubi_device *ubi)
301 {
302 	int err;
303 
304 	spin_lock(&ubi->wl_lock);
305 	while (!ubi->free.rb_node) {
306 		spin_unlock(&ubi->wl_lock);
307 
308 		dbg_wl("do one work synchronously");
309 		err = do_work(ubi);
310 		if (err)
311 			return err;
312 
313 		spin_lock(&ubi->wl_lock);
314 	}
315 	spin_unlock(&ubi->wl_lock);
316 
317 	return 0;
318 }
319 
320 /**
321  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
322  * @e: the wear-leveling entry to check
323  * @root: the root of the tree
324  *
325  * This function returns non-zero if @e is in the @root RB-tree and zero if it
326  * is not.
327  */
328 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
329 {
330 	struct rb_node *p;
331 
332 	p = root->rb_node;
333 	while (p) {
334 		struct ubi_wl_entry *e1;
335 
336 		e1 = rb_entry(p, struct ubi_wl_entry, rb);
337 
338 		if (e->pnum == e1->pnum) {
339 			ubi_assert(e == e1);
340 			return 1;
341 		}
342 
343 		if (e->ec < e1->ec)
344 			p = p->rb_left;
345 		else if (e->ec > e1->ec)
346 			p = p->rb_right;
347 		else {
348 			ubi_assert(e->pnum != e1->pnum);
349 			if (e->pnum < e1->pnum)
350 				p = p->rb_left;
351 			else
352 				p = p->rb_right;
353 		}
354 	}
355 
356 	return 0;
357 }
358 
359 /**
360  * prot_tree_add - add physical eraseblock to protection trees.
361  * @ubi: UBI device description object
362  * @e: the physical eraseblock to add
363  * @pe: protection entry object to use
364  * @abs_ec: absolute erase counter value when this physical eraseblock has
365  * to be removed from the protection trees.
366  *
367  * @wl->lock has to be locked.
368  */
369 static void prot_tree_add(struct ubi_device *ubi, struct ubi_wl_entry *e,
370 			  struct ubi_wl_prot_entry *pe, int abs_ec)
371 {
372 	struct rb_node **p, *parent = NULL;
373 	struct ubi_wl_prot_entry *pe1;
374 
375 	pe->e = e;
376 	pe->abs_ec = ubi->abs_ec + abs_ec;
377 
378 	p = &ubi->prot.pnum.rb_node;
379 	while (*p) {
380 		parent = *p;
381 		pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_pnum);
382 
383 		if (e->pnum < pe1->e->pnum)
384 			p = &(*p)->rb_left;
385 		else
386 			p = &(*p)->rb_right;
387 	}
388 	rb_link_node(&pe->rb_pnum, parent, p);
389 	rb_insert_color(&pe->rb_pnum, &ubi->prot.pnum);
390 
391 	p = &ubi->prot.aec.rb_node;
392 	parent = NULL;
393 	while (*p) {
394 		parent = *p;
395 		pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_aec);
396 
397 		if (pe->abs_ec < pe1->abs_ec)
398 			p = &(*p)->rb_left;
399 		else
400 			p = &(*p)->rb_right;
401 	}
402 	rb_link_node(&pe->rb_aec, parent, p);
403 	rb_insert_color(&pe->rb_aec, &ubi->prot.aec);
404 }
405 
406 /**
407  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
408  * @root: the RB-tree where to look for
409  * @max: highest possible erase counter
410  *
411  * This function looks for a wear leveling entry with erase counter closest to
412  * @max and less then @max.
413  */
414 static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max)
415 {
416 	struct rb_node *p;
417 	struct ubi_wl_entry *e;
418 
419 	e = rb_entry(rb_first(root), struct ubi_wl_entry, rb);
420 	max += e->ec;
421 
422 	p = root->rb_node;
423 	while (p) {
424 		struct ubi_wl_entry *e1;
425 
426 		e1 = rb_entry(p, struct ubi_wl_entry, rb);
427 		if (e1->ec >= max)
428 			p = p->rb_left;
429 		else {
430 			p = p->rb_right;
431 			e = e1;
432 		}
433 	}
434 
435 	return e;
436 }
437 
438 /**
439  * ubi_wl_get_peb - get a physical eraseblock.
440  * @ubi: UBI device description object
441  * @dtype: type of data which will be stored in this physical eraseblock
442  *
443  * This function returns a physical eraseblock in case of success and a
444  * negative error code in case of failure. Might sleep.
445  */
446 int ubi_wl_get_peb(struct ubi_device *ubi, int dtype)
447 {
448 	int err, protect, medium_ec;
449 	struct ubi_wl_entry *e, *first, *last;
450 	struct ubi_wl_prot_entry *pe;
451 
452 	ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM ||
453 		   dtype == UBI_UNKNOWN);
454 
455 	pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_NOFS);
456 	if (!pe)
457 		return -ENOMEM;
458 
459 retry:
460 	spin_lock(&ubi->wl_lock);
461 	if (!ubi->free.rb_node) {
462 		if (ubi->works_count == 0) {
463 			ubi_assert(list_empty(&ubi->works));
464 			ubi_err("no free eraseblocks");
465 			spin_unlock(&ubi->wl_lock);
466 			kfree(pe);
467 			return -ENOSPC;
468 		}
469 		spin_unlock(&ubi->wl_lock);
470 
471 		err = produce_free_peb(ubi);
472 		if (err < 0) {
473 			kfree(pe);
474 			return err;
475 		}
476 		goto retry;
477 	}
478 
479 	switch (dtype) {
480 		case UBI_LONGTERM:
481 			/*
482 			 * For long term data we pick a physical eraseblock
483 			 * with high erase counter. But the highest erase
484 			 * counter we can pick is bounded by the the lowest
485 			 * erase counter plus %WL_FREE_MAX_DIFF.
486 			 */
487 			e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
488 			protect = LT_PROTECTION;
489 			break;
490 		case UBI_UNKNOWN:
491 			/*
492 			 * For unknown data we pick a physical eraseblock with
493 			 * medium erase counter. But we by no means can pick a
494 			 * physical eraseblock with erase counter greater or
495 			 * equivalent than the lowest erase counter plus
496 			 * %WL_FREE_MAX_DIFF.
497 			 */
498 			first = rb_entry(rb_first(&ubi->free),
499 					 struct ubi_wl_entry, rb);
500 			last = rb_entry(rb_last(&ubi->free),
501 					struct ubi_wl_entry, rb);
502 
503 			if (last->ec - first->ec < WL_FREE_MAX_DIFF)
504 				e = rb_entry(ubi->free.rb_node,
505 						struct ubi_wl_entry, rb);
506 			else {
507 				medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2;
508 				e = find_wl_entry(&ubi->free, medium_ec);
509 			}
510 			protect = U_PROTECTION;
511 			break;
512 		case UBI_SHORTTERM:
513 			/*
514 			 * For short term data we pick a physical eraseblock
515 			 * with the lowest erase counter as we expect it will
516 			 * be erased soon.
517 			 */
518 			e = rb_entry(rb_first(&ubi->free),
519 				     struct ubi_wl_entry, rb);
520 			protect = ST_PROTECTION;
521 			break;
522 		default:
523 			protect = 0;
524 			e = NULL;
525 			BUG();
526 	}
527 
528 	/*
529 	 * Move the physical eraseblock to the protection trees where it will
530 	 * be protected from being moved for some time.
531 	 */
532 	paranoid_check_in_wl_tree(e, &ubi->free);
533 	rb_erase(&e->rb, &ubi->free);
534 	prot_tree_add(ubi, e, pe, protect);
535 
536 	dbg_wl("PEB %d EC %d, protection %d", e->pnum, e->ec, protect);
537 	spin_unlock(&ubi->wl_lock);
538 
539 	return e->pnum;
540 }
541 
542 /**
543  * prot_tree_del - remove a physical eraseblock from the protection trees
544  * @ubi: UBI device description object
545  * @pnum: the physical eraseblock to remove
546  *
547  * This function returns PEB @pnum from the protection trees and returns zero
548  * in case of success and %-ENODEV if the PEB was not found in the protection
549  * trees.
550  */
551 static int prot_tree_del(struct ubi_device *ubi, int pnum)
552 {
553 	struct rb_node *p;
554 	struct ubi_wl_prot_entry *pe = NULL;
555 
556 	p = ubi->prot.pnum.rb_node;
557 	while (p) {
558 
559 		pe = rb_entry(p, struct ubi_wl_prot_entry, rb_pnum);
560 
561 		if (pnum == pe->e->pnum)
562 			goto found;
563 
564 		if (pnum < pe->e->pnum)
565 			p = p->rb_left;
566 		else
567 			p = p->rb_right;
568 	}
569 
570 	return -ENODEV;
571 
572 found:
573 	ubi_assert(pe->e->pnum == pnum);
574 	rb_erase(&pe->rb_aec, &ubi->prot.aec);
575 	rb_erase(&pe->rb_pnum, &ubi->prot.pnum);
576 	kfree(pe);
577 	return 0;
578 }
579 
580 /**
581  * sync_erase - synchronously erase a physical eraseblock.
582  * @ubi: UBI device description object
583  * @e: the the physical eraseblock to erase
584  * @torture: if the physical eraseblock has to be tortured
585  *
586  * This function returns zero in case of success and a negative error code in
587  * case of failure.
588  */
589 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, int torture)
590 {
591 	int err;
592 	struct ubi_ec_hdr *ec_hdr;
593 	unsigned long long ec = e->ec;
594 
595 	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
596 
597 	err = paranoid_check_ec(ubi, e->pnum, e->ec);
598 	if (err > 0)
599 		return -EINVAL;
600 
601 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
602 	if (!ec_hdr)
603 		return -ENOMEM;
604 
605 	err = ubi_io_sync_erase(ubi, e->pnum, torture);
606 	if (err < 0)
607 		goto out_free;
608 
609 	ec += err;
610 	if (ec > UBI_MAX_ERASECOUNTER) {
611 		/*
612 		 * Erase counter overflow. Upgrade UBI and use 64-bit
613 		 * erase counters internally.
614 		 */
615 		ubi_err("erase counter overflow at PEB %d, EC %llu",
616 			e->pnum, ec);
617 		err = -EINVAL;
618 		goto out_free;
619 	}
620 
621 	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
622 
623 	ec_hdr->ec = cpu_to_be64(ec);
624 
625 	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
626 	if (err)
627 		goto out_free;
628 
629 	e->ec = ec;
630 	spin_lock(&ubi->wl_lock);
631 	if (e->ec > ubi->max_ec)
632 		ubi->max_ec = e->ec;
633 	spin_unlock(&ubi->wl_lock);
634 
635 out_free:
636 	kfree(ec_hdr);
637 	return err;
638 }
639 
640 /**
641  * check_protection_over - check if it is time to stop protecting some
642  * physical eraseblocks.
643  * @ubi: UBI device description object
644  *
645  * This function is called after each erase operation, when the absolute erase
646  * counter is incremented, to check if some physical eraseblock  have not to be
647  * protected any longer. These physical eraseblocks are moved from the
648  * protection trees to the used tree.
649  */
650 static void check_protection_over(struct ubi_device *ubi)
651 {
652 	struct ubi_wl_prot_entry *pe;
653 
654 	/*
655 	 * There may be several protected physical eraseblock to remove,
656 	 * process them all.
657 	 */
658 	while (1) {
659 		spin_lock(&ubi->wl_lock);
660 		if (!ubi->prot.aec.rb_node) {
661 			spin_unlock(&ubi->wl_lock);
662 			break;
663 		}
664 
665 		pe = rb_entry(rb_first(&ubi->prot.aec),
666 			      struct ubi_wl_prot_entry, rb_aec);
667 
668 		if (pe->abs_ec > ubi->abs_ec) {
669 			spin_unlock(&ubi->wl_lock);
670 			break;
671 		}
672 
673 		dbg_wl("PEB %d protection over, abs_ec %llu, PEB abs_ec %llu",
674 		       pe->e->pnum, ubi->abs_ec, pe->abs_ec);
675 		rb_erase(&pe->rb_aec, &ubi->prot.aec);
676 		rb_erase(&pe->rb_pnum, &ubi->prot.pnum);
677 		wl_tree_add(pe->e, &ubi->used);
678 		spin_unlock(&ubi->wl_lock);
679 
680 		kfree(pe);
681 		cond_resched();
682 	}
683 }
684 
685 /**
686  * schedule_ubi_work - schedule a work.
687  * @ubi: UBI device description object
688  * @wrk: the work to schedule
689  *
690  * This function enqueues a work defined by @wrk to the tail of the pending
691  * works list.
692  */
693 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
694 {
695 	spin_lock(&ubi->wl_lock);
696 	list_add_tail(&wrk->list, &ubi->works);
697 	ubi_assert(ubi->works_count >= 0);
698 	ubi->works_count += 1;
699 
700 	/*
701 	 * U-Boot special: We have no bgt_thread in U-Boot!
702 	 * So just call do_work() here directly.
703 	 */
704 	do_work(ubi);
705 
706 	spin_unlock(&ubi->wl_lock);
707 }
708 
709 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
710 			int cancel);
711 
712 /**
713  * schedule_erase - schedule an erase work.
714  * @ubi: UBI device description object
715  * @e: the WL entry of the physical eraseblock to erase
716  * @torture: if the physical eraseblock has to be tortured
717  *
718  * This function returns zero in case of success and a %-ENOMEM in case of
719  * failure.
720  */
721 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
722 			  int torture)
723 {
724 	struct ubi_work *wl_wrk;
725 
726 	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
727 	       e->pnum, e->ec, torture);
728 
729 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
730 	if (!wl_wrk)
731 		return -ENOMEM;
732 
733 	wl_wrk->func = &erase_worker;
734 	wl_wrk->e = e;
735 	wl_wrk->torture = torture;
736 
737 	schedule_ubi_work(ubi, wl_wrk);
738 	return 0;
739 }
740 
741 /**
742  * wear_leveling_worker - wear-leveling worker function.
743  * @ubi: UBI device description object
744  * @wrk: the work object
745  * @cancel: non-zero if the worker has to free memory and exit
746  *
747  * This function copies a more worn out physical eraseblock to a less worn out
748  * one. Returns zero in case of success and a negative error code in case of
749  * failure.
750  */
751 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
752 				int cancel)
753 {
754 	int err, put = 0, scrubbing = 0, protect = 0;
755 	struct ubi_wl_prot_entry *uninitialized_var(pe);
756 	struct ubi_wl_entry *e1, *e2;
757 	struct ubi_vid_hdr *vid_hdr;
758 
759 	kfree(wrk);
760 
761 	if (cancel)
762 		return 0;
763 
764 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
765 	if (!vid_hdr)
766 		return -ENOMEM;
767 
768 	mutex_lock(&ubi->move_mutex);
769 	spin_lock(&ubi->wl_lock);
770 	ubi_assert(!ubi->move_from && !ubi->move_to);
771 	ubi_assert(!ubi->move_to_put);
772 
773 	if (!ubi->free.rb_node ||
774 	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
775 		/*
776 		 * No free physical eraseblocks? Well, they must be waiting in
777 		 * the queue to be erased. Cancel movement - it will be
778 		 * triggered again when a free physical eraseblock appears.
779 		 *
780 		 * No used physical eraseblocks? They must be temporarily
781 		 * protected from being moved. They will be moved to the
782 		 * @ubi->used tree later and the wear-leveling will be
783 		 * triggered again.
784 		 */
785 		dbg_wl("cancel WL, a list is empty: free %d, used %d",
786 		       !ubi->free.rb_node, !ubi->used.rb_node);
787 		goto out_cancel;
788 	}
789 
790 	if (!ubi->scrub.rb_node) {
791 		/*
792 		 * Now pick the least worn-out used physical eraseblock and a
793 		 * highly worn-out free physical eraseblock. If the erase
794 		 * counters differ much enough, start wear-leveling.
795 		 */
796 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb);
797 		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
798 
799 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
800 			dbg_wl("no WL needed: min used EC %d, max free EC %d",
801 			       e1->ec, e2->ec);
802 			goto out_cancel;
803 		}
804 		paranoid_check_in_wl_tree(e1, &ubi->used);
805 		rb_erase(&e1->rb, &ubi->used);
806 		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
807 		       e1->pnum, e1->ec, e2->pnum, e2->ec);
808 	} else {
809 		/* Perform scrubbing */
810 		scrubbing = 1;
811 		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, rb);
812 		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
813 		paranoid_check_in_wl_tree(e1, &ubi->scrub);
814 		rb_erase(&e1->rb, &ubi->scrub);
815 		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
816 	}
817 
818 	paranoid_check_in_wl_tree(e2, &ubi->free);
819 	rb_erase(&e2->rb, &ubi->free);
820 	ubi->move_from = e1;
821 	ubi->move_to = e2;
822 	spin_unlock(&ubi->wl_lock);
823 
824 	/*
825 	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
826 	 * We so far do not know which logical eraseblock our physical
827 	 * eraseblock (@e1) belongs to. We have to read the volume identifier
828 	 * header first.
829 	 *
830 	 * Note, we are protected from this PEB being unmapped and erased. The
831 	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
832 	 * which is being moved was unmapped.
833 	 */
834 
835 	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
836 	if (err && err != UBI_IO_BITFLIPS) {
837 		if (err == UBI_IO_PEB_FREE) {
838 			/*
839 			 * We are trying to move PEB without a VID header. UBI
840 			 * always write VID headers shortly after the PEB was
841 			 * given, so we have a situation when it did not have
842 			 * chance to write it down because it was preempted.
843 			 * Just re-schedule the work, so that next time it will
844 			 * likely have the VID header in place.
845 			 */
846 			dbg_wl("PEB %d has no VID header", e1->pnum);
847 			goto out_not_moved;
848 		}
849 
850 		ubi_err("error %d while reading VID header from PEB %d",
851 			err, e1->pnum);
852 		if (err > 0)
853 			err = -EIO;
854 		goto out_error;
855 	}
856 
857 	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
858 	if (err) {
859 
860 		if (err < 0)
861 			goto out_error;
862 		if (err == 1)
863 			goto out_not_moved;
864 
865 		/*
866 		 * For some reason the LEB was not moved - it might be because
867 		 * the volume is being deleted. We should prevent this PEB from
868 		 * being selected for wear-levelling movement for some "time",
869 		 * so put it to the protection tree.
870 		 */
871 
872 		dbg_wl("cancelled moving PEB %d", e1->pnum);
873 		pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_NOFS);
874 		if (!pe) {
875 			err = -ENOMEM;
876 			goto out_error;
877 		}
878 
879 		protect = 1;
880 	}
881 
882 	ubi_free_vid_hdr(ubi, vid_hdr);
883 	spin_lock(&ubi->wl_lock);
884 	if (protect)
885 		prot_tree_add(ubi, e1, pe, protect);
886 	if (!ubi->move_to_put)
887 		wl_tree_add(e2, &ubi->used);
888 	else
889 		put = 1;
890 	ubi->move_from = ubi->move_to = NULL;
891 	ubi->move_to_put = ubi->wl_scheduled = 0;
892 	spin_unlock(&ubi->wl_lock);
893 
894 	if (put) {
895 		/*
896 		 * Well, the target PEB was put meanwhile, schedule it for
897 		 * erasure.
898 		 */
899 		dbg_wl("PEB %d was put meanwhile, erase", e2->pnum);
900 		err = schedule_erase(ubi, e2, 0);
901 		if (err)
902 			goto out_error;
903 	}
904 
905 	if (!protect) {
906 		err = schedule_erase(ubi, e1, 0);
907 		if (err)
908 			goto out_error;
909 	}
910 
911 
912 	dbg_wl("done");
913 	mutex_unlock(&ubi->move_mutex);
914 	return 0;
915 
916 	/*
917 	 * For some reasons the LEB was not moved, might be an error, might be
918 	 * something else. @e1 was not changed, so return it back. @e2 might
919 	 * be changed, schedule it for erasure.
920 	 */
921 out_not_moved:
922 	ubi_free_vid_hdr(ubi, vid_hdr);
923 	spin_lock(&ubi->wl_lock);
924 	if (scrubbing)
925 		wl_tree_add(e1, &ubi->scrub);
926 	else
927 		wl_tree_add(e1, &ubi->used);
928 	ubi->move_from = ubi->move_to = NULL;
929 	ubi->move_to_put = ubi->wl_scheduled = 0;
930 	spin_unlock(&ubi->wl_lock);
931 
932 	err = schedule_erase(ubi, e2, 0);
933 	if (err)
934 		goto out_error;
935 
936 	mutex_unlock(&ubi->move_mutex);
937 	return 0;
938 
939 out_error:
940 	ubi_err("error %d while moving PEB %d to PEB %d",
941 		err, e1->pnum, e2->pnum);
942 
943 	ubi_free_vid_hdr(ubi, vid_hdr);
944 	spin_lock(&ubi->wl_lock);
945 	ubi->move_from = ubi->move_to = NULL;
946 	ubi->move_to_put = ubi->wl_scheduled = 0;
947 	spin_unlock(&ubi->wl_lock);
948 
949 	kmem_cache_free(ubi_wl_entry_slab, e1);
950 	kmem_cache_free(ubi_wl_entry_slab, e2);
951 	ubi_ro_mode(ubi);
952 
953 	mutex_unlock(&ubi->move_mutex);
954 	return err;
955 
956 out_cancel:
957 	ubi->wl_scheduled = 0;
958 	spin_unlock(&ubi->wl_lock);
959 	mutex_unlock(&ubi->move_mutex);
960 	ubi_free_vid_hdr(ubi, vid_hdr);
961 	return 0;
962 }
963 
964 /**
965  * ensure_wear_leveling - schedule wear-leveling if it is needed.
966  * @ubi: UBI device description object
967  *
968  * This function checks if it is time to start wear-leveling and schedules it
969  * if yes. This function returns zero in case of success and a negative error
970  * code in case of failure.
971  */
972 static int ensure_wear_leveling(struct ubi_device *ubi)
973 {
974 	int err = 0;
975 	struct ubi_wl_entry *e1;
976 	struct ubi_wl_entry *e2;
977 	struct ubi_work *wrk;
978 
979 	spin_lock(&ubi->wl_lock);
980 	if (ubi->wl_scheduled)
981 		/* Wear-leveling is already in the work queue */
982 		goto out_unlock;
983 
984 	/*
985 	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
986 	 * the WL worker has to be scheduled anyway.
987 	 */
988 	if (!ubi->scrub.rb_node) {
989 		if (!ubi->used.rb_node || !ubi->free.rb_node)
990 			/* No physical eraseblocks - no deal */
991 			goto out_unlock;
992 
993 		/*
994 		 * We schedule wear-leveling only if the difference between the
995 		 * lowest erase counter of used physical eraseblocks and a high
996 		 * erase counter of free physical eraseblocks is greater then
997 		 * %UBI_WL_THRESHOLD.
998 		 */
999 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb);
1000 		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
1001 
1002 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1003 			goto out_unlock;
1004 		dbg_wl("schedule wear-leveling");
1005 	} else
1006 		dbg_wl("schedule scrubbing");
1007 
1008 	ubi->wl_scheduled = 1;
1009 	spin_unlock(&ubi->wl_lock);
1010 
1011 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1012 	if (!wrk) {
1013 		err = -ENOMEM;
1014 		goto out_cancel;
1015 	}
1016 
1017 	wrk->func = &wear_leveling_worker;
1018 	schedule_ubi_work(ubi, wrk);
1019 	return err;
1020 
1021 out_cancel:
1022 	spin_lock(&ubi->wl_lock);
1023 	ubi->wl_scheduled = 0;
1024 out_unlock:
1025 	spin_unlock(&ubi->wl_lock);
1026 	return err;
1027 }
1028 
1029 /**
1030  * erase_worker - physical eraseblock erase worker function.
1031  * @ubi: UBI device description object
1032  * @wl_wrk: the work object
1033  * @cancel: non-zero if the worker has to free memory and exit
1034  *
1035  * This function erases a physical eraseblock and perform torture testing if
1036  * needed. It also takes care about marking the physical eraseblock bad if
1037  * needed. Returns zero in case of success and a negative error code in case of
1038  * failure.
1039  */
1040 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1041 			int cancel)
1042 {
1043 	struct ubi_wl_entry *e = wl_wrk->e;
1044 	int pnum = e->pnum, err, need;
1045 
1046 	if (cancel) {
1047 		dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1048 		kfree(wl_wrk);
1049 		kmem_cache_free(ubi_wl_entry_slab, e);
1050 		return 0;
1051 	}
1052 
1053 	dbg_wl("erase PEB %d EC %d", pnum, e->ec);
1054 
1055 	err = sync_erase(ubi, e, wl_wrk->torture);
1056 	if (!err) {
1057 		/* Fine, we've erased it successfully */
1058 		kfree(wl_wrk);
1059 
1060 		spin_lock(&ubi->wl_lock);
1061 		ubi->abs_ec += 1;
1062 		wl_tree_add(e, &ubi->free);
1063 		spin_unlock(&ubi->wl_lock);
1064 
1065 		/*
1066 		 * One more erase operation has happened, take care about protected
1067 		 * physical eraseblocks.
1068 		 */
1069 		check_protection_over(ubi);
1070 
1071 		/* And take care about wear-leveling */
1072 		err = ensure_wear_leveling(ubi);
1073 		return err;
1074 	}
1075 
1076 	ubi_err("failed to erase PEB %d, error %d", pnum, err);
1077 	kfree(wl_wrk);
1078 	kmem_cache_free(ubi_wl_entry_slab, e);
1079 
1080 	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1081 	    err == -EBUSY) {
1082 		int err1;
1083 
1084 		/* Re-schedule the LEB for erasure */
1085 		err1 = schedule_erase(ubi, e, 0);
1086 		if (err1) {
1087 			err = err1;
1088 			goto out_ro;
1089 		}
1090 		return err;
1091 	} else if (err != -EIO) {
1092 		/*
1093 		 * If this is not %-EIO, we have no idea what to do. Scheduling
1094 		 * this physical eraseblock for erasure again would cause
1095 		 * errors again and again. Well, lets switch to RO mode.
1096 		 */
1097 		goto out_ro;
1098 	}
1099 
1100 	/* It is %-EIO, the PEB went bad */
1101 
1102 	if (!ubi->bad_allowed) {
1103 		ubi_err("bad physical eraseblock %d detected", pnum);
1104 		goto out_ro;
1105 	}
1106 
1107 	spin_lock(&ubi->volumes_lock);
1108 	need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1;
1109 	if (need > 0) {
1110 		need = ubi->avail_pebs >= need ? need : ubi->avail_pebs;
1111 		ubi->avail_pebs -= need;
1112 		ubi->rsvd_pebs += need;
1113 		ubi->beb_rsvd_pebs += need;
1114 		if (need > 0)
1115 			ubi_msg("reserve more %d PEBs", need);
1116 	}
1117 
1118 	if (ubi->beb_rsvd_pebs == 0) {
1119 		spin_unlock(&ubi->volumes_lock);
1120 		ubi_err("no reserved physical eraseblocks");
1121 		goto out_ro;
1122 	}
1123 
1124 	spin_unlock(&ubi->volumes_lock);
1125 	ubi_msg("mark PEB %d as bad", pnum);
1126 
1127 	err = ubi_io_mark_bad(ubi, pnum);
1128 	if (err)
1129 		goto out_ro;
1130 
1131 	spin_lock(&ubi->volumes_lock);
1132 	ubi->beb_rsvd_pebs -= 1;
1133 	ubi->bad_peb_count += 1;
1134 	ubi->good_peb_count -= 1;
1135 	ubi_calculate_reserved(ubi);
1136 	if (ubi->beb_rsvd_pebs == 0)
1137 		ubi_warn("last PEB from the reserved pool was used");
1138 	spin_unlock(&ubi->volumes_lock);
1139 
1140 	return err;
1141 
1142 out_ro:
1143 	ubi_ro_mode(ubi);
1144 	return err;
1145 }
1146 
1147 /**
1148  * ubi_wl_put_peb - return a physical eraseblock to the wear-leveling unit.
1149  * @ubi: UBI device description object
1150  * @pnum: physical eraseblock to return
1151  * @torture: if this physical eraseblock has to be tortured
1152  *
1153  * This function is called to return physical eraseblock @pnum to the pool of
1154  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1155  * occurred to this @pnum and it has to be tested. This function returns zero
1156  * in case of success, and a negative error code in case of failure.
1157  */
1158 int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture)
1159 {
1160 	int err;
1161 	struct ubi_wl_entry *e;
1162 
1163 	dbg_wl("PEB %d", pnum);
1164 	ubi_assert(pnum >= 0);
1165 	ubi_assert(pnum < ubi->peb_count);
1166 
1167 retry:
1168 	spin_lock(&ubi->wl_lock);
1169 	e = ubi->lookuptbl[pnum];
1170 	if (e == ubi->move_from) {
1171 		/*
1172 		 * User is putting the physical eraseblock which was selected to
1173 		 * be moved. It will be scheduled for erasure in the
1174 		 * wear-leveling worker.
1175 		 */
1176 		dbg_wl("PEB %d is being moved, wait", pnum);
1177 		spin_unlock(&ubi->wl_lock);
1178 
1179 		/* Wait for the WL worker by taking the @ubi->move_mutex */
1180 		mutex_lock(&ubi->move_mutex);
1181 		mutex_unlock(&ubi->move_mutex);
1182 		goto retry;
1183 	} else if (e == ubi->move_to) {
1184 		/*
1185 		 * User is putting the physical eraseblock which was selected
1186 		 * as the target the data is moved to. It may happen if the EBA
1187 		 * unit already re-mapped the LEB in 'ubi_eba_copy_leb()' but
1188 		 * the WL unit has not put the PEB to the "used" tree yet, but
1189 		 * it is about to do this. So we just set a flag which will
1190 		 * tell the WL worker that the PEB is not needed anymore and
1191 		 * should be scheduled for erasure.
1192 		 */
1193 		dbg_wl("PEB %d is the target of data moving", pnum);
1194 		ubi_assert(!ubi->move_to_put);
1195 		ubi->move_to_put = 1;
1196 		spin_unlock(&ubi->wl_lock);
1197 		return 0;
1198 	} else {
1199 		if (in_wl_tree(e, &ubi->used)) {
1200 			paranoid_check_in_wl_tree(e, &ubi->used);
1201 			rb_erase(&e->rb, &ubi->used);
1202 		} else if (in_wl_tree(e, &ubi->scrub)) {
1203 			paranoid_check_in_wl_tree(e, &ubi->scrub);
1204 			rb_erase(&e->rb, &ubi->scrub);
1205 		} else {
1206 			err = prot_tree_del(ubi, e->pnum);
1207 			if (err) {
1208 				ubi_err("PEB %d not found", pnum);
1209 				ubi_ro_mode(ubi);
1210 				spin_unlock(&ubi->wl_lock);
1211 				return err;
1212 			}
1213 		}
1214 	}
1215 	spin_unlock(&ubi->wl_lock);
1216 
1217 	err = schedule_erase(ubi, e, torture);
1218 	if (err) {
1219 		spin_lock(&ubi->wl_lock);
1220 		wl_tree_add(e, &ubi->used);
1221 		spin_unlock(&ubi->wl_lock);
1222 	}
1223 
1224 	return err;
1225 }
1226 
1227 /**
1228  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1229  * @ubi: UBI device description object
1230  * @pnum: the physical eraseblock to schedule
1231  *
1232  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1233  * needs scrubbing. This function schedules a physical eraseblock for
1234  * scrubbing which is done in background. This function returns zero in case of
1235  * success and a negative error code in case of failure.
1236  */
1237 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1238 {
1239 	struct ubi_wl_entry *e;
1240 
1241 	ubi_msg("schedule PEB %d for scrubbing", pnum);
1242 
1243 retry:
1244 	spin_lock(&ubi->wl_lock);
1245 	e = ubi->lookuptbl[pnum];
1246 	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub)) {
1247 		spin_unlock(&ubi->wl_lock);
1248 		return 0;
1249 	}
1250 
1251 	if (e == ubi->move_to) {
1252 		/*
1253 		 * This physical eraseblock was used to move data to. The data
1254 		 * was moved but the PEB was not yet inserted to the proper
1255 		 * tree. We should just wait a little and let the WL worker
1256 		 * proceed.
1257 		 */
1258 		spin_unlock(&ubi->wl_lock);
1259 		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1260 		yield();
1261 		goto retry;
1262 	}
1263 
1264 	if (in_wl_tree(e, &ubi->used)) {
1265 		paranoid_check_in_wl_tree(e, &ubi->used);
1266 		rb_erase(&e->rb, &ubi->used);
1267 	} else {
1268 		int err;
1269 
1270 		err = prot_tree_del(ubi, e->pnum);
1271 		if (err) {
1272 			ubi_err("PEB %d not found", pnum);
1273 			ubi_ro_mode(ubi);
1274 			spin_unlock(&ubi->wl_lock);
1275 			return err;
1276 		}
1277 	}
1278 
1279 	wl_tree_add(e, &ubi->scrub);
1280 	spin_unlock(&ubi->wl_lock);
1281 
1282 	/*
1283 	 * Technically scrubbing is the same as wear-leveling, so it is done
1284 	 * by the WL worker.
1285 	 */
1286 	return ensure_wear_leveling(ubi);
1287 }
1288 
1289 /**
1290  * ubi_wl_flush - flush all pending works.
1291  * @ubi: UBI device description object
1292  *
1293  * This function returns zero in case of success and a negative error code in
1294  * case of failure.
1295  */
1296 int ubi_wl_flush(struct ubi_device *ubi)
1297 {
1298 	int err;
1299 
1300 	/*
1301 	 * Erase while the pending works queue is not empty, but not more then
1302 	 * the number of currently pending works.
1303 	 */
1304 	dbg_wl("flush (%d pending works)", ubi->works_count);
1305 	while (ubi->works_count) {
1306 		err = do_work(ubi);
1307 		if (err)
1308 			return err;
1309 	}
1310 
1311 	/*
1312 	 * Make sure all the works which have been done in parallel are
1313 	 * finished.
1314 	 */
1315 	down_write(&ubi->work_sem);
1316 	up_write(&ubi->work_sem);
1317 
1318 	/*
1319 	 * And in case last was the WL worker and it cancelled the LEB
1320 	 * movement, flush again.
1321 	 */
1322 	while (ubi->works_count) {
1323 		dbg_wl("flush more (%d pending works)", ubi->works_count);
1324 		err = do_work(ubi);
1325 		if (err)
1326 			return err;
1327 	}
1328 
1329 	return 0;
1330 }
1331 
1332 /**
1333  * tree_destroy - destroy an RB-tree.
1334  * @root: the root of the tree to destroy
1335  */
1336 static void tree_destroy(struct rb_root *root)
1337 {
1338 	struct rb_node *rb;
1339 	struct ubi_wl_entry *e;
1340 
1341 	rb = root->rb_node;
1342 	while (rb) {
1343 		if (rb->rb_left)
1344 			rb = rb->rb_left;
1345 		else if (rb->rb_right)
1346 			rb = rb->rb_right;
1347 		else {
1348 			e = rb_entry(rb, struct ubi_wl_entry, rb);
1349 
1350 			rb = rb_parent(rb);
1351 			if (rb) {
1352 				if (rb->rb_left == &e->rb)
1353 					rb->rb_left = NULL;
1354 				else
1355 					rb->rb_right = NULL;
1356 			}
1357 
1358 			kmem_cache_free(ubi_wl_entry_slab, e);
1359 		}
1360 	}
1361 }
1362 
1363 /**
1364  * ubi_thread - UBI background thread.
1365  * @u: the UBI device description object pointer
1366  */
1367 int ubi_thread(void *u)
1368 {
1369 	int failures = 0;
1370 	struct ubi_device *ubi = u;
1371 
1372 	ubi_msg("background thread \"%s\" started, PID %d",
1373 		ubi->bgt_name, task_pid_nr(current));
1374 
1375 	set_freezable();
1376 	for (;;) {
1377 		int err;
1378 
1379 		if (kthread_should_stop())
1380 			break;
1381 
1382 		if (try_to_freeze())
1383 			continue;
1384 
1385 		spin_lock(&ubi->wl_lock);
1386 		if (list_empty(&ubi->works) || ubi->ro_mode ||
1387 			       !ubi->thread_enabled) {
1388 			set_current_state(TASK_INTERRUPTIBLE);
1389 			spin_unlock(&ubi->wl_lock);
1390 			schedule();
1391 			continue;
1392 		}
1393 		spin_unlock(&ubi->wl_lock);
1394 
1395 		err = do_work(ubi);
1396 		if (err) {
1397 			ubi_err("%s: work failed with error code %d",
1398 				ubi->bgt_name, err);
1399 			if (failures++ > WL_MAX_FAILURES) {
1400 				/*
1401 				 * Too many failures, disable the thread and
1402 				 * switch to read-only mode.
1403 				 */
1404 				ubi_msg("%s: %d consecutive failures",
1405 					ubi->bgt_name, WL_MAX_FAILURES);
1406 				ubi_ro_mode(ubi);
1407 				break;
1408 			}
1409 		} else
1410 			failures = 0;
1411 
1412 		cond_resched();
1413 	}
1414 
1415 	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1416 	return 0;
1417 }
1418 
1419 /**
1420  * cancel_pending - cancel all pending works.
1421  * @ubi: UBI device description object
1422  */
1423 static void cancel_pending(struct ubi_device *ubi)
1424 {
1425 	while (!list_empty(&ubi->works)) {
1426 		struct ubi_work *wrk;
1427 
1428 		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1429 		list_del(&wrk->list);
1430 		wrk->func(ubi, wrk, 1);
1431 		ubi->works_count -= 1;
1432 		ubi_assert(ubi->works_count >= 0);
1433 	}
1434 }
1435 
1436 /**
1437  * ubi_wl_init_scan - initialize the wear-leveling unit using scanning
1438  * information.
1439  * @ubi: UBI device description object
1440  * @si: scanning information
1441  *
1442  * This function returns zero in case of success, and a negative error code in
1443  * case of failure.
1444  */
1445 int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1446 {
1447 	int err;
1448 	struct rb_node *rb1, *rb2;
1449 	struct ubi_scan_volume *sv;
1450 	struct ubi_scan_leb *seb, *tmp;
1451 	struct ubi_wl_entry *e;
1452 
1453 
1454 	ubi->used = ubi->free = ubi->scrub = RB_ROOT;
1455 	ubi->prot.pnum = ubi->prot.aec = RB_ROOT;
1456 	spin_lock_init(&ubi->wl_lock);
1457 	mutex_init(&ubi->move_mutex);
1458 	init_rwsem(&ubi->work_sem);
1459 	ubi->max_ec = si->max_ec;
1460 	INIT_LIST_HEAD(&ubi->works);
1461 
1462 	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1463 
1464 	err = -ENOMEM;
1465 	ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1466 	if (!ubi->lookuptbl)
1467 		return err;
1468 
1469 	list_for_each_entry_safe(seb, tmp, &si->erase, u.list) {
1470 		cond_resched();
1471 
1472 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1473 		if (!e)
1474 			goto out_free;
1475 
1476 		e->pnum = seb->pnum;
1477 		e->ec = seb->ec;
1478 		ubi->lookuptbl[e->pnum] = e;
1479 		if (schedule_erase(ubi, e, 0)) {
1480 			kmem_cache_free(ubi_wl_entry_slab, e);
1481 			goto out_free;
1482 		}
1483 	}
1484 
1485 	list_for_each_entry(seb, &si->free, u.list) {
1486 		cond_resched();
1487 
1488 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1489 		if (!e)
1490 			goto out_free;
1491 
1492 		e->pnum = seb->pnum;
1493 		e->ec = seb->ec;
1494 		ubi_assert(e->ec >= 0);
1495 		wl_tree_add(e, &ubi->free);
1496 		ubi->lookuptbl[e->pnum] = e;
1497 	}
1498 
1499 	list_for_each_entry(seb, &si->corr, u.list) {
1500 		cond_resched();
1501 
1502 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1503 		if (!e)
1504 			goto out_free;
1505 
1506 		e->pnum = seb->pnum;
1507 		e->ec = seb->ec;
1508 		ubi->lookuptbl[e->pnum] = e;
1509 		if (schedule_erase(ubi, e, 0)) {
1510 			kmem_cache_free(ubi_wl_entry_slab, e);
1511 			goto out_free;
1512 		}
1513 	}
1514 
1515 	ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1516 		ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1517 			cond_resched();
1518 
1519 			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1520 			if (!e)
1521 				goto out_free;
1522 
1523 			e->pnum = seb->pnum;
1524 			e->ec = seb->ec;
1525 			ubi->lookuptbl[e->pnum] = e;
1526 			if (!seb->scrub) {
1527 				dbg_wl("add PEB %d EC %d to the used tree",
1528 				       e->pnum, e->ec);
1529 				wl_tree_add(e, &ubi->used);
1530 			} else {
1531 				dbg_wl("add PEB %d EC %d to the scrub tree",
1532 				       e->pnum, e->ec);
1533 				wl_tree_add(e, &ubi->scrub);
1534 			}
1535 		}
1536 	}
1537 
1538 	if (ubi->avail_pebs < WL_RESERVED_PEBS) {
1539 		ubi_err("no enough physical eraseblocks (%d, need %d)",
1540 			ubi->avail_pebs, WL_RESERVED_PEBS);
1541 		err = -ENOSPC;
1542 		goto out_free;
1543 	}
1544 	ubi->avail_pebs -= WL_RESERVED_PEBS;
1545 	ubi->rsvd_pebs += WL_RESERVED_PEBS;
1546 
1547 	/* Schedule wear-leveling if needed */
1548 	err = ensure_wear_leveling(ubi);
1549 	if (err)
1550 		goto out_free;
1551 
1552 	return 0;
1553 
1554 out_free:
1555 	cancel_pending(ubi);
1556 	tree_destroy(&ubi->used);
1557 	tree_destroy(&ubi->free);
1558 	tree_destroy(&ubi->scrub);
1559 	kfree(ubi->lookuptbl);
1560 	return err;
1561 }
1562 
1563 /**
1564  * protection_trees_destroy - destroy the protection RB-trees.
1565  * @ubi: UBI device description object
1566  */
1567 static void protection_trees_destroy(struct ubi_device *ubi)
1568 {
1569 	struct rb_node *rb;
1570 	struct ubi_wl_prot_entry *pe;
1571 
1572 	rb = ubi->prot.aec.rb_node;
1573 	while (rb) {
1574 		if (rb->rb_left)
1575 			rb = rb->rb_left;
1576 		else if (rb->rb_right)
1577 			rb = rb->rb_right;
1578 		else {
1579 			pe = rb_entry(rb, struct ubi_wl_prot_entry, rb_aec);
1580 
1581 			rb = rb_parent(rb);
1582 			if (rb) {
1583 				if (rb->rb_left == &pe->rb_aec)
1584 					rb->rb_left = NULL;
1585 				else
1586 					rb->rb_right = NULL;
1587 			}
1588 
1589 			kmem_cache_free(ubi_wl_entry_slab, pe->e);
1590 			kfree(pe);
1591 		}
1592 	}
1593 }
1594 
1595 /**
1596  * ubi_wl_close - close the wear-leveling unit.
1597  * @ubi: UBI device description object
1598  */
1599 void ubi_wl_close(struct ubi_device *ubi)
1600 {
1601 	dbg_wl("close the UBI wear-leveling unit");
1602 
1603 	cancel_pending(ubi);
1604 	protection_trees_destroy(ubi);
1605 	tree_destroy(&ubi->used);
1606 	tree_destroy(&ubi->free);
1607 	tree_destroy(&ubi->scrub);
1608 	kfree(ubi->lookuptbl);
1609 }
1610 
1611 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1612 
1613 /**
1614  * paranoid_check_ec - make sure that the erase counter of a physical eraseblock
1615  * is correct.
1616  * @ubi: UBI device description object
1617  * @pnum: the physical eraseblock number to check
1618  * @ec: the erase counter to check
1619  *
1620  * This function returns zero if the erase counter of physical eraseblock @pnum
1621  * is equivalent to @ec, %1 if not, and a negative error code if an error
1622  * occurred.
1623  */
1624 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec)
1625 {
1626 	int err;
1627 	long long read_ec;
1628 	struct ubi_ec_hdr *ec_hdr;
1629 
1630 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1631 	if (!ec_hdr)
1632 		return -ENOMEM;
1633 
1634 	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1635 	if (err && err != UBI_IO_BITFLIPS) {
1636 		/* The header does not have to exist */
1637 		err = 0;
1638 		goto out_free;
1639 	}
1640 
1641 	read_ec = be64_to_cpu(ec_hdr->ec);
1642 	if (ec != read_ec) {
1643 		ubi_err("paranoid check failed for PEB %d", pnum);
1644 		ubi_err("read EC is %lld, should be %d", read_ec, ec);
1645 		ubi_dbg_dump_stack();
1646 		err = 1;
1647 	} else
1648 		err = 0;
1649 
1650 out_free:
1651 	kfree(ec_hdr);
1652 	return err;
1653 }
1654 
1655 /**
1656  * paranoid_check_in_wl_tree - make sure that a wear-leveling entry is present
1657  * in a WL RB-tree.
1658  * @e: the wear-leveling entry to check
1659  * @root: the root of the tree
1660  *
1661  * This function returns zero if @e is in the @root RB-tree and %1 if it
1662  * is not.
1663  */
1664 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
1665 				     struct rb_root *root)
1666 {
1667 	if (in_wl_tree(e, root))
1668 		return 0;
1669 
1670 	ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ",
1671 		e->pnum, e->ec, root);
1672 	ubi_dbg_dump_stack();
1673 	return 1;
1674 }
1675 
1676 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */
1677