xref: /openbmc/u-boot/drivers/mtd/ubi/wl.c (revision 57efeb04)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) International Business Machines Corp., 2006
4  *
5  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
6  */
7 
8 /*
9  * UBI wear-leveling sub-system.
10  *
11  * This sub-system is responsible for wear-leveling. It works in terms of
12  * physical eraseblocks and erase counters and knows nothing about logical
13  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
14  * eraseblocks are of two types - used and free. Used physical eraseblocks are
15  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
16  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
17  *
18  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
19  * header. The rest of the physical eraseblock contains only %0xFF bytes.
20  *
21  * When physical eraseblocks are returned to the WL sub-system by means of the
22  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
23  * done asynchronously in context of the per-UBI device background thread,
24  * which is also managed by the WL sub-system.
25  *
26  * The wear-leveling is ensured by means of moving the contents of used
27  * physical eraseblocks with low erase counter to free physical eraseblocks
28  * with high erase counter.
29  *
30  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
31  * bad.
32  *
33  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
34  * in a physical eraseblock, it has to be moved. Technically this is the same
35  * as moving it for wear-leveling reasons.
36  *
37  * As it was said, for the UBI sub-system all physical eraseblocks are either
38  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
39  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
40  * RB-trees, as well as (temporarily) in the @wl->pq queue.
41  *
42  * When the WL sub-system returns a physical eraseblock, the physical
43  * eraseblock is protected from being moved for some "time". For this reason,
44  * the physical eraseblock is not directly moved from the @wl->free tree to the
45  * @wl->used tree. There is a protection queue in between where this
46  * physical eraseblock is temporarily stored (@wl->pq).
47  *
48  * All this protection stuff is needed because:
49  *  o we don't want to move physical eraseblocks just after we have given them
50  *    to the user; instead, we first want to let users fill them up with data;
51  *
52  *  o there is a chance that the user will put the physical eraseblock very
53  *    soon, so it makes sense not to move it for some time, but wait.
54  *
55  * Physical eraseblocks stay protected only for limited time. But the "time" is
56  * measured in erase cycles in this case. This is implemented with help of the
57  * protection queue. Eraseblocks are put to the tail of this queue when they
58  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
59  * head of the queue on each erase operation (for any eraseblock). So the
60  * length of the queue defines how may (global) erase cycles PEBs are protected.
61  *
62  * To put it differently, each physical eraseblock has 2 main states: free and
63  * used. The former state corresponds to the @wl->free tree. The latter state
64  * is split up on several sub-states:
65  * o the WL movement is allowed (@wl->used tree);
66  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
67  *   erroneous - e.g., there was a read error;
68  * o the WL movement is temporarily prohibited (@wl->pq queue);
69  * o scrubbing is needed (@wl->scrub tree).
70  *
71  * Depending on the sub-state, wear-leveling entries of the used physical
72  * eraseblocks may be kept in one of those structures.
73  *
74  * Note, in this implementation, we keep a small in-RAM object for each physical
75  * eraseblock. This is surely not a scalable solution. But it appears to be good
76  * enough for moderately large flashes and it is simple. In future, one may
77  * re-work this sub-system and make it more scalable.
78  *
79  * At the moment this sub-system does not utilize the sequence number, which
80  * was introduced relatively recently. But it would be wise to do this because
81  * the sequence number of a logical eraseblock characterizes how old is it. For
82  * example, when we move a PEB with low erase counter, and we need to pick the
83  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
84  * pick target PEB with an average EC if our PEB is not very "old". This is a
85  * room for future re-works of the WL sub-system.
86  */
87 
88 #ifndef __UBOOT__
89 #include <linux/slab.h>
90 #include <linux/crc32.h>
91 #include <linux/freezer.h>
92 #include <linux/kthread.h>
93 #else
94 #include <ubi_uboot.h>
95 #endif
96 
97 #include "ubi.h"
98 #include "wl.h"
99 
100 /* Number of physical eraseblocks reserved for wear-leveling purposes */
101 #define WL_RESERVED_PEBS 1
102 
103 /*
104  * Maximum difference between two erase counters. If this threshold is
105  * exceeded, the WL sub-system starts moving data from used physical
106  * eraseblocks with low erase counter to free physical eraseblocks with high
107  * erase counter.
108  */
109 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
110 
111 /*
112  * When a physical eraseblock is moved, the WL sub-system has to pick the target
113  * physical eraseblock to move to. The simplest way would be just to pick the
114  * one with the highest erase counter. But in certain workloads this could lead
115  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
116  * situation when the picked physical eraseblock is constantly erased after the
117  * data is written to it. So, we have a constant which limits the highest erase
118  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
119  * does not pick eraseblocks with erase counter greater than the lowest erase
120  * counter plus %WL_FREE_MAX_DIFF.
121  */
122 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
123 
124 /*
125  * Maximum number of consecutive background thread failures which is enough to
126  * switch to read-only mode.
127  */
128 #define WL_MAX_FAILURES 32
129 
130 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
131 static int self_check_in_wl_tree(const struct ubi_device *ubi,
132 				 struct ubi_wl_entry *e, struct rb_root *root);
133 static int self_check_in_pq(const struct ubi_device *ubi,
134 			    struct ubi_wl_entry *e);
135 
136 /**
137  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
138  * @e: the wear-leveling entry to add
139  * @root: the root of the tree
140  *
141  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
142  * the @ubi->used and @ubi->free RB-trees.
143  */
144 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
145 {
146 	struct rb_node **p, *parent = NULL;
147 
148 	p = &root->rb_node;
149 	while (*p) {
150 		struct ubi_wl_entry *e1;
151 
152 		parent = *p;
153 		e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
154 
155 		if (e->ec < e1->ec)
156 			p = &(*p)->rb_left;
157 		else if (e->ec > e1->ec)
158 			p = &(*p)->rb_right;
159 		else {
160 			ubi_assert(e->pnum != e1->pnum);
161 			if (e->pnum < e1->pnum)
162 				p = &(*p)->rb_left;
163 			else
164 				p = &(*p)->rb_right;
165 		}
166 	}
167 
168 	rb_link_node(&e->u.rb, parent, p);
169 	rb_insert_color(&e->u.rb, root);
170 }
171 
172 /**
173  * wl_tree_destroy - destroy a wear-leveling entry.
174  * @ubi: UBI device description object
175  * @e: the wear-leveling entry to add
176  *
177  * This function destroys a wear leveling entry and removes
178  * the reference from the lookup table.
179  */
180 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
181 {
182 	ubi->lookuptbl[e->pnum] = NULL;
183 	kmem_cache_free(ubi_wl_entry_slab, e);
184 }
185 
186 /**
187  * do_work - do one pending work.
188  * @ubi: UBI device description object
189  *
190  * This function returns zero in case of success and a negative error code in
191  * case of failure.
192  */
193 static int do_work(struct ubi_device *ubi)
194 {
195 	int err;
196 	struct ubi_work *wrk;
197 
198 	cond_resched();
199 
200 	/*
201 	 * @ubi->work_sem is used to synchronize with the workers. Workers take
202 	 * it in read mode, so many of them may be doing works at a time. But
203 	 * the queue flush code has to be sure the whole queue of works is
204 	 * done, and it takes the mutex in write mode.
205 	 */
206 	down_read(&ubi->work_sem);
207 	spin_lock(&ubi->wl_lock);
208 	if (list_empty(&ubi->works)) {
209 		spin_unlock(&ubi->wl_lock);
210 		up_read(&ubi->work_sem);
211 		return 0;
212 	}
213 
214 	wrk = list_entry(ubi->works.next, struct ubi_work, list);
215 	list_del(&wrk->list);
216 	ubi->works_count -= 1;
217 	ubi_assert(ubi->works_count >= 0);
218 	spin_unlock(&ubi->wl_lock);
219 
220 	/*
221 	 * Call the worker function. Do not touch the work structure
222 	 * after this call as it will have been freed or reused by that
223 	 * time by the worker function.
224 	 */
225 	err = wrk->func(ubi, wrk, 0);
226 	if (err)
227 		ubi_err(ubi, "work failed with error code %d", err);
228 	up_read(&ubi->work_sem);
229 
230 	return err;
231 }
232 
233 /**
234  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
235  * @e: the wear-leveling entry to check
236  * @root: the root of the tree
237  *
238  * This function returns non-zero if @e is in the @root RB-tree and zero if it
239  * is not.
240  */
241 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
242 {
243 	struct rb_node *p;
244 
245 	p = root->rb_node;
246 	while (p) {
247 		struct ubi_wl_entry *e1;
248 
249 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
250 
251 		if (e->pnum == e1->pnum) {
252 			ubi_assert(e == e1);
253 			return 1;
254 		}
255 
256 		if (e->ec < e1->ec)
257 			p = p->rb_left;
258 		else if (e->ec > e1->ec)
259 			p = p->rb_right;
260 		else {
261 			ubi_assert(e->pnum != e1->pnum);
262 			if (e->pnum < e1->pnum)
263 				p = p->rb_left;
264 			else
265 				p = p->rb_right;
266 		}
267 	}
268 
269 	return 0;
270 }
271 
272 /**
273  * prot_queue_add - add physical eraseblock to the protection queue.
274  * @ubi: UBI device description object
275  * @e: the physical eraseblock to add
276  *
277  * This function adds @e to the tail of the protection queue @ubi->pq, where
278  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
279  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
280  * be locked.
281  */
282 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
283 {
284 	int pq_tail = ubi->pq_head - 1;
285 
286 	if (pq_tail < 0)
287 		pq_tail = UBI_PROT_QUEUE_LEN - 1;
288 	ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
289 	list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
290 	dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
291 }
292 
293 /**
294  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
295  * @ubi: UBI device description object
296  * @root: the RB-tree where to look for
297  * @diff: maximum possible difference from the smallest erase counter
298  *
299  * This function looks for a wear leveling entry with erase counter closest to
300  * min + @diff, where min is the smallest erase counter.
301  */
302 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
303 					  struct rb_root *root, int diff)
304 {
305 	struct rb_node *p;
306 	struct ubi_wl_entry *e, *prev_e = NULL;
307 	int max;
308 
309 	e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
310 	max = e->ec + diff;
311 
312 	p = root->rb_node;
313 	while (p) {
314 		struct ubi_wl_entry *e1;
315 
316 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
317 		if (e1->ec >= max)
318 			p = p->rb_left;
319 		else {
320 			p = p->rb_right;
321 			prev_e = e;
322 			e = e1;
323 		}
324 	}
325 
326 	/* If no fastmap has been written and this WL entry can be used
327 	 * as anchor PEB, hold it back and return the second best WL entry
328 	 * such that fastmap can use the anchor PEB later. */
329 	if (prev_e && !ubi->fm_disabled &&
330 	    !ubi->fm && e->pnum < UBI_FM_MAX_START)
331 		return prev_e;
332 
333 	return e;
334 }
335 
336 /**
337  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
338  * @ubi: UBI device description object
339  * @root: the RB-tree where to look for
340  *
341  * This function looks for a wear leveling entry with medium erase counter,
342  * but not greater or equivalent than the lowest erase counter plus
343  * %WL_FREE_MAX_DIFF/2.
344  */
345 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
346 					       struct rb_root *root)
347 {
348 	struct ubi_wl_entry *e, *first, *last;
349 
350 	first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
351 	last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
352 
353 	if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
354 		e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
355 
356 		/* If no fastmap has been written and this WL entry can be used
357 		 * as anchor PEB, hold it back and return the second best
358 		 * WL entry such that fastmap can use the anchor PEB later. */
359 		e = may_reserve_for_fm(ubi, e, root);
360 	} else
361 		e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
362 
363 	return e;
364 }
365 
366 /**
367  * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
368  * refill_wl_user_pool().
369  * @ubi: UBI device description object
370  *
371  * This function returns a a wear leveling entry in case of success and
372  * NULL in case of failure.
373  */
374 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
375 {
376 	struct ubi_wl_entry *e;
377 
378 	e = find_mean_wl_entry(ubi, &ubi->free);
379 	if (!e) {
380 		ubi_err(ubi, "no free eraseblocks");
381 		return NULL;
382 	}
383 
384 	self_check_in_wl_tree(ubi, e, &ubi->free);
385 
386 	/*
387 	 * Move the physical eraseblock to the protection queue where it will
388 	 * be protected from being moved for some time.
389 	 */
390 	rb_erase(&e->u.rb, &ubi->free);
391 	ubi->free_count--;
392 	dbg_wl("PEB %d EC %d", e->pnum, e->ec);
393 
394 	return e;
395 }
396 
397 /**
398  * prot_queue_del - remove a physical eraseblock from the protection queue.
399  * @ubi: UBI device description object
400  * @pnum: the physical eraseblock to remove
401  *
402  * This function deletes PEB @pnum from the protection queue and returns zero
403  * in case of success and %-ENODEV if the PEB was not found.
404  */
405 static int prot_queue_del(struct ubi_device *ubi, int pnum)
406 {
407 	struct ubi_wl_entry *e;
408 
409 	e = ubi->lookuptbl[pnum];
410 	if (!e)
411 		return -ENODEV;
412 
413 	if (self_check_in_pq(ubi, e))
414 		return -ENODEV;
415 
416 	list_del(&e->u.list);
417 	dbg_wl("deleted PEB %d from the protection queue", e->pnum);
418 	return 0;
419 }
420 
421 /**
422  * sync_erase - synchronously erase a physical eraseblock.
423  * @ubi: UBI device description object
424  * @e: the the physical eraseblock to erase
425  * @torture: if the physical eraseblock has to be tortured
426  *
427  * This function returns zero in case of success and a negative error code in
428  * case of failure.
429  */
430 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
431 		      int torture)
432 {
433 	int err;
434 	struct ubi_ec_hdr *ec_hdr;
435 	unsigned long long ec = e->ec;
436 
437 	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
438 
439 	err = self_check_ec(ubi, e->pnum, e->ec);
440 	if (err)
441 		return -EINVAL;
442 
443 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
444 	if (!ec_hdr)
445 		return -ENOMEM;
446 
447 	err = ubi_io_sync_erase(ubi, e->pnum, torture);
448 	if (err < 0)
449 		goto out_free;
450 
451 	ec += err;
452 	if (ec > UBI_MAX_ERASECOUNTER) {
453 		/*
454 		 * Erase counter overflow. Upgrade UBI and use 64-bit
455 		 * erase counters internally.
456 		 */
457 		ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
458 			e->pnum, ec);
459 		err = -EINVAL;
460 		goto out_free;
461 	}
462 
463 	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
464 
465 	ec_hdr->ec = cpu_to_be64(ec);
466 
467 	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
468 	if (err)
469 		goto out_free;
470 
471 	e->ec = ec;
472 	spin_lock(&ubi->wl_lock);
473 	if (e->ec > ubi->max_ec)
474 		ubi->max_ec = e->ec;
475 	spin_unlock(&ubi->wl_lock);
476 
477 out_free:
478 	kfree(ec_hdr);
479 	return err;
480 }
481 
482 /**
483  * serve_prot_queue - check if it is time to stop protecting PEBs.
484  * @ubi: UBI device description object
485  *
486  * This function is called after each erase operation and removes PEBs from the
487  * tail of the protection queue. These PEBs have been protected for long enough
488  * and should be moved to the used tree.
489  */
490 static void serve_prot_queue(struct ubi_device *ubi)
491 {
492 	struct ubi_wl_entry *e, *tmp;
493 	int count;
494 
495 	/*
496 	 * There may be several protected physical eraseblock to remove,
497 	 * process them all.
498 	 */
499 repeat:
500 	count = 0;
501 	spin_lock(&ubi->wl_lock);
502 	list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
503 		dbg_wl("PEB %d EC %d protection over, move to used tree",
504 			e->pnum, e->ec);
505 
506 		list_del(&e->u.list);
507 		wl_tree_add(e, &ubi->used);
508 		if (count++ > 32) {
509 			/*
510 			 * Let's be nice and avoid holding the spinlock for
511 			 * too long.
512 			 */
513 			spin_unlock(&ubi->wl_lock);
514 			cond_resched();
515 			goto repeat;
516 		}
517 	}
518 
519 	ubi->pq_head += 1;
520 	if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
521 		ubi->pq_head = 0;
522 	ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
523 	spin_unlock(&ubi->wl_lock);
524 }
525 
526 #ifdef __UBOOT__
527 void ubi_do_worker(struct ubi_device *ubi)
528 {
529 	int err;
530 
531 	if (list_empty(&ubi->works) || ubi->ro_mode ||
532 	    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi))
533 		return;
534 
535 	spin_lock(&ubi->wl_lock);
536 	while (!list_empty(&ubi->works)) {
537 		/*
538 		 * call do_work, which executes exactly one work form the queue,
539 		 * including removeing it from the work queue.
540 		 */
541 		spin_unlock(&ubi->wl_lock);
542 		err = do_work(ubi);
543 		spin_lock(&ubi->wl_lock);
544 		if (err) {
545 			ubi_err(ubi, "%s: work failed with error code %d",
546 				ubi->bgt_name, err);
547 		}
548 	}
549 	spin_unlock(&ubi->wl_lock);
550 }
551 #endif
552 
553 /**
554  * __schedule_ubi_work - schedule a work.
555  * @ubi: UBI device description object
556  * @wrk: the work to schedule
557  *
558  * This function adds a work defined by @wrk to the tail of the pending works
559  * list. Can only be used if ubi->work_sem is already held in read mode!
560  */
561 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
562 {
563 	spin_lock(&ubi->wl_lock);
564 	list_add_tail(&wrk->list, &ubi->works);
565 	ubi_assert(ubi->works_count >= 0);
566 	ubi->works_count += 1;
567 #ifndef __UBOOT__
568 	if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
569 		wake_up_process(ubi->bgt_thread);
570 #endif
571 	spin_unlock(&ubi->wl_lock);
572 }
573 
574 /**
575  * schedule_ubi_work - schedule a work.
576  * @ubi: UBI device description object
577  * @wrk: the work to schedule
578  *
579  * This function adds a work defined by @wrk to the tail of the pending works
580  * list.
581  */
582 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
583 {
584 	down_read(&ubi->work_sem);
585 	__schedule_ubi_work(ubi, wrk);
586 	up_read(&ubi->work_sem);
587 }
588 
589 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
590 			int shutdown);
591 
592 /**
593  * schedule_erase - schedule an erase work.
594  * @ubi: UBI device description object
595  * @e: the WL entry of the physical eraseblock to erase
596  * @vol_id: the volume ID that last used this PEB
597  * @lnum: the last used logical eraseblock number for the PEB
598  * @torture: if the physical eraseblock has to be tortured
599  *
600  * This function returns zero in case of success and a %-ENOMEM in case of
601  * failure.
602  */
603 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
604 			  int vol_id, int lnum, int torture)
605 {
606 	struct ubi_work *wl_wrk;
607 
608 	ubi_assert(e);
609 
610 	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
611 	       e->pnum, e->ec, torture);
612 
613 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
614 	if (!wl_wrk)
615 		return -ENOMEM;
616 
617 	wl_wrk->func = &erase_worker;
618 	wl_wrk->e = e;
619 	wl_wrk->vol_id = vol_id;
620 	wl_wrk->lnum = lnum;
621 	wl_wrk->torture = torture;
622 
623 	schedule_ubi_work(ubi, wl_wrk);
624 
625 #ifdef __UBOOT__
626 	ubi_do_worker(ubi);
627 #endif
628 	return 0;
629 }
630 
631 /**
632  * do_sync_erase - run the erase worker synchronously.
633  * @ubi: UBI device description object
634  * @e: the WL entry of the physical eraseblock to erase
635  * @vol_id: the volume ID that last used this PEB
636  * @lnum: the last used logical eraseblock number for the PEB
637  * @torture: if the physical eraseblock has to be tortured
638  *
639  */
640 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
641 			 int vol_id, int lnum, int torture)
642 {
643 	struct ubi_work *wl_wrk;
644 
645 	dbg_wl("sync erase of PEB %i", e->pnum);
646 
647 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
648 	if (!wl_wrk)
649 		return -ENOMEM;
650 
651 	wl_wrk->e = e;
652 	wl_wrk->vol_id = vol_id;
653 	wl_wrk->lnum = lnum;
654 	wl_wrk->torture = torture;
655 
656 	return erase_worker(ubi, wl_wrk, 0);
657 }
658 
659 /**
660  * wear_leveling_worker - wear-leveling worker function.
661  * @ubi: UBI device description object
662  * @wrk: the work object
663  * @shutdown: non-zero if the worker has to free memory and exit
664  * because the WL-subsystem is shutting down
665  *
666  * This function copies a more worn out physical eraseblock to a less worn out
667  * one. Returns zero in case of success and a negative error code in case of
668  * failure.
669  */
670 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
671 				int shutdown)
672 {
673 	int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
674 	int vol_id = -1, lnum = -1;
675 #ifdef CONFIG_MTD_UBI_FASTMAP
676 	int anchor = wrk->anchor;
677 #endif
678 	struct ubi_wl_entry *e1, *e2;
679 	struct ubi_vid_hdr *vid_hdr;
680 
681 	kfree(wrk);
682 	if (shutdown)
683 		return 0;
684 
685 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
686 	if (!vid_hdr)
687 		return -ENOMEM;
688 
689 	mutex_lock(&ubi->move_mutex);
690 	spin_lock(&ubi->wl_lock);
691 	ubi_assert(!ubi->move_from && !ubi->move_to);
692 	ubi_assert(!ubi->move_to_put);
693 
694 	if (!ubi->free.rb_node ||
695 	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
696 		/*
697 		 * No free physical eraseblocks? Well, they must be waiting in
698 		 * the queue to be erased. Cancel movement - it will be
699 		 * triggered again when a free physical eraseblock appears.
700 		 *
701 		 * No used physical eraseblocks? They must be temporarily
702 		 * protected from being moved. They will be moved to the
703 		 * @ubi->used tree later and the wear-leveling will be
704 		 * triggered again.
705 		 */
706 		dbg_wl("cancel WL, a list is empty: free %d, used %d",
707 		       !ubi->free.rb_node, !ubi->used.rb_node);
708 		goto out_cancel;
709 	}
710 
711 #ifdef CONFIG_MTD_UBI_FASTMAP
712 	/* Check whether we need to produce an anchor PEB */
713 	if (!anchor)
714 		anchor = !anchor_pebs_avalible(&ubi->free);
715 
716 	if (anchor) {
717 		e1 = find_anchor_wl_entry(&ubi->used);
718 		if (!e1)
719 			goto out_cancel;
720 		e2 = get_peb_for_wl(ubi);
721 		if (!e2)
722 			goto out_cancel;
723 
724 		self_check_in_wl_tree(ubi, e1, &ubi->used);
725 		rb_erase(&e1->u.rb, &ubi->used);
726 		dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
727 	} else if (!ubi->scrub.rb_node) {
728 #else
729 	if (!ubi->scrub.rb_node) {
730 #endif
731 		/*
732 		 * Now pick the least worn-out used physical eraseblock and a
733 		 * highly worn-out free physical eraseblock. If the erase
734 		 * counters differ much enough, start wear-leveling.
735 		 */
736 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
737 		e2 = get_peb_for_wl(ubi);
738 		if (!e2)
739 			goto out_cancel;
740 
741 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
742 			dbg_wl("no WL needed: min used EC %d, max free EC %d",
743 			       e1->ec, e2->ec);
744 
745 			/* Give the unused PEB back */
746 			wl_tree_add(e2, &ubi->free);
747 			ubi->free_count++;
748 			goto out_cancel;
749 		}
750 		self_check_in_wl_tree(ubi, e1, &ubi->used);
751 		rb_erase(&e1->u.rb, &ubi->used);
752 		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
753 		       e1->pnum, e1->ec, e2->pnum, e2->ec);
754 	} else {
755 		/* Perform scrubbing */
756 		scrubbing = 1;
757 		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
758 		e2 = get_peb_for_wl(ubi);
759 		if (!e2)
760 			goto out_cancel;
761 
762 		self_check_in_wl_tree(ubi, e1, &ubi->scrub);
763 		rb_erase(&e1->u.rb, &ubi->scrub);
764 		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
765 	}
766 
767 	ubi->move_from = e1;
768 	ubi->move_to = e2;
769 	spin_unlock(&ubi->wl_lock);
770 
771 	/*
772 	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
773 	 * We so far do not know which logical eraseblock our physical
774 	 * eraseblock (@e1) belongs to. We have to read the volume identifier
775 	 * header first.
776 	 *
777 	 * Note, we are protected from this PEB being unmapped and erased. The
778 	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
779 	 * which is being moved was unmapped.
780 	 */
781 
782 	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
783 	if (err && err != UBI_IO_BITFLIPS) {
784 		if (err == UBI_IO_FF) {
785 			/*
786 			 * We are trying to move PEB without a VID header. UBI
787 			 * always write VID headers shortly after the PEB was
788 			 * given, so we have a situation when it has not yet
789 			 * had a chance to write it, because it was preempted.
790 			 * So add this PEB to the protection queue so far,
791 			 * because presumably more data will be written there
792 			 * (including the missing VID header), and then we'll
793 			 * move it.
794 			 */
795 			dbg_wl("PEB %d has no VID header", e1->pnum);
796 			protect = 1;
797 			goto out_not_moved;
798 		} else if (err == UBI_IO_FF_BITFLIPS) {
799 			/*
800 			 * The same situation as %UBI_IO_FF, but bit-flips were
801 			 * detected. It is better to schedule this PEB for
802 			 * scrubbing.
803 			 */
804 			dbg_wl("PEB %d has no VID header but has bit-flips",
805 			       e1->pnum);
806 			scrubbing = 1;
807 			goto out_not_moved;
808 		}
809 
810 		ubi_err(ubi, "error %d while reading VID header from PEB %d",
811 			err, e1->pnum);
812 		goto out_error;
813 	}
814 
815 	vol_id = be32_to_cpu(vid_hdr->vol_id);
816 	lnum = be32_to_cpu(vid_hdr->lnum);
817 
818 	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
819 	if (err) {
820 		if (err == MOVE_CANCEL_RACE) {
821 			/*
822 			 * The LEB has not been moved because the volume is
823 			 * being deleted or the PEB has been put meanwhile. We
824 			 * should prevent this PEB from being selected for
825 			 * wear-leveling movement again, so put it to the
826 			 * protection queue.
827 			 */
828 			protect = 1;
829 			goto out_not_moved;
830 		}
831 		if (err == MOVE_RETRY) {
832 			scrubbing = 1;
833 			goto out_not_moved;
834 		}
835 		if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
836 		    err == MOVE_TARGET_RD_ERR) {
837 			/*
838 			 * Target PEB had bit-flips or write error - torture it.
839 			 */
840 			torture = 1;
841 			goto out_not_moved;
842 		}
843 
844 		if (err == MOVE_SOURCE_RD_ERR) {
845 			/*
846 			 * An error happened while reading the source PEB. Do
847 			 * not switch to R/O mode in this case, and give the
848 			 * upper layers a possibility to recover from this,
849 			 * e.g. by unmapping corresponding LEB. Instead, just
850 			 * put this PEB to the @ubi->erroneous list to prevent
851 			 * UBI from trying to move it over and over again.
852 			 */
853 			if (ubi->erroneous_peb_count > ubi->max_erroneous) {
854 				ubi_err(ubi, "too many erroneous eraseblocks (%d)",
855 					ubi->erroneous_peb_count);
856 				goto out_error;
857 			}
858 			erroneous = 1;
859 			goto out_not_moved;
860 		}
861 
862 		if (err < 0)
863 			goto out_error;
864 
865 		ubi_assert(0);
866 	}
867 
868 	/* The PEB has been successfully moved */
869 	if (scrubbing)
870 		ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
871 			e1->pnum, vol_id, lnum, e2->pnum);
872 	ubi_free_vid_hdr(ubi, vid_hdr);
873 
874 	spin_lock(&ubi->wl_lock);
875 	if (!ubi->move_to_put) {
876 		wl_tree_add(e2, &ubi->used);
877 		e2 = NULL;
878 	}
879 	ubi->move_from = ubi->move_to = NULL;
880 	ubi->move_to_put = ubi->wl_scheduled = 0;
881 	spin_unlock(&ubi->wl_lock);
882 
883 	err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
884 	if (err) {
885 		if (e2)
886 			wl_entry_destroy(ubi, e2);
887 		goto out_ro;
888 	}
889 
890 	if (e2) {
891 		/*
892 		 * Well, the target PEB was put meanwhile, schedule it for
893 		 * erasure.
894 		 */
895 		dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
896 		       e2->pnum, vol_id, lnum);
897 		err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
898 		if (err)
899 			goto out_ro;
900 	}
901 
902 	dbg_wl("done");
903 	mutex_unlock(&ubi->move_mutex);
904 	return 0;
905 
906 	/*
907 	 * For some reasons the LEB was not moved, might be an error, might be
908 	 * something else. @e1 was not changed, so return it back. @e2 might
909 	 * have been changed, schedule it for erasure.
910 	 */
911 out_not_moved:
912 	if (vol_id != -1)
913 		dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
914 		       e1->pnum, vol_id, lnum, e2->pnum, err);
915 	else
916 		dbg_wl("cancel moving PEB %d to PEB %d (%d)",
917 		       e1->pnum, e2->pnum, err);
918 	spin_lock(&ubi->wl_lock);
919 	if (protect)
920 		prot_queue_add(ubi, e1);
921 	else if (erroneous) {
922 		wl_tree_add(e1, &ubi->erroneous);
923 		ubi->erroneous_peb_count += 1;
924 	} else if (scrubbing)
925 		wl_tree_add(e1, &ubi->scrub);
926 	else
927 		wl_tree_add(e1, &ubi->used);
928 	ubi_assert(!ubi->move_to_put);
929 	ubi->move_from = ubi->move_to = NULL;
930 	ubi->wl_scheduled = 0;
931 	spin_unlock(&ubi->wl_lock);
932 
933 	ubi_free_vid_hdr(ubi, vid_hdr);
934 	err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
935 	if (err)
936 		goto out_ro;
937 
938 	mutex_unlock(&ubi->move_mutex);
939 	return 0;
940 
941 out_error:
942 	if (vol_id != -1)
943 		ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
944 			err, e1->pnum, e2->pnum);
945 	else
946 		ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
947 			err, e1->pnum, vol_id, lnum, e2->pnum);
948 	spin_lock(&ubi->wl_lock);
949 	ubi->move_from = ubi->move_to = NULL;
950 	ubi->move_to_put = ubi->wl_scheduled = 0;
951 	spin_unlock(&ubi->wl_lock);
952 
953 	ubi_free_vid_hdr(ubi, vid_hdr);
954 	wl_entry_destroy(ubi, e1);
955 	wl_entry_destroy(ubi, e2);
956 
957 out_ro:
958 	ubi_ro_mode(ubi);
959 	mutex_unlock(&ubi->move_mutex);
960 	ubi_assert(err != 0);
961 	return err < 0 ? err : -EIO;
962 
963 out_cancel:
964 	ubi->wl_scheduled = 0;
965 	spin_unlock(&ubi->wl_lock);
966 	mutex_unlock(&ubi->move_mutex);
967 	ubi_free_vid_hdr(ubi, vid_hdr);
968 	return 0;
969 }
970 
971 /**
972  * ensure_wear_leveling - schedule wear-leveling if it is needed.
973  * @ubi: UBI device description object
974  * @nested: set to non-zero if this function is called from UBI worker
975  *
976  * This function checks if it is time to start wear-leveling and schedules it
977  * if yes. This function returns zero in case of success and a negative error
978  * code in case of failure.
979  */
980 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
981 {
982 	int err = 0;
983 	struct ubi_wl_entry *e1;
984 	struct ubi_wl_entry *e2;
985 	struct ubi_work *wrk;
986 
987 	spin_lock(&ubi->wl_lock);
988 	if (ubi->wl_scheduled)
989 		/* Wear-leveling is already in the work queue */
990 		goto out_unlock;
991 
992 	/*
993 	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
994 	 * the WL worker has to be scheduled anyway.
995 	 */
996 	if (!ubi->scrub.rb_node) {
997 		if (!ubi->used.rb_node || !ubi->free.rb_node)
998 			/* No physical eraseblocks - no deal */
999 			goto out_unlock;
1000 
1001 		/*
1002 		 * We schedule wear-leveling only if the difference between the
1003 		 * lowest erase counter of used physical eraseblocks and a high
1004 		 * erase counter of free physical eraseblocks is greater than
1005 		 * %UBI_WL_THRESHOLD.
1006 		 */
1007 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1008 		e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1009 
1010 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1011 			goto out_unlock;
1012 		dbg_wl("schedule wear-leveling");
1013 	} else
1014 		dbg_wl("schedule scrubbing");
1015 
1016 	ubi->wl_scheduled = 1;
1017 	spin_unlock(&ubi->wl_lock);
1018 
1019 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1020 	if (!wrk) {
1021 		err = -ENOMEM;
1022 		goto out_cancel;
1023 	}
1024 
1025 	wrk->anchor = 0;
1026 	wrk->func = &wear_leveling_worker;
1027 	if (nested)
1028 		__schedule_ubi_work(ubi, wrk);
1029 #ifndef __UBOOT__
1030 	else
1031 		schedule_ubi_work(ubi, wrk);
1032 #else
1033 	else {
1034 		schedule_ubi_work(ubi, wrk);
1035 		ubi_do_worker(ubi);
1036 	}
1037 #endif
1038 	return err;
1039 
1040 out_cancel:
1041 	spin_lock(&ubi->wl_lock);
1042 	ubi->wl_scheduled = 0;
1043 out_unlock:
1044 	spin_unlock(&ubi->wl_lock);
1045 	return err;
1046 }
1047 
1048 /**
1049  * erase_worker - physical eraseblock erase worker function.
1050  * @ubi: UBI device description object
1051  * @wl_wrk: the work object
1052  * @shutdown: non-zero if the worker has to free memory and exit
1053  * because the WL sub-system is shutting down
1054  *
1055  * This function erases a physical eraseblock and perform torture testing if
1056  * needed. It also takes care about marking the physical eraseblock bad if
1057  * needed. Returns zero in case of success and a negative error code in case of
1058  * failure.
1059  */
1060 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1061 			int shutdown)
1062 {
1063 	struct ubi_wl_entry *e = wl_wrk->e;
1064 	int pnum = e->pnum;
1065 	int vol_id = wl_wrk->vol_id;
1066 	int lnum = wl_wrk->lnum;
1067 	int err, available_consumed = 0;
1068 
1069 	if (shutdown) {
1070 		dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1071 		kfree(wl_wrk);
1072 		wl_entry_destroy(ubi, e);
1073 		return 0;
1074 	}
1075 
1076 	dbg_wl("erase PEB %d EC %d LEB %d:%d",
1077 	       pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1078 
1079 	err = sync_erase(ubi, e, wl_wrk->torture);
1080 	if (!err) {
1081 		/* Fine, we've erased it successfully */
1082 		kfree(wl_wrk);
1083 
1084 		spin_lock(&ubi->wl_lock);
1085 		wl_tree_add(e, &ubi->free);
1086 		ubi->free_count++;
1087 		spin_unlock(&ubi->wl_lock);
1088 
1089 		/*
1090 		 * One more erase operation has happened, take care about
1091 		 * protected physical eraseblocks.
1092 		 */
1093 		serve_prot_queue(ubi);
1094 
1095 		/* And take care about wear-leveling */
1096 		err = ensure_wear_leveling(ubi, 1);
1097 		return err;
1098 	}
1099 
1100 	ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1101 	kfree(wl_wrk);
1102 
1103 	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1104 	    err == -EBUSY) {
1105 		int err1;
1106 
1107 		/* Re-schedule the LEB for erasure */
1108 		err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1109 		if (err1) {
1110 			err = err1;
1111 			goto out_ro;
1112 		}
1113 		return err;
1114 	}
1115 
1116 	wl_entry_destroy(ubi, e);
1117 	if (err != -EIO)
1118 		/*
1119 		 * If this is not %-EIO, we have no idea what to do. Scheduling
1120 		 * this physical eraseblock for erasure again would cause
1121 		 * errors again and again. Well, lets switch to R/O mode.
1122 		 */
1123 		goto out_ro;
1124 
1125 	/* It is %-EIO, the PEB went bad */
1126 
1127 	if (!ubi->bad_allowed) {
1128 		ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1129 		goto out_ro;
1130 	}
1131 
1132 	spin_lock(&ubi->volumes_lock);
1133 	if (ubi->beb_rsvd_pebs == 0) {
1134 		if (ubi->avail_pebs == 0) {
1135 			spin_unlock(&ubi->volumes_lock);
1136 			ubi_err(ubi, "no reserved/available physical eraseblocks");
1137 			goto out_ro;
1138 		}
1139 		ubi->avail_pebs -= 1;
1140 		available_consumed = 1;
1141 	}
1142 	spin_unlock(&ubi->volumes_lock);
1143 
1144 	ubi_msg(ubi, "mark PEB %d as bad", pnum);
1145 	err = ubi_io_mark_bad(ubi, pnum);
1146 	if (err)
1147 		goto out_ro;
1148 
1149 	spin_lock(&ubi->volumes_lock);
1150 	if (ubi->beb_rsvd_pebs > 0) {
1151 		if (available_consumed) {
1152 			/*
1153 			 * The amount of reserved PEBs increased since we last
1154 			 * checked.
1155 			 */
1156 			ubi->avail_pebs += 1;
1157 			available_consumed = 0;
1158 		}
1159 		ubi->beb_rsvd_pebs -= 1;
1160 	}
1161 	ubi->bad_peb_count += 1;
1162 	ubi->good_peb_count -= 1;
1163 	ubi_calculate_reserved(ubi);
1164 	if (available_consumed)
1165 		ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1166 	else if (ubi->beb_rsvd_pebs)
1167 		ubi_msg(ubi, "%d PEBs left in the reserve",
1168 			ubi->beb_rsvd_pebs);
1169 	else
1170 		ubi_warn(ubi, "last PEB from the reserve was used");
1171 	spin_unlock(&ubi->volumes_lock);
1172 
1173 	return err;
1174 
1175 out_ro:
1176 	if (available_consumed) {
1177 		spin_lock(&ubi->volumes_lock);
1178 		ubi->avail_pebs += 1;
1179 		spin_unlock(&ubi->volumes_lock);
1180 	}
1181 	ubi_ro_mode(ubi);
1182 	return err;
1183 }
1184 
1185 /**
1186  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1187  * @ubi: UBI device description object
1188  * @vol_id: the volume ID that last used this PEB
1189  * @lnum: the last used logical eraseblock number for the PEB
1190  * @pnum: physical eraseblock to return
1191  * @torture: if this physical eraseblock has to be tortured
1192  *
1193  * This function is called to return physical eraseblock @pnum to the pool of
1194  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1195  * occurred to this @pnum and it has to be tested. This function returns zero
1196  * in case of success, and a negative error code in case of failure.
1197  */
1198 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1199 		   int pnum, int torture)
1200 {
1201 	int err;
1202 	struct ubi_wl_entry *e;
1203 
1204 	dbg_wl("PEB %d", pnum);
1205 	ubi_assert(pnum >= 0);
1206 	ubi_assert(pnum < ubi->peb_count);
1207 
1208 	down_read(&ubi->fm_protect);
1209 
1210 retry:
1211 	spin_lock(&ubi->wl_lock);
1212 	e = ubi->lookuptbl[pnum];
1213 	if (e == ubi->move_from) {
1214 		/*
1215 		 * User is putting the physical eraseblock which was selected to
1216 		 * be moved. It will be scheduled for erasure in the
1217 		 * wear-leveling worker.
1218 		 */
1219 		dbg_wl("PEB %d is being moved, wait", pnum);
1220 		spin_unlock(&ubi->wl_lock);
1221 
1222 		/* Wait for the WL worker by taking the @ubi->move_mutex */
1223 		mutex_lock(&ubi->move_mutex);
1224 		mutex_unlock(&ubi->move_mutex);
1225 		goto retry;
1226 	} else if (e == ubi->move_to) {
1227 		/*
1228 		 * User is putting the physical eraseblock which was selected
1229 		 * as the target the data is moved to. It may happen if the EBA
1230 		 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1231 		 * but the WL sub-system has not put the PEB to the "used" tree
1232 		 * yet, but it is about to do this. So we just set a flag which
1233 		 * will tell the WL worker that the PEB is not needed anymore
1234 		 * and should be scheduled for erasure.
1235 		 */
1236 		dbg_wl("PEB %d is the target of data moving", pnum);
1237 		ubi_assert(!ubi->move_to_put);
1238 		ubi->move_to_put = 1;
1239 		spin_unlock(&ubi->wl_lock);
1240 		up_read(&ubi->fm_protect);
1241 		return 0;
1242 	} else {
1243 		if (in_wl_tree(e, &ubi->used)) {
1244 			self_check_in_wl_tree(ubi, e, &ubi->used);
1245 			rb_erase(&e->u.rb, &ubi->used);
1246 		} else if (in_wl_tree(e, &ubi->scrub)) {
1247 			self_check_in_wl_tree(ubi, e, &ubi->scrub);
1248 			rb_erase(&e->u.rb, &ubi->scrub);
1249 		} else if (in_wl_tree(e, &ubi->erroneous)) {
1250 			self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1251 			rb_erase(&e->u.rb, &ubi->erroneous);
1252 			ubi->erroneous_peb_count -= 1;
1253 			ubi_assert(ubi->erroneous_peb_count >= 0);
1254 			/* Erroneous PEBs should be tortured */
1255 			torture = 1;
1256 		} else {
1257 			err = prot_queue_del(ubi, e->pnum);
1258 			if (err) {
1259 				ubi_err(ubi, "PEB %d not found", pnum);
1260 				ubi_ro_mode(ubi);
1261 				spin_unlock(&ubi->wl_lock);
1262 				up_read(&ubi->fm_protect);
1263 				return err;
1264 			}
1265 		}
1266 	}
1267 	spin_unlock(&ubi->wl_lock);
1268 
1269 	err = schedule_erase(ubi, e, vol_id, lnum, torture);
1270 	if (err) {
1271 		spin_lock(&ubi->wl_lock);
1272 		wl_tree_add(e, &ubi->used);
1273 		spin_unlock(&ubi->wl_lock);
1274 	}
1275 
1276 	up_read(&ubi->fm_protect);
1277 	return err;
1278 }
1279 
1280 /**
1281  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1282  * @ubi: UBI device description object
1283  * @pnum: the physical eraseblock to schedule
1284  *
1285  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1286  * needs scrubbing. This function schedules a physical eraseblock for
1287  * scrubbing which is done in background. This function returns zero in case of
1288  * success and a negative error code in case of failure.
1289  */
1290 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1291 {
1292 	struct ubi_wl_entry *e;
1293 
1294 	ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1295 
1296 retry:
1297 	spin_lock(&ubi->wl_lock);
1298 	e = ubi->lookuptbl[pnum];
1299 	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1300 				   in_wl_tree(e, &ubi->erroneous)) {
1301 		spin_unlock(&ubi->wl_lock);
1302 		return 0;
1303 	}
1304 
1305 	if (e == ubi->move_to) {
1306 		/*
1307 		 * This physical eraseblock was used to move data to. The data
1308 		 * was moved but the PEB was not yet inserted to the proper
1309 		 * tree. We should just wait a little and let the WL worker
1310 		 * proceed.
1311 		 */
1312 		spin_unlock(&ubi->wl_lock);
1313 		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1314 		yield();
1315 		goto retry;
1316 	}
1317 
1318 	if (in_wl_tree(e, &ubi->used)) {
1319 		self_check_in_wl_tree(ubi, e, &ubi->used);
1320 		rb_erase(&e->u.rb, &ubi->used);
1321 	} else {
1322 		int err;
1323 
1324 		err = prot_queue_del(ubi, e->pnum);
1325 		if (err) {
1326 			ubi_err(ubi, "PEB %d not found", pnum);
1327 			ubi_ro_mode(ubi);
1328 			spin_unlock(&ubi->wl_lock);
1329 			return err;
1330 		}
1331 	}
1332 
1333 	wl_tree_add(e, &ubi->scrub);
1334 	spin_unlock(&ubi->wl_lock);
1335 
1336 	/*
1337 	 * Technically scrubbing is the same as wear-leveling, so it is done
1338 	 * by the WL worker.
1339 	 */
1340 	return ensure_wear_leveling(ubi, 0);
1341 }
1342 
1343 /**
1344  * ubi_wl_flush - flush all pending works.
1345  * @ubi: UBI device description object
1346  * @vol_id: the volume id to flush for
1347  * @lnum: the logical eraseblock number to flush for
1348  *
1349  * This function executes all pending works for a particular volume id /
1350  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1351  * acts as a wildcard for all of the corresponding volume numbers or logical
1352  * eraseblock numbers. It returns zero in case of success and a negative error
1353  * code in case of failure.
1354  */
1355 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1356 {
1357 	int err = 0;
1358 	int found = 1;
1359 
1360 	/*
1361 	 * Erase while the pending works queue is not empty, but not more than
1362 	 * the number of currently pending works.
1363 	 */
1364 	dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1365 	       vol_id, lnum, ubi->works_count);
1366 
1367 	while (found) {
1368 		struct ubi_work *wrk, *tmp;
1369 		found = 0;
1370 
1371 		down_read(&ubi->work_sem);
1372 		spin_lock(&ubi->wl_lock);
1373 		list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1374 			if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1375 			    (lnum == UBI_ALL || wrk->lnum == lnum)) {
1376 				list_del(&wrk->list);
1377 				ubi->works_count -= 1;
1378 				ubi_assert(ubi->works_count >= 0);
1379 				spin_unlock(&ubi->wl_lock);
1380 
1381 				err = wrk->func(ubi, wrk, 0);
1382 				if (err) {
1383 					up_read(&ubi->work_sem);
1384 					return err;
1385 				}
1386 
1387 				spin_lock(&ubi->wl_lock);
1388 				found = 1;
1389 				break;
1390 			}
1391 		}
1392 		spin_unlock(&ubi->wl_lock);
1393 		up_read(&ubi->work_sem);
1394 	}
1395 
1396 	/*
1397 	 * Make sure all the works which have been done in parallel are
1398 	 * finished.
1399 	 */
1400 	down_write(&ubi->work_sem);
1401 	up_write(&ubi->work_sem);
1402 
1403 	return err;
1404 }
1405 
1406 /**
1407  * tree_destroy - destroy an RB-tree.
1408  * @ubi: UBI device description object
1409  * @root: the root of the tree to destroy
1410  */
1411 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1412 {
1413 	struct rb_node *rb;
1414 	struct ubi_wl_entry *e;
1415 
1416 	rb = root->rb_node;
1417 	while (rb) {
1418 		if (rb->rb_left)
1419 			rb = rb->rb_left;
1420 		else if (rb->rb_right)
1421 			rb = rb->rb_right;
1422 		else {
1423 			e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1424 
1425 			rb = rb_parent(rb);
1426 			if (rb) {
1427 				if (rb->rb_left == &e->u.rb)
1428 					rb->rb_left = NULL;
1429 				else
1430 					rb->rb_right = NULL;
1431 			}
1432 
1433 			wl_entry_destroy(ubi, e);
1434 		}
1435 	}
1436 }
1437 
1438 /**
1439  * ubi_thread - UBI background thread.
1440  * @u: the UBI device description object pointer
1441  */
1442 int ubi_thread(void *u)
1443 {
1444 	int failures = 0;
1445 	struct ubi_device *ubi = u;
1446 
1447 	ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1448 		ubi->bgt_name, task_pid_nr(current));
1449 
1450 	set_freezable();
1451 	for (;;) {
1452 		int err;
1453 
1454 		if (kthread_should_stop())
1455 			break;
1456 
1457 		if (try_to_freeze())
1458 			continue;
1459 
1460 		spin_lock(&ubi->wl_lock);
1461 		if (list_empty(&ubi->works) || ubi->ro_mode ||
1462 		    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1463 			set_current_state(TASK_INTERRUPTIBLE);
1464 			spin_unlock(&ubi->wl_lock);
1465 			schedule();
1466 			continue;
1467 		}
1468 		spin_unlock(&ubi->wl_lock);
1469 
1470 		err = do_work(ubi);
1471 		if (err) {
1472 			ubi_err(ubi, "%s: work failed with error code %d",
1473 				ubi->bgt_name, err);
1474 			if (failures++ > WL_MAX_FAILURES) {
1475 				/*
1476 				 * Too many failures, disable the thread and
1477 				 * switch to read-only mode.
1478 				 */
1479 				ubi_msg(ubi, "%s: %d consecutive failures",
1480 					ubi->bgt_name, WL_MAX_FAILURES);
1481 				ubi_ro_mode(ubi);
1482 				ubi->thread_enabled = 0;
1483 				continue;
1484 			}
1485 		} else
1486 			failures = 0;
1487 
1488 		cond_resched();
1489 	}
1490 
1491 	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1492 	return 0;
1493 }
1494 
1495 /**
1496  * shutdown_work - shutdown all pending works.
1497  * @ubi: UBI device description object
1498  */
1499 static void shutdown_work(struct ubi_device *ubi)
1500 {
1501 #ifdef CONFIG_MTD_UBI_FASTMAP
1502 #ifndef __UBOOT__
1503 	flush_work(&ubi->fm_work);
1504 #else
1505 	/* in U-Boot, we have all work done */
1506 #endif
1507 #endif
1508 	while (!list_empty(&ubi->works)) {
1509 		struct ubi_work *wrk;
1510 
1511 		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1512 		list_del(&wrk->list);
1513 		wrk->func(ubi, wrk, 1);
1514 		ubi->works_count -= 1;
1515 		ubi_assert(ubi->works_count >= 0);
1516 	}
1517 }
1518 
1519 /**
1520  * ubi_wl_init - initialize the WL sub-system using attaching information.
1521  * @ubi: UBI device description object
1522  * @ai: attaching information
1523  *
1524  * This function returns zero in case of success, and a negative error code in
1525  * case of failure.
1526  */
1527 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1528 {
1529 	int err, i, reserved_pebs, found_pebs = 0;
1530 	struct rb_node *rb1, *rb2;
1531 	struct ubi_ainf_volume *av;
1532 	struct ubi_ainf_peb *aeb, *tmp;
1533 	struct ubi_wl_entry *e;
1534 
1535 	ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1536 	spin_lock_init(&ubi->wl_lock);
1537 	mutex_init(&ubi->move_mutex);
1538 	init_rwsem(&ubi->work_sem);
1539 	ubi->max_ec = ai->max_ec;
1540 	INIT_LIST_HEAD(&ubi->works);
1541 
1542 	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1543 
1544 	err = -ENOMEM;
1545 	ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1546 	if (!ubi->lookuptbl)
1547 		return err;
1548 
1549 	for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1550 		INIT_LIST_HEAD(&ubi->pq[i]);
1551 	ubi->pq_head = 0;
1552 
1553 	ubi->free_count = 0;
1554 	list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1555 		cond_resched();
1556 
1557 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1558 		if (!e)
1559 			goto out_free;
1560 
1561 		e->pnum = aeb->pnum;
1562 		e->ec = aeb->ec;
1563 		ubi->lookuptbl[e->pnum] = e;
1564 		if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1565 			wl_entry_destroy(ubi, e);
1566 			goto out_free;
1567 		}
1568 
1569 		found_pebs++;
1570 	}
1571 
1572 	list_for_each_entry(aeb, &ai->free, u.list) {
1573 		cond_resched();
1574 
1575 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1576 		if (!e)
1577 			goto out_free;
1578 
1579 		e->pnum = aeb->pnum;
1580 		e->ec = aeb->ec;
1581 		ubi_assert(e->ec >= 0);
1582 
1583 		wl_tree_add(e, &ubi->free);
1584 		ubi->free_count++;
1585 
1586 		ubi->lookuptbl[e->pnum] = e;
1587 
1588 		found_pebs++;
1589 	}
1590 
1591 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1592 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1593 			cond_resched();
1594 
1595 			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1596 			if (!e)
1597 				goto out_free;
1598 
1599 			e->pnum = aeb->pnum;
1600 			e->ec = aeb->ec;
1601 			ubi->lookuptbl[e->pnum] = e;
1602 
1603 			if (!aeb->scrub) {
1604 				dbg_wl("add PEB %d EC %d to the used tree",
1605 				       e->pnum, e->ec);
1606 				wl_tree_add(e, &ubi->used);
1607 			} else {
1608 				dbg_wl("add PEB %d EC %d to the scrub tree",
1609 				       e->pnum, e->ec);
1610 				wl_tree_add(e, &ubi->scrub);
1611 			}
1612 
1613 			found_pebs++;
1614 		}
1615 	}
1616 
1617 	dbg_wl("found %i PEBs", found_pebs);
1618 
1619 	if (ubi->fm) {
1620 		ubi_assert(ubi->good_peb_count ==
1621 			   found_pebs + ubi->fm->used_blocks);
1622 
1623 		for (i = 0; i < ubi->fm->used_blocks; i++) {
1624 			e = ubi->fm->e[i];
1625 			ubi->lookuptbl[e->pnum] = e;
1626 		}
1627 	}
1628 	else
1629 		ubi_assert(ubi->good_peb_count == found_pebs);
1630 
1631 	reserved_pebs = WL_RESERVED_PEBS;
1632 	ubi_fastmap_init(ubi, &reserved_pebs);
1633 
1634 	if (ubi->avail_pebs < reserved_pebs) {
1635 		ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1636 			ubi->avail_pebs, reserved_pebs);
1637 		if (ubi->corr_peb_count)
1638 			ubi_err(ubi, "%d PEBs are corrupted and not used",
1639 				ubi->corr_peb_count);
1640 		goto out_free;
1641 	}
1642 	ubi->avail_pebs -= reserved_pebs;
1643 	ubi->rsvd_pebs += reserved_pebs;
1644 
1645 	/* Schedule wear-leveling if needed */
1646 	err = ensure_wear_leveling(ubi, 0);
1647 	if (err)
1648 		goto out_free;
1649 
1650 	return 0;
1651 
1652 out_free:
1653 	shutdown_work(ubi);
1654 	tree_destroy(ubi, &ubi->used);
1655 	tree_destroy(ubi, &ubi->free);
1656 	tree_destroy(ubi, &ubi->scrub);
1657 	kfree(ubi->lookuptbl);
1658 	return err;
1659 }
1660 
1661 /**
1662  * protection_queue_destroy - destroy the protection queue.
1663  * @ubi: UBI device description object
1664  */
1665 static void protection_queue_destroy(struct ubi_device *ubi)
1666 {
1667 	int i;
1668 	struct ubi_wl_entry *e, *tmp;
1669 
1670 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1671 		list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1672 			list_del(&e->u.list);
1673 			wl_entry_destroy(ubi, e);
1674 		}
1675 	}
1676 }
1677 
1678 /**
1679  * ubi_wl_close - close the wear-leveling sub-system.
1680  * @ubi: UBI device description object
1681  */
1682 void ubi_wl_close(struct ubi_device *ubi)
1683 {
1684 	dbg_wl("close the WL sub-system");
1685 	ubi_fastmap_close(ubi);
1686 	shutdown_work(ubi);
1687 	protection_queue_destroy(ubi);
1688 	tree_destroy(ubi, &ubi->used);
1689 	tree_destroy(ubi, &ubi->erroneous);
1690 	tree_destroy(ubi, &ubi->free);
1691 	tree_destroy(ubi, &ubi->scrub);
1692 	kfree(ubi->lookuptbl);
1693 }
1694 
1695 /**
1696  * self_check_ec - make sure that the erase counter of a PEB is correct.
1697  * @ubi: UBI device description object
1698  * @pnum: the physical eraseblock number to check
1699  * @ec: the erase counter to check
1700  *
1701  * This function returns zero if the erase counter of physical eraseblock @pnum
1702  * is equivalent to @ec, and a negative error code if not or if an error
1703  * occurred.
1704  */
1705 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1706 {
1707 	int err;
1708 	long long read_ec;
1709 	struct ubi_ec_hdr *ec_hdr;
1710 
1711 	if (!ubi_dbg_chk_gen(ubi))
1712 		return 0;
1713 
1714 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1715 	if (!ec_hdr)
1716 		return -ENOMEM;
1717 
1718 	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1719 	if (err && err != UBI_IO_BITFLIPS) {
1720 		/* The header does not have to exist */
1721 		err = 0;
1722 		goto out_free;
1723 	}
1724 
1725 	read_ec = be64_to_cpu(ec_hdr->ec);
1726 	if (ec != read_ec && read_ec - ec > 1) {
1727 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1728 		ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
1729 		dump_stack();
1730 		err = 1;
1731 	} else
1732 		err = 0;
1733 
1734 out_free:
1735 	kfree(ec_hdr);
1736 	return err;
1737 }
1738 
1739 /**
1740  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1741  * @ubi: UBI device description object
1742  * @e: the wear-leveling entry to check
1743  * @root: the root of the tree
1744  *
1745  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1746  * is not.
1747  */
1748 static int self_check_in_wl_tree(const struct ubi_device *ubi,
1749 				 struct ubi_wl_entry *e, struct rb_root *root)
1750 {
1751 	if (!ubi_dbg_chk_gen(ubi))
1752 		return 0;
1753 
1754 	if (in_wl_tree(e, root))
1755 		return 0;
1756 
1757 	ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
1758 		e->pnum, e->ec, root);
1759 	dump_stack();
1760 	return -EINVAL;
1761 }
1762 
1763 /**
1764  * self_check_in_pq - check if wear-leveling entry is in the protection
1765  *                        queue.
1766  * @ubi: UBI device description object
1767  * @e: the wear-leveling entry to check
1768  *
1769  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
1770  */
1771 static int self_check_in_pq(const struct ubi_device *ubi,
1772 			    struct ubi_wl_entry *e)
1773 {
1774 	struct ubi_wl_entry *p;
1775 	int i;
1776 
1777 	if (!ubi_dbg_chk_gen(ubi))
1778 		return 0;
1779 
1780 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1781 		list_for_each_entry(p, &ubi->pq[i], u.list)
1782 			if (p == e)
1783 				return 0;
1784 
1785 	ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
1786 		e->pnum, e->ec);
1787 	dump_stack();
1788 	return -EINVAL;
1789 }
1790 #ifndef CONFIG_MTD_UBI_FASTMAP
1791 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
1792 {
1793 	struct ubi_wl_entry *e;
1794 
1795 	e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1796 	self_check_in_wl_tree(ubi, e, &ubi->free);
1797 	ubi->free_count--;
1798 	ubi_assert(ubi->free_count >= 0);
1799 	rb_erase(&e->u.rb, &ubi->free);
1800 
1801 	return e;
1802 }
1803 
1804 /**
1805  * produce_free_peb - produce a free physical eraseblock.
1806  * @ubi: UBI device description object
1807  *
1808  * This function tries to make a free PEB by means of synchronous execution of
1809  * pending works. This may be needed if, for example the background thread is
1810  * disabled. Returns zero in case of success and a negative error code in case
1811  * of failure.
1812  */
1813 static int produce_free_peb(struct ubi_device *ubi)
1814 {
1815 	int err;
1816 
1817 	while (!ubi->free.rb_node && ubi->works_count) {
1818 		spin_unlock(&ubi->wl_lock);
1819 
1820 		dbg_wl("do one work synchronously");
1821 		err = do_work(ubi);
1822 
1823 		spin_lock(&ubi->wl_lock);
1824 		if (err)
1825 			return err;
1826 	}
1827 
1828 	return 0;
1829 }
1830 
1831 /**
1832  * ubi_wl_get_peb - get a physical eraseblock.
1833  * @ubi: UBI device description object
1834  *
1835  * This function returns a physical eraseblock in case of success and a
1836  * negative error code in case of failure.
1837  * Returns with ubi->fm_eba_sem held in read mode!
1838  */
1839 int ubi_wl_get_peb(struct ubi_device *ubi)
1840 {
1841 	int err;
1842 	struct ubi_wl_entry *e;
1843 
1844 retry:
1845 	down_read(&ubi->fm_eba_sem);
1846 	spin_lock(&ubi->wl_lock);
1847 	if (!ubi->free.rb_node) {
1848 		if (ubi->works_count == 0) {
1849 			ubi_err(ubi, "no free eraseblocks");
1850 			ubi_assert(list_empty(&ubi->works));
1851 			spin_unlock(&ubi->wl_lock);
1852 			return -ENOSPC;
1853 		}
1854 
1855 		err = produce_free_peb(ubi);
1856 		if (err < 0) {
1857 			spin_unlock(&ubi->wl_lock);
1858 			return err;
1859 		}
1860 		spin_unlock(&ubi->wl_lock);
1861 		up_read(&ubi->fm_eba_sem);
1862 		goto retry;
1863 
1864 	}
1865 	e = wl_get_wle(ubi);
1866 	prot_queue_add(ubi, e);
1867 	spin_unlock(&ubi->wl_lock);
1868 
1869 	err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
1870 				    ubi->peb_size - ubi->vid_hdr_aloffset);
1871 	if (err) {
1872 		ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
1873 		return err;
1874 	}
1875 
1876 	return e->pnum;
1877 }
1878 #else
1879 #include "fastmap-wl.c"
1880 #endif
1881