1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * 4 * SPDX-License-Identifier: GPL-2.0+ 5 * 6 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner 7 */ 8 9 /* 10 * UBI wear-leveling unit. 11 * 12 * This unit is responsible for wear-leveling. It works in terms of physical 13 * eraseblocks and erase counters and knows nothing about logical eraseblocks, 14 * volumes, etc. From this unit's perspective all physical eraseblocks are of 15 * two types - used and free. Used physical eraseblocks are those that were 16 * "get" by the 'ubi_wl_get_peb()' function, and free physical eraseblocks are 17 * those that were put by the 'ubi_wl_put_peb()' function. 18 * 19 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter 20 * header. The rest of the physical eraseblock contains only 0xFF bytes. 21 * 22 * When physical eraseblocks are returned to the WL unit by means of the 23 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is 24 * done asynchronously in context of the per-UBI device background thread, 25 * which is also managed by the WL unit. 26 * 27 * The wear-leveling is ensured by means of moving the contents of used 28 * physical eraseblocks with low erase counter to free physical eraseblocks 29 * with high erase counter. 30 * 31 * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick 32 * an "optimal" physical eraseblock. For example, when it is known that the 33 * physical eraseblock will be "put" soon because it contains short-term data, 34 * the WL unit may pick a free physical eraseblock with low erase counter, and 35 * so forth. 36 * 37 * If the WL unit fails to erase a physical eraseblock, it marks it as bad. 38 * 39 * This unit is also responsible for scrubbing. If a bit-flip is detected in a 40 * physical eraseblock, it has to be moved. Technically this is the same as 41 * moving it for wear-leveling reasons. 42 * 43 * As it was said, for the UBI unit all physical eraseblocks are either "free" 44 * or "used". Free eraseblock are kept in the @wl->free RB-tree, while used 45 * eraseblocks are kept in a set of different RB-trees: @wl->used, 46 * @wl->prot.pnum, @wl->prot.aec, and @wl->scrub. 47 * 48 * Note, in this implementation, we keep a small in-RAM object for each physical 49 * eraseblock. This is surely not a scalable solution. But it appears to be good 50 * enough for moderately large flashes and it is simple. In future, one may 51 * re-work this unit and make it more scalable. 52 * 53 * At the moment this unit does not utilize the sequence number, which was 54 * introduced relatively recently. But it would be wise to do this because the 55 * sequence number of a logical eraseblock characterizes how old is it. For 56 * example, when we move a PEB with low erase counter, and we need to pick the 57 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we 58 * pick target PEB with an average EC if our PEB is not very "old". This is a 59 * room for future re-works of the WL unit. 60 * 61 * FIXME: looks too complex, should be simplified (later). 62 */ 63 64 #ifdef UBI_LINUX 65 #include <linux/slab.h> 66 #include <linux/crc32.h> 67 #include <linux/freezer.h> 68 #include <linux/kthread.h> 69 #endif 70 71 #include <ubi_uboot.h> 72 #include "ubi.h" 73 74 /* Number of physical eraseblocks reserved for wear-leveling purposes */ 75 #define WL_RESERVED_PEBS 1 76 77 /* 78 * How many erase cycles are short term, unknown, and long term physical 79 * eraseblocks protected. 80 */ 81 #define ST_PROTECTION 16 82 #define U_PROTECTION 10 83 #define LT_PROTECTION 4 84 85 /* 86 * Maximum difference between two erase counters. If this threshold is 87 * exceeded, the WL unit starts moving data from used physical eraseblocks with 88 * low erase counter to free physical eraseblocks with high erase counter. 89 */ 90 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD 91 92 /* 93 * When a physical eraseblock is moved, the WL unit has to pick the target 94 * physical eraseblock to move to. The simplest way would be just to pick the 95 * one with the highest erase counter. But in certain workloads this could lead 96 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a 97 * situation when the picked physical eraseblock is constantly erased after the 98 * data is written to it. So, we have a constant which limits the highest erase 99 * counter of the free physical eraseblock to pick. Namely, the WL unit does 100 * not pick eraseblocks with erase counter greater then the lowest erase 101 * counter plus %WL_FREE_MAX_DIFF. 102 */ 103 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD) 104 105 /* 106 * Maximum number of consecutive background thread failures which is enough to 107 * switch to read-only mode. 108 */ 109 #define WL_MAX_FAILURES 32 110 111 /** 112 * struct ubi_wl_prot_entry - PEB protection entry. 113 * @rb_pnum: link in the @wl->prot.pnum RB-tree 114 * @rb_aec: link in the @wl->prot.aec RB-tree 115 * @abs_ec: the absolute erase counter value when the protection ends 116 * @e: the wear-leveling entry of the physical eraseblock under protection 117 * 118 * When the WL unit returns a physical eraseblock, the physical eraseblock is 119 * protected from being moved for some "time". For this reason, the physical 120 * eraseblock is not directly moved from the @wl->free tree to the @wl->used 121 * tree. There is one more tree in between where this physical eraseblock is 122 * temporarily stored (@wl->prot). 123 * 124 * All this protection stuff is needed because: 125 * o we don't want to move physical eraseblocks just after we have given them 126 * to the user; instead, we first want to let users fill them up with data; 127 * 128 * o there is a chance that the user will put the physical eraseblock very 129 * soon, so it makes sense not to move it for some time, but wait; this is 130 * especially important in case of "short term" physical eraseblocks. 131 * 132 * Physical eraseblocks stay protected only for limited time. But the "time" is 133 * measured in erase cycles in this case. This is implemented with help of the 134 * absolute erase counter (@wl->abs_ec). When it reaches certain value, the 135 * physical eraseblocks are moved from the protection trees (@wl->prot.*) to 136 * the @wl->used tree. 137 * 138 * Protected physical eraseblocks are searched by physical eraseblock number 139 * (when they are put) and by the absolute erase counter (to check if it is 140 * time to move them to the @wl->used tree). So there are actually 2 RB-trees 141 * storing the protected physical eraseblocks: @wl->prot.pnum and 142 * @wl->prot.aec. They are referred to as the "protection" trees. The 143 * first one is indexed by the physical eraseblock number. The second one is 144 * indexed by the absolute erase counter. Both trees store 145 * &struct ubi_wl_prot_entry objects. 146 * 147 * Each physical eraseblock has 2 main states: free and used. The former state 148 * corresponds to the @wl->free tree. The latter state is split up on several 149 * sub-states: 150 * o the WL movement is allowed (@wl->used tree); 151 * o the WL movement is temporarily prohibited (@wl->prot.pnum and 152 * @wl->prot.aec trees); 153 * o scrubbing is needed (@wl->scrub tree). 154 * 155 * Depending on the sub-state, wear-leveling entries of the used physical 156 * eraseblocks may be kept in one of those trees. 157 */ 158 struct ubi_wl_prot_entry { 159 struct rb_node rb_pnum; 160 struct rb_node rb_aec; 161 unsigned long long abs_ec; 162 struct ubi_wl_entry *e; 163 }; 164 165 /** 166 * struct ubi_work - UBI work description data structure. 167 * @list: a link in the list of pending works 168 * @func: worker function 169 * @priv: private data of the worker function 170 * 171 * @e: physical eraseblock to erase 172 * @torture: if the physical eraseblock has to be tortured 173 * 174 * The @func pointer points to the worker function. If the @cancel argument is 175 * not zero, the worker has to free the resources and exit immediately. The 176 * worker has to return zero in case of success and a negative error code in 177 * case of failure. 178 */ 179 struct ubi_work { 180 struct list_head list; 181 int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel); 182 /* The below fields are only relevant to erasure works */ 183 struct ubi_wl_entry *e; 184 int torture; 185 }; 186 187 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 188 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec); 189 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e, 190 struct rb_root *root); 191 #else 192 #define paranoid_check_ec(ubi, pnum, ec) 0 193 #define paranoid_check_in_wl_tree(e, root) 194 #endif 195 196 /** 197 * wl_tree_add - add a wear-leveling entry to a WL RB-tree. 198 * @e: the wear-leveling entry to add 199 * @root: the root of the tree 200 * 201 * Note, we use (erase counter, physical eraseblock number) pairs as keys in 202 * the @ubi->used and @ubi->free RB-trees. 203 */ 204 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root) 205 { 206 struct rb_node **p, *parent = NULL; 207 208 p = &root->rb_node; 209 while (*p) { 210 struct ubi_wl_entry *e1; 211 212 parent = *p; 213 e1 = rb_entry(parent, struct ubi_wl_entry, rb); 214 215 if (e->ec < e1->ec) 216 p = &(*p)->rb_left; 217 else if (e->ec > e1->ec) 218 p = &(*p)->rb_right; 219 else { 220 ubi_assert(e->pnum != e1->pnum); 221 if (e->pnum < e1->pnum) 222 p = &(*p)->rb_left; 223 else 224 p = &(*p)->rb_right; 225 } 226 } 227 228 rb_link_node(&e->rb, parent, p); 229 rb_insert_color(&e->rb, root); 230 } 231 232 /** 233 * do_work - do one pending work. 234 * @ubi: UBI device description object 235 * 236 * This function returns zero in case of success and a negative error code in 237 * case of failure. 238 */ 239 static int do_work(struct ubi_device *ubi) 240 { 241 int err; 242 struct ubi_work *wrk; 243 244 cond_resched(); 245 246 /* 247 * @ubi->work_sem is used to synchronize with the workers. Workers take 248 * it in read mode, so many of them may be doing works at a time. But 249 * the queue flush code has to be sure the whole queue of works is 250 * done, and it takes the mutex in write mode. 251 */ 252 down_read(&ubi->work_sem); 253 spin_lock(&ubi->wl_lock); 254 if (list_empty(&ubi->works)) { 255 spin_unlock(&ubi->wl_lock); 256 up_read(&ubi->work_sem); 257 return 0; 258 } 259 260 wrk = list_entry(ubi->works.next, struct ubi_work, list); 261 list_del(&wrk->list); 262 ubi->works_count -= 1; 263 ubi_assert(ubi->works_count >= 0); 264 spin_unlock(&ubi->wl_lock); 265 266 /* 267 * Call the worker function. Do not touch the work structure 268 * after this call as it will have been freed or reused by that 269 * time by the worker function. 270 */ 271 err = wrk->func(ubi, wrk, 0); 272 if (err) 273 ubi_err("work failed with error code %d", err); 274 up_read(&ubi->work_sem); 275 276 return err; 277 } 278 279 /** 280 * produce_free_peb - produce a free physical eraseblock. 281 * @ubi: UBI device description object 282 * 283 * This function tries to make a free PEB by means of synchronous execution of 284 * pending works. This may be needed if, for example the background thread is 285 * disabled. Returns zero in case of success and a negative error code in case 286 * of failure. 287 */ 288 static int produce_free_peb(struct ubi_device *ubi) 289 { 290 int err; 291 292 spin_lock(&ubi->wl_lock); 293 while (!ubi->free.rb_node) { 294 spin_unlock(&ubi->wl_lock); 295 296 dbg_wl("do one work synchronously"); 297 err = do_work(ubi); 298 if (err) 299 return err; 300 301 spin_lock(&ubi->wl_lock); 302 } 303 spin_unlock(&ubi->wl_lock); 304 305 return 0; 306 } 307 308 /** 309 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree. 310 * @e: the wear-leveling entry to check 311 * @root: the root of the tree 312 * 313 * This function returns non-zero if @e is in the @root RB-tree and zero if it 314 * is not. 315 */ 316 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) 317 { 318 struct rb_node *p; 319 320 p = root->rb_node; 321 while (p) { 322 struct ubi_wl_entry *e1; 323 324 e1 = rb_entry(p, struct ubi_wl_entry, rb); 325 326 if (e->pnum == e1->pnum) { 327 ubi_assert(e == e1); 328 return 1; 329 } 330 331 if (e->ec < e1->ec) 332 p = p->rb_left; 333 else if (e->ec > e1->ec) 334 p = p->rb_right; 335 else { 336 ubi_assert(e->pnum != e1->pnum); 337 if (e->pnum < e1->pnum) 338 p = p->rb_left; 339 else 340 p = p->rb_right; 341 } 342 } 343 344 return 0; 345 } 346 347 /** 348 * prot_tree_add - add physical eraseblock to protection trees. 349 * @ubi: UBI device description object 350 * @e: the physical eraseblock to add 351 * @pe: protection entry object to use 352 * @abs_ec: absolute erase counter value when this physical eraseblock has 353 * to be removed from the protection trees. 354 * 355 * @wl->lock has to be locked. 356 */ 357 static void prot_tree_add(struct ubi_device *ubi, struct ubi_wl_entry *e, 358 struct ubi_wl_prot_entry *pe, int abs_ec) 359 { 360 struct rb_node **p, *parent = NULL; 361 struct ubi_wl_prot_entry *pe1; 362 363 pe->e = e; 364 pe->abs_ec = ubi->abs_ec + abs_ec; 365 366 p = &ubi->prot.pnum.rb_node; 367 while (*p) { 368 parent = *p; 369 pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_pnum); 370 371 if (e->pnum < pe1->e->pnum) 372 p = &(*p)->rb_left; 373 else 374 p = &(*p)->rb_right; 375 } 376 rb_link_node(&pe->rb_pnum, parent, p); 377 rb_insert_color(&pe->rb_pnum, &ubi->prot.pnum); 378 379 p = &ubi->prot.aec.rb_node; 380 parent = NULL; 381 while (*p) { 382 parent = *p; 383 pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_aec); 384 385 if (pe->abs_ec < pe1->abs_ec) 386 p = &(*p)->rb_left; 387 else 388 p = &(*p)->rb_right; 389 } 390 rb_link_node(&pe->rb_aec, parent, p); 391 rb_insert_color(&pe->rb_aec, &ubi->prot.aec); 392 } 393 394 /** 395 * find_wl_entry - find wear-leveling entry closest to certain erase counter. 396 * @root: the RB-tree where to look for 397 * @max: highest possible erase counter 398 * 399 * This function looks for a wear leveling entry with erase counter closest to 400 * @max and less then @max. 401 */ 402 static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max) 403 { 404 struct rb_node *p; 405 struct ubi_wl_entry *e; 406 407 e = rb_entry(rb_first(root), struct ubi_wl_entry, rb); 408 max += e->ec; 409 410 p = root->rb_node; 411 while (p) { 412 struct ubi_wl_entry *e1; 413 414 e1 = rb_entry(p, struct ubi_wl_entry, rb); 415 if (e1->ec >= max) 416 p = p->rb_left; 417 else { 418 p = p->rb_right; 419 e = e1; 420 } 421 } 422 423 return e; 424 } 425 426 /** 427 * ubi_wl_get_peb - get a physical eraseblock. 428 * @ubi: UBI device description object 429 * @dtype: type of data which will be stored in this physical eraseblock 430 * 431 * This function returns a physical eraseblock in case of success and a 432 * negative error code in case of failure. Might sleep. 433 */ 434 int ubi_wl_get_peb(struct ubi_device *ubi, int dtype) 435 { 436 int err, protect, medium_ec; 437 struct ubi_wl_entry *e, *first, *last; 438 struct ubi_wl_prot_entry *pe; 439 440 ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM || 441 dtype == UBI_UNKNOWN); 442 443 pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_NOFS); 444 if (!pe) 445 return -ENOMEM; 446 447 retry: 448 spin_lock(&ubi->wl_lock); 449 if (!ubi->free.rb_node) { 450 if (ubi->works_count == 0) { 451 ubi_assert(list_empty(&ubi->works)); 452 ubi_err("no free eraseblocks"); 453 spin_unlock(&ubi->wl_lock); 454 kfree(pe); 455 return -ENOSPC; 456 } 457 spin_unlock(&ubi->wl_lock); 458 459 err = produce_free_peb(ubi); 460 if (err < 0) { 461 kfree(pe); 462 return err; 463 } 464 goto retry; 465 } 466 467 switch (dtype) { 468 case UBI_LONGTERM: 469 /* 470 * For long term data we pick a physical eraseblock 471 * with high erase counter. But the highest erase 472 * counter we can pick is bounded by the the lowest 473 * erase counter plus %WL_FREE_MAX_DIFF. 474 */ 475 e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); 476 protect = LT_PROTECTION; 477 break; 478 case UBI_UNKNOWN: 479 /* 480 * For unknown data we pick a physical eraseblock with 481 * medium erase counter. But we by no means can pick a 482 * physical eraseblock with erase counter greater or 483 * equivalent than the lowest erase counter plus 484 * %WL_FREE_MAX_DIFF. 485 */ 486 first = rb_entry(rb_first(&ubi->free), 487 struct ubi_wl_entry, rb); 488 last = rb_entry(rb_last(&ubi->free), 489 struct ubi_wl_entry, rb); 490 491 if (last->ec - first->ec < WL_FREE_MAX_DIFF) 492 e = rb_entry(ubi->free.rb_node, 493 struct ubi_wl_entry, rb); 494 else { 495 medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2; 496 e = find_wl_entry(&ubi->free, medium_ec); 497 } 498 protect = U_PROTECTION; 499 break; 500 case UBI_SHORTTERM: 501 /* 502 * For short term data we pick a physical eraseblock 503 * with the lowest erase counter as we expect it will 504 * be erased soon. 505 */ 506 e = rb_entry(rb_first(&ubi->free), 507 struct ubi_wl_entry, rb); 508 protect = ST_PROTECTION; 509 break; 510 default: 511 protect = 0; 512 e = NULL; 513 BUG(); 514 } 515 516 /* 517 * Move the physical eraseblock to the protection trees where it will 518 * be protected from being moved for some time. 519 */ 520 paranoid_check_in_wl_tree(e, &ubi->free); 521 rb_erase(&e->rb, &ubi->free); 522 prot_tree_add(ubi, e, pe, protect); 523 524 dbg_wl("PEB %d EC %d, protection %d", e->pnum, e->ec, protect); 525 spin_unlock(&ubi->wl_lock); 526 527 return e->pnum; 528 } 529 530 /** 531 * prot_tree_del - remove a physical eraseblock from the protection trees 532 * @ubi: UBI device description object 533 * @pnum: the physical eraseblock to remove 534 * 535 * This function returns PEB @pnum from the protection trees and returns zero 536 * in case of success and %-ENODEV if the PEB was not found in the protection 537 * trees. 538 */ 539 static int prot_tree_del(struct ubi_device *ubi, int pnum) 540 { 541 struct rb_node *p; 542 struct ubi_wl_prot_entry *pe = NULL; 543 544 p = ubi->prot.pnum.rb_node; 545 while (p) { 546 547 pe = rb_entry(p, struct ubi_wl_prot_entry, rb_pnum); 548 549 if (pnum == pe->e->pnum) 550 goto found; 551 552 if (pnum < pe->e->pnum) 553 p = p->rb_left; 554 else 555 p = p->rb_right; 556 } 557 558 return -ENODEV; 559 560 found: 561 ubi_assert(pe->e->pnum == pnum); 562 rb_erase(&pe->rb_aec, &ubi->prot.aec); 563 rb_erase(&pe->rb_pnum, &ubi->prot.pnum); 564 kfree(pe); 565 return 0; 566 } 567 568 /** 569 * sync_erase - synchronously erase a physical eraseblock. 570 * @ubi: UBI device description object 571 * @e: the the physical eraseblock to erase 572 * @torture: if the physical eraseblock has to be tortured 573 * 574 * This function returns zero in case of success and a negative error code in 575 * case of failure. 576 */ 577 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, int torture) 578 { 579 int err; 580 struct ubi_ec_hdr *ec_hdr; 581 unsigned long long ec = e->ec; 582 583 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); 584 585 err = paranoid_check_ec(ubi, e->pnum, e->ec); 586 if (err > 0) 587 return -EINVAL; 588 589 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 590 if (!ec_hdr) 591 return -ENOMEM; 592 593 err = ubi_io_sync_erase(ubi, e->pnum, torture); 594 if (err < 0) 595 goto out_free; 596 597 ec += err; 598 if (ec > UBI_MAX_ERASECOUNTER) { 599 /* 600 * Erase counter overflow. Upgrade UBI and use 64-bit 601 * erase counters internally. 602 */ 603 ubi_err("erase counter overflow at PEB %d, EC %llu", 604 e->pnum, ec); 605 err = -EINVAL; 606 goto out_free; 607 } 608 609 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec); 610 611 ec_hdr->ec = cpu_to_be64(ec); 612 613 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr); 614 if (err) 615 goto out_free; 616 617 e->ec = ec; 618 spin_lock(&ubi->wl_lock); 619 if (e->ec > ubi->max_ec) 620 ubi->max_ec = e->ec; 621 spin_unlock(&ubi->wl_lock); 622 623 out_free: 624 kfree(ec_hdr); 625 return err; 626 } 627 628 /** 629 * check_protection_over - check if it is time to stop protecting some 630 * physical eraseblocks. 631 * @ubi: UBI device description object 632 * 633 * This function is called after each erase operation, when the absolute erase 634 * counter is incremented, to check if some physical eraseblock have not to be 635 * protected any longer. These physical eraseblocks are moved from the 636 * protection trees to the used tree. 637 */ 638 static void check_protection_over(struct ubi_device *ubi) 639 { 640 struct ubi_wl_prot_entry *pe; 641 642 /* 643 * There may be several protected physical eraseblock to remove, 644 * process them all. 645 */ 646 while (1) { 647 spin_lock(&ubi->wl_lock); 648 if (!ubi->prot.aec.rb_node) { 649 spin_unlock(&ubi->wl_lock); 650 break; 651 } 652 653 pe = rb_entry(rb_first(&ubi->prot.aec), 654 struct ubi_wl_prot_entry, rb_aec); 655 656 if (pe->abs_ec > ubi->abs_ec) { 657 spin_unlock(&ubi->wl_lock); 658 break; 659 } 660 661 dbg_wl("PEB %d protection over, abs_ec %llu, PEB abs_ec %llu", 662 pe->e->pnum, ubi->abs_ec, pe->abs_ec); 663 rb_erase(&pe->rb_aec, &ubi->prot.aec); 664 rb_erase(&pe->rb_pnum, &ubi->prot.pnum); 665 wl_tree_add(pe->e, &ubi->used); 666 spin_unlock(&ubi->wl_lock); 667 668 kfree(pe); 669 cond_resched(); 670 } 671 } 672 673 /** 674 * schedule_ubi_work - schedule a work. 675 * @ubi: UBI device description object 676 * @wrk: the work to schedule 677 * 678 * This function enqueues a work defined by @wrk to the tail of the pending 679 * works list. 680 */ 681 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 682 { 683 spin_lock(&ubi->wl_lock); 684 list_add_tail(&wrk->list, &ubi->works); 685 ubi_assert(ubi->works_count >= 0); 686 ubi->works_count += 1; 687 688 /* 689 * U-Boot special: We have no bgt_thread in U-Boot! 690 * So just call do_work() here directly. 691 */ 692 do_work(ubi); 693 694 spin_unlock(&ubi->wl_lock); 695 } 696 697 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 698 int cancel); 699 700 /** 701 * schedule_erase - schedule an erase work. 702 * @ubi: UBI device description object 703 * @e: the WL entry of the physical eraseblock to erase 704 * @torture: if the physical eraseblock has to be tortured 705 * 706 * This function returns zero in case of success and a %-ENOMEM in case of 707 * failure. 708 */ 709 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 710 int torture) 711 { 712 struct ubi_work *wl_wrk; 713 714 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", 715 e->pnum, e->ec, torture); 716 717 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 718 if (!wl_wrk) 719 return -ENOMEM; 720 721 wl_wrk->func = &erase_worker; 722 wl_wrk->e = e; 723 wl_wrk->torture = torture; 724 725 schedule_ubi_work(ubi, wl_wrk); 726 return 0; 727 } 728 729 /** 730 * wear_leveling_worker - wear-leveling worker function. 731 * @ubi: UBI device description object 732 * @wrk: the work object 733 * @cancel: non-zero if the worker has to free memory and exit 734 * 735 * This function copies a more worn out physical eraseblock to a less worn out 736 * one. Returns zero in case of success and a negative error code in case of 737 * failure. 738 */ 739 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, 740 int cancel) 741 { 742 int err, put = 0, scrubbing = 0, protect = 0; 743 struct ubi_wl_prot_entry *uninitialized_var(pe); 744 struct ubi_wl_entry *e1, *e2; 745 struct ubi_vid_hdr *vid_hdr; 746 747 kfree(wrk); 748 749 if (cancel) 750 return 0; 751 752 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 753 if (!vid_hdr) 754 return -ENOMEM; 755 756 mutex_lock(&ubi->move_mutex); 757 spin_lock(&ubi->wl_lock); 758 ubi_assert(!ubi->move_from && !ubi->move_to); 759 ubi_assert(!ubi->move_to_put); 760 761 if (!ubi->free.rb_node || 762 (!ubi->used.rb_node && !ubi->scrub.rb_node)) { 763 /* 764 * No free physical eraseblocks? Well, they must be waiting in 765 * the queue to be erased. Cancel movement - it will be 766 * triggered again when a free physical eraseblock appears. 767 * 768 * No used physical eraseblocks? They must be temporarily 769 * protected from being moved. They will be moved to the 770 * @ubi->used tree later and the wear-leveling will be 771 * triggered again. 772 */ 773 dbg_wl("cancel WL, a list is empty: free %d, used %d", 774 !ubi->free.rb_node, !ubi->used.rb_node); 775 goto out_cancel; 776 } 777 778 if (!ubi->scrub.rb_node) { 779 /* 780 * Now pick the least worn-out used physical eraseblock and a 781 * highly worn-out free physical eraseblock. If the erase 782 * counters differ much enough, start wear-leveling. 783 */ 784 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb); 785 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); 786 787 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { 788 dbg_wl("no WL needed: min used EC %d, max free EC %d", 789 e1->ec, e2->ec); 790 goto out_cancel; 791 } 792 paranoid_check_in_wl_tree(e1, &ubi->used); 793 rb_erase(&e1->rb, &ubi->used); 794 dbg_wl("move PEB %d EC %d to PEB %d EC %d", 795 e1->pnum, e1->ec, e2->pnum, e2->ec); 796 } else { 797 /* Perform scrubbing */ 798 scrubbing = 1; 799 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, rb); 800 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); 801 paranoid_check_in_wl_tree(e1, &ubi->scrub); 802 rb_erase(&e1->rb, &ubi->scrub); 803 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); 804 } 805 806 paranoid_check_in_wl_tree(e2, &ubi->free); 807 rb_erase(&e2->rb, &ubi->free); 808 ubi->move_from = e1; 809 ubi->move_to = e2; 810 spin_unlock(&ubi->wl_lock); 811 812 /* 813 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum. 814 * We so far do not know which logical eraseblock our physical 815 * eraseblock (@e1) belongs to. We have to read the volume identifier 816 * header first. 817 * 818 * Note, we are protected from this PEB being unmapped and erased. The 819 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB 820 * which is being moved was unmapped. 821 */ 822 823 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0); 824 if (err && err != UBI_IO_BITFLIPS) { 825 if (err == UBI_IO_PEB_FREE) { 826 /* 827 * We are trying to move PEB without a VID header. UBI 828 * always write VID headers shortly after the PEB was 829 * given, so we have a situation when it did not have 830 * chance to write it down because it was preempted. 831 * Just re-schedule the work, so that next time it will 832 * likely have the VID header in place. 833 */ 834 dbg_wl("PEB %d has no VID header", e1->pnum); 835 goto out_not_moved; 836 } 837 838 ubi_err("error %d while reading VID header from PEB %d", 839 err, e1->pnum); 840 if (err > 0) 841 err = -EIO; 842 goto out_error; 843 } 844 845 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr); 846 if (err) { 847 848 if (err < 0) 849 goto out_error; 850 if (err == 1) 851 goto out_not_moved; 852 853 /* 854 * For some reason the LEB was not moved - it might be because 855 * the volume is being deleted. We should prevent this PEB from 856 * being selected for wear-levelling movement for some "time", 857 * so put it to the protection tree. 858 */ 859 860 dbg_wl("cancelled moving PEB %d", e1->pnum); 861 pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_NOFS); 862 if (!pe) { 863 err = -ENOMEM; 864 goto out_error; 865 } 866 867 protect = 1; 868 } 869 870 ubi_free_vid_hdr(ubi, vid_hdr); 871 spin_lock(&ubi->wl_lock); 872 if (protect) 873 prot_tree_add(ubi, e1, pe, protect); 874 if (!ubi->move_to_put) 875 wl_tree_add(e2, &ubi->used); 876 else 877 put = 1; 878 ubi->move_from = ubi->move_to = NULL; 879 ubi->move_to_put = ubi->wl_scheduled = 0; 880 spin_unlock(&ubi->wl_lock); 881 882 if (put) { 883 /* 884 * Well, the target PEB was put meanwhile, schedule it for 885 * erasure. 886 */ 887 dbg_wl("PEB %d was put meanwhile, erase", e2->pnum); 888 err = schedule_erase(ubi, e2, 0); 889 if (err) 890 goto out_error; 891 } 892 893 if (!protect) { 894 err = schedule_erase(ubi, e1, 0); 895 if (err) 896 goto out_error; 897 } 898 899 900 dbg_wl("done"); 901 mutex_unlock(&ubi->move_mutex); 902 return 0; 903 904 /* 905 * For some reasons the LEB was not moved, might be an error, might be 906 * something else. @e1 was not changed, so return it back. @e2 might 907 * be changed, schedule it for erasure. 908 */ 909 out_not_moved: 910 ubi_free_vid_hdr(ubi, vid_hdr); 911 spin_lock(&ubi->wl_lock); 912 if (scrubbing) 913 wl_tree_add(e1, &ubi->scrub); 914 else 915 wl_tree_add(e1, &ubi->used); 916 ubi->move_from = ubi->move_to = NULL; 917 ubi->move_to_put = ubi->wl_scheduled = 0; 918 spin_unlock(&ubi->wl_lock); 919 920 err = schedule_erase(ubi, e2, 0); 921 if (err) 922 goto out_error; 923 924 mutex_unlock(&ubi->move_mutex); 925 return 0; 926 927 out_error: 928 ubi_err("error %d while moving PEB %d to PEB %d", 929 err, e1->pnum, e2->pnum); 930 931 ubi_free_vid_hdr(ubi, vid_hdr); 932 spin_lock(&ubi->wl_lock); 933 ubi->move_from = ubi->move_to = NULL; 934 ubi->move_to_put = ubi->wl_scheduled = 0; 935 spin_unlock(&ubi->wl_lock); 936 937 kmem_cache_free(ubi_wl_entry_slab, e1); 938 kmem_cache_free(ubi_wl_entry_slab, e2); 939 ubi_ro_mode(ubi); 940 941 mutex_unlock(&ubi->move_mutex); 942 return err; 943 944 out_cancel: 945 ubi->wl_scheduled = 0; 946 spin_unlock(&ubi->wl_lock); 947 mutex_unlock(&ubi->move_mutex); 948 ubi_free_vid_hdr(ubi, vid_hdr); 949 return 0; 950 } 951 952 /** 953 * ensure_wear_leveling - schedule wear-leveling if it is needed. 954 * @ubi: UBI device description object 955 * 956 * This function checks if it is time to start wear-leveling and schedules it 957 * if yes. This function returns zero in case of success and a negative error 958 * code in case of failure. 959 */ 960 static int ensure_wear_leveling(struct ubi_device *ubi) 961 { 962 int err = 0; 963 struct ubi_wl_entry *e1; 964 struct ubi_wl_entry *e2; 965 struct ubi_work *wrk; 966 967 spin_lock(&ubi->wl_lock); 968 if (ubi->wl_scheduled) 969 /* Wear-leveling is already in the work queue */ 970 goto out_unlock; 971 972 /* 973 * If the ubi->scrub tree is not empty, scrubbing is needed, and the 974 * the WL worker has to be scheduled anyway. 975 */ 976 if (!ubi->scrub.rb_node) { 977 if (!ubi->used.rb_node || !ubi->free.rb_node) 978 /* No physical eraseblocks - no deal */ 979 goto out_unlock; 980 981 /* 982 * We schedule wear-leveling only if the difference between the 983 * lowest erase counter of used physical eraseblocks and a high 984 * erase counter of free physical eraseblocks is greater then 985 * %UBI_WL_THRESHOLD. 986 */ 987 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb); 988 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); 989 990 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) 991 goto out_unlock; 992 dbg_wl("schedule wear-leveling"); 993 } else 994 dbg_wl("schedule scrubbing"); 995 996 ubi->wl_scheduled = 1; 997 spin_unlock(&ubi->wl_lock); 998 999 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 1000 if (!wrk) { 1001 err = -ENOMEM; 1002 goto out_cancel; 1003 } 1004 1005 wrk->func = &wear_leveling_worker; 1006 schedule_ubi_work(ubi, wrk); 1007 return err; 1008 1009 out_cancel: 1010 spin_lock(&ubi->wl_lock); 1011 ubi->wl_scheduled = 0; 1012 out_unlock: 1013 spin_unlock(&ubi->wl_lock); 1014 return err; 1015 } 1016 1017 /** 1018 * erase_worker - physical eraseblock erase worker function. 1019 * @ubi: UBI device description object 1020 * @wl_wrk: the work object 1021 * @cancel: non-zero if the worker has to free memory and exit 1022 * 1023 * This function erases a physical eraseblock and perform torture testing if 1024 * needed. It also takes care about marking the physical eraseblock bad if 1025 * needed. Returns zero in case of success and a negative error code in case of 1026 * failure. 1027 */ 1028 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 1029 int cancel) 1030 { 1031 struct ubi_wl_entry *e = wl_wrk->e; 1032 int pnum = e->pnum, err, need; 1033 1034 if (cancel) { 1035 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec); 1036 kfree(wl_wrk); 1037 kmem_cache_free(ubi_wl_entry_slab, e); 1038 return 0; 1039 } 1040 1041 dbg_wl("erase PEB %d EC %d", pnum, e->ec); 1042 1043 err = sync_erase(ubi, e, wl_wrk->torture); 1044 if (!err) { 1045 /* Fine, we've erased it successfully */ 1046 kfree(wl_wrk); 1047 1048 spin_lock(&ubi->wl_lock); 1049 ubi->abs_ec += 1; 1050 wl_tree_add(e, &ubi->free); 1051 spin_unlock(&ubi->wl_lock); 1052 1053 /* 1054 * One more erase operation has happened, take care about protected 1055 * physical eraseblocks. 1056 */ 1057 check_protection_over(ubi); 1058 1059 /* And take care about wear-leveling */ 1060 err = ensure_wear_leveling(ubi); 1061 return err; 1062 } 1063 1064 ubi_err("failed to erase PEB %d, error %d", pnum, err); 1065 kfree(wl_wrk); 1066 kmem_cache_free(ubi_wl_entry_slab, e); 1067 1068 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN || 1069 err == -EBUSY) { 1070 int err1; 1071 1072 /* Re-schedule the LEB for erasure */ 1073 err1 = schedule_erase(ubi, e, 0); 1074 if (err1) { 1075 err = err1; 1076 goto out_ro; 1077 } 1078 return err; 1079 } else if (err != -EIO) { 1080 /* 1081 * If this is not %-EIO, we have no idea what to do. Scheduling 1082 * this physical eraseblock for erasure again would cause 1083 * errors again and again. Well, lets switch to RO mode. 1084 */ 1085 goto out_ro; 1086 } 1087 1088 /* It is %-EIO, the PEB went bad */ 1089 1090 if (!ubi->bad_allowed) { 1091 ubi_err("bad physical eraseblock %d detected", pnum); 1092 goto out_ro; 1093 } 1094 1095 spin_lock(&ubi->volumes_lock); 1096 need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1; 1097 if (need > 0) { 1098 need = ubi->avail_pebs >= need ? need : ubi->avail_pebs; 1099 ubi->avail_pebs -= need; 1100 ubi->rsvd_pebs += need; 1101 ubi->beb_rsvd_pebs += need; 1102 if (need > 0) 1103 ubi_msg("reserve more %d PEBs", need); 1104 } 1105 1106 if (ubi->beb_rsvd_pebs == 0) { 1107 spin_unlock(&ubi->volumes_lock); 1108 ubi_err("no reserved physical eraseblocks"); 1109 goto out_ro; 1110 } 1111 1112 spin_unlock(&ubi->volumes_lock); 1113 ubi_msg("mark PEB %d as bad", pnum); 1114 1115 err = ubi_io_mark_bad(ubi, pnum); 1116 if (err) 1117 goto out_ro; 1118 1119 spin_lock(&ubi->volumes_lock); 1120 ubi->beb_rsvd_pebs -= 1; 1121 ubi->bad_peb_count += 1; 1122 ubi->good_peb_count -= 1; 1123 ubi_calculate_reserved(ubi); 1124 if (ubi->beb_rsvd_pebs == 0) 1125 ubi_warn("last PEB from the reserved pool was used"); 1126 spin_unlock(&ubi->volumes_lock); 1127 1128 return err; 1129 1130 out_ro: 1131 ubi_ro_mode(ubi); 1132 return err; 1133 } 1134 1135 /** 1136 * ubi_wl_put_peb - return a physical eraseblock to the wear-leveling unit. 1137 * @ubi: UBI device description object 1138 * @pnum: physical eraseblock to return 1139 * @torture: if this physical eraseblock has to be tortured 1140 * 1141 * This function is called to return physical eraseblock @pnum to the pool of 1142 * free physical eraseblocks. The @torture flag has to be set if an I/O error 1143 * occurred to this @pnum and it has to be tested. This function returns zero 1144 * in case of success, and a negative error code in case of failure. 1145 */ 1146 int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture) 1147 { 1148 int err; 1149 struct ubi_wl_entry *e; 1150 1151 dbg_wl("PEB %d", pnum); 1152 ubi_assert(pnum >= 0); 1153 ubi_assert(pnum < ubi->peb_count); 1154 1155 retry: 1156 spin_lock(&ubi->wl_lock); 1157 e = ubi->lookuptbl[pnum]; 1158 if (e == ubi->move_from) { 1159 /* 1160 * User is putting the physical eraseblock which was selected to 1161 * be moved. It will be scheduled for erasure in the 1162 * wear-leveling worker. 1163 */ 1164 dbg_wl("PEB %d is being moved, wait", pnum); 1165 spin_unlock(&ubi->wl_lock); 1166 1167 /* Wait for the WL worker by taking the @ubi->move_mutex */ 1168 mutex_lock(&ubi->move_mutex); 1169 mutex_unlock(&ubi->move_mutex); 1170 goto retry; 1171 } else if (e == ubi->move_to) { 1172 /* 1173 * User is putting the physical eraseblock which was selected 1174 * as the target the data is moved to. It may happen if the EBA 1175 * unit already re-mapped the LEB in 'ubi_eba_copy_leb()' but 1176 * the WL unit has not put the PEB to the "used" tree yet, but 1177 * it is about to do this. So we just set a flag which will 1178 * tell the WL worker that the PEB is not needed anymore and 1179 * should be scheduled for erasure. 1180 */ 1181 dbg_wl("PEB %d is the target of data moving", pnum); 1182 ubi_assert(!ubi->move_to_put); 1183 ubi->move_to_put = 1; 1184 spin_unlock(&ubi->wl_lock); 1185 return 0; 1186 } else { 1187 if (in_wl_tree(e, &ubi->used)) { 1188 paranoid_check_in_wl_tree(e, &ubi->used); 1189 rb_erase(&e->rb, &ubi->used); 1190 } else if (in_wl_tree(e, &ubi->scrub)) { 1191 paranoid_check_in_wl_tree(e, &ubi->scrub); 1192 rb_erase(&e->rb, &ubi->scrub); 1193 } else { 1194 err = prot_tree_del(ubi, e->pnum); 1195 if (err) { 1196 ubi_err("PEB %d not found", pnum); 1197 ubi_ro_mode(ubi); 1198 spin_unlock(&ubi->wl_lock); 1199 return err; 1200 } 1201 } 1202 } 1203 spin_unlock(&ubi->wl_lock); 1204 1205 err = schedule_erase(ubi, e, torture); 1206 if (err) { 1207 spin_lock(&ubi->wl_lock); 1208 wl_tree_add(e, &ubi->used); 1209 spin_unlock(&ubi->wl_lock); 1210 } 1211 1212 return err; 1213 } 1214 1215 /** 1216 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing. 1217 * @ubi: UBI device description object 1218 * @pnum: the physical eraseblock to schedule 1219 * 1220 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock 1221 * needs scrubbing. This function schedules a physical eraseblock for 1222 * scrubbing which is done in background. This function returns zero in case of 1223 * success and a negative error code in case of failure. 1224 */ 1225 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) 1226 { 1227 struct ubi_wl_entry *e; 1228 1229 ubi_msg("schedule PEB %d for scrubbing", pnum); 1230 1231 retry: 1232 spin_lock(&ubi->wl_lock); 1233 e = ubi->lookuptbl[pnum]; 1234 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub)) { 1235 spin_unlock(&ubi->wl_lock); 1236 return 0; 1237 } 1238 1239 if (e == ubi->move_to) { 1240 /* 1241 * This physical eraseblock was used to move data to. The data 1242 * was moved but the PEB was not yet inserted to the proper 1243 * tree. We should just wait a little and let the WL worker 1244 * proceed. 1245 */ 1246 spin_unlock(&ubi->wl_lock); 1247 dbg_wl("the PEB %d is not in proper tree, retry", pnum); 1248 yield(); 1249 goto retry; 1250 } 1251 1252 if (in_wl_tree(e, &ubi->used)) { 1253 paranoid_check_in_wl_tree(e, &ubi->used); 1254 rb_erase(&e->rb, &ubi->used); 1255 } else { 1256 int err; 1257 1258 err = prot_tree_del(ubi, e->pnum); 1259 if (err) { 1260 ubi_err("PEB %d not found", pnum); 1261 ubi_ro_mode(ubi); 1262 spin_unlock(&ubi->wl_lock); 1263 return err; 1264 } 1265 } 1266 1267 wl_tree_add(e, &ubi->scrub); 1268 spin_unlock(&ubi->wl_lock); 1269 1270 /* 1271 * Technically scrubbing is the same as wear-leveling, so it is done 1272 * by the WL worker. 1273 */ 1274 return ensure_wear_leveling(ubi); 1275 } 1276 1277 /** 1278 * ubi_wl_flush - flush all pending works. 1279 * @ubi: UBI device description object 1280 * 1281 * This function returns zero in case of success and a negative error code in 1282 * case of failure. 1283 */ 1284 int ubi_wl_flush(struct ubi_device *ubi) 1285 { 1286 int err; 1287 1288 /* 1289 * Erase while the pending works queue is not empty, but not more then 1290 * the number of currently pending works. 1291 */ 1292 dbg_wl("flush (%d pending works)", ubi->works_count); 1293 while (ubi->works_count) { 1294 err = do_work(ubi); 1295 if (err) 1296 return err; 1297 } 1298 1299 /* 1300 * Make sure all the works which have been done in parallel are 1301 * finished. 1302 */ 1303 down_write(&ubi->work_sem); 1304 up_write(&ubi->work_sem); 1305 1306 /* 1307 * And in case last was the WL worker and it cancelled the LEB 1308 * movement, flush again. 1309 */ 1310 while (ubi->works_count) { 1311 dbg_wl("flush more (%d pending works)", ubi->works_count); 1312 err = do_work(ubi); 1313 if (err) 1314 return err; 1315 } 1316 1317 return 0; 1318 } 1319 1320 /** 1321 * tree_destroy - destroy an RB-tree. 1322 * @root: the root of the tree to destroy 1323 */ 1324 static void tree_destroy(struct rb_root *root) 1325 { 1326 struct rb_node *rb; 1327 struct ubi_wl_entry *e; 1328 1329 rb = root->rb_node; 1330 while (rb) { 1331 if (rb->rb_left) 1332 rb = rb->rb_left; 1333 else if (rb->rb_right) 1334 rb = rb->rb_right; 1335 else { 1336 e = rb_entry(rb, struct ubi_wl_entry, rb); 1337 1338 rb = rb_parent(rb); 1339 if (rb) { 1340 if (rb->rb_left == &e->rb) 1341 rb->rb_left = NULL; 1342 else 1343 rb->rb_right = NULL; 1344 } 1345 1346 kmem_cache_free(ubi_wl_entry_slab, e); 1347 } 1348 } 1349 } 1350 1351 /** 1352 * ubi_thread - UBI background thread. 1353 * @u: the UBI device description object pointer 1354 */ 1355 int ubi_thread(void *u) 1356 { 1357 int failures = 0; 1358 struct ubi_device *ubi = u; 1359 1360 ubi_msg("background thread \"%s\" started, PID %d", 1361 ubi->bgt_name, task_pid_nr(current)); 1362 1363 set_freezable(); 1364 for (;;) { 1365 int err; 1366 1367 if (kthread_should_stop()) 1368 break; 1369 1370 if (try_to_freeze()) 1371 continue; 1372 1373 spin_lock(&ubi->wl_lock); 1374 if (list_empty(&ubi->works) || ubi->ro_mode || 1375 !ubi->thread_enabled) { 1376 set_current_state(TASK_INTERRUPTIBLE); 1377 spin_unlock(&ubi->wl_lock); 1378 schedule(); 1379 continue; 1380 } 1381 spin_unlock(&ubi->wl_lock); 1382 1383 err = do_work(ubi); 1384 if (err) { 1385 ubi_err("%s: work failed with error code %d", 1386 ubi->bgt_name, err); 1387 if (failures++ > WL_MAX_FAILURES) { 1388 /* 1389 * Too many failures, disable the thread and 1390 * switch to read-only mode. 1391 */ 1392 ubi_msg("%s: %d consecutive failures", 1393 ubi->bgt_name, WL_MAX_FAILURES); 1394 ubi_ro_mode(ubi); 1395 break; 1396 } 1397 } else 1398 failures = 0; 1399 1400 cond_resched(); 1401 } 1402 1403 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name); 1404 return 0; 1405 } 1406 1407 /** 1408 * cancel_pending - cancel all pending works. 1409 * @ubi: UBI device description object 1410 */ 1411 static void cancel_pending(struct ubi_device *ubi) 1412 { 1413 while (!list_empty(&ubi->works)) { 1414 struct ubi_work *wrk; 1415 1416 wrk = list_entry(ubi->works.next, struct ubi_work, list); 1417 list_del(&wrk->list); 1418 wrk->func(ubi, wrk, 1); 1419 ubi->works_count -= 1; 1420 ubi_assert(ubi->works_count >= 0); 1421 } 1422 } 1423 1424 /** 1425 * ubi_wl_init_scan - initialize the wear-leveling unit using scanning 1426 * information. 1427 * @ubi: UBI device description object 1428 * @si: scanning information 1429 * 1430 * This function returns zero in case of success, and a negative error code in 1431 * case of failure. 1432 */ 1433 int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si) 1434 { 1435 int err; 1436 struct rb_node *rb1, *rb2; 1437 struct ubi_scan_volume *sv; 1438 struct ubi_scan_leb *seb, *tmp; 1439 struct ubi_wl_entry *e; 1440 1441 1442 ubi->used = ubi->free = ubi->scrub = RB_ROOT; 1443 ubi->prot.pnum = ubi->prot.aec = RB_ROOT; 1444 spin_lock_init(&ubi->wl_lock); 1445 mutex_init(&ubi->move_mutex); 1446 init_rwsem(&ubi->work_sem); 1447 ubi->max_ec = si->max_ec; 1448 INIT_LIST_HEAD(&ubi->works); 1449 1450 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); 1451 1452 err = -ENOMEM; 1453 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL); 1454 if (!ubi->lookuptbl) 1455 return err; 1456 1457 list_for_each_entry_safe(seb, tmp, &si->erase, u.list) { 1458 cond_resched(); 1459 1460 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1461 if (!e) 1462 goto out_free; 1463 1464 e->pnum = seb->pnum; 1465 e->ec = seb->ec; 1466 ubi->lookuptbl[e->pnum] = e; 1467 if (schedule_erase(ubi, e, 0)) { 1468 kmem_cache_free(ubi_wl_entry_slab, e); 1469 goto out_free; 1470 } 1471 } 1472 1473 list_for_each_entry(seb, &si->free, u.list) { 1474 cond_resched(); 1475 1476 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1477 if (!e) 1478 goto out_free; 1479 1480 e->pnum = seb->pnum; 1481 e->ec = seb->ec; 1482 ubi_assert(e->ec >= 0); 1483 wl_tree_add(e, &ubi->free); 1484 ubi->lookuptbl[e->pnum] = e; 1485 } 1486 1487 list_for_each_entry(seb, &si->corr, u.list) { 1488 cond_resched(); 1489 1490 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1491 if (!e) 1492 goto out_free; 1493 1494 e->pnum = seb->pnum; 1495 e->ec = seb->ec; 1496 ubi->lookuptbl[e->pnum] = e; 1497 if (schedule_erase(ubi, e, 0)) { 1498 kmem_cache_free(ubi_wl_entry_slab, e); 1499 goto out_free; 1500 } 1501 } 1502 1503 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { 1504 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { 1505 cond_resched(); 1506 1507 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1508 if (!e) 1509 goto out_free; 1510 1511 e->pnum = seb->pnum; 1512 e->ec = seb->ec; 1513 ubi->lookuptbl[e->pnum] = e; 1514 if (!seb->scrub) { 1515 dbg_wl("add PEB %d EC %d to the used tree", 1516 e->pnum, e->ec); 1517 wl_tree_add(e, &ubi->used); 1518 } else { 1519 dbg_wl("add PEB %d EC %d to the scrub tree", 1520 e->pnum, e->ec); 1521 wl_tree_add(e, &ubi->scrub); 1522 } 1523 } 1524 } 1525 1526 if (ubi->avail_pebs < WL_RESERVED_PEBS) { 1527 ubi_err("no enough physical eraseblocks (%d, need %d)", 1528 ubi->avail_pebs, WL_RESERVED_PEBS); 1529 err = -ENOSPC; 1530 goto out_free; 1531 } 1532 ubi->avail_pebs -= WL_RESERVED_PEBS; 1533 ubi->rsvd_pebs += WL_RESERVED_PEBS; 1534 1535 /* Schedule wear-leveling if needed */ 1536 err = ensure_wear_leveling(ubi); 1537 if (err) 1538 goto out_free; 1539 1540 return 0; 1541 1542 out_free: 1543 cancel_pending(ubi); 1544 tree_destroy(&ubi->used); 1545 tree_destroy(&ubi->free); 1546 tree_destroy(&ubi->scrub); 1547 kfree(ubi->lookuptbl); 1548 return err; 1549 } 1550 1551 /** 1552 * protection_trees_destroy - destroy the protection RB-trees. 1553 * @ubi: UBI device description object 1554 */ 1555 static void protection_trees_destroy(struct ubi_device *ubi) 1556 { 1557 struct rb_node *rb; 1558 struct ubi_wl_prot_entry *pe; 1559 1560 rb = ubi->prot.aec.rb_node; 1561 while (rb) { 1562 if (rb->rb_left) 1563 rb = rb->rb_left; 1564 else if (rb->rb_right) 1565 rb = rb->rb_right; 1566 else { 1567 pe = rb_entry(rb, struct ubi_wl_prot_entry, rb_aec); 1568 1569 rb = rb_parent(rb); 1570 if (rb) { 1571 if (rb->rb_left == &pe->rb_aec) 1572 rb->rb_left = NULL; 1573 else 1574 rb->rb_right = NULL; 1575 } 1576 1577 kmem_cache_free(ubi_wl_entry_slab, pe->e); 1578 kfree(pe); 1579 } 1580 } 1581 } 1582 1583 /** 1584 * ubi_wl_close - close the wear-leveling unit. 1585 * @ubi: UBI device description object 1586 */ 1587 void ubi_wl_close(struct ubi_device *ubi) 1588 { 1589 dbg_wl("close the UBI wear-leveling unit"); 1590 1591 cancel_pending(ubi); 1592 protection_trees_destroy(ubi); 1593 tree_destroy(&ubi->used); 1594 tree_destroy(&ubi->free); 1595 tree_destroy(&ubi->scrub); 1596 kfree(ubi->lookuptbl); 1597 } 1598 1599 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 1600 1601 /** 1602 * paranoid_check_ec - make sure that the erase counter of a physical eraseblock 1603 * is correct. 1604 * @ubi: UBI device description object 1605 * @pnum: the physical eraseblock number to check 1606 * @ec: the erase counter to check 1607 * 1608 * This function returns zero if the erase counter of physical eraseblock @pnum 1609 * is equivalent to @ec, %1 if not, and a negative error code if an error 1610 * occurred. 1611 */ 1612 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec) 1613 { 1614 int err; 1615 long long read_ec; 1616 struct ubi_ec_hdr *ec_hdr; 1617 1618 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 1619 if (!ec_hdr) 1620 return -ENOMEM; 1621 1622 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); 1623 if (err && err != UBI_IO_BITFLIPS) { 1624 /* The header does not have to exist */ 1625 err = 0; 1626 goto out_free; 1627 } 1628 1629 read_ec = be64_to_cpu(ec_hdr->ec); 1630 if (ec != read_ec) { 1631 ubi_err("paranoid check failed for PEB %d", pnum); 1632 ubi_err("read EC is %lld, should be %d", read_ec, ec); 1633 ubi_dbg_dump_stack(); 1634 err = 1; 1635 } else 1636 err = 0; 1637 1638 out_free: 1639 kfree(ec_hdr); 1640 return err; 1641 } 1642 1643 /** 1644 * paranoid_check_in_wl_tree - make sure that a wear-leveling entry is present 1645 * in a WL RB-tree. 1646 * @e: the wear-leveling entry to check 1647 * @root: the root of the tree 1648 * 1649 * This function returns zero if @e is in the @root RB-tree and %1 if it 1650 * is not. 1651 */ 1652 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e, 1653 struct rb_root *root) 1654 { 1655 if (in_wl_tree(e, root)) 1656 return 0; 1657 1658 ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ", 1659 e->pnum, e->ec, root); 1660 ubi_dbg_dump_stack(); 1661 return 1; 1662 } 1663 1664 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */ 1665