1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * 4 * SPDX-License-Identifier: GPL-2.0+ 5 * 6 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner 7 */ 8 9 /* 10 * UBI wear-leveling sub-system. 11 * 12 * This sub-system is responsible for wear-leveling. It works in terms of 13 * physical eraseblocks and erase counters and knows nothing about logical 14 * eraseblocks, volumes, etc. From this sub-system's perspective all physical 15 * eraseblocks are of two types - used and free. Used physical eraseblocks are 16 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical 17 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function. 18 * 19 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter 20 * header. The rest of the physical eraseblock contains only %0xFF bytes. 21 * 22 * When physical eraseblocks are returned to the WL sub-system by means of the 23 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is 24 * done asynchronously in context of the per-UBI device background thread, 25 * which is also managed by the WL sub-system. 26 * 27 * The wear-leveling is ensured by means of moving the contents of used 28 * physical eraseblocks with low erase counter to free physical eraseblocks 29 * with high erase counter. 30 * 31 * If the WL sub-system fails to erase a physical eraseblock, it marks it as 32 * bad. 33 * 34 * This sub-system is also responsible for scrubbing. If a bit-flip is detected 35 * in a physical eraseblock, it has to be moved. Technically this is the same 36 * as moving it for wear-leveling reasons. 37 * 38 * As it was said, for the UBI sub-system all physical eraseblocks are either 39 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while 40 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub 41 * RB-trees, as well as (temporarily) in the @wl->pq queue. 42 * 43 * When the WL sub-system returns a physical eraseblock, the physical 44 * eraseblock is protected from being moved for some "time". For this reason, 45 * the physical eraseblock is not directly moved from the @wl->free tree to the 46 * @wl->used tree. There is a protection queue in between where this 47 * physical eraseblock is temporarily stored (@wl->pq). 48 * 49 * All this protection stuff is needed because: 50 * o we don't want to move physical eraseblocks just after we have given them 51 * to the user; instead, we first want to let users fill them up with data; 52 * 53 * o there is a chance that the user will put the physical eraseblock very 54 * soon, so it makes sense not to move it for some time, but wait. 55 * 56 * Physical eraseblocks stay protected only for limited time. But the "time" is 57 * measured in erase cycles in this case. This is implemented with help of the 58 * protection queue. Eraseblocks are put to the tail of this queue when they 59 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the 60 * head of the queue on each erase operation (for any eraseblock). So the 61 * length of the queue defines how may (global) erase cycles PEBs are protected. 62 * 63 * To put it differently, each physical eraseblock has 2 main states: free and 64 * used. The former state corresponds to the @wl->free tree. The latter state 65 * is split up on several sub-states: 66 * o the WL movement is allowed (@wl->used tree); 67 * o the WL movement is disallowed (@wl->erroneous) because the PEB is 68 * erroneous - e.g., there was a read error; 69 * o the WL movement is temporarily prohibited (@wl->pq queue); 70 * o scrubbing is needed (@wl->scrub tree). 71 * 72 * Depending on the sub-state, wear-leveling entries of the used physical 73 * eraseblocks may be kept in one of those structures. 74 * 75 * Note, in this implementation, we keep a small in-RAM object for each physical 76 * eraseblock. This is surely not a scalable solution. But it appears to be good 77 * enough for moderately large flashes and it is simple. In future, one may 78 * re-work this sub-system and make it more scalable. 79 * 80 * At the moment this sub-system does not utilize the sequence number, which 81 * was introduced relatively recently. But it would be wise to do this because 82 * the sequence number of a logical eraseblock characterizes how old is it. For 83 * example, when we move a PEB with low erase counter, and we need to pick the 84 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we 85 * pick target PEB with an average EC if our PEB is not very "old". This is a 86 * room for future re-works of the WL sub-system. 87 */ 88 89 #ifndef __UBOOT__ 90 #include <linux/slab.h> 91 #include <linux/crc32.h> 92 #include <linux/freezer.h> 93 #include <linux/kthread.h> 94 #else 95 #include <ubi_uboot.h> 96 #endif 97 98 #include "ubi.h" 99 #include "wl.h" 100 101 /* Number of physical eraseblocks reserved for wear-leveling purposes */ 102 #define WL_RESERVED_PEBS 1 103 104 /* 105 * Maximum difference between two erase counters. If this threshold is 106 * exceeded, the WL sub-system starts moving data from used physical 107 * eraseblocks with low erase counter to free physical eraseblocks with high 108 * erase counter. 109 */ 110 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD 111 112 /* 113 * When a physical eraseblock is moved, the WL sub-system has to pick the target 114 * physical eraseblock to move to. The simplest way would be just to pick the 115 * one with the highest erase counter. But in certain workloads this could lead 116 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a 117 * situation when the picked physical eraseblock is constantly erased after the 118 * data is written to it. So, we have a constant which limits the highest erase 119 * counter of the free physical eraseblock to pick. Namely, the WL sub-system 120 * does not pick eraseblocks with erase counter greater than the lowest erase 121 * counter plus %WL_FREE_MAX_DIFF. 122 */ 123 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD) 124 125 /* 126 * Maximum number of consecutive background thread failures which is enough to 127 * switch to read-only mode. 128 */ 129 #define WL_MAX_FAILURES 32 130 131 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec); 132 static int self_check_in_wl_tree(const struct ubi_device *ubi, 133 struct ubi_wl_entry *e, struct rb_root *root); 134 static int self_check_in_pq(const struct ubi_device *ubi, 135 struct ubi_wl_entry *e); 136 137 /** 138 * wl_tree_add - add a wear-leveling entry to a WL RB-tree. 139 * @e: the wear-leveling entry to add 140 * @root: the root of the tree 141 * 142 * Note, we use (erase counter, physical eraseblock number) pairs as keys in 143 * the @ubi->used and @ubi->free RB-trees. 144 */ 145 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root) 146 { 147 struct rb_node **p, *parent = NULL; 148 149 p = &root->rb_node; 150 while (*p) { 151 struct ubi_wl_entry *e1; 152 153 parent = *p; 154 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb); 155 156 if (e->ec < e1->ec) 157 p = &(*p)->rb_left; 158 else if (e->ec > e1->ec) 159 p = &(*p)->rb_right; 160 else { 161 ubi_assert(e->pnum != e1->pnum); 162 if (e->pnum < e1->pnum) 163 p = &(*p)->rb_left; 164 else 165 p = &(*p)->rb_right; 166 } 167 } 168 169 rb_link_node(&e->u.rb, parent, p); 170 rb_insert_color(&e->u.rb, root); 171 } 172 173 /** 174 * wl_tree_destroy - destroy a wear-leveling entry. 175 * @ubi: UBI device description object 176 * @e: the wear-leveling entry to add 177 * 178 * This function destroys a wear leveling entry and removes 179 * the reference from the lookup table. 180 */ 181 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e) 182 { 183 ubi->lookuptbl[e->pnum] = NULL; 184 kmem_cache_free(ubi_wl_entry_slab, e); 185 } 186 187 /** 188 * do_work - do one pending work. 189 * @ubi: UBI device description object 190 * 191 * This function returns zero in case of success and a negative error code in 192 * case of failure. 193 */ 194 static int do_work(struct ubi_device *ubi) 195 { 196 int err; 197 struct ubi_work *wrk; 198 199 cond_resched(); 200 201 /* 202 * @ubi->work_sem is used to synchronize with the workers. Workers take 203 * it in read mode, so many of them may be doing works at a time. But 204 * the queue flush code has to be sure the whole queue of works is 205 * done, and it takes the mutex in write mode. 206 */ 207 down_read(&ubi->work_sem); 208 spin_lock(&ubi->wl_lock); 209 if (list_empty(&ubi->works)) { 210 spin_unlock(&ubi->wl_lock); 211 up_read(&ubi->work_sem); 212 return 0; 213 } 214 215 wrk = list_entry(ubi->works.next, struct ubi_work, list); 216 list_del(&wrk->list); 217 ubi->works_count -= 1; 218 ubi_assert(ubi->works_count >= 0); 219 spin_unlock(&ubi->wl_lock); 220 221 /* 222 * Call the worker function. Do not touch the work structure 223 * after this call as it will have been freed or reused by that 224 * time by the worker function. 225 */ 226 err = wrk->func(ubi, wrk, 0); 227 if (err) 228 ubi_err(ubi, "work failed with error code %d", err); 229 up_read(&ubi->work_sem); 230 231 return err; 232 } 233 234 /** 235 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree. 236 * @e: the wear-leveling entry to check 237 * @root: the root of the tree 238 * 239 * This function returns non-zero if @e is in the @root RB-tree and zero if it 240 * is not. 241 */ 242 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) 243 { 244 struct rb_node *p; 245 246 p = root->rb_node; 247 while (p) { 248 struct ubi_wl_entry *e1; 249 250 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 251 252 if (e->pnum == e1->pnum) { 253 ubi_assert(e == e1); 254 return 1; 255 } 256 257 if (e->ec < e1->ec) 258 p = p->rb_left; 259 else if (e->ec > e1->ec) 260 p = p->rb_right; 261 else { 262 ubi_assert(e->pnum != e1->pnum); 263 if (e->pnum < e1->pnum) 264 p = p->rb_left; 265 else 266 p = p->rb_right; 267 } 268 } 269 270 return 0; 271 } 272 273 /** 274 * prot_queue_add - add physical eraseblock to the protection queue. 275 * @ubi: UBI device description object 276 * @e: the physical eraseblock to add 277 * 278 * This function adds @e to the tail of the protection queue @ubi->pq, where 279 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be 280 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to 281 * be locked. 282 */ 283 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e) 284 { 285 int pq_tail = ubi->pq_head - 1; 286 287 if (pq_tail < 0) 288 pq_tail = UBI_PROT_QUEUE_LEN - 1; 289 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN); 290 list_add_tail(&e->u.list, &ubi->pq[pq_tail]); 291 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec); 292 } 293 294 /** 295 * find_wl_entry - find wear-leveling entry closest to certain erase counter. 296 * @ubi: UBI device description object 297 * @root: the RB-tree where to look for 298 * @diff: maximum possible difference from the smallest erase counter 299 * 300 * This function looks for a wear leveling entry with erase counter closest to 301 * min + @diff, where min is the smallest erase counter. 302 */ 303 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi, 304 struct rb_root *root, int diff) 305 { 306 struct rb_node *p; 307 struct ubi_wl_entry *e, *prev_e = NULL; 308 int max; 309 310 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 311 max = e->ec + diff; 312 313 p = root->rb_node; 314 while (p) { 315 struct ubi_wl_entry *e1; 316 317 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 318 if (e1->ec >= max) 319 p = p->rb_left; 320 else { 321 p = p->rb_right; 322 prev_e = e; 323 e = e1; 324 } 325 } 326 327 /* If no fastmap has been written and this WL entry can be used 328 * as anchor PEB, hold it back and return the second best WL entry 329 * such that fastmap can use the anchor PEB later. */ 330 if (prev_e && !ubi->fm_disabled && 331 !ubi->fm && e->pnum < UBI_FM_MAX_START) 332 return prev_e; 333 334 return e; 335 } 336 337 /** 338 * find_mean_wl_entry - find wear-leveling entry with medium erase counter. 339 * @ubi: UBI device description object 340 * @root: the RB-tree where to look for 341 * 342 * This function looks for a wear leveling entry with medium erase counter, 343 * but not greater or equivalent than the lowest erase counter plus 344 * %WL_FREE_MAX_DIFF/2. 345 */ 346 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi, 347 struct rb_root *root) 348 { 349 struct ubi_wl_entry *e, *first, *last; 350 351 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 352 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb); 353 354 if (last->ec - first->ec < WL_FREE_MAX_DIFF) { 355 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb); 356 357 /* If no fastmap has been written and this WL entry can be used 358 * as anchor PEB, hold it back and return the second best 359 * WL entry such that fastmap can use the anchor PEB later. */ 360 e = may_reserve_for_fm(ubi, e, root); 361 } else 362 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2); 363 364 return e; 365 } 366 367 /** 368 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or 369 * refill_wl_user_pool(). 370 * @ubi: UBI device description object 371 * 372 * This function returns a a wear leveling entry in case of success and 373 * NULL in case of failure. 374 */ 375 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi) 376 { 377 struct ubi_wl_entry *e; 378 379 e = find_mean_wl_entry(ubi, &ubi->free); 380 if (!e) { 381 ubi_err(ubi, "no free eraseblocks"); 382 return NULL; 383 } 384 385 self_check_in_wl_tree(ubi, e, &ubi->free); 386 387 /* 388 * Move the physical eraseblock to the protection queue where it will 389 * be protected from being moved for some time. 390 */ 391 rb_erase(&e->u.rb, &ubi->free); 392 ubi->free_count--; 393 dbg_wl("PEB %d EC %d", e->pnum, e->ec); 394 395 return e; 396 } 397 398 /** 399 * prot_queue_del - remove a physical eraseblock from the protection queue. 400 * @ubi: UBI device description object 401 * @pnum: the physical eraseblock to remove 402 * 403 * This function deletes PEB @pnum from the protection queue and returns zero 404 * in case of success and %-ENODEV if the PEB was not found. 405 */ 406 static int prot_queue_del(struct ubi_device *ubi, int pnum) 407 { 408 struct ubi_wl_entry *e; 409 410 e = ubi->lookuptbl[pnum]; 411 if (!e) 412 return -ENODEV; 413 414 if (self_check_in_pq(ubi, e)) 415 return -ENODEV; 416 417 list_del(&e->u.list); 418 dbg_wl("deleted PEB %d from the protection queue", e->pnum); 419 return 0; 420 } 421 422 /** 423 * sync_erase - synchronously erase a physical eraseblock. 424 * @ubi: UBI device description object 425 * @e: the the physical eraseblock to erase 426 * @torture: if the physical eraseblock has to be tortured 427 * 428 * This function returns zero in case of success and a negative error code in 429 * case of failure. 430 */ 431 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 432 int torture) 433 { 434 int err; 435 struct ubi_ec_hdr *ec_hdr; 436 unsigned long long ec = e->ec; 437 438 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); 439 440 err = self_check_ec(ubi, e->pnum, e->ec); 441 if (err) 442 return -EINVAL; 443 444 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 445 if (!ec_hdr) 446 return -ENOMEM; 447 448 err = ubi_io_sync_erase(ubi, e->pnum, torture); 449 if (err < 0) 450 goto out_free; 451 452 ec += err; 453 if (ec > UBI_MAX_ERASECOUNTER) { 454 /* 455 * Erase counter overflow. Upgrade UBI and use 64-bit 456 * erase counters internally. 457 */ 458 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu", 459 e->pnum, ec); 460 err = -EINVAL; 461 goto out_free; 462 } 463 464 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec); 465 466 ec_hdr->ec = cpu_to_be64(ec); 467 468 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr); 469 if (err) 470 goto out_free; 471 472 e->ec = ec; 473 spin_lock(&ubi->wl_lock); 474 if (e->ec > ubi->max_ec) 475 ubi->max_ec = e->ec; 476 spin_unlock(&ubi->wl_lock); 477 478 out_free: 479 kfree(ec_hdr); 480 return err; 481 } 482 483 /** 484 * serve_prot_queue - check if it is time to stop protecting PEBs. 485 * @ubi: UBI device description object 486 * 487 * This function is called after each erase operation and removes PEBs from the 488 * tail of the protection queue. These PEBs have been protected for long enough 489 * and should be moved to the used tree. 490 */ 491 static void serve_prot_queue(struct ubi_device *ubi) 492 { 493 struct ubi_wl_entry *e, *tmp; 494 int count; 495 496 /* 497 * There may be several protected physical eraseblock to remove, 498 * process them all. 499 */ 500 repeat: 501 count = 0; 502 spin_lock(&ubi->wl_lock); 503 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) { 504 dbg_wl("PEB %d EC %d protection over, move to used tree", 505 e->pnum, e->ec); 506 507 list_del(&e->u.list); 508 wl_tree_add(e, &ubi->used); 509 if (count++ > 32) { 510 /* 511 * Let's be nice and avoid holding the spinlock for 512 * too long. 513 */ 514 spin_unlock(&ubi->wl_lock); 515 cond_resched(); 516 goto repeat; 517 } 518 } 519 520 ubi->pq_head += 1; 521 if (ubi->pq_head == UBI_PROT_QUEUE_LEN) 522 ubi->pq_head = 0; 523 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN); 524 spin_unlock(&ubi->wl_lock); 525 } 526 527 #ifdef __UBOOT__ 528 void ubi_do_worker(struct ubi_device *ubi) 529 { 530 int err; 531 532 if (list_empty(&ubi->works) || ubi->ro_mode || 533 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) 534 return; 535 536 spin_lock(&ubi->wl_lock); 537 while (!list_empty(&ubi->works)) { 538 /* 539 * call do_work, which executes exactly one work form the queue, 540 * including removeing it from the work queue. 541 */ 542 spin_unlock(&ubi->wl_lock); 543 err = do_work(ubi); 544 spin_lock(&ubi->wl_lock); 545 if (err) { 546 ubi_err(ubi, "%s: work failed with error code %d", 547 ubi->bgt_name, err); 548 } 549 } 550 spin_unlock(&ubi->wl_lock); 551 } 552 #endif 553 554 /** 555 * __schedule_ubi_work - schedule a work. 556 * @ubi: UBI device description object 557 * @wrk: the work to schedule 558 * 559 * This function adds a work defined by @wrk to the tail of the pending works 560 * list. Can only be used if ubi->work_sem is already held in read mode! 561 */ 562 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 563 { 564 spin_lock(&ubi->wl_lock); 565 list_add_tail(&wrk->list, &ubi->works); 566 ubi_assert(ubi->works_count >= 0); 567 ubi->works_count += 1; 568 #ifndef __UBOOT__ 569 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi)) 570 wake_up_process(ubi->bgt_thread); 571 #endif 572 spin_unlock(&ubi->wl_lock); 573 } 574 575 /** 576 * schedule_ubi_work - schedule a work. 577 * @ubi: UBI device description object 578 * @wrk: the work to schedule 579 * 580 * This function adds a work defined by @wrk to the tail of the pending works 581 * list. 582 */ 583 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 584 { 585 down_read(&ubi->work_sem); 586 __schedule_ubi_work(ubi, wrk); 587 up_read(&ubi->work_sem); 588 } 589 590 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 591 int shutdown); 592 593 /** 594 * schedule_erase - schedule an erase work. 595 * @ubi: UBI device description object 596 * @e: the WL entry of the physical eraseblock to erase 597 * @vol_id: the volume ID that last used this PEB 598 * @lnum: the last used logical eraseblock number for the PEB 599 * @torture: if the physical eraseblock has to be tortured 600 * 601 * This function returns zero in case of success and a %-ENOMEM in case of 602 * failure. 603 */ 604 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 605 int vol_id, int lnum, int torture) 606 { 607 struct ubi_work *wl_wrk; 608 609 ubi_assert(e); 610 611 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", 612 e->pnum, e->ec, torture); 613 614 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 615 if (!wl_wrk) 616 return -ENOMEM; 617 618 wl_wrk->func = &erase_worker; 619 wl_wrk->e = e; 620 wl_wrk->vol_id = vol_id; 621 wl_wrk->lnum = lnum; 622 wl_wrk->torture = torture; 623 624 schedule_ubi_work(ubi, wl_wrk); 625 626 #ifdef __UBOOT__ 627 ubi_do_worker(ubi); 628 #endif 629 return 0; 630 } 631 632 /** 633 * do_sync_erase - run the erase worker synchronously. 634 * @ubi: UBI device description object 635 * @e: the WL entry of the physical eraseblock to erase 636 * @vol_id: the volume ID that last used this PEB 637 * @lnum: the last used logical eraseblock number for the PEB 638 * @torture: if the physical eraseblock has to be tortured 639 * 640 */ 641 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 642 int vol_id, int lnum, int torture) 643 { 644 struct ubi_work *wl_wrk; 645 646 dbg_wl("sync erase of PEB %i", e->pnum); 647 648 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 649 if (!wl_wrk) 650 return -ENOMEM; 651 652 wl_wrk->e = e; 653 wl_wrk->vol_id = vol_id; 654 wl_wrk->lnum = lnum; 655 wl_wrk->torture = torture; 656 657 return erase_worker(ubi, wl_wrk, 0); 658 } 659 660 /** 661 * wear_leveling_worker - wear-leveling worker function. 662 * @ubi: UBI device description object 663 * @wrk: the work object 664 * @shutdown: non-zero if the worker has to free memory and exit 665 * because the WL-subsystem is shutting down 666 * 667 * This function copies a more worn out physical eraseblock to a less worn out 668 * one. Returns zero in case of success and a negative error code in case of 669 * failure. 670 */ 671 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, 672 int shutdown) 673 { 674 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0; 675 int vol_id = -1, lnum = -1; 676 #ifdef CONFIG_MTD_UBI_FASTMAP 677 int anchor = wrk->anchor; 678 #endif 679 struct ubi_wl_entry *e1, *e2; 680 struct ubi_vid_hdr *vid_hdr; 681 682 kfree(wrk); 683 if (shutdown) 684 return 0; 685 686 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 687 if (!vid_hdr) 688 return -ENOMEM; 689 690 mutex_lock(&ubi->move_mutex); 691 spin_lock(&ubi->wl_lock); 692 ubi_assert(!ubi->move_from && !ubi->move_to); 693 ubi_assert(!ubi->move_to_put); 694 695 if (!ubi->free.rb_node || 696 (!ubi->used.rb_node && !ubi->scrub.rb_node)) { 697 /* 698 * No free physical eraseblocks? Well, they must be waiting in 699 * the queue to be erased. Cancel movement - it will be 700 * triggered again when a free physical eraseblock appears. 701 * 702 * No used physical eraseblocks? They must be temporarily 703 * protected from being moved. They will be moved to the 704 * @ubi->used tree later and the wear-leveling will be 705 * triggered again. 706 */ 707 dbg_wl("cancel WL, a list is empty: free %d, used %d", 708 !ubi->free.rb_node, !ubi->used.rb_node); 709 goto out_cancel; 710 } 711 712 #ifdef CONFIG_MTD_UBI_FASTMAP 713 /* Check whether we need to produce an anchor PEB */ 714 if (!anchor) 715 anchor = !anchor_pebs_avalible(&ubi->free); 716 717 if (anchor) { 718 e1 = find_anchor_wl_entry(&ubi->used); 719 if (!e1) 720 goto out_cancel; 721 e2 = get_peb_for_wl(ubi); 722 if (!e2) 723 goto out_cancel; 724 725 self_check_in_wl_tree(ubi, e1, &ubi->used); 726 rb_erase(&e1->u.rb, &ubi->used); 727 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum); 728 } else if (!ubi->scrub.rb_node) { 729 #else 730 if (!ubi->scrub.rb_node) { 731 #endif 732 /* 733 * Now pick the least worn-out used physical eraseblock and a 734 * highly worn-out free physical eraseblock. If the erase 735 * counters differ much enough, start wear-leveling. 736 */ 737 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 738 e2 = get_peb_for_wl(ubi); 739 if (!e2) 740 goto out_cancel; 741 742 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { 743 dbg_wl("no WL needed: min used EC %d, max free EC %d", 744 e1->ec, e2->ec); 745 746 /* Give the unused PEB back */ 747 wl_tree_add(e2, &ubi->free); 748 ubi->free_count++; 749 goto out_cancel; 750 } 751 self_check_in_wl_tree(ubi, e1, &ubi->used); 752 rb_erase(&e1->u.rb, &ubi->used); 753 dbg_wl("move PEB %d EC %d to PEB %d EC %d", 754 e1->pnum, e1->ec, e2->pnum, e2->ec); 755 } else { 756 /* Perform scrubbing */ 757 scrubbing = 1; 758 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb); 759 e2 = get_peb_for_wl(ubi); 760 if (!e2) 761 goto out_cancel; 762 763 self_check_in_wl_tree(ubi, e1, &ubi->scrub); 764 rb_erase(&e1->u.rb, &ubi->scrub); 765 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); 766 } 767 768 ubi->move_from = e1; 769 ubi->move_to = e2; 770 spin_unlock(&ubi->wl_lock); 771 772 /* 773 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum. 774 * We so far do not know which logical eraseblock our physical 775 * eraseblock (@e1) belongs to. We have to read the volume identifier 776 * header first. 777 * 778 * Note, we are protected from this PEB being unmapped and erased. The 779 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB 780 * which is being moved was unmapped. 781 */ 782 783 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0); 784 if (err && err != UBI_IO_BITFLIPS) { 785 if (err == UBI_IO_FF) { 786 /* 787 * We are trying to move PEB without a VID header. UBI 788 * always write VID headers shortly after the PEB was 789 * given, so we have a situation when it has not yet 790 * had a chance to write it, because it was preempted. 791 * So add this PEB to the protection queue so far, 792 * because presumably more data will be written there 793 * (including the missing VID header), and then we'll 794 * move it. 795 */ 796 dbg_wl("PEB %d has no VID header", e1->pnum); 797 protect = 1; 798 goto out_not_moved; 799 } else if (err == UBI_IO_FF_BITFLIPS) { 800 /* 801 * The same situation as %UBI_IO_FF, but bit-flips were 802 * detected. It is better to schedule this PEB for 803 * scrubbing. 804 */ 805 dbg_wl("PEB %d has no VID header but has bit-flips", 806 e1->pnum); 807 scrubbing = 1; 808 goto out_not_moved; 809 } 810 811 ubi_err(ubi, "error %d while reading VID header from PEB %d", 812 err, e1->pnum); 813 goto out_error; 814 } 815 816 vol_id = be32_to_cpu(vid_hdr->vol_id); 817 lnum = be32_to_cpu(vid_hdr->lnum); 818 819 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr); 820 if (err) { 821 if (err == MOVE_CANCEL_RACE) { 822 /* 823 * The LEB has not been moved because the volume is 824 * being deleted or the PEB has been put meanwhile. We 825 * should prevent this PEB from being selected for 826 * wear-leveling movement again, so put it to the 827 * protection queue. 828 */ 829 protect = 1; 830 goto out_not_moved; 831 } 832 if (err == MOVE_RETRY) { 833 scrubbing = 1; 834 goto out_not_moved; 835 } 836 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR || 837 err == MOVE_TARGET_RD_ERR) { 838 /* 839 * Target PEB had bit-flips or write error - torture it. 840 */ 841 torture = 1; 842 goto out_not_moved; 843 } 844 845 if (err == MOVE_SOURCE_RD_ERR) { 846 /* 847 * An error happened while reading the source PEB. Do 848 * not switch to R/O mode in this case, and give the 849 * upper layers a possibility to recover from this, 850 * e.g. by unmapping corresponding LEB. Instead, just 851 * put this PEB to the @ubi->erroneous list to prevent 852 * UBI from trying to move it over and over again. 853 */ 854 if (ubi->erroneous_peb_count > ubi->max_erroneous) { 855 ubi_err(ubi, "too many erroneous eraseblocks (%d)", 856 ubi->erroneous_peb_count); 857 goto out_error; 858 } 859 erroneous = 1; 860 goto out_not_moved; 861 } 862 863 if (err < 0) 864 goto out_error; 865 866 ubi_assert(0); 867 } 868 869 /* The PEB has been successfully moved */ 870 if (scrubbing) 871 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d", 872 e1->pnum, vol_id, lnum, e2->pnum); 873 ubi_free_vid_hdr(ubi, vid_hdr); 874 875 spin_lock(&ubi->wl_lock); 876 if (!ubi->move_to_put) { 877 wl_tree_add(e2, &ubi->used); 878 e2 = NULL; 879 } 880 ubi->move_from = ubi->move_to = NULL; 881 ubi->move_to_put = ubi->wl_scheduled = 0; 882 spin_unlock(&ubi->wl_lock); 883 884 err = do_sync_erase(ubi, e1, vol_id, lnum, 0); 885 if (err) { 886 if (e2) 887 wl_entry_destroy(ubi, e2); 888 goto out_ro; 889 } 890 891 if (e2) { 892 /* 893 * Well, the target PEB was put meanwhile, schedule it for 894 * erasure. 895 */ 896 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase", 897 e2->pnum, vol_id, lnum); 898 err = do_sync_erase(ubi, e2, vol_id, lnum, 0); 899 if (err) 900 goto out_ro; 901 } 902 903 dbg_wl("done"); 904 mutex_unlock(&ubi->move_mutex); 905 return 0; 906 907 /* 908 * For some reasons the LEB was not moved, might be an error, might be 909 * something else. @e1 was not changed, so return it back. @e2 might 910 * have been changed, schedule it for erasure. 911 */ 912 out_not_moved: 913 if (vol_id != -1) 914 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)", 915 e1->pnum, vol_id, lnum, e2->pnum, err); 916 else 917 dbg_wl("cancel moving PEB %d to PEB %d (%d)", 918 e1->pnum, e2->pnum, err); 919 spin_lock(&ubi->wl_lock); 920 if (protect) 921 prot_queue_add(ubi, e1); 922 else if (erroneous) { 923 wl_tree_add(e1, &ubi->erroneous); 924 ubi->erroneous_peb_count += 1; 925 } else if (scrubbing) 926 wl_tree_add(e1, &ubi->scrub); 927 else 928 wl_tree_add(e1, &ubi->used); 929 ubi_assert(!ubi->move_to_put); 930 ubi->move_from = ubi->move_to = NULL; 931 ubi->wl_scheduled = 0; 932 spin_unlock(&ubi->wl_lock); 933 934 ubi_free_vid_hdr(ubi, vid_hdr); 935 err = do_sync_erase(ubi, e2, vol_id, lnum, torture); 936 if (err) 937 goto out_ro; 938 939 mutex_unlock(&ubi->move_mutex); 940 return 0; 941 942 out_error: 943 if (vol_id != -1) 944 ubi_err(ubi, "error %d while moving PEB %d to PEB %d", 945 err, e1->pnum, e2->pnum); 946 else 947 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d", 948 err, e1->pnum, vol_id, lnum, e2->pnum); 949 spin_lock(&ubi->wl_lock); 950 ubi->move_from = ubi->move_to = NULL; 951 ubi->move_to_put = ubi->wl_scheduled = 0; 952 spin_unlock(&ubi->wl_lock); 953 954 ubi_free_vid_hdr(ubi, vid_hdr); 955 wl_entry_destroy(ubi, e1); 956 wl_entry_destroy(ubi, e2); 957 958 out_ro: 959 ubi_ro_mode(ubi); 960 mutex_unlock(&ubi->move_mutex); 961 ubi_assert(err != 0); 962 return err < 0 ? err : -EIO; 963 964 out_cancel: 965 ubi->wl_scheduled = 0; 966 spin_unlock(&ubi->wl_lock); 967 mutex_unlock(&ubi->move_mutex); 968 ubi_free_vid_hdr(ubi, vid_hdr); 969 return 0; 970 } 971 972 /** 973 * ensure_wear_leveling - schedule wear-leveling if it is needed. 974 * @ubi: UBI device description object 975 * @nested: set to non-zero if this function is called from UBI worker 976 * 977 * This function checks if it is time to start wear-leveling and schedules it 978 * if yes. This function returns zero in case of success and a negative error 979 * code in case of failure. 980 */ 981 static int ensure_wear_leveling(struct ubi_device *ubi, int nested) 982 { 983 int err = 0; 984 struct ubi_wl_entry *e1; 985 struct ubi_wl_entry *e2; 986 struct ubi_work *wrk; 987 988 spin_lock(&ubi->wl_lock); 989 if (ubi->wl_scheduled) 990 /* Wear-leveling is already in the work queue */ 991 goto out_unlock; 992 993 /* 994 * If the ubi->scrub tree is not empty, scrubbing is needed, and the 995 * the WL worker has to be scheduled anyway. 996 */ 997 if (!ubi->scrub.rb_node) { 998 if (!ubi->used.rb_node || !ubi->free.rb_node) 999 /* No physical eraseblocks - no deal */ 1000 goto out_unlock; 1001 1002 /* 1003 * We schedule wear-leveling only if the difference between the 1004 * lowest erase counter of used physical eraseblocks and a high 1005 * erase counter of free physical eraseblocks is greater than 1006 * %UBI_WL_THRESHOLD. 1007 */ 1008 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 1009 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 1010 1011 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) 1012 goto out_unlock; 1013 dbg_wl("schedule wear-leveling"); 1014 } else 1015 dbg_wl("schedule scrubbing"); 1016 1017 ubi->wl_scheduled = 1; 1018 spin_unlock(&ubi->wl_lock); 1019 1020 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 1021 if (!wrk) { 1022 err = -ENOMEM; 1023 goto out_cancel; 1024 } 1025 1026 wrk->anchor = 0; 1027 wrk->func = &wear_leveling_worker; 1028 if (nested) 1029 __schedule_ubi_work(ubi, wrk); 1030 #ifndef __UBOOT__ 1031 else 1032 schedule_ubi_work(ubi, wrk); 1033 #else 1034 else { 1035 schedule_ubi_work(ubi, wrk); 1036 ubi_do_worker(ubi); 1037 } 1038 #endif 1039 return err; 1040 1041 out_cancel: 1042 spin_lock(&ubi->wl_lock); 1043 ubi->wl_scheduled = 0; 1044 out_unlock: 1045 spin_unlock(&ubi->wl_lock); 1046 return err; 1047 } 1048 1049 /** 1050 * erase_worker - physical eraseblock erase worker function. 1051 * @ubi: UBI device description object 1052 * @wl_wrk: the work object 1053 * @shutdown: non-zero if the worker has to free memory and exit 1054 * because the WL sub-system is shutting down 1055 * 1056 * This function erases a physical eraseblock and perform torture testing if 1057 * needed. It also takes care about marking the physical eraseblock bad if 1058 * needed. Returns zero in case of success and a negative error code in case of 1059 * failure. 1060 */ 1061 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 1062 int shutdown) 1063 { 1064 struct ubi_wl_entry *e = wl_wrk->e; 1065 int pnum = e->pnum; 1066 int vol_id = wl_wrk->vol_id; 1067 int lnum = wl_wrk->lnum; 1068 int err, available_consumed = 0; 1069 1070 if (shutdown) { 1071 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec); 1072 kfree(wl_wrk); 1073 wl_entry_destroy(ubi, e); 1074 return 0; 1075 } 1076 1077 dbg_wl("erase PEB %d EC %d LEB %d:%d", 1078 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum); 1079 1080 err = sync_erase(ubi, e, wl_wrk->torture); 1081 if (!err) { 1082 /* Fine, we've erased it successfully */ 1083 kfree(wl_wrk); 1084 1085 spin_lock(&ubi->wl_lock); 1086 wl_tree_add(e, &ubi->free); 1087 ubi->free_count++; 1088 spin_unlock(&ubi->wl_lock); 1089 1090 /* 1091 * One more erase operation has happened, take care about 1092 * protected physical eraseblocks. 1093 */ 1094 serve_prot_queue(ubi); 1095 1096 /* And take care about wear-leveling */ 1097 err = ensure_wear_leveling(ubi, 1); 1098 return err; 1099 } 1100 1101 ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err); 1102 kfree(wl_wrk); 1103 1104 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN || 1105 err == -EBUSY) { 1106 int err1; 1107 1108 /* Re-schedule the LEB for erasure */ 1109 err1 = schedule_erase(ubi, e, vol_id, lnum, 0); 1110 if (err1) { 1111 err = err1; 1112 goto out_ro; 1113 } 1114 return err; 1115 } 1116 1117 wl_entry_destroy(ubi, e); 1118 if (err != -EIO) 1119 /* 1120 * If this is not %-EIO, we have no idea what to do. Scheduling 1121 * this physical eraseblock for erasure again would cause 1122 * errors again and again. Well, lets switch to R/O mode. 1123 */ 1124 goto out_ro; 1125 1126 /* It is %-EIO, the PEB went bad */ 1127 1128 if (!ubi->bad_allowed) { 1129 ubi_err(ubi, "bad physical eraseblock %d detected", pnum); 1130 goto out_ro; 1131 } 1132 1133 spin_lock(&ubi->volumes_lock); 1134 if (ubi->beb_rsvd_pebs == 0) { 1135 if (ubi->avail_pebs == 0) { 1136 spin_unlock(&ubi->volumes_lock); 1137 ubi_err(ubi, "no reserved/available physical eraseblocks"); 1138 goto out_ro; 1139 } 1140 ubi->avail_pebs -= 1; 1141 available_consumed = 1; 1142 } 1143 spin_unlock(&ubi->volumes_lock); 1144 1145 ubi_msg(ubi, "mark PEB %d as bad", pnum); 1146 err = ubi_io_mark_bad(ubi, pnum); 1147 if (err) 1148 goto out_ro; 1149 1150 spin_lock(&ubi->volumes_lock); 1151 if (ubi->beb_rsvd_pebs > 0) { 1152 if (available_consumed) { 1153 /* 1154 * The amount of reserved PEBs increased since we last 1155 * checked. 1156 */ 1157 ubi->avail_pebs += 1; 1158 available_consumed = 0; 1159 } 1160 ubi->beb_rsvd_pebs -= 1; 1161 } 1162 ubi->bad_peb_count += 1; 1163 ubi->good_peb_count -= 1; 1164 ubi_calculate_reserved(ubi); 1165 if (available_consumed) 1166 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB"); 1167 else if (ubi->beb_rsvd_pebs) 1168 ubi_msg(ubi, "%d PEBs left in the reserve", 1169 ubi->beb_rsvd_pebs); 1170 else 1171 ubi_warn(ubi, "last PEB from the reserve was used"); 1172 spin_unlock(&ubi->volumes_lock); 1173 1174 return err; 1175 1176 out_ro: 1177 if (available_consumed) { 1178 spin_lock(&ubi->volumes_lock); 1179 ubi->avail_pebs += 1; 1180 spin_unlock(&ubi->volumes_lock); 1181 } 1182 ubi_ro_mode(ubi); 1183 return err; 1184 } 1185 1186 /** 1187 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system. 1188 * @ubi: UBI device description object 1189 * @vol_id: the volume ID that last used this PEB 1190 * @lnum: the last used logical eraseblock number for the PEB 1191 * @pnum: physical eraseblock to return 1192 * @torture: if this physical eraseblock has to be tortured 1193 * 1194 * This function is called to return physical eraseblock @pnum to the pool of 1195 * free physical eraseblocks. The @torture flag has to be set if an I/O error 1196 * occurred to this @pnum and it has to be tested. This function returns zero 1197 * in case of success, and a negative error code in case of failure. 1198 */ 1199 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum, 1200 int pnum, int torture) 1201 { 1202 int err; 1203 struct ubi_wl_entry *e; 1204 1205 dbg_wl("PEB %d", pnum); 1206 ubi_assert(pnum >= 0); 1207 ubi_assert(pnum < ubi->peb_count); 1208 1209 down_read(&ubi->fm_protect); 1210 1211 retry: 1212 spin_lock(&ubi->wl_lock); 1213 e = ubi->lookuptbl[pnum]; 1214 if (e == ubi->move_from) { 1215 /* 1216 * User is putting the physical eraseblock which was selected to 1217 * be moved. It will be scheduled for erasure in the 1218 * wear-leveling worker. 1219 */ 1220 dbg_wl("PEB %d is being moved, wait", pnum); 1221 spin_unlock(&ubi->wl_lock); 1222 1223 /* Wait for the WL worker by taking the @ubi->move_mutex */ 1224 mutex_lock(&ubi->move_mutex); 1225 mutex_unlock(&ubi->move_mutex); 1226 goto retry; 1227 } else if (e == ubi->move_to) { 1228 /* 1229 * User is putting the physical eraseblock which was selected 1230 * as the target the data is moved to. It may happen if the EBA 1231 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()' 1232 * but the WL sub-system has not put the PEB to the "used" tree 1233 * yet, but it is about to do this. So we just set a flag which 1234 * will tell the WL worker that the PEB is not needed anymore 1235 * and should be scheduled for erasure. 1236 */ 1237 dbg_wl("PEB %d is the target of data moving", pnum); 1238 ubi_assert(!ubi->move_to_put); 1239 ubi->move_to_put = 1; 1240 spin_unlock(&ubi->wl_lock); 1241 up_read(&ubi->fm_protect); 1242 return 0; 1243 } else { 1244 if (in_wl_tree(e, &ubi->used)) { 1245 self_check_in_wl_tree(ubi, e, &ubi->used); 1246 rb_erase(&e->u.rb, &ubi->used); 1247 } else if (in_wl_tree(e, &ubi->scrub)) { 1248 self_check_in_wl_tree(ubi, e, &ubi->scrub); 1249 rb_erase(&e->u.rb, &ubi->scrub); 1250 } else if (in_wl_tree(e, &ubi->erroneous)) { 1251 self_check_in_wl_tree(ubi, e, &ubi->erroneous); 1252 rb_erase(&e->u.rb, &ubi->erroneous); 1253 ubi->erroneous_peb_count -= 1; 1254 ubi_assert(ubi->erroneous_peb_count >= 0); 1255 /* Erroneous PEBs should be tortured */ 1256 torture = 1; 1257 } else { 1258 err = prot_queue_del(ubi, e->pnum); 1259 if (err) { 1260 ubi_err(ubi, "PEB %d not found", pnum); 1261 ubi_ro_mode(ubi); 1262 spin_unlock(&ubi->wl_lock); 1263 up_read(&ubi->fm_protect); 1264 return err; 1265 } 1266 } 1267 } 1268 spin_unlock(&ubi->wl_lock); 1269 1270 err = schedule_erase(ubi, e, vol_id, lnum, torture); 1271 if (err) { 1272 spin_lock(&ubi->wl_lock); 1273 wl_tree_add(e, &ubi->used); 1274 spin_unlock(&ubi->wl_lock); 1275 } 1276 1277 up_read(&ubi->fm_protect); 1278 return err; 1279 } 1280 1281 /** 1282 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing. 1283 * @ubi: UBI device description object 1284 * @pnum: the physical eraseblock to schedule 1285 * 1286 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock 1287 * needs scrubbing. This function schedules a physical eraseblock for 1288 * scrubbing which is done in background. This function returns zero in case of 1289 * success and a negative error code in case of failure. 1290 */ 1291 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) 1292 { 1293 struct ubi_wl_entry *e; 1294 1295 ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum); 1296 1297 retry: 1298 spin_lock(&ubi->wl_lock); 1299 e = ubi->lookuptbl[pnum]; 1300 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) || 1301 in_wl_tree(e, &ubi->erroneous)) { 1302 spin_unlock(&ubi->wl_lock); 1303 return 0; 1304 } 1305 1306 if (e == ubi->move_to) { 1307 /* 1308 * This physical eraseblock was used to move data to. The data 1309 * was moved but the PEB was not yet inserted to the proper 1310 * tree. We should just wait a little and let the WL worker 1311 * proceed. 1312 */ 1313 spin_unlock(&ubi->wl_lock); 1314 dbg_wl("the PEB %d is not in proper tree, retry", pnum); 1315 yield(); 1316 goto retry; 1317 } 1318 1319 if (in_wl_tree(e, &ubi->used)) { 1320 self_check_in_wl_tree(ubi, e, &ubi->used); 1321 rb_erase(&e->u.rb, &ubi->used); 1322 } else { 1323 int err; 1324 1325 err = prot_queue_del(ubi, e->pnum); 1326 if (err) { 1327 ubi_err(ubi, "PEB %d not found", pnum); 1328 ubi_ro_mode(ubi); 1329 spin_unlock(&ubi->wl_lock); 1330 return err; 1331 } 1332 } 1333 1334 wl_tree_add(e, &ubi->scrub); 1335 spin_unlock(&ubi->wl_lock); 1336 1337 /* 1338 * Technically scrubbing is the same as wear-leveling, so it is done 1339 * by the WL worker. 1340 */ 1341 return ensure_wear_leveling(ubi, 0); 1342 } 1343 1344 /** 1345 * ubi_wl_flush - flush all pending works. 1346 * @ubi: UBI device description object 1347 * @vol_id: the volume id to flush for 1348 * @lnum: the logical eraseblock number to flush for 1349 * 1350 * This function executes all pending works for a particular volume id / 1351 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it 1352 * acts as a wildcard for all of the corresponding volume numbers or logical 1353 * eraseblock numbers. It returns zero in case of success and a negative error 1354 * code in case of failure. 1355 */ 1356 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum) 1357 { 1358 int err = 0; 1359 int found = 1; 1360 1361 /* 1362 * Erase while the pending works queue is not empty, but not more than 1363 * the number of currently pending works. 1364 */ 1365 dbg_wl("flush pending work for LEB %d:%d (%d pending works)", 1366 vol_id, lnum, ubi->works_count); 1367 1368 while (found) { 1369 struct ubi_work *wrk, *tmp; 1370 found = 0; 1371 1372 down_read(&ubi->work_sem); 1373 spin_lock(&ubi->wl_lock); 1374 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) { 1375 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) && 1376 (lnum == UBI_ALL || wrk->lnum == lnum)) { 1377 list_del(&wrk->list); 1378 ubi->works_count -= 1; 1379 ubi_assert(ubi->works_count >= 0); 1380 spin_unlock(&ubi->wl_lock); 1381 1382 err = wrk->func(ubi, wrk, 0); 1383 if (err) { 1384 up_read(&ubi->work_sem); 1385 return err; 1386 } 1387 1388 spin_lock(&ubi->wl_lock); 1389 found = 1; 1390 break; 1391 } 1392 } 1393 spin_unlock(&ubi->wl_lock); 1394 up_read(&ubi->work_sem); 1395 } 1396 1397 /* 1398 * Make sure all the works which have been done in parallel are 1399 * finished. 1400 */ 1401 down_write(&ubi->work_sem); 1402 up_write(&ubi->work_sem); 1403 1404 return err; 1405 } 1406 1407 /** 1408 * tree_destroy - destroy an RB-tree. 1409 * @ubi: UBI device description object 1410 * @root: the root of the tree to destroy 1411 */ 1412 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root) 1413 { 1414 struct rb_node *rb; 1415 struct ubi_wl_entry *e; 1416 1417 rb = root->rb_node; 1418 while (rb) { 1419 if (rb->rb_left) 1420 rb = rb->rb_left; 1421 else if (rb->rb_right) 1422 rb = rb->rb_right; 1423 else { 1424 e = rb_entry(rb, struct ubi_wl_entry, u.rb); 1425 1426 rb = rb_parent(rb); 1427 if (rb) { 1428 if (rb->rb_left == &e->u.rb) 1429 rb->rb_left = NULL; 1430 else 1431 rb->rb_right = NULL; 1432 } 1433 1434 wl_entry_destroy(ubi, e); 1435 } 1436 } 1437 } 1438 1439 /** 1440 * ubi_thread - UBI background thread. 1441 * @u: the UBI device description object pointer 1442 */ 1443 int ubi_thread(void *u) 1444 { 1445 int failures = 0; 1446 struct ubi_device *ubi = u; 1447 1448 ubi_msg(ubi, "background thread \"%s\" started, PID %d", 1449 ubi->bgt_name, task_pid_nr(current)); 1450 1451 set_freezable(); 1452 for (;;) { 1453 int err; 1454 1455 if (kthread_should_stop()) 1456 break; 1457 1458 if (try_to_freeze()) 1459 continue; 1460 1461 spin_lock(&ubi->wl_lock); 1462 if (list_empty(&ubi->works) || ubi->ro_mode || 1463 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) { 1464 set_current_state(TASK_INTERRUPTIBLE); 1465 spin_unlock(&ubi->wl_lock); 1466 schedule(); 1467 continue; 1468 } 1469 spin_unlock(&ubi->wl_lock); 1470 1471 err = do_work(ubi); 1472 if (err) { 1473 ubi_err(ubi, "%s: work failed with error code %d", 1474 ubi->bgt_name, err); 1475 if (failures++ > WL_MAX_FAILURES) { 1476 /* 1477 * Too many failures, disable the thread and 1478 * switch to read-only mode. 1479 */ 1480 ubi_msg(ubi, "%s: %d consecutive failures", 1481 ubi->bgt_name, WL_MAX_FAILURES); 1482 ubi_ro_mode(ubi); 1483 ubi->thread_enabled = 0; 1484 continue; 1485 } 1486 } else 1487 failures = 0; 1488 1489 cond_resched(); 1490 } 1491 1492 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name); 1493 return 0; 1494 } 1495 1496 /** 1497 * shutdown_work - shutdown all pending works. 1498 * @ubi: UBI device description object 1499 */ 1500 static void shutdown_work(struct ubi_device *ubi) 1501 { 1502 #ifdef CONFIG_MTD_UBI_FASTMAP 1503 #ifndef __UBOOT__ 1504 flush_work(&ubi->fm_work); 1505 #else 1506 /* in U-Boot, we have all work done */ 1507 #endif 1508 #endif 1509 while (!list_empty(&ubi->works)) { 1510 struct ubi_work *wrk; 1511 1512 wrk = list_entry(ubi->works.next, struct ubi_work, list); 1513 list_del(&wrk->list); 1514 wrk->func(ubi, wrk, 1); 1515 ubi->works_count -= 1; 1516 ubi_assert(ubi->works_count >= 0); 1517 } 1518 } 1519 1520 /** 1521 * ubi_wl_init - initialize the WL sub-system using attaching information. 1522 * @ubi: UBI device description object 1523 * @ai: attaching information 1524 * 1525 * This function returns zero in case of success, and a negative error code in 1526 * case of failure. 1527 */ 1528 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai) 1529 { 1530 int err, i, reserved_pebs, found_pebs = 0; 1531 struct rb_node *rb1, *rb2; 1532 struct ubi_ainf_volume *av; 1533 struct ubi_ainf_peb *aeb, *tmp; 1534 struct ubi_wl_entry *e; 1535 1536 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT; 1537 spin_lock_init(&ubi->wl_lock); 1538 mutex_init(&ubi->move_mutex); 1539 init_rwsem(&ubi->work_sem); 1540 ubi->max_ec = ai->max_ec; 1541 INIT_LIST_HEAD(&ubi->works); 1542 1543 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); 1544 1545 err = -ENOMEM; 1546 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL); 1547 if (!ubi->lookuptbl) 1548 return err; 1549 1550 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++) 1551 INIT_LIST_HEAD(&ubi->pq[i]); 1552 ubi->pq_head = 0; 1553 1554 ubi->free_count = 0; 1555 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) { 1556 cond_resched(); 1557 1558 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1559 if (!e) 1560 goto out_free; 1561 1562 e->pnum = aeb->pnum; 1563 e->ec = aeb->ec; 1564 ubi->lookuptbl[e->pnum] = e; 1565 if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) { 1566 wl_entry_destroy(ubi, e); 1567 goto out_free; 1568 } 1569 1570 found_pebs++; 1571 } 1572 1573 list_for_each_entry(aeb, &ai->free, u.list) { 1574 cond_resched(); 1575 1576 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1577 if (!e) 1578 goto out_free; 1579 1580 e->pnum = aeb->pnum; 1581 e->ec = aeb->ec; 1582 ubi_assert(e->ec >= 0); 1583 1584 wl_tree_add(e, &ubi->free); 1585 ubi->free_count++; 1586 1587 ubi->lookuptbl[e->pnum] = e; 1588 1589 found_pebs++; 1590 } 1591 1592 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { 1593 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { 1594 cond_resched(); 1595 1596 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1597 if (!e) 1598 goto out_free; 1599 1600 e->pnum = aeb->pnum; 1601 e->ec = aeb->ec; 1602 ubi->lookuptbl[e->pnum] = e; 1603 1604 if (!aeb->scrub) { 1605 dbg_wl("add PEB %d EC %d to the used tree", 1606 e->pnum, e->ec); 1607 wl_tree_add(e, &ubi->used); 1608 } else { 1609 dbg_wl("add PEB %d EC %d to the scrub tree", 1610 e->pnum, e->ec); 1611 wl_tree_add(e, &ubi->scrub); 1612 } 1613 1614 found_pebs++; 1615 } 1616 } 1617 1618 dbg_wl("found %i PEBs", found_pebs); 1619 1620 if (ubi->fm) { 1621 ubi_assert(ubi->good_peb_count == 1622 found_pebs + ubi->fm->used_blocks); 1623 1624 for (i = 0; i < ubi->fm->used_blocks; i++) { 1625 e = ubi->fm->e[i]; 1626 ubi->lookuptbl[e->pnum] = e; 1627 } 1628 } 1629 else 1630 ubi_assert(ubi->good_peb_count == found_pebs); 1631 1632 reserved_pebs = WL_RESERVED_PEBS; 1633 ubi_fastmap_init(ubi, &reserved_pebs); 1634 1635 if (ubi->avail_pebs < reserved_pebs) { 1636 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)", 1637 ubi->avail_pebs, reserved_pebs); 1638 if (ubi->corr_peb_count) 1639 ubi_err(ubi, "%d PEBs are corrupted and not used", 1640 ubi->corr_peb_count); 1641 goto out_free; 1642 } 1643 ubi->avail_pebs -= reserved_pebs; 1644 ubi->rsvd_pebs += reserved_pebs; 1645 1646 /* Schedule wear-leveling if needed */ 1647 err = ensure_wear_leveling(ubi, 0); 1648 if (err) 1649 goto out_free; 1650 1651 return 0; 1652 1653 out_free: 1654 shutdown_work(ubi); 1655 tree_destroy(ubi, &ubi->used); 1656 tree_destroy(ubi, &ubi->free); 1657 tree_destroy(ubi, &ubi->scrub); 1658 kfree(ubi->lookuptbl); 1659 return err; 1660 } 1661 1662 /** 1663 * protection_queue_destroy - destroy the protection queue. 1664 * @ubi: UBI device description object 1665 */ 1666 static void protection_queue_destroy(struct ubi_device *ubi) 1667 { 1668 int i; 1669 struct ubi_wl_entry *e, *tmp; 1670 1671 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) { 1672 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) { 1673 list_del(&e->u.list); 1674 wl_entry_destroy(ubi, e); 1675 } 1676 } 1677 } 1678 1679 /** 1680 * ubi_wl_close - close the wear-leveling sub-system. 1681 * @ubi: UBI device description object 1682 */ 1683 void ubi_wl_close(struct ubi_device *ubi) 1684 { 1685 dbg_wl("close the WL sub-system"); 1686 ubi_fastmap_close(ubi); 1687 shutdown_work(ubi); 1688 protection_queue_destroy(ubi); 1689 tree_destroy(ubi, &ubi->used); 1690 tree_destroy(ubi, &ubi->erroneous); 1691 tree_destroy(ubi, &ubi->free); 1692 tree_destroy(ubi, &ubi->scrub); 1693 kfree(ubi->lookuptbl); 1694 } 1695 1696 /** 1697 * self_check_ec - make sure that the erase counter of a PEB is correct. 1698 * @ubi: UBI device description object 1699 * @pnum: the physical eraseblock number to check 1700 * @ec: the erase counter to check 1701 * 1702 * This function returns zero if the erase counter of physical eraseblock @pnum 1703 * is equivalent to @ec, and a negative error code if not or if an error 1704 * occurred. 1705 */ 1706 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec) 1707 { 1708 int err; 1709 long long read_ec; 1710 struct ubi_ec_hdr *ec_hdr; 1711 1712 if (!ubi_dbg_chk_gen(ubi)) 1713 return 0; 1714 1715 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 1716 if (!ec_hdr) 1717 return -ENOMEM; 1718 1719 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); 1720 if (err && err != UBI_IO_BITFLIPS) { 1721 /* The header does not have to exist */ 1722 err = 0; 1723 goto out_free; 1724 } 1725 1726 read_ec = be64_to_cpu(ec_hdr->ec); 1727 if (ec != read_ec && read_ec - ec > 1) { 1728 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1729 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec); 1730 dump_stack(); 1731 err = 1; 1732 } else 1733 err = 0; 1734 1735 out_free: 1736 kfree(ec_hdr); 1737 return err; 1738 } 1739 1740 /** 1741 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree. 1742 * @ubi: UBI device description object 1743 * @e: the wear-leveling entry to check 1744 * @root: the root of the tree 1745 * 1746 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it 1747 * is not. 1748 */ 1749 static int self_check_in_wl_tree(const struct ubi_device *ubi, 1750 struct ubi_wl_entry *e, struct rb_root *root) 1751 { 1752 if (!ubi_dbg_chk_gen(ubi)) 1753 return 0; 1754 1755 if (in_wl_tree(e, root)) 1756 return 0; 1757 1758 ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ", 1759 e->pnum, e->ec, root); 1760 dump_stack(); 1761 return -EINVAL; 1762 } 1763 1764 /** 1765 * self_check_in_pq - check if wear-leveling entry is in the protection 1766 * queue. 1767 * @ubi: UBI device description object 1768 * @e: the wear-leveling entry to check 1769 * 1770 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not. 1771 */ 1772 static int self_check_in_pq(const struct ubi_device *ubi, 1773 struct ubi_wl_entry *e) 1774 { 1775 struct ubi_wl_entry *p; 1776 int i; 1777 1778 if (!ubi_dbg_chk_gen(ubi)) 1779 return 0; 1780 1781 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) 1782 list_for_each_entry(p, &ubi->pq[i], u.list) 1783 if (p == e) 1784 return 0; 1785 1786 ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue", 1787 e->pnum, e->ec); 1788 dump_stack(); 1789 return -EINVAL; 1790 } 1791 #ifndef CONFIG_MTD_UBI_FASTMAP 1792 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi) 1793 { 1794 struct ubi_wl_entry *e; 1795 1796 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 1797 self_check_in_wl_tree(ubi, e, &ubi->free); 1798 ubi->free_count--; 1799 ubi_assert(ubi->free_count >= 0); 1800 rb_erase(&e->u.rb, &ubi->free); 1801 1802 return e; 1803 } 1804 1805 /** 1806 * produce_free_peb - produce a free physical eraseblock. 1807 * @ubi: UBI device description object 1808 * 1809 * This function tries to make a free PEB by means of synchronous execution of 1810 * pending works. This may be needed if, for example the background thread is 1811 * disabled. Returns zero in case of success and a negative error code in case 1812 * of failure. 1813 */ 1814 static int produce_free_peb(struct ubi_device *ubi) 1815 { 1816 int err; 1817 1818 while (!ubi->free.rb_node && ubi->works_count) { 1819 spin_unlock(&ubi->wl_lock); 1820 1821 dbg_wl("do one work synchronously"); 1822 err = do_work(ubi); 1823 1824 spin_lock(&ubi->wl_lock); 1825 if (err) 1826 return err; 1827 } 1828 1829 return 0; 1830 } 1831 1832 /** 1833 * ubi_wl_get_peb - get a physical eraseblock. 1834 * @ubi: UBI device description object 1835 * 1836 * This function returns a physical eraseblock in case of success and a 1837 * negative error code in case of failure. 1838 * Returns with ubi->fm_eba_sem held in read mode! 1839 */ 1840 int ubi_wl_get_peb(struct ubi_device *ubi) 1841 { 1842 int err; 1843 struct ubi_wl_entry *e; 1844 1845 retry: 1846 down_read(&ubi->fm_eba_sem); 1847 spin_lock(&ubi->wl_lock); 1848 if (!ubi->free.rb_node) { 1849 if (ubi->works_count == 0) { 1850 ubi_err(ubi, "no free eraseblocks"); 1851 ubi_assert(list_empty(&ubi->works)); 1852 spin_unlock(&ubi->wl_lock); 1853 return -ENOSPC; 1854 } 1855 1856 err = produce_free_peb(ubi); 1857 if (err < 0) { 1858 spin_unlock(&ubi->wl_lock); 1859 return err; 1860 } 1861 spin_unlock(&ubi->wl_lock); 1862 up_read(&ubi->fm_eba_sem); 1863 goto retry; 1864 1865 } 1866 e = wl_get_wle(ubi); 1867 prot_queue_add(ubi, e); 1868 spin_unlock(&ubi->wl_lock); 1869 1870 err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset, 1871 ubi->peb_size - ubi->vid_hdr_aloffset); 1872 if (err) { 1873 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum); 1874 return err; 1875 } 1876 1877 return e->pnum; 1878 } 1879 #else 1880 #include "fastmap-wl.c" 1881 #endif 1882