xref: /openbmc/u-boot/drivers/mtd/ubi/wl.c (revision aa5e3e22)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * SPDX-License-Identifier:	GPL-2.0+
5  *
6  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
7  */
8 
9 /*
10  * UBI wear-leveling sub-system.
11  *
12  * This sub-system is responsible for wear-leveling. It works in terms of
13  * physical eraseblocks and erase counters and knows nothing about logical
14  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
15  * eraseblocks are of two types - used and free. Used physical eraseblocks are
16  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
17  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
18  *
19  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
20  * header. The rest of the physical eraseblock contains only %0xFF bytes.
21  *
22  * When physical eraseblocks are returned to the WL sub-system by means of the
23  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
24  * done asynchronously in context of the per-UBI device background thread,
25  * which is also managed by the WL sub-system.
26  *
27  * The wear-leveling is ensured by means of moving the contents of used
28  * physical eraseblocks with low erase counter to free physical eraseblocks
29  * with high erase counter.
30  *
31  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
32  * bad.
33  *
34  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
35  * in a physical eraseblock, it has to be moved. Technically this is the same
36  * as moving it for wear-leveling reasons.
37  *
38  * As it was said, for the UBI sub-system all physical eraseblocks are either
39  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
40  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
41  * RB-trees, as well as (temporarily) in the @wl->pq queue.
42  *
43  * When the WL sub-system returns a physical eraseblock, the physical
44  * eraseblock is protected from being moved for some "time". For this reason,
45  * the physical eraseblock is not directly moved from the @wl->free tree to the
46  * @wl->used tree. There is a protection queue in between where this
47  * physical eraseblock is temporarily stored (@wl->pq).
48  *
49  * All this protection stuff is needed because:
50  *  o we don't want to move physical eraseblocks just after we have given them
51  *    to the user; instead, we first want to let users fill them up with data;
52  *
53  *  o there is a chance that the user will put the physical eraseblock very
54  *    soon, so it makes sense not to move it for some time, but wait.
55  *
56  * Physical eraseblocks stay protected only for limited time. But the "time" is
57  * measured in erase cycles in this case. This is implemented with help of the
58  * protection queue. Eraseblocks are put to the tail of this queue when they
59  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
60  * head of the queue on each erase operation (for any eraseblock). So the
61  * length of the queue defines how may (global) erase cycles PEBs are protected.
62  *
63  * To put it differently, each physical eraseblock has 2 main states: free and
64  * used. The former state corresponds to the @wl->free tree. The latter state
65  * is split up on several sub-states:
66  * o the WL movement is allowed (@wl->used tree);
67  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
68  *   erroneous - e.g., there was a read error;
69  * o the WL movement is temporarily prohibited (@wl->pq queue);
70  * o scrubbing is needed (@wl->scrub tree).
71  *
72  * Depending on the sub-state, wear-leveling entries of the used physical
73  * eraseblocks may be kept in one of those structures.
74  *
75  * Note, in this implementation, we keep a small in-RAM object for each physical
76  * eraseblock. This is surely not a scalable solution. But it appears to be good
77  * enough for moderately large flashes and it is simple. In future, one may
78  * re-work this sub-system and make it more scalable.
79  *
80  * At the moment this sub-system does not utilize the sequence number, which
81  * was introduced relatively recently. But it would be wise to do this because
82  * the sequence number of a logical eraseblock characterizes how old is it. For
83  * example, when we move a PEB with low erase counter, and we need to pick the
84  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
85  * pick target PEB with an average EC if our PEB is not very "old". This is a
86  * room for future re-works of the WL sub-system.
87  */
88 
89 #ifndef __UBOOT__
90 #include <linux/slab.h>
91 #include <linux/crc32.h>
92 #include <linux/freezer.h>
93 #include <linux/kthread.h>
94 #else
95 #include <ubi_uboot.h>
96 #endif
97 
98 #include "ubi.h"
99 #include "wl.h"
100 
101 /* Number of physical eraseblocks reserved for wear-leveling purposes */
102 #define WL_RESERVED_PEBS 1
103 
104 /*
105  * Maximum difference between two erase counters. If this threshold is
106  * exceeded, the WL sub-system starts moving data from used physical
107  * eraseblocks with low erase counter to free physical eraseblocks with high
108  * erase counter.
109  */
110 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
111 
112 /*
113  * When a physical eraseblock is moved, the WL sub-system has to pick the target
114  * physical eraseblock to move to. The simplest way would be just to pick the
115  * one with the highest erase counter. But in certain workloads this could lead
116  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
117  * situation when the picked physical eraseblock is constantly erased after the
118  * data is written to it. So, we have a constant which limits the highest erase
119  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
120  * does not pick eraseblocks with erase counter greater than the lowest erase
121  * counter plus %WL_FREE_MAX_DIFF.
122  */
123 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
124 
125 /*
126  * Maximum number of consecutive background thread failures which is enough to
127  * switch to read-only mode.
128  */
129 #define WL_MAX_FAILURES 32
130 
131 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
132 static int self_check_in_wl_tree(const struct ubi_device *ubi,
133 				 struct ubi_wl_entry *e, struct rb_root *root);
134 static int self_check_in_pq(const struct ubi_device *ubi,
135 			    struct ubi_wl_entry *e);
136 
137 /**
138  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
139  * @e: the wear-leveling entry to add
140  * @root: the root of the tree
141  *
142  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
143  * the @ubi->used and @ubi->free RB-trees.
144  */
145 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
146 {
147 	struct rb_node **p, *parent = NULL;
148 
149 	p = &root->rb_node;
150 	while (*p) {
151 		struct ubi_wl_entry *e1;
152 
153 		parent = *p;
154 		e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
155 
156 		if (e->ec < e1->ec)
157 			p = &(*p)->rb_left;
158 		else if (e->ec > e1->ec)
159 			p = &(*p)->rb_right;
160 		else {
161 			ubi_assert(e->pnum != e1->pnum);
162 			if (e->pnum < e1->pnum)
163 				p = &(*p)->rb_left;
164 			else
165 				p = &(*p)->rb_right;
166 		}
167 	}
168 
169 	rb_link_node(&e->u.rb, parent, p);
170 	rb_insert_color(&e->u.rb, root);
171 }
172 
173 /**
174  * wl_tree_destroy - destroy a wear-leveling entry.
175  * @ubi: UBI device description object
176  * @e: the wear-leveling entry to add
177  *
178  * This function destroys a wear leveling entry and removes
179  * the reference from the lookup table.
180  */
181 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
182 {
183 	ubi->lookuptbl[e->pnum] = NULL;
184 	kmem_cache_free(ubi_wl_entry_slab, e);
185 }
186 
187 /**
188  * do_work - do one pending work.
189  * @ubi: UBI device description object
190  *
191  * This function returns zero in case of success and a negative error code in
192  * case of failure.
193  */
194 static int do_work(struct ubi_device *ubi)
195 {
196 	int err;
197 	struct ubi_work *wrk;
198 
199 	cond_resched();
200 
201 	/*
202 	 * @ubi->work_sem is used to synchronize with the workers. Workers take
203 	 * it in read mode, so many of them may be doing works at a time. But
204 	 * the queue flush code has to be sure the whole queue of works is
205 	 * done, and it takes the mutex in write mode.
206 	 */
207 	down_read(&ubi->work_sem);
208 	spin_lock(&ubi->wl_lock);
209 	if (list_empty(&ubi->works)) {
210 		spin_unlock(&ubi->wl_lock);
211 		up_read(&ubi->work_sem);
212 		return 0;
213 	}
214 
215 	wrk = list_entry(ubi->works.next, struct ubi_work, list);
216 	list_del(&wrk->list);
217 	ubi->works_count -= 1;
218 	ubi_assert(ubi->works_count >= 0);
219 	spin_unlock(&ubi->wl_lock);
220 
221 	/*
222 	 * Call the worker function. Do not touch the work structure
223 	 * after this call as it will have been freed or reused by that
224 	 * time by the worker function.
225 	 */
226 	err = wrk->func(ubi, wrk, 0);
227 	if (err)
228 		ubi_err(ubi, "work failed with error code %d", err);
229 	up_read(&ubi->work_sem);
230 
231 	return err;
232 }
233 
234 /**
235  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
236  * @e: the wear-leveling entry to check
237  * @root: the root of the tree
238  *
239  * This function returns non-zero if @e is in the @root RB-tree and zero if it
240  * is not.
241  */
242 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
243 {
244 	struct rb_node *p;
245 
246 	p = root->rb_node;
247 	while (p) {
248 		struct ubi_wl_entry *e1;
249 
250 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
251 
252 		if (e->pnum == e1->pnum) {
253 			ubi_assert(e == e1);
254 			return 1;
255 		}
256 
257 		if (e->ec < e1->ec)
258 			p = p->rb_left;
259 		else if (e->ec > e1->ec)
260 			p = p->rb_right;
261 		else {
262 			ubi_assert(e->pnum != e1->pnum);
263 			if (e->pnum < e1->pnum)
264 				p = p->rb_left;
265 			else
266 				p = p->rb_right;
267 		}
268 	}
269 
270 	return 0;
271 }
272 
273 /**
274  * prot_queue_add - add physical eraseblock to the protection queue.
275  * @ubi: UBI device description object
276  * @e: the physical eraseblock to add
277  *
278  * This function adds @e to the tail of the protection queue @ubi->pq, where
279  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
280  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
281  * be locked.
282  */
283 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
284 {
285 	int pq_tail = ubi->pq_head - 1;
286 
287 	if (pq_tail < 0)
288 		pq_tail = UBI_PROT_QUEUE_LEN - 1;
289 	ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
290 	list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
291 	dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
292 }
293 
294 /**
295  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
296  * @ubi: UBI device description object
297  * @root: the RB-tree where to look for
298  * @diff: maximum possible difference from the smallest erase counter
299  *
300  * This function looks for a wear leveling entry with erase counter closest to
301  * min + @diff, where min is the smallest erase counter.
302  */
303 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
304 					  struct rb_root *root, int diff)
305 {
306 	struct rb_node *p;
307 	struct ubi_wl_entry *e, *prev_e = NULL;
308 	int max;
309 
310 	e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
311 	max = e->ec + diff;
312 
313 	p = root->rb_node;
314 	while (p) {
315 		struct ubi_wl_entry *e1;
316 
317 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
318 		if (e1->ec >= max)
319 			p = p->rb_left;
320 		else {
321 			p = p->rb_right;
322 			prev_e = e;
323 			e = e1;
324 		}
325 	}
326 
327 	/* If no fastmap has been written and this WL entry can be used
328 	 * as anchor PEB, hold it back and return the second best WL entry
329 	 * such that fastmap can use the anchor PEB later. */
330 	if (prev_e && !ubi->fm_disabled &&
331 	    !ubi->fm && e->pnum < UBI_FM_MAX_START)
332 		return prev_e;
333 
334 	return e;
335 }
336 
337 /**
338  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
339  * @ubi: UBI device description object
340  * @root: the RB-tree where to look for
341  *
342  * This function looks for a wear leveling entry with medium erase counter,
343  * but not greater or equivalent than the lowest erase counter plus
344  * %WL_FREE_MAX_DIFF/2.
345  */
346 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
347 					       struct rb_root *root)
348 {
349 	struct ubi_wl_entry *e, *first, *last;
350 
351 	first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
352 	last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
353 
354 	if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
355 		e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
356 
357 		/* If no fastmap has been written and this WL entry can be used
358 		 * as anchor PEB, hold it back and return the second best
359 		 * WL entry such that fastmap can use the anchor PEB later. */
360 		e = may_reserve_for_fm(ubi, e, root);
361 	} else
362 		e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
363 
364 	return e;
365 }
366 
367 /**
368  * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
369  * refill_wl_user_pool().
370  * @ubi: UBI device description object
371  *
372  * This function returns a a wear leveling entry in case of success and
373  * NULL in case of failure.
374  */
375 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
376 {
377 	struct ubi_wl_entry *e;
378 
379 	e = find_mean_wl_entry(ubi, &ubi->free);
380 	if (!e) {
381 		ubi_err(ubi, "no free eraseblocks");
382 		return NULL;
383 	}
384 
385 	self_check_in_wl_tree(ubi, e, &ubi->free);
386 
387 	/*
388 	 * Move the physical eraseblock to the protection queue where it will
389 	 * be protected from being moved for some time.
390 	 */
391 	rb_erase(&e->u.rb, &ubi->free);
392 	ubi->free_count--;
393 	dbg_wl("PEB %d EC %d", e->pnum, e->ec);
394 
395 	return e;
396 }
397 
398 /**
399  * prot_queue_del - remove a physical eraseblock from the protection queue.
400  * @ubi: UBI device description object
401  * @pnum: the physical eraseblock to remove
402  *
403  * This function deletes PEB @pnum from the protection queue and returns zero
404  * in case of success and %-ENODEV if the PEB was not found.
405  */
406 static int prot_queue_del(struct ubi_device *ubi, int pnum)
407 {
408 	struct ubi_wl_entry *e;
409 
410 	e = ubi->lookuptbl[pnum];
411 	if (!e)
412 		return -ENODEV;
413 
414 	if (self_check_in_pq(ubi, e))
415 		return -ENODEV;
416 
417 	list_del(&e->u.list);
418 	dbg_wl("deleted PEB %d from the protection queue", e->pnum);
419 	return 0;
420 }
421 
422 /**
423  * sync_erase - synchronously erase a physical eraseblock.
424  * @ubi: UBI device description object
425  * @e: the the physical eraseblock to erase
426  * @torture: if the physical eraseblock has to be tortured
427  *
428  * This function returns zero in case of success and a negative error code in
429  * case of failure.
430  */
431 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
432 		      int torture)
433 {
434 	int err;
435 	struct ubi_ec_hdr *ec_hdr;
436 	unsigned long long ec = e->ec;
437 
438 	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
439 
440 	err = self_check_ec(ubi, e->pnum, e->ec);
441 	if (err)
442 		return -EINVAL;
443 
444 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
445 	if (!ec_hdr)
446 		return -ENOMEM;
447 
448 	err = ubi_io_sync_erase(ubi, e->pnum, torture);
449 	if (err < 0)
450 		goto out_free;
451 
452 	ec += err;
453 	if (ec > UBI_MAX_ERASECOUNTER) {
454 		/*
455 		 * Erase counter overflow. Upgrade UBI and use 64-bit
456 		 * erase counters internally.
457 		 */
458 		ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
459 			e->pnum, ec);
460 		err = -EINVAL;
461 		goto out_free;
462 	}
463 
464 	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
465 
466 	ec_hdr->ec = cpu_to_be64(ec);
467 
468 	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
469 	if (err)
470 		goto out_free;
471 
472 	e->ec = ec;
473 	spin_lock(&ubi->wl_lock);
474 	if (e->ec > ubi->max_ec)
475 		ubi->max_ec = e->ec;
476 	spin_unlock(&ubi->wl_lock);
477 
478 out_free:
479 	kfree(ec_hdr);
480 	return err;
481 }
482 
483 /**
484  * serve_prot_queue - check if it is time to stop protecting PEBs.
485  * @ubi: UBI device description object
486  *
487  * This function is called after each erase operation and removes PEBs from the
488  * tail of the protection queue. These PEBs have been protected for long enough
489  * and should be moved to the used tree.
490  */
491 static void serve_prot_queue(struct ubi_device *ubi)
492 {
493 	struct ubi_wl_entry *e, *tmp;
494 	int count;
495 
496 	/*
497 	 * There may be several protected physical eraseblock to remove,
498 	 * process them all.
499 	 */
500 repeat:
501 	count = 0;
502 	spin_lock(&ubi->wl_lock);
503 	list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
504 		dbg_wl("PEB %d EC %d protection over, move to used tree",
505 			e->pnum, e->ec);
506 
507 		list_del(&e->u.list);
508 		wl_tree_add(e, &ubi->used);
509 		if (count++ > 32) {
510 			/*
511 			 * Let's be nice and avoid holding the spinlock for
512 			 * too long.
513 			 */
514 			spin_unlock(&ubi->wl_lock);
515 			cond_resched();
516 			goto repeat;
517 		}
518 	}
519 
520 	ubi->pq_head += 1;
521 	if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
522 		ubi->pq_head = 0;
523 	ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
524 	spin_unlock(&ubi->wl_lock);
525 }
526 
527 #ifdef __UBOOT__
528 void ubi_do_worker(struct ubi_device *ubi)
529 {
530 	int err;
531 
532 	if (list_empty(&ubi->works) || ubi->ro_mode ||
533 	    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi))
534 		return;
535 
536 	spin_lock(&ubi->wl_lock);
537 	while (!list_empty(&ubi->works)) {
538 		/*
539 		 * call do_work, which executes exactly one work form the queue,
540 		 * including removeing it from the work queue.
541 		 */
542 		spin_unlock(&ubi->wl_lock);
543 		err = do_work(ubi);
544 		spin_lock(&ubi->wl_lock);
545 		if (err) {
546 			ubi_err(ubi, "%s: work failed with error code %d",
547 				ubi->bgt_name, err);
548 		}
549 	}
550 	spin_unlock(&ubi->wl_lock);
551 }
552 #endif
553 
554 /**
555  * __schedule_ubi_work - schedule a work.
556  * @ubi: UBI device description object
557  * @wrk: the work to schedule
558  *
559  * This function adds a work defined by @wrk to the tail of the pending works
560  * list. Can only be used if ubi->work_sem is already held in read mode!
561  */
562 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
563 {
564 	spin_lock(&ubi->wl_lock);
565 	list_add_tail(&wrk->list, &ubi->works);
566 	ubi_assert(ubi->works_count >= 0);
567 	ubi->works_count += 1;
568 #ifndef __UBOOT__
569 	if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
570 		wake_up_process(ubi->bgt_thread);
571 #endif
572 	spin_unlock(&ubi->wl_lock);
573 }
574 
575 /**
576  * schedule_ubi_work - schedule a work.
577  * @ubi: UBI device description object
578  * @wrk: the work to schedule
579  *
580  * This function adds a work defined by @wrk to the tail of the pending works
581  * list.
582  */
583 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
584 {
585 	down_read(&ubi->work_sem);
586 	__schedule_ubi_work(ubi, wrk);
587 	up_read(&ubi->work_sem);
588 }
589 
590 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
591 			int shutdown);
592 
593 /**
594  * schedule_erase - schedule an erase work.
595  * @ubi: UBI device description object
596  * @e: the WL entry of the physical eraseblock to erase
597  * @vol_id: the volume ID that last used this PEB
598  * @lnum: the last used logical eraseblock number for the PEB
599  * @torture: if the physical eraseblock has to be tortured
600  *
601  * This function returns zero in case of success and a %-ENOMEM in case of
602  * failure.
603  */
604 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
605 			  int vol_id, int lnum, int torture)
606 {
607 	struct ubi_work *wl_wrk;
608 
609 	ubi_assert(e);
610 
611 	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
612 	       e->pnum, e->ec, torture);
613 
614 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
615 	if (!wl_wrk)
616 		return -ENOMEM;
617 
618 	wl_wrk->func = &erase_worker;
619 	wl_wrk->e = e;
620 	wl_wrk->vol_id = vol_id;
621 	wl_wrk->lnum = lnum;
622 	wl_wrk->torture = torture;
623 
624 	schedule_ubi_work(ubi, wl_wrk);
625 
626 #ifdef __UBOOT__
627 	ubi_do_worker(ubi);
628 #endif
629 	return 0;
630 }
631 
632 /**
633  * do_sync_erase - run the erase worker synchronously.
634  * @ubi: UBI device description object
635  * @e: the WL entry of the physical eraseblock to erase
636  * @vol_id: the volume ID that last used this PEB
637  * @lnum: the last used logical eraseblock number for the PEB
638  * @torture: if the physical eraseblock has to be tortured
639  *
640  */
641 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
642 			 int vol_id, int lnum, int torture)
643 {
644 	struct ubi_work *wl_wrk;
645 
646 	dbg_wl("sync erase of PEB %i", e->pnum);
647 
648 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
649 	if (!wl_wrk)
650 		return -ENOMEM;
651 
652 	wl_wrk->e = e;
653 	wl_wrk->vol_id = vol_id;
654 	wl_wrk->lnum = lnum;
655 	wl_wrk->torture = torture;
656 
657 	return erase_worker(ubi, wl_wrk, 0);
658 }
659 
660 /**
661  * wear_leveling_worker - wear-leveling worker function.
662  * @ubi: UBI device description object
663  * @wrk: the work object
664  * @shutdown: non-zero if the worker has to free memory and exit
665  * because the WL-subsystem is shutting down
666  *
667  * This function copies a more worn out physical eraseblock to a less worn out
668  * one. Returns zero in case of success and a negative error code in case of
669  * failure.
670  */
671 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
672 				int shutdown)
673 {
674 	int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
675 	int vol_id = -1, lnum = -1;
676 #ifdef CONFIG_MTD_UBI_FASTMAP
677 	int anchor = wrk->anchor;
678 #endif
679 	struct ubi_wl_entry *e1, *e2;
680 	struct ubi_vid_hdr *vid_hdr;
681 
682 	kfree(wrk);
683 	if (shutdown)
684 		return 0;
685 
686 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
687 	if (!vid_hdr)
688 		return -ENOMEM;
689 
690 	mutex_lock(&ubi->move_mutex);
691 	spin_lock(&ubi->wl_lock);
692 	ubi_assert(!ubi->move_from && !ubi->move_to);
693 	ubi_assert(!ubi->move_to_put);
694 
695 	if (!ubi->free.rb_node ||
696 	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
697 		/*
698 		 * No free physical eraseblocks? Well, they must be waiting in
699 		 * the queue to be erased. Cancel movement - it will be
700 		 * triggered again when a free physical eraseblock appears.
701 		 *
702 		 * No used physical eraseblocks? They must be temporarily
703 		 * protected from being moved. They will be moved to the
704 		 * @ubi->used tree later and the wear-leveling will be
705 		 * triggered again.
706 		 */
707 		dbg_wl("cancel WL, a list is empty: free %d, used %d",
708 		       !ubi->free.rb_node, !ubi->used.rb_node);
709 		goto out_cancel;
710 	}
711 
712 #ifdef CONFIG_MTD_UBI_FASTMAP
713 	/* Check whether we need to produce an anchor PEB */
714 	if (!anchor)
715 		anchor = !anchor_pebs_avalible(&ubi->free);
716 
717 	if (anchor) {
718 		e1 = find_anchor_wl_entry(&ubi->used);
719 		if (!e1)
720 			goto out_cancel;
721 		e2 = get_peb_for_wl(ubi);
722 		if (!e2)
723 			goto out_cancel;
724 
725 		self_check_in_wl_tree(ubi, e1, &ubi->used);
726 		rb_erase(&e1->u.rb, &ubi->used);
727 		dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
728 	} else if (!ubi->scrub.rb_node) {
729 #else
730 	if (!ubi->scrub.rb_node) {
731 #endif
732 		/*
733 		 * Now pick the least worn-out used physical eraseblock and a
734 		 * highly worn-out free physical eraseblock. If the erase
735 		 * counters differ much enough, start wear-leveling.
736 		 */
737 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
738 		e2 = get_peb_for_wl(ubi);
739 		if (!e2)
740 			goto out_cancel;
741 
742 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
743 			dbg_wl("no WL needed: min used EC %d, max free EC %d",
744 			       e1->ec, e2->ec);
745 
746 			/* Give the unused PEB back */
747 			wl_tree_add(e2, &ubi->free);
748 			ubi->free_count++;
749 			goto out_cancel;
750 		}
751 		self_check_in_wl_tree(ubi, e1, &ubi->used);
752 		rb_erase(&e1->u.rb, &ubi->used);
753 		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
754 		       e1->pnum, e1->ec, e2->pnum, e2->ec);
755 	} else {
756 		/* Perform scrubbing */
757 		scrubbing = 1;
758 		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
759 		e2 = get_peb_for_wl(ubi);
760 		if (!e2)
761 			goto out_cancel;
762 
763 		self_check_in_wl_tree(ubi, e1, &ubi->scrub);
764 		rb_erase(&e1->u.rb, &ubi->scrub);
765 		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
766 	}
767 
768 	ubi->move_from = e1;
769 	ubi->move_to = e2;
770 	spin_unlock(&ubi->wl_lock);
771 
772 	/*
773 	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
774 	 * We so far do not know which logical eraseblock our physical
775 	 * eraseblock (@e1) belongs to. We have to read the volume identifier
776 	 * header first.
777 	 *
778 	 * Note, we are protected from this PEB being unmapped and erased. The
779 	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
780 	 * which is being moved was unmapped.
781 	 */
782 
783 	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
784 	if (err && err != UBI_IO_BITFLIPS) {
785 		if (err == UBI_IO_FF) {
786 			/*
787 			 * We are trying to move PEB without a VID header. UBI
788 			 * always write VID headers shortly after the PEB was
789 			 * given, so we have a situation when it has not yet
790 			 * had a chance to write it, because it was preempted.
791 			 * So add this PEB to the protection queue so far,
792 			 * because presumably more data will be written there
793 			 * (including the missing VID header), and then we'll
794 			 * move it.
795 			 */
796 			dbg_wl("PEB %d has no VID header", e1->pnum);
797 			protect = 1;
798 			goto out_not_moved;
799 		} else if (err == UBI_IO_FF_BITFLIPS) {
800 			/*
801 			 * The same situation as %UBI_IO_FF, but bit-flips were
802 			 * detected. It is better to schedule this PEB for
803 			 * scrubbing.
804 			 */
805 			dbg_wl("PEB %d has no VID header but has bit-flips",
806 			       e1->pnum);
807 			scrubbing = 1;
808 			goto out_not_moved;
809 		}
810 
811 		ubi_err(ubi, "error %d while reading VID header from PEB %d",
812 			err, e1->pnum);
813 		goto out_error;
814 	}
815 
816 	vol_id = be32_to_cpu(vid_hdr->vol_id);
817 	lnum = be32_to_cpu(vid_hdr->lnum);
818 
819 	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
820 	if (err) {
821 		if (err == MOVE_CANCEL_RACE) {
822 			/*
823 			 * The LEB has not been moved because the volume is
824 			 * being deleted or the PEB has been put meanwhile. We
825 			 * should prevent this PEB from being selected for
826 			 * wear-leveling movement again, so put it to the
827 			 * protection queue.
828 			 */
829 			protect = 1;
830 			goto out_not_moved;
831 		}
832 		if (err == MOVE_RETRY) {
833 			scrubbing = 1;
834 			goto out_not_moved;
835 		}
836 		if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
837 		    err == MOVE_TARGET_RD_ERR) {
838 			/*
839 			 * Target PEB had bit-flips or write error - torture it.
840 			 */
841 			torture = 1;
842 			goto out_not_moved;
843 		}
844 
845 		if (err == MOVE_SOURCE_RD_ERR) {
846 			/*
847 			 * An error happened while reading the source PEB. Do
848 			 * not switch to R/O mode in this case, and give the
849 			 * upper layers a possibility to recover from this,
850 			 * e.g. by unmapping corresponding LEB. Instead, just
851 			 * put this PEB to the @ubi->erroneous list to prevent
852 			 * UBI from trying to move it over and over again.
853 			 */
854 			if (ubi->erroneous_peb_count > ubi->max_erroneous) {
855 				ubi_err(ubi, "too many erroneous eraseblocks (%d)",
856 					ubi->erroneous_peb_count);
857 				goto out_error;
858 			}
859 			erroneous = 1;
860 			goto out_not_moved;
861 		}
862 
863 		if (err < 0)
864 			goto out_error;
865 
866 		ubi_assert(0);
867 	}
868 
869 	/* The PEB has been successfully moved */
870 	if (scrubbing)
871 		ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
872 			e1->pnum, vol_id, lnum, e2->pnum);
873 	ubi_free_vid_hdr(ubi, vid_hdr);
874 
875 	spin_lock(&ubi->wl_lock);
876 	if (!ubi->move_to_put) {
877 		wl_tree_add(e2, &ubi->used);
878 		e2 = NULL;
879 	}
880 	ubi->move_from = ubi->move_to = NULL;
881 	ubi->move_to_put = ubi->wl_scheduled = 0;
882 	spin_unlock(&ubi->wl_lock);
883 
884 	err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
885 	if (err) {
886 		if (e2)
887 			wl_entry_destroy(ubi, e2);
888 		goto out_ro;
889 	}
890 
891 	if (e2) {
892 		/*
893 		 * Well, the target PEB was put meanwhile, schedule it for
894 		 * erasure.
895 		 */
896 		dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
897 		       e2->pnum, vol_id, lnum);
898 		err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
899 		if (err)
900 			goto out_ro;
901 	}
902 
903 	dbg_wl("done");
904 	mutex_unlock(&ubi->move_mutex);
905 	return 0;
906 
907 	/*
908 	 * For some reasons the LEB was not moved, might be an error, might be
909 	 * something else. @e1 was not changed, so return it back. @e2 might
910 	 * have been changed, schedule it for erasure.
911 	 */
912 out_not_moved:
913 	if (vol_id != -1)
914 		dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
915 		       e1->pnum, vol_id, lnum, e2->pnum, err);
916 	else
917 		dbg_wl("cancel moving PEB %d to PEB %d (%d)",
918 		       e1->pnum, e2->pnum, err);
919 	spin_lock(&ubi->wl_lock);
920 	if (protect)
921 		prot_queue_add(ubi, e1);
922 	else if (erroneous) {
923 		wl_tree_add(e1, &ubi->erroneous);
924 		ubi->erroneous_peb_count += 1;
925 	} else if (scrubbing)
926 		wl_tree_add(e1, &ubi->scrub);
927 	else
928 		wl_tree_add(e1, &ubi->used);
929 	ubi_assert(!ubi->move_to_put);
930 	ubi->move_from = ubi->move_to = NULL;
931 	ubi->wl_scheduled = 0;
932 	spin_unlock(&ubi->wl_lock);
933 
934 	ubi_free_vid_hdr(ubi, vid_hdr);
935 	err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
936 	if (err)
937 		goto out_ro;
938 
939 	mutex_unlock(&ubi->move_mutex);
940 	return 0;
941 
942 out_error:
943 	if (vol_id != -1)
944 		ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
945 			err, e1->pnum, e2->pnum);
946 	else
947 		ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
948 			err, e1->pnum, vol_id, lnum, e2->pnum);
949 	spin_lock(&ubi->wl_lock);
950 	ubi->move_from = ubi->move_to = NULL;
951 	ubi->move_to_put = ubi->wl_scheduled = 0;
952 	spin_unlock(&ubi->wl_lock);
953 
954 	ubi_free_vid_hdr(ubi, vid_hdr);
955 	wl_entry_destroy(ubi, e1);
956 	wl_entry_destroy(ubi, e2);
957 
958 out_ro:
959 	ubi_ro_mode(ubi);
960 	mutex_unlock(&ubi->move_mutex);
961 	ubi_assert(err != 0);
962 	return err < 0 ? err : -EIO;
963 
964 out_cancel:
965 	ubi->wl_scheduled = 0;
966 	spin_unlock(&ubi->wl_lock);
967 	mutex_unlock(&ubi->move_mutex);
968 	ubi_free_vid_hdr(ubi, vid_hdr);
969 	return 0;
970 }
971 
972 /**
973  * ensure_wear_leveling - schedule wear-leveling if it is needed.
974  * @ubi: UBI device description object
975  * @nested: set to non-zero if this function is called from UBI worker
976  *
977  * This function checks if it is time to start wear-leveling and schedules it
978  * if yes. This function returns zero in case of success and a negative error
979  * code in case of failure.
980  */
981 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
982 {
983 	int err = 0;
984 	struct ubi_wl_entry *e1;
985 	struct ubi_wl_entry *e2;
986 	struct ubi_work *wrk;
987 
988 	spin_lock(&ubi->wl_lock);
989 	if (ubi->wl_scheduled)
990 		/* Wear-leveling is already in the work queue */
991 		goto out_unlock;
992 
993 	/*
994 	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
995 	 * the WL worker has to be scheduled anyway.
996 	 */
997 	if (!ubi->scrub.rb_node) {
998 		if (!ubi->used.rb_node || !ubi->free.rb_node)
999 			/* No physical eraseblocks - no deal */
1000 			goto out_unlock;
1001 
1002 		/*
1003 		 * We schedule wear-leveling only if the difference between the
1004 		 * lowest erase counter of used physical eraseblocks and a high
1005 		 * erase counter of free physical eraseblocks is greater than
1006 		 * %UBI_WL_THRESHOLD.
1007 		 */
1008 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1009 		e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1010 
1011 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1012 			goto out_unlock;
1013 		dbg_wl("schedule wear-leveling");
1014 	} else
1015 		dbg_wl("schedule scrubbing");
1016 
1017 	ubi->wl_scheduled = 1;
1018 	spin_unlock(&ubi->wl_lock);
1019 
1020 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1021 	if (!wrk) {
1022 		err = -ENOMEM;
1023 		goto out_cancel;
1024 	}
1025 
1026 	wrk->anchor = 0;
1027 	wrk->func = &wear_leveling_worker;
1028 	if (nested)
1029 		__schedule_ubi_work(ubi, wrk);
1030 #ifndef __UBOOT__
1031 	else
1032 		schedule_ubi_work(ubi, wrk);
1033 #else
1034 	else {
1035 		schedule_ubi_work(ubi, wrk);
1036 		ubi_do_worker(ubi);
1037 	}
1038 #endif
1039 	return err;
1040 
1041 out_cancel:
1042 	spin_lock(&ubi->wl_lock);
1043 	ubi->wl_scheduled = 0;
1044 out_unlock:
1045 	spin_unlock(&ubi->wl_lock);
1046 	return err;
1047 }
1048 
1049 /**
1050  * erase_worker - physical eraseblock erase worker function.
1051  * @ubi: UBI device description object
1052  * @wl_wrk: the work object
1053  * @shutdown: non-zero if the worker has to free memory and exit
1054  * because the WL sub-system is shutting down
1055  *
1056  * This function erases a physical eraseblock and perform torture testing if
1057  * needed. It also takes care about marking the physical eraseblock bad if
1058  * needed. Returns zero in case of success and a negative error code in case of
1059  * failure.
1060  */
1061 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1062 			int shutdown)
1063 {
1064 	struct ubi_wl_entry *e = wl_wrk->e;
1065 	int pnum = e->pnum;
1066 	int vol_id = wl_wrk->vol_id;
1067 	int lnum = wl_wrk->lnum;
1068 	int err, available_consumed = 0;
1069 
1070 	if (shutdown) {
1071 		dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1072 		kfree(wl_wrk);
1073 		wl_entry_destroy(ubi, e);
1074 		return 0;
1075 	}
1076 
1077 	dbg_wl("erase PEB %d EC %d LEB %d:%d",
1078 	       pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1079 
1080 	err = sync_erase(ubi, e, wl_wrk->torture);
1081 	if (!err) {
1082 		/* Fine, we've erased it successfully */
1083 		kfree(wl_wrk);
1084 
1085 		spin_lock(&ubi->wl_lock);
1086 		wl_tree_add(e, &ubi->free);
1087 		ubi->free_count++;
1088 		spin_unlock(&ubi->wl_lock);
1089 
1090 		/*
1091 		 * One more erase operation has happened, take care about
1092 		 * protected physical eraseblocks.
1093 		 */
1094 		serve_prot_queue(ubi);
1095 
1096 		/* And take care about wear-leveling */
1097 		err = ensure_wear_leveling(ubi, 1);
1098 		return err;
1099 	}
1100 
1101 	ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1102 	kfree(wl_wrk);
1103 
1104 	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1105 	    err == -EBUSY) {
1106 		int err1;
1107 
1108 		/* Re-schedule the LEB for erasure */
1109 		err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1110 		if (err1) {
1111 			err = err1;
1112 			goto out_ro;
1113 		}
1114 		return err;
1115 	}
1116 
1117 	wl_entry_destroy(ubi, e);
1118 	if (err != -EIO)
1119 		/*
1120 		 * If this is not %-EIO, we have no idea what to do. Scheduling
1121 		 * this physical eraseblock for erasure again would cause
1122 		 * errors again and again. Well, lets switch to R/O mode.
1123 		 */
1124 		goto out_ro;
1125 
1126 	/* It is %-EIO, the PEB went bad */
1127 
1128 	if (!ubi->bad_allowed) {
1129 		ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1130 		goto out_ro;
1131 	}
1132 
1133 	spin_lock(&ubi->volumes_lock);
1134 	if (ubi->beb_rsvd_pebs == 0) {
1135 		if (ubi->avail_pebs == 0) {
1136 			spin_unlock(&ubi->volumes_lock);
1137 			ubi_err(ubi, "no reserved/available physical eraseblocks");
1138 			goto out_ro;
1139 		}
1140 		ubi->avail_pebs -= 1;
1141 		available_consumed = 1;
1142 	}
1143 	spin_unlock(&ubi->volumes_lock);
1144 
1145 	ubi_msg(ubi, "mark PEB %d as bad", pnum);
1146 	err = ubi_io_mark_bad(ubi, pnum);
1147 	if (err)
1148 		goto out_ro;
1149 
1150 	spin_lock(&ubi->volumes_lock);
1151 	if (ubi->beb_rsvd_pebs > 0) {
1152 		if (available_consumed) {
1153 			/*
1154 			 * The amount of reserved PEBs increased since we last
1155 			 * checked.
1156 			 */
1157 			ubi->avail_pebs += 1;
1158 			available_consumed = 0;
1159 		}
1160 		ubi->beb_rsvd_pebs -= 1;
1161 	}
1162 	ubi->bad_peb_count += 1;
1163 	ubi->good_peb_count -= 1;
1164 	ubi_calculate_reserved(ubi);
1165 	if (available_consumed)
1166 		ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1167 	else if (ubi->beb_rsvd_pebs)
1168 		ubi_msg(ubi, "%d PEBs left in the reserve",
1169 			ubi->beb_rsvd_pebs);
1170 	else
1171 		ubi_warn(ubi, "last PEB from the reserve was used");
1172 	spin_unlock(&ubi->volumes_lock);
1173 
1174 	return err;
1175 
1176 out_ro:
1177 	if (available_consumed) {
1178 		spin_lock(&ubi->volumes_lock);
1179 		ubi->avail_pebs += 1;
1180 		spin_unlock(&ubi->volumes_lock);
1181 	}
1182 	ubi_ro_mode(ubi);
1183 	return err;
1184 }
1185 
1186 /**
1187  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1188  * @ubi: UBI device description object
1189  * @vol_id: the volume ID that last used this PEB
1190  * @lnum: the last used logical eraseblock number for the PEB
1191  * @pnum: physical eraseblock to return
1192  * @torture: if this physical eraseblock has to be tortured
1193  *
1194  * This function is called to return physical eraseblock @pnum to the pool of
1195  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1196  * occurred to this @pnum and it has to be tested. This function returns zero
1197  * in case of success, and a negative error code in case of failure.
1198  */
1199 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1200 		   int pnum, int torture)
1201 {
1202 	int err;
1203 	struct ubi_wl_entry *e;
1204 
1205 	dbg_wl("PEB %d", pnum);
1206 	ubi_assert(pnum >= 0);
1207 	ubi_assert(pnum < ubi->peb_count);
1208 
1209 	down_read(&ubi->fm_protect);
1210 
1211 retry:
1212 	spin_lock(&ubi->wl_lock);
1213 	e = ubi->lookuptbl[pnum];
1214 	if (e == ubi->move_from) {
1215 		/*
1216 		 * User is putting the physical eraseblock which was selected to
1217 		 * be moved. It will be scheduled for erasure in the
1218 		 * wear-leveling worker.
1219 		 */
1220 		dbg_wl("PEB %d is being moved, wait", pnum);
1221 		spin_unlock(&ubi->wl_lock);
1222 
1223 		/* Wait for the WL worker by taking the @ubi->move_mutex */
1224 		mutex_lock(&ubi->move_mutex);
1225 		mutex_unlock(&ubi->move_mutex);
1226 		goto retry;
1227 	} else if (e == ubi->move_to) {
1228 		/*
1229 		 * User is putting the physical eraseblock which was selected
1230 		 * as the target the data is moved to. It may happen if the EBA
1231 		 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1232 		 * but the WL sub-system has not put the PEB to the "used" tree
1233 		 * yet, but it is about to do this. So we just set a flag which
1234 		 * will tell the WL worker that the PEB is not needed anymore
1235 		 * and should be scheduled for erasure.
1236 		 */
1237 		dbg_wl("PEB %d is the target of data moving", pnum);
1238 		ubi_assert(!ubi->move_to_put);
1239 		ubi->move_to_put = 1;
1240 		spin_unlock(&ubi->wl_lock);
1241 		up_read(&ubi->fm_protect);
1242 		return 0;
1243 	} else {
1244 		if (in_wl_tree(e, &ubi->used)) {
1245 			self_check_in_wl_tree(ubi, e, &ubi->used);
1246 			rb_erase(&e->u.rb, &ubi->used);
1247 		} else if (in_wl_tree(e, &ubi->scrub)) {
1248 			self_check_in_wl_tree(ubi, e, &ubi->scrub);
1249 			rb_erase(&e->u.rb, &ubi->scrub);
1250 		} else if (in_wl_tree(e, &ubi->erroneous)) {
1251 			self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1252 			rb_erase(&e->u.rb, &ubi->erroneous);
1253 			ubi->erroneous_peb_count -= 1;
1254 			ubi_assert(ubi->erroneous_peb_count >= 0);
1255 			/* Erroneous PEBs should be tortured */
1256 			torture = 1;
1257 		} else {
1258 			err = prot_queue_del(ubi, e->pnum);
1259 			if (err) {
1260 				ubi_err(ubi, "PEB %d not found", pnum);
1261 				ubi_ro_mode(ubi);
1262 				spin_unlock(&ubi->wl_lock);
1263 				up_read(&ubi->fm_protect);
1264 				return err;
1265 			}
1266 		}
1267 	}
1268 	spin_unlock(&ubi->wl_lock);
1269 
1270 	err = schedule_erase(ubi, e, vol_id, lnum, torture);
1271 	if (err) {
1272 		spin_lock(&ubi->wl_lock);
1273 		wl_tree_add(e, &ubi->used);
1274 		spin_unlock(&ubi->wl_lock);
1275 	}
1276 
1277 	up_read(&ubi->fm_protect);
1278 	return err;
1279 }
1280 
1281 /**
1282  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1283  * @ubi: UBI device description object
1284  * @pnum: the physical eraseblock to schedule
1285  *
1286  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1287  * needs scrubbing. This function schedules a physical eraseblock for
1288  * scrubbing which is done in background. This function returns zero in case of
1289  * success and a negative error code in case of failure.
1290  */
1291 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1292 {
1293 	struct ubi_wl_entry *e;
1294 
1295 	ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1296 
1297 retry:
1298 	spin_lock(&ubi->wl_lock);
1299 	e = ubi->lookuptbl[pnum];
1300 	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1301 				   in_wl_tree(e, &ubi->erroneous)) {
1302 		spin_unlock(&ubi->wl_lock);
1303 		return 0;
1304 	}
1305 
1306 	if (e == ubi->move_to) {
1307 		/*
1308 		 * This physical eraseblock was used to move data to. The data
1309 		 * was moved but the PEB was not yet inserted to the proper
1310 		 * tree. We should just wait a little and let the WL worker
1311 		 * proceed.
1312 		 */
1313 		spin_unlock(&ubi->wl_lock);
1314 		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1315 		yield();
1316 		goto retry;
1317 	}
1318 
1319 	if (in_wl_tree(e, &ubi->used)) {
1320 		self_check_in_wl_tree(ubi, e, &ubi->used);
1321 		rb_erase(&e->u.rb, &ubi->used);
1322 	} else {
1323 		int err;
1324 
1325 		err = prot_queue_del(ubi, e->pnum);
1326 		if (err) {
1327 			ubi_err(ubi, "PEB %d not found", pnum);
1328 			ubi_ro_mode(ubi);
1329 			spin_unlock(&ubi->wl_lock);
1330 			return err;
1331 		}
1332 	}
1333 
1334 	wl_tree_add(e, &ubi->scrub);
1335 	spin_unlock(&ubi->wl_lock);
1336 
1337 	/*
1338 	 * Technically scrubbing is the same as wear-leveling, so it is done
1339 	 * by the WL worker.
1340 	 */
1341 	return ensure_wear_leveling(ubi, 0);
1342 }
1343 
1344 /**
1345  * ubi_wl_flush - flush all pending works.
1346  * @ubi: UBI device description object
1347  * @vol_id: the volume id to flush for
1348  * @lnum: the logical eraseblock number to flush for
1349  *
1350  * This function executes all pending works for a particular volume id /
1351  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1352  * acts as a wildcard for all of the corresponding volume numbers or logical
1353  * eraseblock numbers. It returns zero in case of success and a negative error
1354  * code in case of failure.
1355  */
1356 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1357 {
1358 	int err = 0;
1359 	int found = 1;
1360 
1361 	/*
1362 	 * Erase while the pending works queue is not empty, but not more than
1363 	 * the number of currently pending works.
1364 	 */
1365 	dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1366 	       vol_id, lnum, ubi->works_count);
1367 
1368 	while (found) {
1369 		struct ubi_work *wrk, *tmp;
1370 		found = 0;
1371 
1372 		down_read(&ubi->work_sem);
1373 		spin_lock(&ubi->wl_lock);
1374 		list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1375 			if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1376 			    (lnum == UBI_ALL || wrk->lnum == lnum)) {
1377 				list_del(&wrk->list);
1378 				ubi->works_count -= 1;
1379 				ubi_assert(ubi->works_count >= 0);
1380 				spin_unlock(&ubi->wl_lock);
1381 
1382 				err = wrk->func(ubi, wrk, 0);
1383 				if (err) {
1384 					up_read(&ubi->work_sem);
1385 					return err;
1386 				}
1387 
1388 				spin_lock(&ubi->wl_lock);
1389 				found = 1;
1390 				break;
1391 			}
1392 		}
1393 		spin_unlock(&ubi->wl_lock);
1394 		up_read(&ubi->work_sem);
1395 	}
1396 
1397 	/*
1398 	 * Make sure all the works which have been done in parallel are
1399 	 * finished.
1400 	 */
1401 	down_write(&ubi->work_sem);
1402 	up_write(&ubi->work_sem);
1403 
1404 	return err;
1405 }
1406 
1407 /**
1408  * tree_destroy - destroy an RB-tree.
1409  * @ubi: UBI device description object
1410  * @root: the root of the tree to destroy
1411  */
1412 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1413 {
1414 	struct rb_node *rb;
1415 	struct ubi_wl_entry *e;
1416 
1417 	rb = root->rb_node;
1418 	while (rb) {
1419 		if (rb->rb_left)
1420 			rb = rb->rb_left;
1421 		else if (rb->rb_right)
1422 			rb = rb->rb_right;
1423 		else {
1424 			e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1425 
1426 			rb = rb_parent(rb);
1427 			if (rb) {
1428 				if (rb->rb_left == &e->u.rb)
1429 					rb->rb_left = NULL;
1430 				else
1431 					rb->rb_right = NULL;
1432 			}
1433 
1434 			wl_entry_destroy(ubi, e);
1435 		}
1436 	}
1437 }
1438 
1439 /**
1440  * ubi_thread - UBI background thread.
1441  * @u: the UBI device description object pointer
1442  */
1443 int ubi_thread(void *u)
1444 {
1445 	int failures = 0;
1446 	struct ubi_device *ubi = u;
1447 
1448 	ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1449 		ubi->bgt_name, task_pid_nr(current));
1450 
1451 	set_freezable();
1452 	for (;;) {
1453 		int err;
1454 
1455 		if (kthread_should_stop())
1456 			break;
1457 
1458 		if (try_to_freeze())
1459 			continue;
1460 
1461 		spin_lock(&ubi->wl_lock);
1462 		if (list_empty(&ubi->works) || ubi->ro_mode ||
1463 		    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1464 			set_current_state(TASK_INTERRUPTIBLE);
1465 			spin_unlock(&ubi->wl_lock);
1466 			schedule();
1467 			continue;
1468 		}
1469 		spin_unlock(&ubi->wl_lock);
1470 
1471 		err = do_work(ubi);
1472 		if (err) {
1473 			ubi_err(ubi, "%s: work failed with error code %d",
1474 				ubi->bgt_name, err);
1475 			if (failures++ > WL_MAX_FAILURES) {
1476 				/*
1477 				 * Too many failures, disable the thread and
1478 				 * switch to read-only mode.
1479 				 */
1480 				ubi_msg(ubi, "%s: %d consecutive failures",
1481 					ubi->bgt_name, WL_MAX_FAILURES);
1482 				ubi_ro_mode(ubi);
1483 				ubi->thread_enabled = 0;
1484 				continue;
1485 			}
1486 		} else
1487 			failures = 0;
1488 
1489 		cond_resched();
1490 	}
1491 
1492 	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1493 	return 0;
1494 }
1495 
1496 /**
1497  * shutdown_work - shutdown all pending works.
1498  * @ubi: UBI device description object
1499  */
1500 static void shutdown_work(struct ubi_device *ubi)
1501 {
1502 #ifdef CONFIG_MTD_UBI_FASTMAP
1503 #ifndef __UBOOT__
1504 	flush_work(&ubi->fm_work);
1505 #else
1506 	/* in U-Boot, we have all work done */
1507 #endif
1508 #endif
1509 	while (!list_empty(&ubi->works)) {
1510 		struct ubi_work *wrk;
1511 
1512 		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1513 		list_del(&wrk->list);
1514 		wrk->func(ubi, wrk, 1);
1515 		ubi->works_count -= 1;
1516 		ubi_assert(ubi->works_count >= 0);
1517 	}
1518 }
1519 
1520 /**
1521  * ubi_wl_init - initialize the WL sub-system using attaching information.
1522  * @ubi: UBI device description object
1523  * @ai: attaching information
1524  *
1525  * This function returns zero in case of success, and a negative error code in
1526  * case of failure.
1527  */
1528 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1529 {
1530 	int err, i, reserved_pebs, found_pebs = 0;
1531 	struct rb_node *rb1, *rb2;
1532 	struct ubi_ainf_volume *av;
1533 	struct ubi_ainf_peb *aeb, *tmp;
1534 	struct ubi_wl_entry *e;
1535 
1536 	ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1537 	spin_lock_init(&ubi->wl_lock);
1538 	mutex_init(&ubi->move_mutex);
1539 	init_rwsem(&ubi->work_sem);
1540 	ubi->max_ec = ai->max_ec;
1541 	INIT_LIST_HEAD(&ubi->works);
1542 
1543 	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1544 
1545 	err = -ENOMEM;
1546 	ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1547 	if (!ubi->lookuptbl)
1548 		return err;
1549 
1550 	for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1551 		INIT_LIST_HEAD(&ubi->pq[i]);
1552 	ubi->pq_head = 0;
1553 
1554 	ubi->free_count = 0;
1555 	list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1556 		cond_resched();
1557 
1558 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1559 		if (!e)
1560 			goto out_free;
1561 
1562 		e->pnum = aeb->pnum;
1563 		e->ec = aeb->ec;
1564 		ubi->lookuptbl[e->pnum] = e;
1565 		if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1566 			wl_entry_destroy(ubi, e);
1567 			goto out_free;
1568 		}
1569 
1570 		found_pebs++;
1571 	}
1572 
1573 	list_for_each_entry(aeb, &ai->free, u.list) {
1574 		cond_resched();
1575 
1576 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1577 		if (!e)
1578 			goto out_free;
1579 
1580 		e->pnum = aeb->pnum;
1581 		e->ec = aeb->ec;
1582 		ubi_assert(e->ec >= 0);
1583 
1584 		wl_tree_add(e, &ubi->free);
1585 		ubi->free_count++;
1586 
1587 		ubi->lookuptbl[e->pnum] = e;
1588 
1589 		found_pebs++;
1590 	}
1591 
1592 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1593 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1594 			cond_resched();
1595 
1596 			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1597 			if (!e)
1598 				goto out_free;
1599 
1600 			e->pnum = aeb->pnum;
1601 			e->ec = aeb->ec;
1602 			ubi->lookuptbl[e->pnum] = e;
1603 
1604 			if (!aeb->scrub) {
1605 				dbg_wl("add PEB %d EC %d to the used tree",
1606 				       e->pnum, e->ec);
1607 				wl_tree_add(e, &ubi->used);
1608 			} else {
1609 				dbg_wl("add PEB %d EC %d to the scrub tree",
1610 				       e->pnum, e->ec);
1611 				wl_tree_add(e, &ubi->scrub);
1612 			}
1613 
1614 			found_pebs++;
1615 		}
1616 	}
1617 
1618 	dbg_wl("found %i PEBs", found_pebs);
1619 
1620 	if (ubi->fm) {
1621 		ubi_assert(ubi->good_peb_count ==
1622 			   found_pebs + ubi->fm->used_blocks);
1623 
1624 		for (i = 0; i < ubi->fm->used_blocks; i++) {
1625 			e = ubi->fm->e[i];
1626 			ubi->lookuptbl[e->pnum] = e;
1627 		}
1628 	}
1629 	else
1630 		ubi_assert(ubi->good_peb_count == found_pebs);
1631 
1632 	reserved_pebs = WL_RESERVED_PEBS;
1633 	ubi_fastmap_init(ubi, &reserved_pebs);
1634 
1635 	if (ubi->avail_pebs < reserved_pebs) {
1636 		ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1637 			ubi->avail_pebs, reserved_pebs);
1638 		if (ubi->corr_peb_count)
1639 			ubi_err(ubi, "%d PEBs are corrupted and not used",
1640 				ubi->corr_peb_count);
1641 		goto out_free;
1642 	}
1643 	ubi->avail_pebs -= reserved_pebs;
1644 	ubi->rsvd_pebs += reserved_pebs;
1645 
1646 	/* Schedule wear-leveling if needed */
1647 	err = ensure_wear_leveling(ubi, 0);
1648 	if (err)
1649 		goto out_free;
1650 
1651 	return 0;
1652 
1653 out_free:
1654 	shutdown_work(ubi);
1655 	tree_destroy(ubi, &ubi->used);
1656 	tree_destroy(ubi, &ubi->free);
1657 	tree_destroy(ubi, &ubi->scrub);
1658 	kfree(ubi->lookuptbl);
1659 	return err;
1660 }
1661 
1662 /**
1663  * protection_queue_destroy - destroy the protection queue.
1664  * @ubi: UBI device description object
1665  */
1666 static void protection_queue_destroy(struct ubi_device *ubi)
1667 {
1668 	int i;
1669 	struct ubi_wl_entry *e, *tmp;
1670 
1671 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1672 		list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1673 			list_del(&e->u.list);
1674 			wl_entry_destroy(ubi, e);
1675 		}
1676 	}
1677 }
1678 
1679 /**
1680  * ubi_wl_close - close the wear-leveling sub-system.
1681  * @ubi: UBI device description object
1682  */
1683 void ubi_wl_close(struct ubi_device *ubi)
1684 {
1685 	dbg_wl("close the WL sub-system");
1686 	ubi_fastmap_close(ubi);
1687 	shutdown_work(ubi);
1688 	protection_queue_destroy(ubi);
1689 	tree_destroy(ubi, &ubi->used);
1690 	tree_destroy(ubi, &ubi->erroneous);
1691 	tree_destroy(ubi, &ubi->free);
1692 	tree_destroy(ubi, &ubi->scrub);
1693 	kfree(ubi->lookuptbl);
1694 }
1695 
1696 /**
1697  * self_check_ec - make sure that the erase counter of a PEB is correct.
1698  * @ubi: UBI device description object
1699  * @pnum: the physical eraseblock number to check
1700  * @ec: the erase counter to check
1701  *
1702  * This function returns zero if the erase counter of physical eraseblock @pnum
1703  * is equivalent to @ec, and a negative error code if not or if an error
1704  * occurred.
1705  */
1706 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1707 {
1708 	int err;
1709 	long long read_ec;
1710 	struct ubi_ec_hdr *ec_hdr;
1711 
1712 	if (!ubi_dbg_chk_gen(ubi))
1713 		return 0;
1714 
1715 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1716 	if (!ec_hdr)
1717 		return -ENOMEM;
1718 
1719 	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1720 	if (err && err != UBI_IO_BITFLIPS) {
1721 		/* The header does not have to exist */
1722 		err = 0;
1723 		goto out_free;
1724 	}
1725 
1726 	read_ec = be64_to_cpu(ec_hdr->ec);
1727 	if (ec != read_ec && read_ec - ec > 1) {
1728 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1729 		ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
1730 		dump_stack();
1731 		err = 1;
1732 	} else
1733 		err = 0;
1734 
1735 out_free:
1736 	kfree(ec_hdr);
1737 	return err;
1738 }
1739 
1740 /**
1741  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1742  * @ubi: UBI device description object
1743  * @e: the wear-leveling entry to check
1744  * @root: the root of the tree
1745  *
1746  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1747  * is not.
1748  */
1749 static int self_check_in_wl_tree(const struct ubi_device *ubi,
1750 				 struct ubi_wl_entry *e, struct rb_root *root)
1751 {
1752 	if (!ubi_dbg_chk_gen(ubi))
1753 		return 0;
1754 
1755 	if (in_wl_tree(e, root))
1756 		return 0;
1757 
1758 	ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
1759 		e->pnum, e->ec, root);
1760 	dump_stack();
1761 	return -EINVAL;
1762 }
1763 
1764 /**
1765  * self_check_in_pq - check if wear-leveling entry is in the protection
1766  *                        queue.
1767  * @ubi: UBI device description object
1768  * @e: the wear-leveling entry to check
1769  *
1770  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
1771  */
1772 static int self_check_in_pq(const struct ubi_device *ubi,
1773 			    struct ubi_wl_entry *e)
1774 {
1775 	struct ubi_wl_entry *p;
1776 	int i;
1777 
1778 	if (!ubi_dbg_chk_gen(ubi))
1779 		return 0;
1780 
1781 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1782 		list_for_each_entry(p, &ubi->pq[i], u.list)
1783 			if (p == e)
1784 				return 0;
1785 
1786 	ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
1787 		e->pnum, e->ec);
1788 	dump_stack();
1789 	return -EINVAL;
1790 }
1791 #ifndef CONFIG_MTD_UBI_FASTMAP
1792 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
1793 {
1794 	struct ubi_wl_entry *e;
1795 
1796 	e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1797 	self_check_in_wl_tree(ubi, e, &ubi->free);
1798 	ubi->free_count--;
1799 	ubi_assert(ubi->free_count >= 0);
1800 	rb_erase(&e->u.rb, &ubi->free);
1801 
1802 	return e;
1803 }
1804 
1805 /**
1806  * produce_free_peb - produce a free physical eraseblock.
1807  * @ubi: UBI device description object
1808  *
1809  * This function tries to make a free PEB by means of synchronous execution of
1810  * pending works. This may be needed if, for example the background thread is
1811  * disabled. Returns zero in case of success and a negative error code in case
1812  * of failure.
1813  */
1814 static int produce_free_peb(struct ubi_device *ubi)
1815 {
1816 	int err;
1817 
1818 	while (!ubi->free.rb_node && ubi->works_count) {
1819 		spin_unlock(&ubi->wl_lock);
1820 
1821 		dbg_wl("do one work synchronously");
1822 		err = do_work(ubi);
1823 
1824 		spin_lock(&ubi->wl_lock);
1825 		if (err)
1826 			return err;
1827 	}
1828 
1829 	return 0;
1830 }
1831 
1832 /**
1833  * ubi_wl_get_peb - get a physical eraseblock.
1834  * @ubi: UBI device description object
1835  *
1836  * This function returns a physical eraseblock in case of success and a
1837  * negative error code in case of failure.
1838  * Returns with ubi->fm_eba_sem held in read mode!
1839  */
1840 int ubi_wl_get_peb(struct ubi_device *ubi)
1841 {
1842 	int err;
1843 	struct ubi_wl_entry *e;
1844 
1845 retry:
1846 	down_read(&ubi->fm_eba_sem);
1847 	spin_lock(&ubi->wl_lock);
1848 	if (!ubi->free.rb_node) {
1849 		if (ubi->works_count == 0) {
1850 			ubi_err(ubi, "no free eraseblocks");
1851 			ubi_assert(list_empty(&ubi->works));
1852 			spin_unlock(&ubi->wl_lock);
1853 			return -ENOSPC;
1854 		}
1855 
1856 		err = produce_free_peb(ubi);
1857 		if (err < 0) {
1858 			spin_unlock(&ubi->wl_lock);
1859 			return err;
1860 		}
1861 		spin_unlock(&ubi->wl_lock);
1862 		up_read(&ubi->fm_eba_sem);
1863 		goto retry;
1864 
1865 	}
1866 	e = wl_get_wle(ubi);
1867 	prot_queue_add(ubi, e);
1868 	spin_unlock(&ubi->wl_lock);
1869 
1870 	err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
1871 				    ubi->peb_size - ubi->vid_hdr_aloffset);
1872 	if (err) {
1873 		ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
1874 		return err;
1875 	}
1876 
1877 	return e->pnum;
1878 }
1879 #else
1880 #include "fastmap-wl.c"
1881 #endif
1882