xref: /openbmc/u-boot/drivers/mtd/ubi/wl.c (revision 47539e23)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * SPDX-License-Identifier:	GPL-2.0+
5  *
6  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
7  */
8 
9 /*
10  * UBI wear-leveling sub-system.
11  *
12  * This sub-system is responsible for wear-leveling. It works in terms of
13  * physical eraseblocks and erase counters and knows nothing about logical
14  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
15  * eraseblocks are of two types - used and free. Used physical eraseblocks are
16  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
17  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
18  *
19  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
20  * header. The rest of the physical eraseblock contains only %0xFF bytes.
21  *
22  * When physical eraseblocks are returned to the WL sub-system by means of the
23  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
24  * done asynchronously in context of the per-UBI device background thread,
25  * which is also managed by the WL sub-system.
26  *
27  * The wear-leveling is ensured by means of moving the contents of used
28  * physical eraseblocks with low erase counter to free physical eraseblocks
29  * with high erase counter.
30  *
31  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
32  * bad.
33  *
34  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
35  * in a physical eraseblock, it has to be moved. Technically this is the same
36  * as moving it for wear-leveling reasons.
37  *
38  * As it was said, for the UBI sub-system all physical eraseblocks are either
39  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
40  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
41  * RB-trees, as well as (temporarily) in the @wl->pq queue.
42  *
43  * When the WL sub-system returns a physical eraseblock, the physical
44  * eraseblock is protected from being moved for some "time". For this reason,
45  * the physical eraseblock is not directly moved from the @wl->free tree to the
46  * @wl->used tree. There is a protection queue in between where this
47  * physical eraseblock is temporarily stored (@wl->pq).
48  *
49  * All this protection stuff is needed because:
50  *  o we don't want to move physical eraseblocks just after we have given them
51  *    to the user; instead, we first want to let users fill them up with data;
52  *
53  *  o there is a chance that the user will put the physical eraseblock very
54  *    soon, so it makes sense not to move it for some time, but wait.
55  *
56  * Physical eraseblocks stay protected only for limited time. But the "time" is
57  * measured in erase cycles in this case. This is implemented with help of the
58  * protection queue. Eraseblocks are put to the tail of this queue when they
59  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
60  * head of the queue on each erase operation (for any eraseblock). So the
61  * length of the queue defines how may (global) erase cycles PEBs are protected.
62  *
63  * To put it differently, each physical eraseblock has 2 main states: free and
64  * used. The former state corresponds to the @wl->free tree. The latter state
65  * is split up on several sub-states:
66  * o the WL movement is allowed (@wl->used tree);
67  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
68  *   erroneous - e.g., there was a read error;
69  * o the WL movement is temporarily prohibited (@wl->pq queue);
70  * o scrubbing is needed (@wl->scrub tree).
71  *
72  * Depending on the sub-state, wear-leveling entries of the used physical
73  * eraseblocks may be kept in one of those structures.
74  *
75  * Note, in this implementation, we keep a small in-RAM object for each physical
76  * eraseblock. This is surely not a scalable solution. But it appears to be good
77  * enough for moderately large flashes and it is simple. In future, one may
78  * re-work this sub-system and make it more scalable.
79  *
80  * At the moment this sub-system does not utilize the sequence number, which
81  * was introduced relatively recently. But it would be wise to do this because
82  * the sequence number of a logical eraseblock characterizes how old is it. For
83  * example, when we move a PEB with low erase counter, and we need to pick the
84  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
85  * pick target PEB with an average EC if our PEB is not very "old". This is a
86  * room for future re-works of the WL sub-system.
87  */
88 
89 #define __UBOOT__
90 #ifndef __UBOOT__
91 #include <linux/slab.h>
92 #include <linux/crc32.h>
93 #include <linux/freezer.h>
94 #include <linux/kthread.h>
95 #else
96 #include <ubi_uboot.h>
97 #endif
98 
99 #include "ubi.h"
100 
101 /* Number of physical eraseblocks reserved for wear-leveling purposes */
102 #define WL_RESERVED_PEBS 1
103 
104 /*
105  * Maximum difference between two erase counters. If this threshold is
106  * exceeded, the WL sub-system starts moving data from used physical
107  * eraseblocks with low erase counter to free physical eraseblocks with high
108  * erase counter.
109  */
110 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
111 
112 /*
113  * When a physical eraseblock is moved, the WL sub-system has to pick the target
114  * physical eraseblock to move to. The simplest way would be just to pick the
115  * one with the highest erase counter. But in certain workloads this could lead
116  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
117  * situation when the picked physical eraseblock is constantly erased after the
118  * data is written to it. So, we have a constant which limits the highest erase
119  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
120  * does not pick eraseblocks with erase counter greater than the lowest erase
121  * counter plus %WL_FREE_MAX_DIFF.
122  */
123 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
124 
125 /*
126  * Maximum number of consecutive background thread failures which is enough to
127  * switch to read-only mode.
128  */
129 #define WL_MAX_FAILURES 32
130 
131 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
132 static int self_check_in_wl_tree(const struct ubi_device *ubi,
133 				 struct ubi_wl_entry *e, struct rb_root *root);
134 static int self_check_in_pq(const struct ubi_device *ubi,
135 			    struct ubi_wl_entry *e);
136 
137 #ifdef CONFIG_MTD_UBI_FASTMAP
138 #ifndef __UBOOT__
139 /**
140  * update_fastmap_work_fn - calls ubi_update_fastmap from a work queue
141  * @wrk: the work description object
142  */
143 static void update_fastmap_work_fn(struct work_struct *wrk)
144 {
145 	struct ubi_device *ubi = container_of(wrk, struct ubi_device, fm_work);
146 	ubi_update_fastmap(ubi);
147 }
148 #endif
149 
150 /**
151  *  ubi_ubi_is_fm_block - returns 1 if a PEB is currently used in a fastmap.
152  *  @ubi: UBI device description object
153  *  @pnum: the to be checked PEB
154  */
155 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
156 {
157 	int i;
158 
159 	if (!ubi->fm)
160 		return 0;
161 
162 	for (i = 0; i < ubi->fm->used_blocks; i++)
163 		if (ubi->fm->e[i]->pnum == pnum)
164 			return 1;
165 
166 	return 0;
167 }
168 #else
169 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
170 {
171 	return 0;
172 }
173 #endif
174 
175 /**
176  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
177  * @e: the wear-leveling entry to add
178  * @root: the root of the tree
179  *
180  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
181  * the @ubi->used and @ubi->free RB-trees.
182  */
183 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
184 {
185 	struct rb_node **p, *parent = NULL;
186 
187 	p = &root->rb_node;
188 	while (*p) {
189 		struct ubi_wl_entry *e1;
190 
191 		parent = *p;
192 		e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
193 
194 		if (e->ec < e1->ec)
195 			p = &(*p)->rb_left;
196 		else if (e->ec > e1->ec)
197 			p = &(*p)->rb_right;
198 		else {
199 			ubi_assert(e->pnum != e1->pnum);
200 			if (e->pnum < e1->pnum)
201 				p = &(*p)->rb_left;
202 			else
203 				p = &(*p)->rb_right;
204 		}
205 	}
206 
207 	rb_link_node(&e->u.rb, parent, p);
208 	rb_insert_color(&e->u.rb, root);
209 }
210 
211 /**
212  * do_work - do one pending work.
213  * @ubi: UBI device description object
214  *
215  * This function returns zero in case of success and a negative error code in
216  * case of failure.
217  */
218 static int do_work(struct ubi_device *ubi)
219 {
220 	int err;
221 	struct ubi_work *wrk;
222 
223 	cond_resched();
224 
225 	/*
226 	 * @ubi->work_sem is used to synchronize with the workers. Workers take
227 	 * it in read mode, so many of them may be doing works at a time. But
228 	 * the queue flush code has to be sure the whole queue of works is
229 	 * done, and it takes the mutex in write mode.
230 	 */
231 	down_read(&ubi->work_sem);
232 	spin_lock(&ubi->wl_lock);
233 	if (list_empty(&ubi->works)) {
234 		spin_unlock(&ubi->wl_lock);
235 		up_read(&ubi->work_sem);
236 		return 0;
237 	}
238 
239 	wrk = list_entry(ubi->works.next, struct ubi_work, list);
240 	list_del(&wrk->list);
241 	ubi->works_count -= 1;
242 	ubi_assert(ubi->works_count >= 0);
243 	spin_unlock(&ubi->wl_lock);
244 
245 	/*
246 	 * Call the worker function. Do not touch the work structure
247 	 * after this call as it will have been freed or reused by that
248 	 * time by the worker function.
249 	 */
250 	err = wrk->func(ubi, wrk, 0);
251 	if (err)
252 		ubi_err("work failed with error code %d", err);
253 	up_read(&ubi->work_sem);
254 
255 	return err;
256 }
257 
258 /**
259  * produce_free_peb - produce a free physical eraseblock.
260  * @ubi: UBI device description object
261  *
262  * This function tries to make a free PEB by means of synchronous execution of
263  * pending works. This may be needed if, for example the background thread is
264  * disabled. Returns zero in case of success and a negative error code in case
265  * of failure.
266  */
267 static int produce_free_peb(struct ubi_device *ubi)
268 {
269 	int err;
270 
271 	while (!ubi->free.rb_node) {
272 		spin_unlock(&ubi->wl_lock);
273 
274 		dbg_wl("do one work synchronously");
275 		err = do_work(ubi);
276 
277 		spin_lock(&ubi->wl_lock);
278 		if (err)
279 			return err;
280 	}
281 
282 	return 0;
283 }
284 
285 /**
286  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
287  * @e: the wear-leveling entry to check
288  * @root: the root of the tree
289  *
290  * This function returns non-zero if @e is in the @root RB-tree and zero if it
291  * is not.
292  */
293 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
294 {
295 	struct rb_node *p;
296 
297 	p = root->rb_node;
298 	while (p) {
299 		struct ubi_wl_entry *e1;
300 
301 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
302 
303 		if (e->pnum == e1->pnum) {
304 			ubi_assert(e == e1);
305 			return 1;
306 		}
307 
308 		if (e->ec < e1->ec)
309 			p = p->rb_left;
310 		else if (e->ec > e1->ec)
311 			p = p->rb_right;
312 		else {
313 			ubi_assert(e->pnum != e1->pnum);
314 			if (e->pnum < e1->pnum)
315 				p = p->rb_left;
316 			else
317 				p = p->rb_right;
318 		}
319 	}
320 
321 	return 0;
322 }
323 
324 /**
325  * prot_queue_add - add physical eraseblock to the protection queue.
326  * @ubi: UBI device description object
327  * @e: the physical eraseblock to add
328  *
329  * This function adds @e to the tail of the protection queue @ubi->pq, where
330  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
331  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
332  * be locked.
333  */
334 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
335 {
336 	int pq_tail = ubi->pq_head - 1;
337 
338 	if (pq_tail < 0)
339 		pq_tail = UBI_PROT_QUEUE_LEN - 1;
340 	ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
341 	list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
342 	dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
343 }
344 
345 /**
346  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
347  * @ubi: UBI device description object
348  * @root: the RB-tree where to look for
349  * @diff: maximum possible difference from the smallest erase counter
350  *
351  * This function looks for a wear leveling entry with erase counter closest to
352  * min + @diff, where min is the smallest erase counter.
353  */
354 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
355 					  struct rb_root *root, int diff)
356 {
357 	struct rb_node *p;
358 	struct ubi_wl_entry *e, *prev_e = NULL;
359 	int max;
360 
361 	e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
362 	max = e->ec + diff;
363 
364 	p = root->rb_node;
365 	while (p) {
366 		struct ubi_wl_entry *e1;
367 
368 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
369 		if (e1->ec >= max)
370 			p = p->rb_left;
371 		else {
372 			p = p->rb_right;
373 			prev_e = e;
374 			e = e1;
375 		}
376 	}
377 
378 	/* If no fastmap has been written and this WL entry can be used
379 	 * as anchor PEB, hold it back and return the second best WL entry
380 	 * such that fastmap can use the anchor PEB later. */
381 	if (prev_e && !ubi->fm_disabled &&
382 	    !ubi->fm && e->pnum < UBI_FM_MAX_START)
383 		return prev_e;
384 
385 	return e;
386 }
387 
388 /**
389  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
390  * @ubi: UBI device description object
391  * @root: the RB-tree where to look for
392  *
393  * This function looks for a wear leveling entry with medium erase counter,
394  * but not greater or equivalent than the lowest erase counter plus
395  * %WL_FREE_MAX_DIFF/2.
396  */
397 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
398 					       struct rb_root *root)
399 {
400 	struct ubi_wl_entry *e, *first, *last;
401 
402 	first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
403 	last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
404 
405 	if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
406 		e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
407 
408 #ifdef CONFIG_MTD_UBI_FASTMAP
409 		/* If no fastmap has been written and this WL entry can be used
410 		 * as anchor PEB, hold it back and return the second best
411 		 * WL entry such that fastmap can use the anchor PEB later. */
412 		if (e && !ubi->fm_disabled && !ubi->fm &&
413 		    e->pnum < UBI_FM_MAX_START)
414 			e = rb_entry(rb_next(root->rb_node),
415 				     struct ubi_wl_entry, u.rb);
416 #endif
417 	} else
418 		e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
419 
420 	return e;
421 }
422 
423 #ifdef CONFIG_MTD_UBI_FASTMAP
424 /**
425  * find_anchor_wl_entry - find wear-leveling entry to used as anchor PEB.
426  * @root: the RB-tree where to look for
427  */
428 static struct ubi_wl_entry *find_anchor_wl_entry(struct rb_root *root)
429 {
430 	struct rb_node *p;
431 	struct ubi_wl_entry *e, *victim = NULL;
432 	int max_ec = UBI_MAX_ERASECOUNTER;
433 
434 	ubi_rb_for_each_entry(p, e, root, u.rb) {
435 		if (e->pnum < UBI_FM_MAX_START && e->ec < max_ec) {
436 			victim = e;
437 			max_ec = e->ec;
438 		}
439 	}
440 
441 	return victim;
442 }
443 
444 static int anchor_pebs_avalible(struct rb_root *root)
445 {
446 	struct rb_node *p;
447 	struct ubi_wl_entry *e;
448 
449 	ubi_rb_for_each_entry(p, e, root, u.rb)
450 		if (e->pnum < UBI_FM_MAX_START)
451 			return 1;
452 
453 	return 0;
454 }
455 
456 /**
457  * ubi_wl_get_fm_peb - find a physical erase block with a given maximal number.
458  * @ubi: UBI device description object
459  * @anchor: This PEB will be used as anchor PEB by fastmap
460  *
461  * The function returns a physical erase block with a given maximal number
462  * and removes it from the wl subsystem.
463  * Must be called with wl_lock held!
464  */
465 struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor)
466 {
467 	struct ubi_wl_entry *e = NULL;
468 
469 	if (!ubi->free.rb_node || (ubi->free_count - ubi->beb_rsvd_pebs < 1))
470 		goto out;
471 
472 	if (anchor)
473 		e = find_anchor_wl_entry(&ubi->free);
474 	else
475 		e = find_mean_wl_entry(ubi, &ubi->free);
476 
477 	if (!e)
478 		goto out;
479 
480 	self_check_in_wl_tree(ubi, e, &ubi->free);
481 
482 	/* remove it from the free list,
483 	 * the wl subsystem does no longer know this erase block */
484 	rb_erase(&e->u.rb, &ubi->free);
485 	ubi->free_count--;
486 out:
487 	return e;
488 }
489 #endif
490 
491 /**
492  * __wl_get_peb - get a physical eraseblock.
493  * @ubi: UBI device description object
494  *
495  * This function returns a physical eraseblock in case of success and a
496  * negative error code in case of failure.
497  */
498 static int __wl_get_peb(struct ubi_device *ubi)
499 {
500 	int err;
501 	struct ubi_wl_entry *e;
502 
503 retry:
504 	if (!ubi->free.rb_node) {
505 		if (ubi->works_count == 0) {
506 			ubi_err("no free eraseblocks");
507 			ubi_assert(list_empty(&ubi->works));
508 			return -ENOSPC;
509 		}
510 
511 		err = produce_free_peb(ubi);
512 		if (err < 0)
513 			return err;
514 		goto retry;
515 	}
516 
517 	e = find_mean_wl_entry(ubi, &ubi->free);
518 	if (!e) {
519 		ubi_err("no free eraseblocks");
520 		return -ENOSPC;
521 	}
522 
523 	self_check_in_wl_tree(ubi, e, &ubi->free);
524 
525 	/*
526 	 * Move the physical eraseblock to the protection queue where it will
527 	 * be protected from being moved for some time.
528 	 */
529 	rb_erase(&e->u.rb, &ubi->free);
530 	ubi->free_count--;
531 	dbg_wl("PEB %d EC %d", e->pnum, e->ec);
532 #ifndef CONFIG_MTD_UBI_FASTMAP
533 	/* We have to enqueue e only if fastmap is disabled,
534 	 * is fastmap enabled prot_queue_add() will be called by
535 	 * ubi_wl_get_peb() after removing e from the pool. */
536 	prot_queue_add(ubi, e);
537 #endif
538 	return e->pnum;
539 }
540 
541 #ifdef CONFIG_MTD_UBI_FASTMAP
542 /**
543  * return_unused_pool_pebs - returns unused PEB to the free tree.
544  * @ubi: UBI device description object
545  * @pool: fastmap pool description object
546  */
547 static void return_unused_pool_pebs(struct ubi_device *ubi,
548 				    struct ubi_fm_pool *pool)
549 {
550 	int i;
551 	struct ubi_wl_entry *e;
552 
553 	for (i = pool->used; i < pool->size; i++) {
554 		e = ubi->lookuptbl[pool->pebs[i]];
555 		wl_tree_add(e, &ubi->free);
556 		ubi->free_count++;
557 	}
558 }
559 
560 /**
561  * refill_wl_pool - refills all the fastmap pool used by the
562  * WL sub-system.
563  * @ubi: UBI device description object
564  */
565 static void refill_wl_pool(struct ubi_device *ubi)
566 {
567 	struct ubi_wl_entry *e;
568 	struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
569 
570 	return_unused_pool_pebs(ubi, pool);
571 
572 	for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
573 		if (!ubi->free.rb_node ||
574 		   (ubi->free_count - ubi->beb_rsvd_pebs < 5))
575 			break;
576 
577 		e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
578 		self_check_in_wl_tree(ubi, e, &ubi->free);
579 		rb_erase(&e->u.rb, &ubi->free);
580 		ubi->free_count--;
581 
582 		pool->pebs[pool->size] = e->pnum;
583 	}
584 	pool->used = 0;
585 }
586 
587 /**
588  * refill_wl_user_pool - refills all the fastmap pool used by ubi_wl_get_peb.
589  * @ubi: UBI device description object
590  */
591 static void refill_wl_user_pool(struct ubi_device *ubi)
592 {
593 	struct ubi_fm_pool *pool = &ubi->fm_pool;
594 
595 	return_unused_pool_pebs(ubi, pool);
596 
597 	for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
598 		pool->pebs[pool->size] = __wl_get_peb(ubi);
599 		if (pool->pebs[pool->size] < 0)
600 			break;
601 	}
602 	pool->used = 0;
603 }
604 
605 /**
606  * ubi_refill_pools - refills all fastmap PEB pools.
607  * @ubi: UBI device description object
608  */
609 void ubi_refill_pools(struct ubi_device *ubi)
610 {
611 	spin_lock(&ubi->wl_lock);
612 	refill_wl_pool(ubi);
613 	refill_wl_user_pool(ubi);
614 	spin_unlock(&ubi->wl_lock);
615 }
616 
617 /* ubi_wl_get_peb - works exaclty like __wl_get_peb but keeps track of
618  * the fastmap pool.
619  */
620 int ubi_wl_get_peb(struct ubi_device *ubi)
621 {
622 	int ret;
623 	struct ubi_fm_pool *pool = &ubi->fm_pool;
624 	struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool;
625 
626 	if (!pool->size || !wl_pool->size || pool->used == pool->size ||
627 	    wl_pool->used == wl_pool->size)
628 		ubi_update_fastmap(ubi);
629 
630 	/* we got not a single free PEB */
631 	if (!pool->size)
632 		ret = -ENOSPC;
633 	else {
634 		spin_lock(&ubi->wl_lock);
635 		ret = pool->pebs[pool->used++];
636 		prot_queue_add(ubi, ubi->lookuptbl[ret]);
637 		spin_unlock(&ubi->wl_lock);
638 	}
639 
640 	return ret;
641 }
642 
643 /* get_peb_for_wl - returns a PEB to be used internally by the WL sub-system.
644  *
645  * @ubi: UBI device description object
646  */
647 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
648 {
649 	struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
650 	int pnum;
651 
652 	if (pool->used == pool->size || !pool->size) {
653 		/* We cannot update the fastmap here because this
654 		 * function is called in atomic context.
655 		 * Let's fail here and refill/update it as soon as possible. */
656 #ifndef __UBOOT__
657 		schedule_work(&ubi->fm_work);
658 #else
659 		/* In U-Boot we must call this directly */
660 	        ubi_update_fastmap(ubi);
661 #endif
662 		return NULL;
663 	} else {
664 		pnum = pool->pebs[pool->used++];
665 		return ubi->lookuptbl[pnum];
666 	}
667 }
668 #else
669 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
670 {
671 	struct ubi_wl_entry *e;
672 
673 	e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
674 	self_check_in_wl_tree(ubi, e, &ubi->free);
675 	ubi->free_count--;
676 	ubi_assert(ubi->free_count >= 0);
677 	rb_erase(&e->u.rb, &ubi->free);
678 
679 	return e;
680 }
681 
682 int ubi_wl_get_peb(struct ubi_device *ubi)
683 {
684 	int peb, err;
685 
686 	spin_lock(&ubi->wl_lock);
687 	peb = __wl_get_peb(ubi);
688 	spin_unlock(&ubi->wl_lock);
689 
690 	if (peb < 0)
691 		return peb;
692 
693 	err = ubi_self_check_all_ff(ubi, peb, ubi->vid_hdr_aloffset,
694 				    ubi->peb_size - ubi->vid_hdr_aloffset);
695 	if (err) {
696 		ubi_err("new PEB %d does not contain all 0xFF bytes", peb);
697 		return err;
698 	}
699 
700 	return peb;
701 }
702 #endif
703 
704 /**
705  * prot_queue_del - remove a physical eraseblock from the protection queue.
706  * @ubi: UBI device description object
707  * @pnum: the physical eraseblock to remove
708  *
709  * This function deletes PEB @pnum from the protection queue and returns zero
710  * in case of success and %-ENODEV if the PEB was not found.
711  */
712 static int prot_queue_del(struct ubi_device *ubi, int pnum)
713 {
714 	struct ubi_wl_entry *e;
715 
716 	e = ubi->lookuptbl[pnum];
717 	if (!e)
718 		return -ENODEV;
719 
720 	if (self_check_in_pq(ubi, e))
721 		return -ENODEV;
722 
723 	list_del(&e->u.list);
724 	dbg_wl("deleted PEB %d from the protection queue", e->pnum);
725 	return 0;
726 }
727 
728 /**
729  * sync_erase - synchronously erase a physical eraseblock.
730  * @ubi: UBI device description object
731  * @e: the the physical eraseblock to erase
732  * @torture: if the physical eraseblock has to be tortured
733  *
734  * This function returns zero in case of success and a negative error code in
735  * case of failure.
736  */
737 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
738 		      int torture)
739 {
740 	int err;
741 	struct ubi_ec_hdr *ec_hdr;
742 	unsigned long long ec = e->ec;
743 
744 	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
745 
746 	err = self_check_ec(ubi, e->pnum, e->ec);
747 	if (err)
748 		return -EINVAL;
749 
750 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
751 	if (!ec_hdr)
752 		return -ENOMEM;
753 
754 	err = ubi_io_sync_erase(ubi, e->pnum, torture);
755 	if (err < 0)
756 		goto out_free;
757 
758 	ec += err;
759 	if (ec > UBI_MAX_ERASECOUNTER) {
760 		/*
761 		 * Erase counter overflow. Upgrade UBI and use 64-bit
762 		 * erase counters internally.
763 		 */
764 		ubi_err("erase counter overflow at PEB %d, EC %llu",
765 			e->pnum, ec);
766 		err = -EINVAL;
767 		goto out_free;
768 	}
769 
770 	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
771 
772 	ec_hdr->ec = cpu_to_be64(ec);
773 
774 	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
775 	if (err)
776 		goto out_free;
777 
778 	e->ec = ec;
779 	spin_lock(&ubi->wl_lock);
780 	if (e->ec > ubi->max_ec)
781 		ubi->max_ec = e->ec;
782 	spin_unlock(&ubi->wl_lock);
783 
784 out_free:
785 	kfree(ec_hdr);
786 	return err;
787 }
788 
789 /**
790  * serve_prot_queue - check if it is time to stop protecting PEBs.
791  * @ubi: UBI device description object
792  *
793  * This function is called after each erase operation and removes PEBs from the
794  * tail of the protection queue. These PEBs have been protected for long enough
795  * and should be moved to the used tree.
796  */
797 static void serve_prot_queue(struct ubi_device *ubi)
798 {
799 	struct ubi_wl_entry *e, *tmp;
800 	int count;
801 
802 	/*
803 	 * There may be several protected physical eraseblock to remove,
804 	 * process them all.
805 	 */
806 repeat:
807 	count = 0;
808 	spin_lock(&ubi->wl_lock);
809 	list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
810 		dbg_wl("PEB %d EC %d protection over, move to used tree",
811 			e->pnum, e->ec);
812 
813 		list_del(&e->u.list);
814 		wl_tree_add(e, &ubi->used);
815 		if (count++ > 32) {
816 			/*
817 			 * Let's be nice and avoid holding the spinlock for
818 			 * too long.
819 			 */
820 			spin_unlock(&ubi->wl_lock);
821 			cond_resched();
822 			goto repeat;
823 		}
824 	}
825 
826 	ubi->pq_head += 1;
827 	if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
828 		ubi->pq_head = 0;
829 	ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
830 	spin_unlock(&ubi->wl_lock);
831 }
832 
833 /**
834  * __schedule_ubi_work - schedule a work.
835  * @ubi: UBI device description object
836  * @wrk: the work to schedule
837  *
838  * This function adds a work defined by @wrk to the tail of the pending works
839  * list. Can only be used of ubi->work_sem is already held in read mode!
840  */
841 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
842 {
843 	spin_lock(&ubi->wl_lock);
844 	list_add_tail(&wrk->list, &ubi->works);
845 	ubi_assert(ubi->works_count >= 0);
846 	ubi->works_count += 1;
847 #ifndef __UBOOT__
848 	if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
849 		wake_up_process(ubi->bgt_thread);
850 #else
851 	/*
852 	 * U-Boot special: We have no bgt_thread in U-Boot!
853 	 * So just call do_work() here directly.
854 	 */
855 	do_work(ubi);
856 #endif
857 	spin_unlock(&ubi->wl_lock);
858 }
859 
860 /**
861  * schedule_ubi_work - schedule a work.
862  * @ubi: UBI device description object
863  * @wrk: the work to schedule
864  *
865  * This function adds a work defined by @wrk to the tail of the pending works
866  * list.
867  */
868 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
869 {
870 	down_read(&ubi->work_sem);
871 	__schedule_ubi_work(ubi, wrk);
872 	up_read(&ubi->work_sem);
873 }
874 
875 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
876 			int cancel);
877 
878 #ifdef CONFIG_MTD_UBI_FASTMAP
879 /**
880  * ubi_is_erase_work - checks whether a work is erase work.
881  * @wrk: The work object to be checked
882  */
883 int ubi_is_erase_work(struct ubi_work *wrk)
884 {
885 	return wrk->func == erase_worker;
886 }
887 #endif
888 
889 /**
890  * schedule_erase - schedule an erase work.
891  * @ubi: UBI device description object
892  * @e: the WL entry of the physical eraseblock to erase
893  * @vol_id: the volume ID that last used this PEB
894  * @lnum: the last used logical eraseblock number for the PEB
895  * @torture: if the physical eraseblock has to be tortured
896  *
897  * This function returns zero in case of success and a %-ENOMEM in case of
898  * failure.
899  */
900 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
901 			  int vol_id, int lnum, int torture)
902 {
903 	struct ubi_work *wl_wrk;
904 
905 	ubi_assert(e);
906 	ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
907 
908 	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
909 	       e->pnum, e->ec, torture);
910 
911 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
912 	if (!wl_wrk)
913 		return -ENOMEM;
914 
915 	wl_wrk->func = &erase_worker;
916 	wl_wrk->e = e;
917 	wl_wrk->vol_id = vol_id;
918 	wl_wrk->lnum = lnum;
919 	wl_wrk->torture = torture;
920 
921 	schedule_ubi_work(ubi, wl_wrk);
922 	return 0;
923 }
924 
925 /**
926  * do_sync_erase - run the erase worker synchronously.
927  * @ubi: UBI device description object
928  * @e: the WL entry of the physical eraseblock to erase
929  * @vol_id: the volume ID that last used this PEB
930  * @lnum: the last used logical eraseblock number for the PEB
931  * @torture: if the physical eraseblock has to be tortured
932  *
933  */
934 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
935 			 int vol_id, int lnum, int torture)
936 {
937 	struct ubi_work *wl_wrk;
938 
939 	dbg_wl("sync erase of PEB %i", e->pnum);
940 
941 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
942 	if (!wl_wrk)
943 		return -ENOMEM;
944 
945 	wl_wrk->e = e;
946 	wl_wrk->vol_id = vol_id;
947 	wl_wrk->lnum = lnum;
948 	wl_wrk->torture = torture;
949 
950 	return erase_worker(ubi, wl_wrk, 0);
951 }
952 
953 #ifdef CONFIG_MTD_UBI_FASTMAP
954 /**
955  * ubi_wl_put_fm_peb - returns a PEB used in a fastmap to the wear-leveling
956  * sub-system.
957  * see: ubi_wl_put_peb()
958  *
959  * @ubi: UBI device description object
960  * @fm_e: physical eraseblock to return
961  * @lnum: the last used logical eraseblock number for the PEB
962  * @torture: if this physical eraseblock has to be tortured
963  */
964 int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *fm_e,
965 		      int lnum, int torture)
966 {
967 	struct ubi_wl_entry *e;
968 	int vol_id, pnum = fm_e->pnum;
969 
970 	dbg_wl("PEB %d", pnum);
971 
972 	ubi_assert(pnum >= 0);
973 	ubi_assert(pnum < ubi->peb_count);
974 
975 	spin_lock(&ubi->wl_lock);
976 	e = ubi->lookuptbl[pnum];
977 
978 	/* This can happen if we recovered from a fastmap the very
979 	 * first time and writing now a new one. In this case the wl system
980 	 * has never seen any PEB used by the original fastmap.
981 	 */
982 	if (!e) {
983 		e = fm_e;
984 		ubi_assert(e->ec >= 0);
985 		ubi->lookuptbl[pnum] = e;
986 	} else {
987 		e->ec = fm_e->ec;
988 		kfree(fm_e);
989 	}
990 
991 	spin_unlock(&ubi->wl_lock);
992 
993 	vol_id = lnum ? UBI_FM_DATA_VOLUME_ID : UBI_FM_SB_VOLUME_ID;
994 	return schedule_erase(ubi, e, vol_id, lnum, torture);
995 }
996 #endif
997 
998 /**
999  * wear_leveling_worker - wear-leveling worker function.
1000  * @ubi: UBI device description object
1001  * @wrk: the work object
1002  * @cancel: non-zero if the worker has to free memory and exit
1003  *
1004  * This function copies a more worn out physical eraseblock to a less worn out
1005  * one. Returns zero in case of success and a negative error code in case of
1006  * failure.
1007  */
1008 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
1009 				int cancel)
1010 {
1011 	int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
1012 	int vol_id = -1, uninitialized_var(lnum);
1013 #ifdef CONFIG_MTD_UBI_FASTMAP
1014 	int anchor = wrk->anchor;
1015 #endif
1016 	struct ubi_wl_entry *e1, *e2;
1017 	struct ubi_vid_hdr *vid_hdr;
1018 
1019 	kfree(wrk);
1020 	if (cancel)
1021 		return 0;
1022 
1023 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1024 	if (!vid_hdr)
1025 		return -ENOMEM;
1026 
1027 	mutex_lock(&ubi->move_mutex);
1028 	spin_lock(&ubi->wl_lock);
1029 	ubi_assert(!ubi->move_from && !ubi->move_to);
1030 	ubi_assert(!ubi->move_to_put);
1031 
1032 	if (!ubi->free.rb_node ||
1033 	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
1034 		/*
1035 		 * No free physical eraseblocks? Well, they must be waiting in
1036 		 * the queue to be erased. Cancel movement - it will be
1037 		 * triggered again when a free physical eraseblock appears.
1038 		 *
1039 		 * No used physical eraseblocks? They must be temporarily
1040 		 * protected from being moved. They will be moved to the
1041 		 * @ubi->used tree later and the wear-leveling will be
1042 		 * triggered again.
1043 		 */
1044 		dbg_wl("cancel WL, a list is empty: free %d, used %d",
1045 		       !ubi->free.rb_node, !ubi->used.rb_node);
1046 		goto out_cancel;
1047 	}
1048 
1049 #ifdef CONFIG_MTD_UBI_FASTMAP
1050 	/* Check whether we need to produce an anchor PEB */
1051 	if (!anchor)
1052 		anchor = !anchor_pebs_avalible(&ubi->free);
1053 
1054 	if (anchor) {
1055 		e1 = find_anchor_wl_entry(&ubi->used);
1056 		if (!e1)
1057 			goto out_cancel;
1058 		e2 = get_peb_for_wl(ubi);
1059 		if (!e2)
1060 			goto out_cancel;
1061 
1062 		self_check_in_wl_tree(ubi, e1, &ubi->used);
1063 		rb_erase(&e1->u.rb, &ubi->used);
1064 		dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
1065 	} else if (!ubi->scrub.rb_node) {
1066 #else
1067 	if (!ubi->scrub.rb_node) {
1068 #endif
1069 		/*
1070 		 * Now pick the least worn-out used physical eraseblock and a
1071 		 * highly worn-out free physical eraseblock. If the erase
1072 		 * counters differ much enough, start wear-leveling.
1073 		 */
1074 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1075 		e2 = get_peb_for_wl(ubi);
1076 		if (!e2)
1077 			goto out_cancel;
1078 
1079 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
1080 			dbg_wl("no WL needed: min used EC %d, max free EC %d",
1081 			       e1->ec, e2->ec);
1082 
1083 			/* Give the unused PEB back */
1084 			wl_tree_add(e2, &ubi->free);
1085 			ubi->free_count++;
1086 			goto out_cancel;
1087 		}
1088 		self_check_in_wl_tree(ubi, e1, &ubi->used);
1089 		rb_erase(&e1->u.rb, &ubi->used);
1090 		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
1091 		       e1->pnum, e1->ec, e2->pnum, e2->ec);
1092 	} else {
1093 		/* Perform scrubbing */
1094 		scrubbing = 1;
1095 		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
1096 		e2 = get_peb_for_wl(ubi);
1097 		if (!e2)
1098 			goto out_cancel;
1099 
1100 		self_check_in_wl_tree(ubi, e1, &ubi->scrub);
1101 		rb_erase(&e1->u.rb, &ubi->scrub);
1102 		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
1103 	}
1104 
1105 	ubi->move_from = e1;
1106 	ubi->move_to = e2;
1107 	spin_unlock(&ubi->wl_lock);
1108 
1109 	/*
1110 	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
1111 	 * We so far do not know which logical eraseblock our physical
1112 	 * eraseblock (@e1) belongs to. We have to read the volume identifier
1113 	 * header first.
1114 	 *
1115 	 * Note, we are protected from this PEB being unmapped and erased. The
1116 	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
1117 	 * which is being moved was unmapped.
1118 	 */
1119 
1120 	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
1121 	if (err && err != UBI_IO_BITFLIPS) {
1122 		if (err == UBI_IO_FF) {
1123 			/*
1124 			 * We are trying to move PEB without a VID header. UBI
1125 			 * always write VID headers shortly after the PEB was
1126 			 * given, so we have a situation when it has not yet
1127 			 * had a chance to write it, because it was preempted.
1128 			 * So add this PEB to the protection queue so far,
1129 			 * because presumably more data will be written there
1130 			 * (including the missing VID header), and then we'll
1131 			 * move it.
1132 			 */
1133 			dbg_wl("PEB %d has no VID header", e1->pnum);
1134 			protect = 1;
1135 			goto out_not_moved;
1136 		} else if (err == UBI_IO_FF_BITFLIPS) {
1137 			/*
1138 			 * The same situation as %UBI_IO_FF, but bit-flips were
1139 			 * detected. It is better to schedule this PEB for
1140 			 * scrubbing.
1141 			 */
1142 			dbg_wl("PEB %d has no VID header but has bit-flips",
1143 			       e1->pnum);
1144 			scrubbing = 1;
1145 			goto out_not_moved;
1146 		}
1147 
1148 		ubi_err("error %d while reading VID header from PEB %d",
1149 			err, e1->pnum);
1150 		goto out_error;
1151 	}
1152 
1153 	vol_id = be32_to_cpu(vid_hdr->vol_id);
1154 	lnum = be32_to_cpu(vid_hdr->lnum);
1155 
1156 	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
1157 	if (err) {
1158 		if (err == MOVE_CANCEL_RACE) {
1159 			/*
1160 			 * The LEB has not been moved because the volume is
1161 			 * being deleted or the PEB has been put meanwhile. We
1162 			 * should prevent this PEB from being selected for
1163 			 * wear-leveling movement again, so put it to the
1164 			 * protection queue.
1165 			 */
1166 			protect = 1;
1167 			goto out_not_moved;
1168 		}
1169 		if (err == MOVE_RETRY) {
1170 			scrubbing = 1;
1171 			goto out_not_moved;
1172 		}
1173 		if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
1174 		    err == MOVE_TARGET_RD_ERR) {
1175 			/*
1176 			 * Target PEB had bit-flips or write error - torture it.
1177 			 */
1178 			torture = 1;
1179 			goto out_not_moved;
1180 		}
1181 
1182 		if (err == MOVE_SOURCE_RD_ERR) {
1183 			/*
1184 			 * An error happened while reading the source PEB. Do
1185 			 * not switch to R/O mode in this case, and give the
1186 			 * upper layers a possibility to recover from this,
1187 			 * e.g. by unmapping corresponding LEB. Instead, just
1188 			 * put this PEB to the @ubi->erroneous list to prevent
1189 			 * UBI from trying to move it over and over again.
1190 			 */
1191 			if (ubi->erroneous_peb_count > ubi->max_erroneous) {
1192 				ubi_err("too many erroneous eraseblocks (%d)",
1193 					ubi->erroneous_peb_count);
1194 				goto out_error;
1195 			}
1196 			erroneous = 1;
1197 			goto out_not_moved;
1198 		}
1199 
1200 		if (err < 0)
1201 			goto out_error;
1202 
1203 		ubi_assert(0);
1204 	}
1205 
1206 	/* The PEB has been successfully moved */
1207 	if (scrubbing)
1208 		ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
1209 			e1->pnum, vol_id, lnum, e2->pnum);
1210 	ubi_free_vid_hdr(ubi, vid_hdr);
1211 
1212 	spin_lock(&ubi->wl_lock);
1213 	if (!ubi->move_to_put) {
1214 		wl_tree_add(e2, &ubi->used);
1215 		e2 = NULL;
1216 	}
1217 	ubi->move_from = ubi->move_to = NULL;
1218 	ubi->move_to_put = ubi->wl_scheduled = 0;
1219 	spin_unlock(&ubi->wl_lock);
1220 
1221 	err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
1222 	if (err) {
1223 		kmem_cache_free(ubi_wl_entry_slab, e1);
1224 		if (e2)
1225 			kmem_cache_free(ubi_wl_entry_slab, e2);
1226 		goto out_ro;
1227 	}
1228 
1229 	if (e2) {
1230 		/*
1231 		 * Well, the target PEB was put meanwhile, schedule it for
1232 		 * erasure.
1233 		 */
1234 		dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
1235 		       e2->pnum, vol_id, lnum);
1236 		err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
1237 		if (err) {
1238 			kmem_cache_free(ubi_wl_entry_slab, e2);
1239 			goto out_ro;
1240 		}
1241 	}
1242 
1243 	dbg_wl("done");
1244 	mutex_unlock(&ubi->move_mutex);
1245 	return 0;
1246 
1247 	/*
1248 	 * For some reasons the LEB was not moved, might be an error, might be
1249 	 * something else. @e1 was not changed, so return it back. @e2 might
1250 	 * have been changed, schedule it for erasure.
1251 	 */
1252 out_not_moved:
1253 	if (vol_id != -1)
1254 		dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
1255 		       e1->pnum, vol_id, lnum, e2->pnum, err);
1256 	else
1257 		dbg_wl("cancel moving PEB %d to PEB %d (%d)",
1258 		       e1->pnum, e2->pnum, err);
1259 	spin_lock(&ubi->wl_lock);
1260 	if (protect)
1261 		prot_queue_add(ubi, e1);
1262 	else if (erroneous) {
1263 		wl_tree_add(e1, &ubi->erroneous);
1264 		ubi->erroneous_peb_count += 1;
1265 	} else if (scrubbing)
1266 		wl_tree_add(e1, &ubi->scrub);
1267 	else
1268 		wl_tree_add(e1, &ubi->used);
1269 	ubi_assert(!ubi->move_to_put);
1270 	ubi->move_from = ubi->move_to = NULL;
1271 	ubi->wl_scheduled = 0;
1272 	spin_unlock(&ubi->wl_lock);
1273 
1274 	ubi_free_vid_hdr(ubi, vid_hdr);
1275 	err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
1276 	if (err) {
1277 		kmem_cache_free(ubi_wl_entry_slab, e2);
1278 		goto out_ro;
1279 	}
1280 	mutex_unlock(&ubi->move_mutex);
1281 	return 0;
1282 
1283 out_error:
1284 	if (vol_id != -1)
1285 		ubi_err("error %d while moving PEB %d to PEB %d",
1286 			err, e1->pnum, e2->pnum);
1287 	else
1288 		ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d",
1289 			err, e1->pnum, vol_id, lnum, e2->pnum);
1290 	spin_lock(&ubi->wl_lock);
1291 	ubi->move_from = ubi->move_to = NULL;
1292 	ubi->move_to_put = ubi->wl_scheduled = 0;
1293 	spin_unlock(&ubi->wl_lock);
1294 
1295 	ubi_free_vid_hdr(ubi, vid_hdr);
1296 	kmem_cache_free(ubi_wl_entry_slab, e1);
1297 	kmem_cache_free(ubi_wl_entry_slab, e2);
1298 
1299 out_ro:
1300 	ubi_ro_mode(ubi);
1301 	mutex_unlock(&ubi->move_mutex);
1302 	ubi_assert(err != 0);
1303 	return err < 0 ? err : -EIO;
1304 
1305 out_cancel:
1306 	ubi->wl_scheduled = 0;
1307 	spin_unlock(&ubi->wl_lock);
1308 	mutex_unlock(&ubi->move_mutex);
1309 	ubi_free_vid_hdr(ubi, vid_hdr);
1310 	return 0;
1311 }
1312 
1313 /**
1314  * ensure_wear_leveling - schedule wear-leveling if it is needed.
1315  * @ubi: UBI device description object
1316  * @nested: set to non-zero if this function is called from UBI worker
1317  *
1318  * This function checks if it is time to start wear-leveling and schedules it
1319  * if yes. This function returns zero in case of success and a negative error
1320  * code in case of failure.
1321  */
1322 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1323 {
1324 	int err = 0;
1325 	struct ubi_wl_entry *e1;
1326 	struct ubi_wl_entry *e2;
1327 	struct ubi_work *wrk;
1328 
1329 	spin_lock(&ubi->wl_lock);
1330 	if (ubi->wl_scheduled)
1331 		/* Wear-leveling is already in the work queue */
1332 		goto out_unlock;
1333 
1334 	/*
1335 	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1336 	 * the WL worker has to be scheduled anyway.
1337 	 */
1338 	if (!ubi->scrub.rb_node) {
1339 		if (!ubi->used.rb_node || !ubi->free.rb_node)
1340 			/* No physical eraseblocks - no deal */
1341 			goto out_unlock;
1342 
1343 		/*
1344 		 * We schedule wear-leveling only if the difference between the
1345 		 * lowest erase counter of used physical eraseblocks and a high
1346 		 * erase counter of free physical eraseblocks is greater than
1347 		 * %UBI_WL_THRESHOLD.
1348 		 */
1349 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1350 		e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1351 
1352 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1353 			goto out_unlock;
1354 		dbg_wl("schedule wear-leveling");
1355 	} else
1356 		dbg_wl("schedule scrubbing");
1357 
1358 	ubi->wl_scheduled = 1;
1359 	spin_unlock(&ubi->wl_lock);
1360 
1361 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1362 	if (!wrk) {
1363 		err = -ENOMEM;
1364 		goto out_cancel;
1365 	}
1366 
1367 	wrk->anchor = 0;
1368 	wrk->func = &wear_leveling_worker;
1369 	if (nested)
1370 		__schedule_ubi_work(ubi, wrk);
1371 	else
1372 		schedule_ubi_work(ubi, wrk);
1373 	return err;
1374 
1375 out_cancel:
1376 	spin_lock(&ubi->wl_lock);
1377 	ubi->wl_scheduled = 0;
1378 out_unlock:
1379 	spin_unlock(&ubi->wl_lock);
1380 	return err;
1381 }
1382 
1383 #ifdef CONFIG_MTD_UBI_FASTMAP
1384 /**
1385  * ubi_ensure_anchor_pebs - schedule wear-leveling to produce an anchor PEB.
1386  * @ubi: UBI device description object
1387  */
1388 int ubi_ensure_anchor_pebs(struct ubi_device *ubi)
1389 {
1390 	struct ubi_work *wrk;
1391 
1392 	spin_lock(&ubi->wl_lock);
1393 	if (ubi->wl_scheduled) {
1394 		spin_unlock(&ubi->wl_lock);
1395 		return 0;
1396 	}
1397 	ubi->wl_scheduled = 1;
1398 	spin_unlock(&ubi->wl_lock);
1399 
1400 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1401 	if (!wrk) {
1402 		spin_lock(&ubi->wl_lock);
1403 		ubi->wl_scheduled = 0;
1404 		spin_unlock(&ubi->wl_lock);
1405 		return -ENOMEM;
1406 	}
1407 
1408 	wrk->anchor = 1;
1409 	wrk->func = &wear_leveling_worker;
1410 	schedule_ubi_work(ubi, wrk);
1411 	return 0;
1412 }
1413 #endif
1414 
1415 /**
1416  * erase_worker - physical eraseblock erase worker function.
1417  * @ubi: UBI device description object
1418  * @wl_wrk: the work object
1419  * @cancel: non-zero if the worker has to free memory and exit
1420  *
1421  * This function erases a physical eraseblock and perform torture testing if
1422  * needed. It also takes care about marking the physical eraseblock bad if
1423  * needed. Returns zero in case of success and a negative error code in case of
1424  * failure.
1425  */
1426 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1427 			int cancel)
1428 {
1429 	struct ubi_wl_entry *e = wl_wrk->e;
1430 	int pnum = e->pnum;
1431 	int vol_id = wl_wrk->vol_id;
1432 	int lnum = wl_wrk->lnum;
1433 	int err, available_consumed = 0;
1434 
1435 	if (cancel) {
1436 		dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1437 		kfree(wl_wrk);
1438 		kmem_cache_free(ubi_wl_entry_slab, e);
1439 		return 0;
1440 	}
1441 
1442 	dbg_wl("erase PEB %d EC %d LEB %d:%d",
1443 	       pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1444 
1445 	ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1446 
1447 	err = sync_erase(ubi, e, wl_wrk->torture);
1448 	if (!err) {
1449 		/* Fine, we've erased it successfully */
1450 		kfree(wl_wrk);
1451 
1452 		spin_lock(&ubi->wl_lock);
1453 		wl_tree_add(e, &ubi->free);
1454 		ubi->free_count++;
1455 		spin_unlock(&ubi->wl_lock);
1456 
1457 		/*
1458 		 * One more erase operation has happened, take care about
1459 		 * protected physical eraseblocks.
1460 		 */
1461 		serve_prot_queue(ubi);
1462 
1463 		/* And take care about wear-leveling */
1464 		err = ensure_wear_leveling(ubi, 1);
1465 		return err;
1466 	}
1467 
1468 	ubi_err("failed to erase PEB %d, error %d", pnum, err);
1469 	kfree(wl_wrk);
1470 
1471 	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1472 	    err == -EBUSY) {
1473 		int err1;
1474 
1475 		/* Re-schedule the LEB for erasure */
1476 		err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1477 		if (err1) {
1478 			err = err1;
1479 			goto out_ro;
1480 		}
1481 		return err;
1482 	}
1483 
1484 	kmem_cache_free(ubi_wl_entry_slab, e);
1485 	if (err != -EIO)
1486 		/*
1487 		 * If this is not %-EIO, we have no idea what to do. Scheduling
1488 		 * this physical eraseblock for erasure again would cause
1489 		 * errors again and again. Well, lets switch to R/O mode.
1490 		 */
1491 		goto out_ro;
1492 
1493 	/* It is %-EIO, the PEB went bad */
1494 
1495 	if (!ubi->bad_allowed) {
1496 		ubi_err("bad physical eraseblock %d detected", pnum);
1497 		goto out_ro;
1498 	}
1499 
1500 	spin_lock(&ubi->volumes_lock);
1501 	if (ubi->beb_rsvd_pebs == 0) {
1502 		if (ubi->avail_pebs == 0) {
1503 			spin_unlock(&ubi->volumes_lock);
1504 			ubi_err("no reserved/available physical eraseblocks");
1505 			goto out_ro;
1506 		}
1507 		ubi->avail_pebs -= 1;
1508 		available_consumed = 1;
1509 	}
1510 	spin_unlock(&ubi->volumes_lock);
1511 
1512 	ubi_msg("mark PEB %d as bad", pnum);
1513 	err = ubi_io_mark_bad(ubi, pnum);
1514 	if (err)
1515 		goto out_ro;
1516 
1517 	spin_lock(&ubi->volumes_lock);
1518 	if (ubi->beb_rsvd_pebs > 0) {
1519 		if (available_consumed) {
1520 			/*
1521 			 * The amount of reserved PEBs increased since we last
1522 			 * checked.
1523 			 */
1524 			ubi->avail_pebs += 1;
1525 			available_consumed = 0;
1526 		}
1527 		ubi->beb_rsvd_pebs -= 1;
1528 	}
1529 	ubi->bad_peb_count += 1;
1530 	ubi->good_peb_count -= 1;
1531 	ubi_calculate_reserved(ubi);
1532 	if (available_consumed)
1533 		ubi_warn("no PEBs in the reserved pool, used an available PEB");
1534 	else if (ubi->beb_rsvd_pebs)
1535 		ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs);
1536 	else
1537 		ubi_warn("last PEB from the reserve was used");
1538 	spin_unlock(&ubi->volumes_lock);
1539 
1540 	return err;
1541 
1542 out_ro:
1543 	if (available_consumed) {
1544 		spin_lock(&ubi->volumes_lock);
1545 		ubi->avail_pebs += 1;
1546 		spin_unlock(&ubi->volumes_lock);
1547 	}
1548 	ubi_ro_mode(ubi);
1549 	return err;
1550 }
1551 
1552 /**
1553  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1554  * @ubi: UBI device description object
1555  * @vol_id: the volume ID that last used this PEB
1556  * @lnum: the last used logical eraseblock number for the PEB
1557  * @pnum: physical eraseblock to return
1558  * @torture: if this physical eraseblock has to be tortured
1559  *
1560  * This function is called to return physical eraseblock @pnum to the pool of
1561  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1562  * occurred to this @pnum and it has to be tested. This function returns zero
1563  * in case of success, and a negative error code in case of failure.
1564  */
1565 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1566 		   int pnum, int torture)
1567 {
1568 	int err;
1569 	struct ubi_wl_entry *e;
1570 
1571 	dbg_wl("PEB %d", pnum);
1572 	ubi_assert(pnum >= 0);
1573 	ubi_assert(pnum < ubi->peb_count);
1574 
1575 retry:
1576 	spin_lock(&ubi->wl_lock);
1577 	e = ubi->lookuptbl[pnum];
1578 	if (e == ubi->move_from) {
1579 		/*
1580 		 * User is putting the physical eraseblock which was selected to
1581 		 * be moved. It will be scheduled for erasure in the
1582 		 * wear-leveling worker.
1583 		 */
1584 		dbg_wl("PEB %d is being moved, wait", pnum);
1585 		spin_unlock(&ubi->wl_lock);
1586 
1587 		/* Wait for the WL worker by taking the @ubi->move_mutex */
1588 		mutex_lock(&ubi->move_mutex);
1589 		mutex_unlock(&ubi->move_mutex);
1590 		goto retry;
1591 	} else if (e == ubi->move_to) {
1592 		/*
1593 		 * User is putting the physical eraseblock which was selected
1594 		 * as the target the data is moved to. It may happen if the EBA
1595 		 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1596 		 * but the WL sub-system has not put the PEB to the "used" tree
1597 		 * yet, but it is about to do this. So we just set a flag which
1598 		 * will tell the WL worker that the PEB is not needed anymore
1599 		 * and should be scheduled for erasure.
1600 		 */
1601 		dbg_wl("PEB %d is the target of data moving", pnum);
1602 		ubi_assert(!ubi->move_to_put);
1603 		ubi->move_to_put = 1;
1604 		spin_unlock(&ubi->wl_lock);
1605 		return 0;
1606 	} else {
1607 		if (in_wl_tree(e, &ubi->used)) {
1608 			self_check_in_wl_tree(ubi, e, &ubi->used);
1609 			rb_erase(&e->u.rb, &ubi->used);
1610 		} else if (in_wl_tree(e, &ubi->scrub)) {
1611 			self_check_in_wl_tree(ubi, e, &ubi->scrub);
1612 			rb_erase(&e->u.rb, &ubi->scrub);
1613 		} else if (in_wl_tree(e, &ubi->erroneous)) {
1614 			self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1615 			rb_erase(&e->u.rb, &ubi->erroneous);
1616 			ubi->erroneous_peb_count -= 1;
1617 			ubi_assert(ubi->erroneous_peb_count >= 0);
1618 			/* Erroneous PEBs should be tortured */
1619 			torture = 1;
1620 		} else {
1621 			err = prot_queue_del(ubi, e->pnum);
1622 			if (err) {
1623 				ubi_err("PEB %d not found", pnum);
1624 				ubi_ro_mode(ubi);
1625 				spin_unlock(&ubi->wl_lock);
1626 				return err;
1627 			}
1628 		}
1629 	}
1630 	spin_unlock(&ubi->wl_lock);
1631 
1632 	err = schedule_erase(ubi, e, vol_id, lnum, torture);
1633 	if (err) {
1634 		spin_lock(&ubi->wl_lock);
1635 		wl_tree_add(e, &ubi->used);
1636 		spin_unlock(&ubi->wl_lock);
1637 	}
1638 
1639 	return err;
1640 }
1641 
1642 /**
1643  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1644  * @ubi: UBI device description object
1645  * @pnum: the physical eraseblock to schedule
1646  *
1647  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1648  * needs scrubbing. This function schedules a physical eraseblock for
1649  * scrubbing which is done in background. This function returns zero in case of
1650  * success and a negative error code in case of failure.
1651  */
1652 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1653 {
1654 	struct ubi_wl_entry *e;
1655 
1656 	ubi_msg("schedule PEB %d for scrubbing", pnum);
1657 
1658 retry:
1659 	spin_lock(&ubi->wl_lock);
1660 	e = ubi->lookuptbl[pnum];
1661 	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1662 				   in_wl_tree(e, &ubi->erroneous)) {
1663 		spin_unlock(&ubi->wl_lock);
1664 		return 0;
1665 	}
1666 
1667 	if (e == ubi->move_to) {
1668 		/*
1669 		 * This physical eraseblock was used to move data to. The data
1670 		 * was moved but the PEB was not yet inserted to the proper
1671 		 * tree. We should just wait a little and let the WL worker
1672 		 * proceed.
1673 		 */
1674 		spin_unlock(&ubi->wl_lock);
1675 		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1676 		yield();
1677 		goto retry;
1678 	}
1679 
1680 	if (in_wl_tree(e, &ubi->used)) {
1681 		self_check_in_wl_tree(ubi, e, &ubi->used);
1682 		rb_erase(&e->u.rb, &ubi->used);
1683 	} else {
1684 		int err;
1685 
1686 		err = prot_queue_del(ubi, e->pnum);
1687 		if (err) {
1688 			ubi_err("PEB %d not found", pnum);
1689 			ubi_ro_mode(ubi);
1690 			spin_unlock(&ubi->wl_lock);
1691 			return err;
1692 		}
1693 	}
1694 
1695 	wl_tree_add(e, &ubi->scrub);
1696 	spin_unlock(&ubi->wl_lock);
1697 
1698 	/*
1699 	 * Technically scrubbing is the same as wear-leveling, so it is done
1700 	 * by the WL worker.
1701 	 */
1702 	return ensure_wear_leveling(ubi, 0);
1703 }
1704 
1705 /**
1706  * ubi_wl_flush - flush all pending works.
1707  * @ubi: UBI device description object
1708  * @vol_id: the volume id to flush for
1709  * @lnum: the logical eraseblock number to flush for
1710  *
1711  * This function executes all pending works for a particular volume id /
1712  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1713  * acts as a wildcard for all of the corresponding volume numbers or logical
1714  * eraseblock numbers. It returns zero in case of success and a negative error
1715  * code in case of failure.
1716  */
1717 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1718 {
1719 	int err = 0;
1720 	int found = 1;
1721 
1722 	/*
1723 	 * Erase while the pending works queue is not empty, but not more than
1724 	 * the number of currently pending works.
1725 	 */
1726 	dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1727 	       vol_id, lnum, ubi->works_count);
1728 
1729 	while (found) {
1730 		struct ubi_work *wrk;
1731 		found = 0;
1732 
1733 		down_read(&ubi->work_sem);
1734 		spin_lock(&ubi->wl_lock);
1735 		list_for_each_entry(wrk, &ubi->works, list) {
1736 			if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1737 			    (lnum == UBI_ALL || wrk->lnum == lnum)) {
1738 				list_del(&wrk->list);
1739 				ubi->works_count -= 1;
1740 				ubi_assert(ubi->works_count >= 0);
1741 				spin_unlock(&ubi->wl_lock);
1742 
1743 				err = wrk->func(ubi, wrk, 0);
1744 				if (err) {
1745 					up_read(&ubi->work_sem);
1746 					return err;
1747 				}
1748 
1749 				spin_lock(&ubi->wl_lock);
1750 				found = 1;
1751 				break;
1752 			}
1753 		}
1754 		spin_unlock(&ubi->wl_lock);
1755 		up_read(&ubi->work_sem);
1756 	}
1757 
1758 	/*
1759 	 * Make sure all the works which have been done in parallel are
1760 	 * finished.
1761 	 */
1762 	down_write(&ubi->work_sem);
1763 	up_write(&ubi->work_sem);
1764 
1765 	return err;
1766 }
1767 
1768 /**
1769  * tree_destroy - destroy an RB-tree.
1770  * @root: the root of the tree to destroy
1771  */
1772 static void tree_destroy(struct rb_root *root)
1773 {
1774 	struct rb_node *rb;
1775 	struct ubi_wl_entry *e;
1776 
1777 	rb = root->rb_node;
1778 	while (rb) {
1779 		if (rb->rb_left)
1780 			rb = rb->rb_left;
1781 		else if (rb->rb_right)
1782 			rb = rb->rb_right;
1783 		else {
1784 			e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1785 
1786 			rb = rb_parent(rb);
1787 			if (rb) {
1788 				if (rb->rb_left == &e->u.rb)
1789 					rb->rb_left = NULL;
1790 				else
1791 					rb->rb_right = NULL;
1792 			}
1793 
1794 			kmem_cache_free(ubi_wl_entry_slab, e);
1795 		}
1796 	}
1797 }
1798 
1799 /**
1800  * ubi_thread - UBI background thread.
1801  * @u: the UBI device description object pointer
1802  */
1803 int ubi_thread(void *u)
1804 {
1805 	int failures = 0;
1806 	struct ubi_device *ubi = u;
1807 
1808 	ubi_msg("background thread \"%s\" started, PID %d",
1809 		ubi->bgt_name, task_pid_nr(current));
1810 
1811 	set_freezable();
1812 	for (;;) {
1813 		int err;
1814 
1815 		if (kthread_should_stop())
1816 			break;
1817 
1818 		if (try_to_freeze())
1819 			continue;
1820 
1821 		spin_lock(&ubi->wl_lock);
1822 		if (list_empty(&ubi->works) || ubi->ro_mode ||
1823 		    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1824 			set_current_state(TASK_INTERRUPTIBLE);
1825 			spin_unlock(&ubi->wl_lock);
1826 			schedule();
1827 			continue;
1828 		}
1829 		spin_unlock(&ubi->wl_lock);
1830 
1831 		err = do_work(ubi);
1832 		if (err) {
1833 			ubi_err("%s: work failed with error code %d",
1834 				ubi->bgt_name, err);
1835 			if (failures++ > WL_MAX_FAILURES) {
1836 				/*
1837 				 * Too many failures, disable the thread and
1838 				 * switch to read-only mode.
1839 				 */
1840 				ubi_msg("%s: %d consecutive failures",
1841 					ubi->bgt_name, WL_MAX_FAILURES);
1842 				ubi_ro_mode(ubi);
1843 				ubi->thread_enabled = 0;
1844 				continue;
1845 			}
1846 		} else
1847 			failures = 0;
1848 
1849 		cond_resched();
1850 	}
1851 
1852 	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1853 	return 0;
1854 }
1855 
1856 /**
1857  * cancel_pending - cancel all pending works.
1858  * @ubi: UBI device description object
1859  */
1860 static void cancel_pending(struct ubi_device *ubi)
1861 {
1862 	while (!list_empty(&ubi->works)) {
1863 		struct ubi_work *wrk;
1864 
1865 		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1866 		list_del(&wrk->list);
1867 		wrk->func(ubi, wrk, 1);
1868 		ubi->works_count -= 1;
1869 		ubi_assert(ubi->works_count >= 0);
1870 	}
1871 }
1872 
1873 /**
1874  * ubi_wl_init - initialize the WL sub-system using attaching information.
1875  * @ubi: UBI device description object
1876  * @ai: attaching information
1877  *
1878  * This function returns zero in case of success, and a negative error code in
1879  * case of failure.
1880  */
1881 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1882 {
1883 	int err, i, reserved_pebs, found_pebs = 0;
1884 	struct rb_node *rb1, *rb2;
1885 	struct ubi_ainf_volume *av;
1886 	struct ubi_ainf_peb *aeb, *tmp;
1887 	struct ubi_wl_entry *e;
1888 
1889 	ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1890 	spin_lock_init(&ubi->wl_lock);
1891 	mutex_init(&ubi->move_mutex);
1892 	init_rwsem(&ubi->work_sem);
1893 	ubi->max_ec = ai->max_ec;
1894 	INIT_LIST_HEAD(&ubi->works);
1895 #ifndef __UBOOT__
1896 #ifdef CONFIG_MTD_UBI_FASTMAP
1897 	INIT_WORK(&ubi->fm_work, update_fastmap_work_fn);
1898 #endif
1899 #endif
1900 
1901 	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1902 
1903 	err = -ENOMEM;
1904 	ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1905 	if (!ubi->lookuptbl)
1906 		return err;
1907 
1908 	for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1909 		INIT_LIST_HEAD(&ubi->pq[i]);
1910 	ubi->pq_head = 0;
1911 
1912 	list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1913 		cond_resched();
1914 
1915 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1916 		if (!e)
1917 			goto out_free;
1918 
1919 		e->pnum = aeb->pnum;
1920 		e->ec = aeb->ec;
1921 		ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1922 		ubi->lookuptbl[e->pnum] = e;
1923 		if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1924 			kmem_cache_free(ubi_wl_entry_slab, e);
1925 			goto out_free;
1926 		}
1927 
1928 		found_pebs++;
1929 	}
1930 
1931 	ubi->free_count = 0;
1932 	list_for_each_entry(aeb, &ai->free, u.list) {
1933 		cond_resched();
1934 
1935 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1936 		if (!e)
1937 			goto out_free;
1938 
1939 		e->pnum = aeb->pnum;
1940 		e->ec = aeb->ec;
1941 		ubi_assert(e->ec >= 0);
1942 		ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1943 
1944 		wl_tree_add(e, &ubi->free);
1945 		ubi->free_count++;
1946 
1947 		ubi->lookuptbl[e->pnum] = e;
1948 
1949 		found_pebs++;
1950 	}
1951 
1952 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1953 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1954 			cond_resched();
1955 
1956 			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1957 			if (!e)
1958 				goto out_free;
1959 
1960 			e->pnum = aeb->pnum;
1961 			e->ec = aeb->ec;
1962 			ubi->lookuptbl[e->pnum] = e;
1963 
1964 			if (!aeb->scrub) {
1965 				dbg_wl("add PEB %d EC %d to the used tree",
1966 				       e->pnum, e->ec);
1967 				wl_tree_add(e, &ubi->used);
1968 			} else {
1969 				dbg_wl("add PEB %d EC %d to the scrub tree",
1970 				       e->pnum, e->ec);
1971 				wl_tree_add(e, &ubi->scrub);
1972 			}
1973 
1974 			found_pebs++;
1975 		}
1976 	}
1977 
1978 	dbg_wl("found %i PEBs", found_pebs);
1979 
1980 	if (ubi->fm)
1981 		ubi_assert(ubi->good_peb_count == \
1982 			   found_pebs + ubi->fm->used_blocks);
1983 	else
1984 		ubi_assert(ubi->good_peb_count == found_pebs);
1985 
1986 	reserved_pebs = WL_RESERVED_PEBS;
1987 #ifdef CONFIG_MTD_UBI_FASTMAP
1988 	/* Reserve enough LEBs to store two fastmaps. */
1989 	reserved_pebs += (ubi->fm_size / ubi->leb_size) * 2;
1990 #endif
1991 
1992 	if (ubi->avail_pebs < reserved_pebs) {
1993 		ubi_err("no enough physical eraseblocks (%d, need %d)",
1994 			ubi->avail_pebs, reserved_pebs);
1995 		if (ubi->corr_peb_count)
1996 			ubi_err("%d PEBs are corrupted and not used",
1997 				ubi->corr_peb_count);
1998 		goto out_free;
1999 	}
2000 	ubi->avail_pebs -= reserved_pebs;
2001 	ubi->rsvd_pebs += reserved_pebs;
2002 
2003 	/* Schedule wear-leveling if needed */
2004 	err = ensure_wear_leveling(ubi, 0);
2005 	if (err)
2006 		goto out_free;
2007 
2008 	return 0;
2009 
2010 out_free:
2011 	cancel_pending(ubi);
2012 	tree_destroy(&ubi->used);
2013 	tree_destroy(&ubi->free);
2014 	tree_destroy(&ubi->scrub);
2015 	kfree(ubi->lookuptbl);
2016 	return err;
2017 }
2018 
2019 /**
2020  * protection_queue_destroy - destroy the protection queue.
2021  * @ubi: UBI device description object
2022  */
2023 static void protection_queue_destroy(struct ubi_device *ubi)
2024 {
2025 	int i;
2026 	struct ubi_wl_entry *e, *tmp;
2027 
2028 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
2029 		list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
2030 			list_del(&e->u.list);
2031 			kmem_cache_free(ubi_wl_entry_slab, e);
2032 		}
2033 	}
2034 }
2035 
2036 /**
2037  * ubi_wl_close - close the wear-leveling sub-system.
2038  * @ubi: UBI device description object
2039  */
2040 void ubi_wl_close(struct ubi_device *ubi)
2041 {
2042 	dbg_wl("close the WL sub-system");
2043 	cancel_pending(ubi);
2044 	protection_queue_destroy(ubi);
2045 	tree_destroy(&ubi->used);
2046 	tree_destroy(&ubi->erroneous);
2047 	tree_destroy(&ubi->free);
2048 	tree_destroy(&ubi->scrub);
2049 	kfree(ubi->lookuptbl);
2050 }
2051 
2052 /**
2053  * self_check_ec - make sure that the erase counter of a PEB is correct.
2054  * @ubi: UBI device description object
2055  * @pnum: the physical eraseblock number to check
2056  * @ec: the erase counter to check
2057  *
2058  * This function returns zero if the erase counter of physical eraseblock @pnum
2059  * is equivalent to @ec, and a negative error code if not or if an error
2060  * occurred.
2061  */
2062 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
2063 {
2064 	int err;
2065 	long long read_ec;
2066 	struct ubi_ec_hdr *ec_hdr;
2067 
2068 	if (!ubi_dbg_chk_gen(ubi))
2069 		return 0;
2070 
2071 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
2072 	if (!ec_hdr)
2073 		return -ENOMEM;
2074 
2075 	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2076 	if (err && err != UBI_IO_BITFLIPS) {
2077 		/* The header does not have to exist */
2078 		err = 0;
2079 		goto out_free;
2080 	}
2081 
2082 	read_ec = be64_to_cpu(ec_hdr->ec);
2083 	if (ec != read_ec && read_ec - ec > 1) {
2084 		ubi_err("self-check failed for PEB %d", pnum);
2085 		ubi_err("read EC is %lld, should be %d", read_ec, ec);
2086 		dump_stack();
2087 		err = 1;
2088 	} else
2089 		err = 0;
2090 
2091 out_free:
2092 	kfree(ec_hdr);
2093 	return err;
2094 }
2095 
2096 /**
2097  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2098  * @ubi: UBI device description object
2099  * @e: the wear-leveling entry to check
2100  * @root: the root of the tree
2101  *
2102  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2103  * is not.
2104  */
2105 static int self_check_in_wl_tree(const struct ubi_device *ubi,
2106 				 struct ubi_wl_entry *e, struct rb_root *root)
2107 {
2108 	if (!ubi_dbg_chk_gen(ubi))
2109 		return 0;
2110 
2111 	if (in_wl_tree(e, root))
2112 		return 0;
2113 
2114 	ubi_err("self-check failed for PEB %d, EC %d, RB-tree %p ",
2115 		e->pnum, e->ec, root);
2116 	dump_stack();
2117 	return -EINVAL;
2118 }
2119 
2120 /**
2121  * self_check_in_pq - check if wear-leveling entry is in the protection
2122  *                        queue.
2123  * @ubi: UBI device description object
2124  * @e: the wear-leveling entry to check
2125  *
2126  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2127  */
2128 static int self_check_in_pq(const struct ubi_device *ubi,
2129 			    struct ubi_wl_entry *e)
2130 {
2131 	struct ubi_wl_entry *p;
2132 	int i;
2133 
2134 	if (!ubi_dbg_chk_gen(ubi))
2135 		return 0;
2136 
2137 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
2138 		list_for_each_entry(p, &ubi->pq[i], u.list)
2139 			if (p == e)
2140 				return 0;
2141 
2142 	ubi_err("self-check failed for PEB %d, EC %d, Protect queue",
2143 		e->pnum, e->ec);
2144 	dump_stack();
2145 	return -EINVAL;
2146 }
2147