xref: /openbmc/u-boot/drivers/mtd/ubi/wl.c (revision 344c837686b4268882ee4942f2a1e5e5716c7383)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * SPDX-License-Identifier:	GPL-2.0+
5  *
6  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
7  */
8 
9 /*
10  * UBI wear-leveling sub-system.
11  *
12  * This sub-system is responsible for wear-leveling. It works in terms of
13  * physical eraseblocks and erase counters and knows nothing about logical
14  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
15  * eraseblocks are of two types - used and free. Used physical eraseblocks are
16  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
17  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
18  *
19  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
20  * header. The rest of the physical eraseblock contains only %0xFF bytes.
21  *
22  * When physical eraseblocks are returned to the WL sub-system by means of the
23  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
24  * done asynchronously in context of the per-UBI device background thread,
25  * which is also managed by the WL sub-system.
26  *
27  * The wear-leveling is ensured by means of moving the contents of used
28  * physical eraseblocks with low erase counter to free physical eraseblocks
29  * with high erase counter.
30  *
31  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
32  * bad.
33  *
34  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
35  * in a physical eraseblock, it has to be moved. Technically this is the same
36  * as moving it for wear-leveling reasons.
37  *
38  * As it was said, for the UBI sub-system all physical eraseblocks are either
39  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
40  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
41  * RB-trees, as well as (temporarily) in the @wl->pq queue.
42  *
43  * When the WL sub-system returns a physical eraseblock, the physical
44  * eraseblock is protected from being moved for some "time". For this reason,
45  * the physical eraseblock is not directly moved from the @wl->free tree to the
46  * @wl->used tree. There is a protection queue in between where this
47  * physical eraseblock is temporarily stored (@wl->pq).
48  *
49  * All this protection stuff is needed because:
50  *  o we don't want to move physical eraseblocks just after we have given them
51  *    to the user; instead, we first want to let users fill them up with data;
52  *
53  *  o there is a chance that the user will put the physical eraseblock very
54  *    soon, so it makes sense not to move it for some time, but wait.
55  *
56  * Physical eraseblocks stay protected only for limited time. But the "time" is
57  * measured in erase cycles in this case. This is implemented with help of the
58  * protection queue. Eraseblocks are put to the tail of this queue when they
59  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
60  * head of the queue on each erase operation (for any eraseblock). So the
61  * length of the queue defines how may (global) erase cycles PEBs are protected.
62  *
63  * To put it differently, each physical eraseblock has 2 main states: free and
64  * used. The former state corresponds to the @wl->free tree. The latter state
65  * is split up on several sub-states:
66  * o the WL movement is allowed (@wl->used tree);
67  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
68  *   erroneous - e.g., there was a read error;
69  * o the WL movement is temporarily prohibited (@wl->pq queue);
70  * o scrubbing is needed (@wl->scrub tree).
71  *
72  * Depending on the sub-state, wear-leveling entries of the used physical
73  * eraseblocks may be kept in one of those structures.
74  *
75  * Note, in this implementation, we keep a small in-RAM object for each physical
76  * eraseblock. This is surely not a scalable solution. But it appears to be good
77  * enough for moderately large flashes and it is simple. In future, one may
78  * re-work this sub-system and make it more scalable.
79  *
80  * At the moment this sub-system does not utilize the sequence number, which
81  * was introduced relatively recently. But it would be wise to do this because
82  * the sequence number of a logical eraseblock characterizes how old is it. For
83  * example, when we move a PEB with low erase counter, and we need to pick the
84  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
85  * pick target PEB with an average EC if our PEB is not very "old". This is a
86  * room for future re-works of the WL sub-system.
87  */
88 
89 #ifndef __UBOOT__
90 #include <linux/slab.h>
91 #include <linux/crc32.h>
92 #include <linux/freezer.h>
93 #include <linux/kthread.h>
94 #else
95 #include <ubi_uboot.h>
96 #endif
97 
98 #include "ubi.h"
99 
100 /* Number of physical eraseblocks reserved for wear-leveling purposes */
101 #define WL_RESERVED_PEBS 1
102 
103 /*
104  * Maximum difference between two erase counters. If this threshold is
105  * exceeded, the WL sub-system starts moving data from used physical
106  * eraseblocks with low erase counter to free physical eraseblocks with high
107  * erase counter.
108  */
109 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
110 
111 /*
112  * When a physical eraseblock is moved, the WL sub-system has to pick the target
113  * physical eraseblock to move to. The simplest way would be just to pick the
114  * one with the highest erase counter. But in certain workloads this could lead
115  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
116  * situation when the picked physical eraseblock is constantly erased after the
117  * data is written to it. So, we have a constant which limits the highest erase
118  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
119  * does not pick eraseblocks with erase counter greater than the lowest erase
120  * counter plus %WL_FREE_MAX_DIFF.
121  */
122 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
123 
124 /*
125  * Maximum number of consecutive background thread failures which is enough to
126  * switch to read-only mode.
127  */
128 #define WL_MAX_FAILURES 32
129 
130 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
131 static int self_check_in_wl_tree(const struct ubi_device *ubi,
132 				 struct ubi_wl_entry *e, struct rb_root *root);
133 static int self_check_in_pq(const struct ubi_device *ubi,
134 			    struct ubi_wl_entry *e);
135 
136 #ifdef CONFIG_MTD_UBI_FASTMAP
137 #ifndef __UBOOT__
138 /**
139  * update_fastmap_work_fn - calls ubi_update_fastmap from a work queue
140  * @wrk: the work description object
141  */
142 static void update_fastmap_work_fn(struct work_struct *wrk)
143 {
144 	struct ubi_device *ubi = container_of(wrk, struct ubi_device, fm_work);
145 	ubi_update_fastmap(ubi);
146 }
147 #endif
148 
149 /**
150  *  ubi_ubi_is_fm_block - returns 1 if a PEB is currently used in a fastmap.
151  *  @ubi: UBI device description object
152  *  @pnum: the to be checked PEB
153  */
154 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
155 {
156 	int i;
157 
158 	if (!ubi->fm)
159 		return 0;
160 
161 	for (i = 0; i < ubi->fm->used_blocks; i++)
162 		if (ubi->fm->e[i]->pnum == pnum)
163 			return 1;
164 
165 	return 0;
166 }
167 #else
168 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
169 {
170 	return 0;
171 }
172 #endif
173 
174 /**
175  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
176  * @e: the wear-leveling entry to add
177  * @root: the root of the tree
178  *
179  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
180  * the @ubi->used and @ubi->free RB-trees.
181  */
182 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
183 {
184 	struct rb_node **p, *parent = NULL;
185 
186 	p = &root->rb_node;
187 	while (*p) {
188 		struct ubi_wl_entry *e1;
189 
190 		parent = *p;
191 		e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
192 
193 		if (e->ec < e1->ec)
194 			p = &(*p)->rb_left;
195 		else if (e->ec > e1->ec)
196 			p = &(*p)->rb_right;
197 		else {
198 			ubi_assert(e->pnum != e1->pnum);
199 			if (e->pnum < e1->pnum)
200 				p = &(*p)->rb_left;
201 			else
202 				p = &(*p)->rb_right;
203 		}
204 	}
205 
206 	rb_link_node(&e->u.rb, parent, p);
207 	rb_insert_color(&e->u.rb, root);
208 }
209 
210 /**
211  * do_work - do one pending work.
212  * @ubi: UBI device description object
213  *
214  * This function returns zero in case of success and a negative error code in
215  * case of failure.
216  */
217 static int do_work(struct ubi_device *ubi)
218 {
219 	int err;
220 	struct ubi_work *wrk;
221 
222 	cond_resched();
223 
224 	/*
225 	 * @ubi->work_sem is used to synchronize with the workers. Workers take
226 	 * it in read mode, so many of them may be doing works at a time. But
227 	 * the queue flush code has to be sure the whole queue of works is
228 	 * done, and it takes the mutex in write mode.
229 	 */
230 	down_read(&ubi->work_sem);
231 	spin_lock(&ubi->wl_lock);
232 	if (list_empty(&ubi->works)) {
233 		spin_unlock(&ubi->wl_lock);
234 		up_read(&ubi->work_sem);
235 		return 0;
236 	}
237 
238 	wrk = list_entry(ubi->works.next, struct ubi_work, list);
239 	list_del(&wrk->list);
240 	ubi->works_count -= 1;
241 	ubi_assert(ubi->works_count >= 0);
242 	spin_unlock(&ubi->wl_lock);
243 
244 	/*
245 	 * Call the worker function. Do not touch the work structure
246 	 * after this call as it will have been freed or reused by that
247 	 * time by the worker function.
248 	 */
249 	err = wrk->func(ubi, wrk, 0);
250 	if (err)
251 		ubi_err("work failed with error code %d", err);
252 	up_read(&ubi->work_sem);
253 
254 	return err;
255 }
256 
257 /**
258  * produce_free_peb - produce a free physical eraseblock.
259  * @ubi: UBI device description object
260  *
261  * This function tries to make a free PEB by means of synchronous execution of
262  * pending works. This may be needed if, for example the background thread is
263  * disabled. Returns zero in case of success and a negative error code in case
264  * of failure.
265  */
266 static int produce_free_peb(struct ubi_device *ubi)
267 {
268 	int err;
269 
270 	while (!ubi->free.rb_node) {
271 		spin_unlock(&ubi->wl_lock);
272 
273 		dbg_wl("do one work synchronously");
274 		err = do_work(ubi);
275 
276 		spin_lock(&ubi->wl_lock);
277 		if (err)
278 			return err;
279 	}
280 
281 	return 0;
282 }
283 
284 /**
285  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
286  * @e: the wear-leveling entry to check
287  * @root: the root of the tree
288  *
289  * This function returns non-zero if @e is in the @root RB-tree and zero if it
290  * is not.
291  */
292 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
293 {
294 	struct rb_node *p;
295 
296 	p = root->rb_node;
297 	while (p) {
298 		struct ubi_wl_entry *e1;
299 
300 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
301 
302 		if (e->pnum == e1->pnum) {
303 			ubi_assert(e == e1);
304 			return 1;
305 		}
306 
307 		if (e->ec < e1->ec)
308 			p = p->rb_left;
309 		else if (e->ec > e1->ec)
310 			p = p->rb_right;
311 		else {
312 			ubi_assert(e->pnum != e1->pnum);
313 			if (e->pnum < e1->pnum)
314 				p = p->rb_left;
315 			else
316 				p = p->rb_right;
317 		}
318 	}
319 
320 	return 0;
321 }
322 
323 /**
324  * prot_queue_add - add physical eraseblock to the protection queue.
325  * @ubi: UBI device description object
326  * @e: the physical eraseblock to add
327  *
328  * This function adds @e to the tail of the protection queue @ubi->pq, where
329  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
330  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
331  * be locked.
332  */
333 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
334 {
335 	int pq_tail = ubi->pq_head - 1;
336 
337 	if (pq_tail < 0)
338 		pq_tail = UBI_PROT_QUEUE_LEN - 1;
339 	ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
340 	list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
341 	dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
342 }
343 
344 /**
345  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
346  * @ubi: UBI device description object
347  * @root: the RB-tree where to look for
348  * @diff: maximum possible difference from the smallest erase counter
349  *
350  * This function looks for a wear leveling entry with erase counter closest to
351  * min + @diff, where min is the smallest erase counter.
352  */
353 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
354 					  struct rb_root *root, int diff)
355 {
356 	struct rb_node *p;
357 	struct ubi_wl_entry *e, *prev_e = NULL;
358 	int max;
359 
360 	e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
361 	max = e->ec + diff;
362 
363 	p = root->rb_node;
364 	while (p) {
365 		struct ubi_wl_entry *e1;
366 
367 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
368 		if (e1->ec >= max)
369 			p = p->rb_left;
370 		else {
371 			p = p->rb_right;
372 			prev_e = e;
373 			e = e1;
374 		}
375 	}
376 
377 	/* If no fastmap has been written and this WL entry can be used
378 	 * as anchor PEB, hold it back and return the second best WL entry
379 	 * such that fastmap can use the anchor PEB later. */
380 	if (prev_e && !ubi->fm_disabled &&
381 	    !ubi->fm && e->pnum < UBI_FM_MAX_START)
382 		return prev_e;
383 
384 	return e;
385 }
386 
387 /**
388  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
389  * @ubi: UBI device description object
390  * @root: the RB-tree where to look for
391  *
392  * This function looks for a wear leveling entry with medium erase counter,
393  * but not greater or equivalent than the lowest erase counter plus
394  * %WL_FREE_MAX_DIFF/2.
395  */
396 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
397 					       struct rb_root *root)
398 {
399 	struct ubi_wl_entry *e, *first, *last;
400 
401 	first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
402 	last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
403 
404 	if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
405 		e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
406 
407 #ifdef CONFIG_MTD_UBI_FASTMAP
408 		/* If no fastmap has been written and this WL entry can be used
409 		 * as anchor PEB, hold it back and return the second best
410 		 * WL entry such that fastmap can use the anchor PEB later. */
411 		if (e && !ubi->fm_disabled && !ubi->fm &&
412 		    e->pnum < UBI_FM_MAX_START)
413 			e = rb_entry(rb_next(root->rb_node),
414 				     struct ubi_wl_entry, u.rb);
415 #endif
416 	} else
417 		e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
418 
419 	return e;
420 }
421 
422 #ifdef CONFIG_MTD_UBI_FASTMAP
423 /**
424  * find_anchor_wl_entry - find wear-leveling entry to used as anchor PEB.
425  * @root: the RB-tree where to look for
426  */
427 static struct ubi_wl_entry *find_anchor_wl_entry(struct rb_root *root)
428 {
429 	struct rb_node *p;
430 	struct ubi_wl_entry *e, *victim = NULL;
431 	int max_ec = UBI_MAX_ERASECOUNTER;
432 
433 	ubi_rb_for_each_entry(p, e, root, u.rb) {
434 		if (e->pnum < UBI_FM_MAX_START && e->ec < max_ec) {
435 			victim = e;
436 			max_ec = e->ec;
437 		}
438 	}
439 
440 	return victim;
441 }
442 
443 static int anchor_pebs_avalible(struct rb_root *root)
444 {
445 	struct rb_node *p;
446 	struct ubi_wl_entry *e;
447 
448 	ubi_rb_for_each_entry(p, e, root, u.rb)
449 		if (e->pnum < UBI_FM_MAX_START)
450 			return 1;
451 
452 	return 0;
453 }
454 
455 /**
456  * ubi_wl_get_fm_peb - find a physical erase block with a given maximal number.
457  * @ubi: UBI device description object
458  * @anchor: This PEB will be used as anchor PEB by fastmap
459  *
460  * The function returns a physical erase block with a given maximal number
461  * and removes it from the wl subsystem.
462  * Must be called with wl_lock held!
463  */
464 struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor)
465 {
466 	struct ubi_wl_entry *e = NULL;
467 
468 	if (!ubi->free.rb_node || (ubi->free_count - ubi->beb_rsvd_pebs < 1))
469 		goto out;
470 
471 	if (anchor)
472 		e = find_anchor_wl_entry(&ubi->free);
473 	else
474 		e = find_mean_wl_entry(ubi, &ubi->free);
475 
476 	if (!e)
477 		goto out;
478 
479 	self_check_in_wl_tree(ubi, e, &ubi->free);
480 
481 	/* remove it from the free list,
482 	 * the wl subsystem does no longer know this erase block */
483 	rb_erase(&e->u.rb, &ubi->free);
484 	ubi->free_count--;
485 out:
486 	return e;
487 }
488 #endif
489 
490 /**
491  * __wl_get_peb - get a physical eraseblock.
492  * @ubi: UBI device description object
493  *
494  * This function returns a physical eraseblock in case of success and a
495  * negative error code in case of failure.
496  */
497 static int __wl_get_peb(struct ubi_device *ubi)
498 {
499 	int err;
500 	struct ubi_wl_entry *e;
501 
502 retry:
503 	if (!ubi->free.rb_node) {
504 		if (ubi->works_count == 0) {
505 			ubi_err("no free eraseblocks");
506 			ubi_assert(list_empty(&ubi->works));
507 			return -ENOSPC;
508 		}
509 
510 		err = produce_free_peb(ubi);
511 		if (err < 0)
512 			return err;
513 		goto retry;
514 	}
515 
516 	e = find_mean_wl_entry(ubi, &ubi->free);
517 	if (!e) {
518 		ubi_err("no free eraseblocks");
519 		return -ENOSPC;
520 	}
521 
522 	self_check_in_wl_tree(ubi, e, &ubi->free);
523 
524 	/*
525 	 * Move the physical eraseblock to the protection queue where it will
526 	 * be protected from being moved for some time.
527 	 */
528 	rb_erase(&e->u.rb, &ubi->free);
529 	ubi->free_count--;
530 	dbg_wl("PEB %d EC %d", e->pnum, e->ec);
531 #ifndef CONFIG_MTD_UBI_FASTMAP
532 	/* We have to enqueue e only if fastmap is disabled,
533 	 * is fastmap enabled prot_queue_add() will be called by
534 	 * ubi_wl_get_peb() after removing e from the pool. */
535 	prot_queue_add(ubi, e);
536 #endif
537 	return e->pnum;
538 }
539 
540 #ifdef CONFIG_MTD_UBI_FASTMAP
541 /**
542  * return_unused_pool_pebs - returns unused PEB to the free tree.
543  * @ubi: UBI device description object
544  * @pool: fastmap pool description object
545  */
546 static void return_unused_pool_pebs(struct ubi_device *ubi,
547 				    struct ubi_fm_pool *pool)
548 {
549 	int i;
550 	struct ubi_wl_entry *e;
551 
552 	for (i = pool->used; i < pool->size; i++) {
553 		e = ubi->lookuptbl[pool->pebs[i]];
554 		wl_tree_add(e, &ubi->free);
555 		ubi->free_count++;
556 	}
557 }
558 
559 /**
560  * refill_wl_pool - refills all the fastmap pool used by the
561  * WL sub-system.
562  * @ubi: UBI device description object
563  */
564 static void refill_wl_pool(struct ubi_device *ubi)
565 {
566 	struct ubi_wl_entry *e;
567 	struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
568 
569 	return_unused_pool_pebs(ubi, pool);
570 
571 	for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
572 		if (!ubi->free.rb_node ||
573 		   (ubi->free_count - ubi->beb_rsvd_pebs < 5))
574 			break;
575 
576 		e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
577 		self_check_in_wl_tree(ubi, e, &ubi->free);
578 		rb_erase(&e->u.rb, &ubi->free);
579 		ubi->free_count--;
580 
581 		pool->pebs[pool->size] = e->pnum;
582 	}
583 	pool->used = 0;
584 }
585 
586 /**
587  * refill_wl_user_pool - refills all the fastmap pool used by ubi_wl_get_peb.
588  * @ubi: UBI device description object
589  */
590 static void refill_wl_user_pool(struct ubi_device *ubi)
591 {
592 	struct ubi_fm_pool *pool = &ubi->fm_pool;
593 
594 	return_unused_pool_pebs(ubi, pool);
595 
596 	for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
597 		pool->pebs[pool->size] = __wl_get_peb(ubi);
598 		if (pool->pebs[pool->size] < 0)
599 			break;
600 	}
601 	pool->used = 0;
602 }
603 
604 /**
605  * ubi_refill_pools - refills all fastmap PEB pools.
606  * @ubi: UBI device description object
607  */
608 void ubi_refill_pools(struct ubi_device *ubi)
609 {
610 	spin_lock(&ubi->wl_lock);
611 	refill_wl_pool(ubi);
612 	refill_wl_user_pool(ubi);
613 	spin_unlock(&ubi->wl_lock);
614 }
615 
616 /* ubi_wl_get_peb - works exaclty like __wl_get_peb but keeps track of
617  * the fastmap pool.
618  */
619 int ubi_wl_get_peb(struct ubi_device *ubi)
620 {
621 	int ret;
622 	struct ubi_fm_pool *pool = &ubi->fm_pool;
623 	struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool;
624 
625 	if (!pool->size || !wl_pool->size || pool->used == pool->size ||
626 	    wl_pool->used == wl_pool->size)
627 		ubi_update_fastmap(ubi);
628 
629 	/* we got not a single free PEB */
630 	if (!pool->size)
631 		ret = -ENOSPC;
632 	else {
633 		spin_lock(&ubi->wl_lock);
634 		ret = pool->pebs[pool->used++];
635 		prot_queue_add(ubi, ubi->lookuptbl[ret]);
636 		spin_unlock(&ubi->wl_lock);
637 	}
638 
639 	return ret;
640 }
641 
642 /* get_peb_for_wl - returns a PEB to be used internally by the WL sub-system.
643  *
644  * @ubi: UBI device description object
645  */
646 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
647 {
648 	struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
649 	int pnum;
650 
651 	if (pool->used == pool->size || !pool->size) {
652 		/* We cannot update the fastmap here because this
653 		 * function is called in atomic context.
654 		 * Let's fail here and refill/update it as soon as possible. */
655 #ifndef __UBOOT__
656 		schedule_work(&ubi->fm_work);
657 #else
658 		/* In U-Boot we must call this directly */
659 	        ubi_update_fastmap(ubi);
660 #endif
661 		return NULL;
662 	} else {
663 		pnum = pool->pebs[pool->used++];
664 		return ubi->lookuptbl[pnum];
665 	}
666 }
667 #else
668 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
669 {
670 	struct ubi_wl_entry *e;
671 
672 	e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
673 	self_check_in_wl_tree(ubi, e, &ubi->free);
674 	ubi->free_count--;
675 	ubi_assert(ubi->free_count >= 0);
676 	rb_erase(&e->u.rb, &ubi->free);
677 
678 	return e;
679 }
680 
681 int ubi_wl_get_peb(struct ubi_device *ubi)
682 {
683 	int peb, err;
684 
685 	spin_lock(&ubi->wl_lock);
686 	peb = __wl_get_peb(ubi);
687 	spin_unlock(&ubi->wl_lock);
688 
689 	if (peb < 0)
690 		return peb;
691 
692 	err = ubi_self_check_all_ff(ubi, peb, ubi->vid_hdr_aloffset,
693 				    ubi->peb_size - ubi->vid_hdr_aloffset);
694 	if (err) {
695 		ubi_err("new PEB %d does not contain all 0xFF bytes", peb);
696 		return err;
697 	}
698 
699 	return peb;
700 }
701 #endif
702 
703 /**
704  * prot_queue_del - remove a physical eraseblock from the protection queue.
705  * @ubi: UBI device description object
706  * @pnum: the physical eraseblock to remove
707  *
708  * This function deletes PEB @pnum from the protection queue and returns zero
709  * in case of success and %-ENODEV if the PEB was not found.
710  */
711 static int prot_queue_del(struct ubi_device *ubi, int pnum)
712 {
713 	struct ubi_wl_entry *e;
714 
715 	e = ubi->lookuptbl[pnum];
716 	if (!e)
717 		return -ENODEV;
718 
719 	if (self_check_in_pq(ubi, e))
720 		return -ENODEV;
721 
722 	list_del(&e->u.list);
723 	dbg_wl("deleted PEB %d from the protection queue", e->pnum);
724 	return 0;
725 }
726 
727 /**
728  * sync_erase - synchronously erase a physical eraseblock.
729  * @ubi: UBI device description object
730  * @e: the the physical eraseblock to erase
731  * @torture: if the physical eraseblock has to be tortured
732  *
733  * This function returns zero in case of success and a negative error code in
734  * case of failure.
735  */
736 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
737 		      int torture)
738 {
739 	int err;
740 	struct ubi_ec_hdr *ec_hdr;
741 	unsigned long long ec = e->ec;
742 
743 	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
744 
745 	err = self_check_ec(ubi, e->pnum, e->ec);
746 	if (err)
747 		return -EINVAL;
748 
749 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
750 	if (!ec_hdr)
751 		return -ENOMEM;
752 
753 	err = ubi_io_sync_erase(ubi, e->pnum, torture);
754 	if (err < 0)
755 		goto out_free;
756 
757 	ec += err;
758 	if (ec > UBI_MAX_ERASECOUNTER) {
759 		/*
760 		 * Erase counter overflow. Upgrade UBI and use 64-bit
761 		 * erase counters internally.
762 		 */
763 		ubi_err("erase counter overflow at PEB %d, EC %llu",
764 			e->pnum, ec);
765 		err = -EINVAL;
766 		goto out_free;
767 	}
768 
769 	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
770 
771 	ec_hdr->ec = cpu_to_be64(ec);
772 
773 	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
774 	if (err)
775 		goto out_free;
776 
777 	e->ec = ec;
778 	spin_lock(&ubi->wl_lock);
779 	if (e->ec > ubi->max_ec)
780 		ubi->max_ec = e->ec;
781 	spin_unlock(&ubi->wl_lock);
782 
783 out_free:
784 	kfree(ec_hdr);
785 	return err;
786 }
787 
788 /**
789  * serve_prot_queue - check if it is time to stop protecting PEBs.
790  * @ubi: UBI device description object
791  *
792  * This function is called after each erase operation and removes PEBs from the
793  * tail of the protection queue. These PEBs have been protected for long enough
794  * and should be moved to the used tree.
795  */
796 static void serve_prot_queue(struct ubi_device *ubi)
797 {
798 	struct ubi_wl_entry *e, *tmp;
799 	int count;
800 
801 	/*
802 	 * There may be several protected physical eraseblock to remove,
803 	 * process them all.
804 	 */
805 repeat:
806 	count = 0;
807 	spin_lock(&ubi->wl_lock);
808 	list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
809 		dbg_wl("PEB %d EC %d protection over, move to used tree",
810 			e->pnum, e->ec);
811 
812 		list_del(&e->u.list);
813 		wl_tree_add(e, &ubi->used);
814 		if (count++ > 32) {
815 			/*
816 			 * Let's be nice and avoid holding the spinlock for
817 			 * too long.
818 			 */
819 			spin_unlock(&ubi->wl_lock);
820 			cond_resched();
821 			goto repeat;
822 		}
823 	}
824 
825 	ubi->pq_head += 1;
826 	if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
827 		ubi->pq_head = 0;
828 	ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
829 	spin_unlock(&ubi->wl_lock);
830 }
831 
832 /**
833  * __schedule_ubi_work - schedule a work.
834  * @ubi: UBI device description object
835  * @wrk: the work to schedule
836  *
837  * This function adds a work defined by @wrk to the tail of the pending works
838  * list. Can only be used of ubi->work_sem is already held in read mode!
839  */
840 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
841 {
842 	spin_lock(&ubi->wl_lock);
843 	list_add_tail(&wrk->list, &ubi->works);
844 	ubi_assert(ubi->works_count >= 0);
845 	ubi->works_count += 1;
846 #ifndef __UBOOT__
847 	if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
848 		wake_up_process(ubi->bgt_thread);
849 #else
850 	/*
851 	 * U-Boot special: We have no bgt_thread in U-Boot!
852 	 * So just call do_work() here directly.
853 	 */
854 	do_work(ubi);
855 #endif
856 	spin_unlock(&ubi->wl_lock);
857 }
858 
859 /**
860  * schedule_ubi_work - schedule a work.
861  * @ubi: UBI device description object
862  * @wrk: the work to schedule
863  *
864  * This function adds a work defined by @wrk to the tail of the pending works
865  * list.
866  */
867 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
868 {
869 	down_read(&ubi->work_sem);
870 	__schedule_ubi_work(ubi, wrk);
871 	up_read(&ubi->work_sem);
872 }
873 
874 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
875 			int cancel);
876 
877 #ifdef CONFIG_MTD_UBI_FASTMAP
878 /**
879  * ubi_is_erase_work - checks whether a work is erase work.
880  * @wrk: The work object to be checked
881  */
882 int ubi_is_erase_work(struct ubi_work *wrk)
883 {
884 	return wrk->func == erase_worker;
885 }
886 #endif
887 
888 /**
889  * schedule_erase - schedule an erase work.
890  * @ubi: UBI device description object
891  * @e: the WL entry of the physical eraseblock to erase
892  * @vol_id: the volume ID that last used this PEB
893  * @lnum: the last used logical eraseblock number for the PEB
894  * @torture: if the physical eraseblock has to be tortured
895  *
896  * This function returns zero in case of success and a %-ENOMEM in case of
897  * failure.
898  */
899 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
900 			  int vol_id, int lnum, int torture)
901 {
902 	struct ubi_work *wl_wrk;
903 
904 	ubi_assert(e);
905 	ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
906 
907 	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
908 	       e->pnum, e->ec, torture);
909 
910 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
911 	if (!wl_wrk)
912 		return -ENOMEM;
913 
914 	wl_wrk->func = &erase_worker;
915 	wl_wrk->e = e;
916 	wl_wrk->vol_id = vol_id;
917 	wl_wrk->lnum = lnum;
918 	wl_wrk->torture = torture;
919 
920 	schedule_ubi_work(ubi, wl_wrk);
921 	return 0;
922 }
923 
924 /**
925  * do_sync_erase - run the erase worker synchronously.
926  * @ubi: UBI device description object
927  * @e: the WL entry of the physical eraseblock to erase
928  * @vol_id: the volume ID that last used this PEB
929  * @lnum: the last used logical eraseblock number for the PEB
930  * @torture: if the physical eraseblock has to be tortured
931  *
932  */
933 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
934 			 int vol_id, int lnum, int torture)
935 {
936 	struct ubi_work *wl_wrk;
937 
938 	dbg_wl("sync erase of PEB %i", e->pnum);
939 
940 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
941 	if (!wl_wrk)
942 		return -ENOMEM;
943 
944 	wl_wrk->e = e;
945 	wl_wrk->vol_id = vol_id;
946 	wl_wrk->lnum = lnum;
947 	wl_wrk->torture = torture;
948 
949 	return erase_worker(ubi, wl_wrk, 0);
950 }
951 
952 #ifdef CONFIG_MTD_UBI_FASTMAP
953 /**
954  * ubi_wl_put_fm_peb - returns a PEB used in a fastmap to the wear-leveling
955  * sub-system.
956  * see: ubi_wl_put_peb()
957  *
958  * @ubi: UBI device description object
959  * @fm_e: physical eraseblock to return
960  * @lnum: the last used logical eraseblock number for the PEB
961  * @torture: if this physical eraseblock has to be tortured
962  */
963 int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *fm_e,
964 		      int lnum, int torture)
965 {
966 	struct ubi_wl_entry *e;
967 	int vol_id, pnum = fm_e->pnum;
968 
969 	dbg_wl("PEB %d", pnum);
970 
971 	ubi_assert(pnum >= 0);
972 	ubi_assert(pnum < ubi->peb_count);
973 
974 	spin_lock(&ubi->wl_lock);
975 	e = ubi->lookuptbl[pnum];
976 
977 	/* This can happen if we recovered from a fastmap the very
978 	 * first time and writing now a new one. In this case the wl system
979 	 * has never seen any PEB used by the original fastmap.
980 	 */
981 	if (!e) {
982 		e = fm_e;
983 		ubi_assert(e->ec >= 0);
984 		ubi->lookuptbl[pnum] = e;
985 	} else {
986 		e->ec = fm_e->ec;
987 		kfree(fm_e);
988 	}
989 
990 	spin_unlock(&ubi->wl_lock);
991 
992 	vol_id = lnum ? UBI_FM_DATA_VOLUME_ID : UBI_FM_SB_VOLUME_ID;
993 	return schedule_erase(ubi, e, vol_id, lnum, torture);
994 }
995 #endif
996 
997 /**
998  * wear_leveling_worker - wear-leveling worker function.
999  * @ubi: UBI device description object
1000  * @wrk: the work object
1001  * @cancel: non-zero if the worker has to free memory and exit
1002  *
1003  * This function copies a more worn out physical eraseblock to a less worn out
1004  * one. Returns zero in case of success and a negative error code in case of
1005  * failure.
1006  */
1007 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
1008 				int cancel)
1009 {
1010 	int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
1011 	int vol_id = -1, uninitialized_var(lnum);
1012 #ifdef CONFIG_MTD_UBI_FASTMAP
1013 	int anchor = wrk->anchor;
1014 #endif
1015 	struct ubi_wl_entry *e1, *e2;
1016 	struct ubi_vid_hdr *vid_hdr;
1017 
1018 	kfree(wrk);
1019 	if (cancel)
1020 		return 0;
1021 
1022 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1023 	if (!vid_hdr)
1024 		return -ENOMEM;
1025 
1026 	mutex_lock(&ubi->move_mutex);
1027 	spin_lock(&ubi->wl_lock);
1028 	ubi_assert(!ubi->move_from && !ubi->move_to);
1029 	ubi_assert(!ubi->move_to_put);
1030 
1031 	if (!ubi->free.rb_node ||
1032 	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
1033 		/*
1034 		 * No free physical eraseblocks? Well, they must be waiting in
1035 		 * the queue to be erased. Cancel movement - it will be
1036 		 * triggered again when a free physical eraseblock appears.
1037 		 *
1038 		 * No used physical eraseblocks? They must be temporarily
1039 		 * protected from being moved. They will be moved to the
1040 		 * @ubi->used tree later and the wear-leveling will be
1041 		 * triggered again.
1042 		 */
1043 		dbg_wl("cancel WL, a list is empty: free %d, used %d",
1044 		       !ubi->free.rb_node, !ubi->used.rb_node);
1045 		goto out_cancel;
1046 	}
1047 
1048 #ifdef CONFIG_MTD_UBI_FASTMAP
1049 	/* Check whether we need to produce an anchor PEB */
1050 	if (!anchor)
1051 		anchor = !anchor_pebs_avalible(&ubi->free);
1052 
1053 	if (anchor) {
1054 		e1 = find_anchor_wl_entry(&ubi->used);
1055 		if (!e1)
1056 			goto out_cancel;
1057 		e2 = get_peb_for_wl(ubi);
1058 		if (!e2)
1059 			goto out_cancel;
1060 
1061 		self_check_in_wl_tree(ubi, e1, &ubi->used);
1062 		rb_erase(&e1->u.rb, &ubi->used);
1063 		dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
1064 	} else if (!ubi->scrub.rb_node) {
1065 #else
1066 	if (!ubi->scrub.rb_node) {
1067 #endif
1068 		/*
1069 		 * Now pick the least worn-out used physical eraseblock and a
1070 		 * highly worn-out free physical eraseblock. If the erase
1071 		 * counters differ much enough, start wear-leveling.
1072 		 */
1073 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1074 		e2 = get_peb_for_wl(ubi);
1075 		if (!e2)
1076 			goto out_cancel;
1077 
1078 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
1079 			dbg_wl("no WL needed: min used EC %d, max free EC %d",
1080 			       e1->ec, e2->ec);
1081 
1082 			/* Give the unused PEB back */
1083 			wl_tree_add(e2, &ubi->free);
1084 			ubi->free_count++;
1085 			goto out_cancel;
1086 		}
1087 		self_check_in_wl_tree(ubi, e1, &ubi->used);
1088 		rb_erase(&e1->u.rb, &ubi->used);
1089 		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
1090 		       e1->pnum, e1->ec, e2->pnum, e2->ec);
1091 	} else {
1092 		/* Perform scrubbing */
1093 		scrubbing = 1;
1094 		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
1095 		e2 = get_peb_for_wl(ubi);
1096 		if (!e2)
1097 			goto out_cancel;
1098 
1099 		self_check_in_wl_tree(ubi, e1, &ubi->scrub);
1100 		rb_erase(&e1->u.rb, &ubi->scrub);
1101 		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
1102 	}
1103 
1104 	ubi->move_from = e1;
1105 	ubi->move_to = e2;
1106 	spin_unlock(&ubi->wl_lock);
1107 
1108 	/*
1109 	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
1110 	 * We so far do not know which logical eraseblock our physical
1111 	 * eraseblock (@e1) belongs to. We have to read the volume identifier
1112 	 * header first.
1113 	 *
1114 	 * Note, we are protected from this PEB being unmapped and erased. The
1115 	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
1116 	 * which is being moved was unmapped.
1117 	 */
1118 
1119 	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
1120 	if (err && err != UBI_IO_BITFLIPS) {
1121 		if (err == UBI_IO_FF) {
1122 			/*
1123 			 * We are trying to move PEB without a VID header. UBI
1124 			 * always write VID headers shortly after the PEB was
1125 			 * given, so we have a situation when it has not yet
1126 			 * had a chance to write it, because it was preempted.
1127 			 * So add this PEB to the protection queue so far,
1128 			 * because presumably more data will be written there
1129 			 * (including the missing VID header), and then we'll
1130 			 * move it.
1131 			 */
1132 			dbg_wl("PEB %d has no VID header", e1->pnum);
1133 			protect = 1;
1134 			goto out_not_moved;
1135 		} else if (err == UBI_IO_FF_BITFLIPS) {
1136 			/*
1137 			 * The same situation as %UBI_IO_FF, but bit-flips were
1138 			 * detected. It is better to schedule this PEB for
1139 			 * scrubbing.
1140 			 */
1141 			dbg_wl("PEB %d has no VID header but has bit-flips",
1142 			       e1->pnum);
1143 			scrubbing = 1;
1144 			goto out_not_moved;
1145 		}
1146 
1147 		ubi_err("error %d while reading VID header from PEB %d",
1148 			err, e1->pnum);
1149 		goto out_error;
1150 	}
1151 
1152 	vol_id = be32_to_cpu(vid_hdr->vol_id);
1153 	lnum = be32_to_cpu(vid_hdr->lnum);
1154 
1155 	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
1156 	if (err) {
1157 		if (err == MOVE_CANCEL_RACE) {
1158 			/*
1159 			 * The LEB has not been moved because the volume is
1160 			 * being deleted or the PEB has been put meanwhile. We
1161 			 * should prevent this PEB from being selected for
1162 			 * wear-leveling movement again, so put it to the
1163 			 * protection queue.
1164 			 */
1165 			protect = 1;
1166 			goto out_not_moved;
1167 		}
1168 		if (err == MOVE_RETRY) {
1169 			scrubbing = 1;
1170 			goto out_not_moved;
1171 		}
1172 		if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
1173 		    err == MOVE_TARGET_RD_ERR) {
1174 			/*
1175 			 * Target PEB had bit-flips or write error - torture it.
1176 			 */
1177 			torture = 1;
1178 			goto out_not_moved;
1179 		}
1180 
1181 		if (err == MOVE_SOURCE_RD_ERR) {
1182 			/*
1183 			 * An error happened while reading the source PEB. Do
1184 			 * not switch to R/O mode in this case, and give the
1185 			 * upper layers a possibility to recover from this,
1186 			 * e.g. by unmapping corresponding LEB. Instead, just
1187 			 * put this PEB to the @ubi->erroneous list to prevent
1188 			 * UBI from trying to move it over and over again.
1189 			 */
1190 			if (ubi->erroneous_peb_count > ubi->max_erroneous) {
1191 				ubi_err("too many erroneous eraseblocks (%d)",
1192 					ubi->erroneous_peb_count);
1193 				goto out_error;
1194 			}
1195 			erroneous = 1;
1196 			goto out_not_moved;
1197 		}
1198 
1199 		if (err < 0)
1200 			goto out_error;
1201 
1202 		ubi_assert(0);
1203 	}
1204 
1205 	/* The PEB has been successfully moved */
1206 	if (scrubbing)
1207 		ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
1208 			e1->pnum, vol_id, lnum, e2->pnum);
1209 	ubi_free_vid_hdr(ubi, vid_hdr);
1210 
1211 	spin_lock(&ubi->wl_lock);
1212 	if (!ubi->move_to_put) {
1213 		wl_tree_add(e2, &ubi->used);
1214 		e2 = NULL;
1215 	}
1216 	ubi->move_from = ubi->move_to = NULL;
1217 	ubi->move_to_put = ubi->wl_scheduled = 0;
1218 	spin_unlock(&ubi->wl_lock);
1219 
1220 	err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
1221 	if (err) {
1222 		kmem_cache_free(ubi_wl_entry_slab, e1);
1223 		if (e2)
1224 			kmem_cache_free(ubi_wl_entry_slab, e2);
1225 		goto out_ro;
1226 	}
1227 
1228 	if (e2) {
1229 		/*
1230 		 * Well, the target PEB was put meanwhile, schedule it for
1231 		 * erasure.
1232 		 */
1233 		dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
1234 		       e2->pnum, vol_id, lnum);
1235 		err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
1236 		if (err) {
1237 			kmem_cache_free(ubi_wl_entry_slab, e2);
1238 			goto out_ro;
1239 		}
1240 	}
1241 
1242 	dbg_wl("done");
1243 	mutex_unlock(&ubi->move_mutex);
1244 	return 0;
1245 
1246 	/*
1247 	 * For some reasons the LEB was not moved, might be an error, might be
1248 	 * something else. @e1 was not changed, so return it back. @e2 might
1249 	 * have been changed, schedule it for erasure.
1250 	 */
1251 out_not_moved:
1252 	if (vol_id != -1)
1253 		dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
1254 		       e1->pnum, vol_id, lnum, e2->pnum, err);
1255 	else
1256 		dbg_wl("cancel moving PEB %d to PEB %d (%d)",
1257 		       e1->pnum, e2->pnum, err);
1258 	spin_lock(&ubi->wl_lock);
1259 	if (protect)
1260 		prot_queue_add(ubi, e1);
1261 	else if (erroneous) {
1262 		wl_tree_add(e1, &ubi->erroneous);
1263 		ubi->erroneous_peb_count += 1;
1264 	} else if (scrubbing)
1265 		wl_tree_add(e1, &ubi->scrub);
1266 	else
1267 		wl_tree_add(e1, &ubi->used);
1268 	ubi_assert(!ubi->move_to_put);
1269 	ubi->move_from = ubi->move_to = NULL;
1270 	ubi->wl_scheduled = 0;
1271 	spin_unlock(&ubi->wl_lock);
1272 
1273 	ubi_free_vid_hdr(ubi, vid_hdr);
1274 	err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
1275 	if (err) {
1276 		kmem_cache_free(ubi_wl_entry_slab, e2);
1277 		goto out_ro;
1278 	}
1279 	mutex_unlock(&ubi->move_mutex);
1280 	return 0;
1281 
1282 out_error:
1283 	if (vol_id != -1)
1284 		ubi_err("error %d while moving PEB %d to PEB %d",
1285 			err, e1->pnum, e2->pnum);
1286 	else
1287 		ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d",
1288 			err, e1->pnum, vol_id, lnum, e2->pnum);
1289 	spin_lock(&ubi->wl_lock);
1290 	ubi->move_from = ubi->move_to = NULL;
1291 	ubi->move_to_put = ubi->wl_scheduled = 0;
1292 	spin_unlock(&ubi->wl_lock);
1293 
1294 	ubi_free_vid_hdr(ubi, vid_hdr);
1295 	kmem_cache_free(ubi_wl_entry_slab, e1);
1296 	kmem_cache_free(ubi_wl_entry_slab, e2);
1297 
1298 out_ro:
1299 	ubi_ro_mode(ubi);
1300 	mutex_unlock(&ubi->move_mutex);
1301 	ubi_assert(err != 0);
1302 	return err < 0 ? err : -EIO;
1303 
1304 out_cancel:
1305 	ubi->wl_scheduled = 0;
1306 	spin_unlock(&ubi->wl_lock);
1307 	mutex_unlock(&ubi->move_mutex);
1308 	ubi_free_vid_hdr(ubi, vid_hdr);
1309 	return 0;
1310 }
1311 
1312 /**
1313  * ensure_wear_leveling - schedule wear-leveling if it is needed.
1314  * @ubi: UBI device description object
1315  * @nested: set to non-zero if this function is called from UBI worker
1316  *
1317  * This function checks if it is time to start wear-leveling and schedules it
1318  * if yes. This function returns zero in case of success and a negative error
1319  * code in case of failure.
1320  */
1321 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1322 {
1323 	int err = 0;
1324 	struct ubi_wl_entry *e1;
1325 	struct ubi_wl_entry *e2;
1326 	struct ubi_work *wrk;
1327 
1328 	spin_lock(&ubi->wl_lock);
1329 	if (ubi->wl_scheduled)
1330 		/* Wear-leveling is already in the work queue */
1331 		goto out_unlock;
1332 
1333 	/*
1334 	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1335 	 * the WL worker has to be scheduled anyway.
1336 	 */
1337 	if (!ubi->scrub.rb_node) {
1338 		if (!ubi->used.rb_node || !ubi->free.rb_node)
1339 			/* No physical eraseblocks - no deal */
1340 			goto out_unlock;
1341 
1342 		/*
1343 		 * We schedule wear-leveling only if the difference between the
1344 		 * lowest erase counter of used physical eraseblocks and a high
1345 		 * erase counter of free physical eraseblocks is greater than
1346 		 * %UBI_WL_THRESHOLD.
1347 		 */
1348 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1349 		e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1350 
1351 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1352 			goto out_unlock;
1353 		dbg_wl("schedule wear-leveling");
1354 	} else
1355 		dbg_wl("schedule scrubbing");
1356 
1357 	ubi->wl_scheduled = 1;
1358 	spin_unlock(&ubi->wl_lock);
1359 
1360 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1361 	if (!wrk) {
1362 		err = -ENOMEM;
1363 		goto out_cancel;
1364 	}
1365 
1366 	wrk->anchor = 0;
1367 	wrk->func = &wear_leveling_worker;
1368 	if (nested)
1369 		__schedule_ubi_work(ubi, wrk);
1370 	else
1371 		schedule_ubi_work(ubi, wrk);
1372 	return err;
1373 
1374 out_cancel:
1375 	spin_lock(&ubi->wl_lock);
1376 	ubi->wl_scheduled = 0;
1377 out_unlock:
1378 	spin_unlock(&ubi->wl_lock);
1379 	return err;
1380 }
1381 
1382 #ifdef CONFIG_MTD_UBI_FASTMAP
1383 /**
1384  * ubi_ensure_anchor_pebs - schedule wear-leveling to produce an anchor PEB.
1385  * @ubi: UBI device description object
1386  */
1387 int ubi_ensure_anchor_pebs(struct ubi_device *ubi)
1388 {
1389 	struct ubi_work *wrk;
1390 
1391 	spin_lock(&ubi->wl_lock);
1392 	if (ubi->wl_scheduled) {
1393 		spin_unlock(&ubi->wl_lock);
1394 		return 0;
1395 	}
1396 	ubi->wl_scheduled = 1;
1397 	spin_unlock(&ubi->wl_lock);
1398 
1399 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1400 	if (!wrk) {
1401 		spin_lock(&ubi->wl_lock);
1402 		ubi->wl_scheduled = 0;
1403 		spin_unlock(&ubi->wl_lock);
1404 		return -ENOMEM;
1405 	}
1406 
1407 	wrk->anchor = 1;
1408 	wrk->func = &wear_leveling_worker;
1409 	schedule_ubi_work(ubi, wrk);
1410 	return 0;
1411 }
1412 #endif
1413 
1414 /**
1415  * erase_worker - physical eraseblock erase worker function.
1416  * @ubi: UBI device description object
1417  * @wl_wrk: the work object
1418  * @cancel: non-zero if the worker has to free memory and exit
1419  *
1420  * This function erases a physical eraseblock and perform torture testing if
1421  * needed. It also takes care about marking the physical eraseblock bad if
1422  * needed. Returns zero in case of success and a negative error code in case of
1423  * failure.
1424  */
1425 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1426 			int cancel)
1427 {
1428 	struct ubi_wl_entry *e = wl_wrk->e;
1429 	int pnum = e->pnum;
1430 	int vol_id = wl_wrk->vol_id;
1431 	int lnum = wl_wrk->lnum;
1432 	int err, available_consumed = 0;
1433 
1434 	if (cancel) {
1435 		dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1436 		kfree(wl_wrk);
1437 		kmem_cache_free(ubi_wl_entry_slab, e);
1438 		return 0;
1439 	}
1440 
1441 	dbg_wl("erase PEB %d EC %d LEB %d:%d",
1442 	       pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1443 
1444 	ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1445 
1446 	err = sync_erase(ubi, e, wl_wrk->torture);
1447 	if (!err) {
1448 		/* Fine, we've erased it successfully */
1449 		kfree(wl_wrk);
1450 
1451 		spin_lock(&ubi->wl_lock);
1452 		wl_tree_add(e, &ubi->free);
1453 		ubi->free_count++;
1454 		spin_unlock(&ubi->wl_lock);
1455 
1456 		/*
1457 		 * One more erase operation has happened, take care about
1458 		 * protected physical eraseblocks.
1459 		 */
1460 		serve_prot_queue(ubi);
1461 
1462 		/* And take care about wear-leveling */
1463 		err = ensure_wear_leveling(ubi, 1);
1464 		return err;
1465 	}
1466 
1467 	ubi_err("failed to erase PEB %d, error %d", pnum, err);
1468 	kfree(wl_wrk);
1469 
1470 	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1471 	    err == -EBUSY) {
1472 		int err1;
1473 
1474 		/* Re-schedule the LEB for erasure */
1475 		err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1476 		if (err1) {
1477 			err = err1;
1478 			goto out_ro;
1479 		}
1480 		return err;
1481 	}
1482 
1483 	kmem_cache_free(ubi_wl_entry_slab, e);
1484 	if (err != -EIO)
1485 		/*
1486 		 * If this is not %-EIO, we have no idea what to do. Scheduling
1487 		 * this physical eraseblock for erasure again would cause
1488 		 * errors again and again. Well, lets switch to R/O mode.
1489 		 */
1490 		goto out_ro;
1491 
1492 	/* It is %-EIO, the PEB went bad */
1493 
1494 	if (!ubi->bad_allowed) {
1495 		ubi_err("bad physical eraseblock %d detected", pnum);
1496 		goto out_ro;
1497 	}
1498 
1499 	spin_lock(&ubi->volumes_lock);
1500 	if (ubi->beb_rsvd_pebs == 0) {
1501 		if (ubi->avail_pebs == 0) {
1502 			spin_unlock(&ubi->volumes_lock);
1503 			ubi_err("no reserved/available physical eraseblocks");
1504 			goto out_ro;
1505 		}
1506 		ubi->avail_pebs -= 1;
1507 		available_consumed = 1;
1508 	}
1509 	spin_unlock(&ubi->volumes_lock);
1510 
1511 	ubi_msg("mark PEB %d as bad", pnum);
1512 	err = ubi_io_mark_bad(ubi, pnum);
1513 	if (err)
1514 		goto out_ro;
1515 
1516 	spin_lock(&ubi->volumes_lock);
1517 	if (ubi->beb_rsvd_pebs > 0) {
1518 		if (available_consumed) {
1519 			/*
1520 			 * The amount of reserved PEBs increased since we last
1521 			 * checked.
1522 			 */
1523 			ubi->avail_pebs += 1;
1524 			available_consumed = 0;
1525 		}
1526 		ubi->beb_rsvd_pebs -= 1;
1527 	}
1528 	ubi->bad_peb_count += 1;
1529 	ubi->good_peb_count -= 1;
1530 	ubi_calculate_reserved(ubi);
1531 	if (available_consumed)
1532 		ubi_warn("no PEBs in the reserved pool, used an available PEB");
1533 	else if (ubi->beb_rsvd_pebs)
1534 		ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs);
1535 	else
1536 		ubi_warn("last PEB from the reserve was used");
1537 	spin_unlock(&ubi->volumes_lock);
1538 
1539 	return err;
1540 
1541 out_ro:
1542 	if (available_consumed) {
1543 		spin_lock(&ubi->volumes_lock);
1544 		ubi->avail_pebs += 1;
1545 		spin_unlock(&ubi->volumes_lock);
1546 	}
1547 	ubi_ro_mode(ubi);
1548 	return err;
1549 }
1550 
1551 /**
1552  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1553  * @ubi: UBI device description object
1554  * @vol_id: the volume ID that last used this PEB
1555  * @lnum: the last used logical eraseblock number for the PEB
1556  * @pnum: physical eraseblock to return
1557  * @torture: if this physical eraseblock has to be tortured
1558  *
1559  * This function is called to return physical eraseblock @pnum to the pool of
1560  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1561  * occurred to this @pnum and it has to be tested. This function returns zero
1562  * in case of success, and a negative error code in case of failure.
1563  */
1564 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1565 		   int pnum, int torture)
1566 {
1567 	int err;
1568 	struct ubi_wl_entry *e;
1569 
1570 	dbg_wl("PEB %d", pnum);
1571 	ubi_assert(pnum >= 0);
1572 	ubi_assert(pnum < ubi->peb_count);
1573 
1574 retry:
1575 	spin_lock(&ubi->wl_lock);
1576 	e = ubi->lookuptbl[pnum];
1577 	if (e == ubi->move_from) {
1578 		/*
1579 		 * User is putting the physical eraseblock which was selected to
1580 		 * be moved. It will be scheduled for erasure in the
1581 		 * wear-leveling worker.
1582 		 */
1583 		dbg_wl("PEB %d is being moved, wait", pnum);
1584 		spin_unlock(&ubi->wl_lock);
1585 
1586 		/* Wait for the WL worker by taking the @ubi->move_mutex */
1587 		mutex_lock(&ubi->move_mutex);
1588 		mutex_unlock(&ubi->move_mutex);
1589 		goto retry;
1590 	} else if (e == ubi->move_to) {
1591 		/*
1592 		 * User is putting the physical eraseblock which was selected
1593 		 * as the target the data is moved to. It may happen if the EBA
1594 		 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1595 		 * but the WL sub-system has not put the PEB to the "used" tree
1596 		 * yet, but it is about to do this. So we just set a flag which
1597 		 * will tell the WL worker that the PEB is not needed anymore
1598 		 * and should be scheduled for erasure.
1599 		 */
1600 		dbg_wl("PEB %d is the target of data moving", pnum);
1601 		ubi_assert(!ubi->move_to_put);
1602 		ubi->move_to_put = 1;
1603 		spin_unlock(&ubi->wl_lock);
1604 		return 0;
1605 	} else {
1606 		if (in_wl_tree(e, &ubi->used)) {
1607 			self_check_in_wl_tree(ubi, e, &ubi->used);
1608 			rb_erase(&e->u.rb, &ubi->used);
1609 		} else if (in_wl_tree(e, &ubi->scrub)) {
1610 			self_check_in_wl_tree(ubi, e, &ubi->scrub);
1611 			rb_erase(&e->u.rb, &ubi->scrub);
1612 		} else if (in_wl_tree(e, &ubi->erroneous)) {
1613 			self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1614 			rb_erase(&e->u.rb, &ubi->erroneous);
1615 			ubi->erroneous_peb_count -= 1;
1616 			ubi_assert(ubi->erroneous_peb_count >= 0);
1617 			/* Erroneous PEBs should be tortured */
1618 			torture = 1;
1619 		} else {
1620 			err = prot_queue_del(ubi, e->pnum);
1621 			if (err) {
1622 				ubi_err("PEB %d not found", pnum);
1623 				ubi_ro_mode(ubi);
1624 				spin_unlock(&ubi->wl_lock);
1625 				return err;
1626 			}
1627 		}
1628 	}
1629 	spin_unlock(&ubi->wl_lock);
1630 
1631 	err = schedule_erase(ubi, e, vol_id, lnum, torture);
1632 	if (err) {
1633 		spin_lock(&ubi->wl_lock);
1634 		wl_tree_add(e, &ubi->used);
1635 		spin_unlock(&ubi->wl_lock);
1636 	}
1637 
1638 	return err;
1639 }
1640 
1641 /**
1642  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1643  * @ubi: UBI device description object
1644  * @pnum: the physical eraseblock to schedule
1645  *
1646  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1647  * needs scrubbing. This function schedules a physical eraseblock for
1648  * scrubbing which is done in background. This function returns zero in case of
1649  * success and a negative error code in case of failure.
1650  */
1651 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1652 {
1653 	struct ubi_wl_entry *e;
1654 
1655 	ubi_msg("schedule PEB %d for scrubbing", pnum);
1656 
1657 retry:
1658 	spin_lock(&ubi->wl_lock);
1659 	e = ubi->lookuptbl[pnum];
1660 	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1661 				   in_wl_tree(e, &ubi->erroneous)) {
1662 		spin_unlock(&ubi->wl_lock);
1663 		return 0;
1664 	}
1665 
1666 	if (e == ubi->move_to) {
1667 		/*
1668 		 * This physical eraseblock was used to move data to. The data
1669 		 * was moved but the PEB was not yet inserted to the proper
1670 		 * tree. We should just wait a little and let the WL worker
1671 		 * proceed.
1672 		 */
1673 		spin_unlock(&ubi->wl_lock);
1674 		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1675 		yield();
1676 		goto retry;
1677 	}
1678 
1679 	if (in_wl_tree(e, &ubi->used)) {
1680 		self_check_in_wl_tree(ubi, e, &ubi->used);
1681 		rb_erase(&e->u.rb, &ubi->used);
1682 	} else {
1683 		int err;
1684 
1685 		err = prot_queue_del(ubi, e->pnum);
1686 		if (err) {
1687 			ubi_err("PEB %d not found", pnum);
1688 			ubi_ro_mode(ubi);
1689 			spin_unlock(&ubi->wl_lock);
1690 			return err;
1691 		}
1692 	}
1693 
1694 	wl_tree_add(e, &ubi->scrub);
1695 	spin_unlock(&ubi->wl_lock);
1696 
1697 	/*
1698 	 * Technically scrubbing is the same as wear-leveling, so it is done
1699 	 * by the WL worker.
1700 	 */
1701 	return ensure_wear_leveling(ubi, 0);
1702 }
1703 
1704 /**
1705  * ubi_wl_flush - flush all pending works.
1706  * @ubi: UBI device description object
1707  * @vol_id: the volume id to flush for
1708  * @lnum: the logical eraseblock number to flush for
1709  *
1710  * This function executes all pending works for a particular volume id /
1711  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1712  * acts as a wildcard for all of the corresponding volume numbers or logical
1713  * eraseblock numbers. It returns zero in case of success and a negative error
1714  * code in case of failure.
1715  */
1716 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1717 {
1718 	int err = 0;
1719 	int found = 1;
1720 
1721 	/*
1722 	 * Erase while the pending works queue is not empty, but not more than
1723 	 * the number of currently pending works.
1724 	 */
1725 	dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1726 	       vol_id, lnum, ubi->works_count);
1727 
1728 	while (found) {
1729 		struct ubi_work *wrk;
1730 		found = 0;
1731 
1732 		down_read(&ubi->work_sem);
1733 		spin_lock(&ubi->wl_lock);
1734 		list_for_each_entry(wrk, &ubi->works, list) {
1735 			if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1736 			    (lnum == UBI_ALL || wrk->lnum == lnum)) {
1737 				list_del(&wrk->list);
1738 				ubi->works_count -= 1;
1739 				ubi_assert(ubi->works_count >= 0);
1740 				spin_unlock(&ubi->wl_lock);
1741 
1742 				err = wrk->func(ubi, wrk, 0);
1743 				if (err) {
1744 					up_read(&ubi->work_sem);
1745 					return err;
1746 				}
1747 
1748 				spin_lock(&ubi->wl_lock);
1749 				found = 1;
1750 				break;
1751 			}
1752 		}
1753 		spin_unlock(&ubi->wl_lock);
1754 		up_read(&ubi->work_sem);
1755 	}
1756 
1757 	/*
1758 	 * Make sure all the works which have been done in parallel are
1759 	 * finished.
1760 	 */
1761 	down_write(&ubi->work_sem);
1762 	up_write(&ubi->work_sem);
1763 
1764 	return err;
1765 }
1766 
1767 /**
1768  * tree_destroy - destroy an RB-tree.
1769  * @root: the root of the tree to destroy
1770  */
1771 static void tree_destroy(struct rb_root *root)
1772 {
1773 	struct rb_node *rb;
1774 	struct ubi_wl_entry *e;
1775 
1776 	rb = root->rb_node;
1777 	while (rb) {
1778 		if (rb->rb_left)
1779 			rb = rb->rb_left;
1780 		else if (rb->rb_right)
1781 			rb = rb->rb_right;
1782 		else {
1783 			e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1784 
1785 			rb = rb_parent(rb);
1786 			if (rb) {
1787 				if (rb->rb_left == &e->u.rb)
1788 					rb->rb_left = NULL;
1789 				else
1790 					rb->rb_right = NULL;
1791 			}
1792 
1793 			kmem_cache_free(ubi_wl_entry_slab, e);
1794 		}
1795 	}
1796 }
1797 
1798 /**
1799  * ubi_thread - UBI background thread.
1800  * @u: the UBI device description object pointer
1801  */
1802 int ubi_thread(void *u)
1803 {
1804 	int failures = 0;
1805 	struct ubi_device *ubi = u;
1806 
1807 	ubi_msg("background thread \"%s\" started, PID %d",
1808 		ubi->bgt_name, task_pid_nr(current));
1809 
1810 	set_freezable();
1811 	for (;;) {
1812 		int err;
1813 
1814 		if (kthread_should_stop())
1815 			break;
1816 
1817 		if (try_to_freeze())
1818 			continue;
1819 
1820 		spin_lock(&ubi->wl_lock);
1821 		if (list_empty(&ubi->works) || ubi->ro_mode ||
1822 		    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1823 			set_current_state(TASK_INTERRUPTIBLE);
1824 			spin_unlock(&ubi->wl_lock);
1825 			schedule();
1826 			continue;
1827 		}
1828 		spin_unlock(&ubi->wl_lock);
1829 
1830 		err = do_work(ubi);
1831 		if (err) {
1832 			ubi_err("%s: work failed with error code %d",
1833 				ubi->bgt_name, err);
1834 			if (failures++ > WL_MAX_FAILURES) {
1835 				/*
1836 				 * Too many failures, disable the thread and
1837 				 * switch to read-only mode.
1838 				 */
1839 				ubi_msg("%s: %d consecutive failures",
1840 					ubi->bgt_name, WL_MAX_FAILURES);
1841 				ubi_ro_mode(ubi);
1842 				ubi->thread_enabled = 0;
1843 				continue;
1844 			}
1845 		} else
1846 			failures = 0;
1847 
1848 		cond_resched();
1849 	}
1850 
1851 	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1852 	return 0;
1853 }
1854 
1855 /**
1856  * cancel_pending - cancel all pending works.
1857  * @ubi: UBI device description object
1858  */
1859 static void cancel_pending(struct ubi_device *ubi)
1860 {
1861 	while (!list_empty(&ubi->works)) {
1862 		struct ubi_work *wrk;
1863 
1864 		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1865 		list_del(&wrk->list);
1866 		wrk->func(ubi, wrk, 1);
1867 		ubi->works_count -= 1;
1868 		ubi_assert(ubi->works_count >= 0);
1869 	}
1870 }
1871 
1872 /**
1873  * ubi_wl_init - initialize the WL sub-system using attaching information.
1874  * @ubi: UBI device description object
1875  * @ai: attaching information
1876  *
1877  * This function returns zero in case of success, and a negative error code in
1878  * case of failure.
1879  */
1880 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1881 {
1882 	int err, i, reserved_pebs, found_pebs = 0;
1883 	struct rb_node *rb1, *rb2;
1884 	struct ubi_ainf_volume *av;
1885 	struct ubi_ainf_peb *aeb, *tmp;
1886 	struct ubi_wl_entry *e;
1887 
1888 	ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1889 	spin_lock_init(&ubi->wl_lock);
1890 	mutex_init(&ubi->move_mutex);
1891 	init_rwsem(&ubi->work_sem);
1892 	ubi->max_ec = ai->max_ec;
1893 	INIT_LIST_HEAD(&ubi->works);
1894 #ifndef __UBOOT__
1895 #ifdef CONFIG_MTD_UBI_FASTMAP
1896 	INIT_WORK(&ubi->fm_work, update_fastmap_work_fn);
1897 #endif
1898 #endif
1899 
1900 	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1901 
1902 	err = -ENOMEM;
1903 	ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1904 	if (!ubi->lookuptbl)
1905 		return err;
1906 
1907 	for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1908 		INIT_LIST_HEAD(&ubi->pq[i]);
1909 	ubi->pq_head = 0;
1910 
1911 	list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1912 		cond_resched();
1913 
1914 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1915 		if (!e)
1916 			goto out_free;
1917 
1918 		e->pnum = aeb->pnum;
1919 		e->ec = aeb->ec;
1920 		ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1921 		ubi->lookuptbl[e->pnum] = e;
1922 		if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1923 			kmem_cache_free(ubi_wl_entry_slab, e);
1924 			goto out_free;
1925 		}
1926 
1927 		found_pebs++;
1928 	}
1929 
1930 	ubi->free_count = 0;
1931 	list_for_each_entry(aeb, &ai->free, u.list) {
1932 		cond_resched();
1933 
1934 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1935 		if (!e)
1936 			goto out_free;
1937 
1938 		e->pnum = aeb->pnum;
1939 		e->ec = aeb->ec;
1940 		ubi_assert(e->ec >= 0);
1941 		ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1942 
1943 		wl_tree_add(e, &ubi->free);
1944 		ubi->free_count++;
1945 
1946 		ubi->lookuptbl[e->pnum] = e;
1947 
1948 		found_pebs++;
1949 	}
1950 
1951 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1952 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1953 			cond_resched();
1954 
1955 			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1956 			if (!e)
1957 				goto out_free;
1958 
1959 			e->pnum = aeb->pnum;
1960 			e->ec = aeb->ec;
1961 			ubi->lookuptbl[e->pnum] = e;
1962 
1963 			if (!aeb->scrub) {
1964 				dbg_wl("add PEB %d EC %d to the used tree",
1965 				       e->pnum, e->ec);
1966 				wl_tree_add(e, &ubi->used);
1967 			} else {
1968 				dbg_wl("add PEB %d EC %d to the scrub tree",
1969 				       e->pnum, e->ec);
1970 				wl_tree_add(e, &ubi->scrub);
1971 			}
1972 
1973 			found_pebs++;
1974 		}
1975 	}
1976 
1977 	dbg_wl("found %i PEBs", found_pebs);
1978 
1979 	if (ubi->fm)
1980 		ubi_assert(ubi->good_peb_count == \
1981 			   found_pebs + ubi->fm->used_blocks);
1982 	else
1983 		ubi_assert(ubi->good_peb_count == found_pebs);
1984 
1985 	reserved_pebs = WL_RESERVED_PEBS;
1986 #ifdef CONFIG_MTD_UBI_FASTMAP
1987 	/* Reserve enough LEBs to store two fastmaps. */
1988 	reserved_pebs += (ubi->fm_size / ubi->leb_size) * 2;
1989 #endif
1990 
1991 	if (ubi->avail_pebs < reserved_pebs) {
1992 		ubi_err("no enough physical eraseblocks (%d, need %d)",
1993 			ubi->avail_pebs, reserved_pebs);
1994 		if (ubi->corr_peb_count)
1995 			ubi_err("%d PEBs are corrupted and not used",
1996 				ubi->corr_peb_count);
1997 		goto out_free;
1998 	}
1999 	ubi->avail_pebs -= reserved_pebs;
2000 	ubi->rsvd_pebs += reserved_pebs;
2001 
2002 	/* Schedule wear-leveling if needed */
2003 	err = ensure_wear_leveling(ubi, 0);
2004 	if (err)
2005 		goto out_free;
2006 
2007 	return 0;
2008 
2009 out_free:
2010 	cancel_pending(ubi);
2011 	tree_destroy(&ubi->used);
2012 	tree_destroy(&ubi->free);
2013 	tree_destroy(&ubi->scrub);
2014 	kfree(ubi->lookuptbl);
2015 	return err;
2016 }
2017 
2018 /**
2019  * protection_queue_destroy - destroy the protection queue.
2020  * @ubi: UBI device description object
2021  */
2022 static void protection_queue_destroy(struct ubi_device *ubi)
2023 {
2024 	int i;
2025 	struct ubi_wl_entry *e, *tmp;
2026 
2027 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
2028 		list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
2029 			list_del(&e->u.list);
2030 			kmem_cache_free(ubi_wl_entry_slab, e);
2031 		}
2032 	}
2033 }
2034 
2035 /**
2036  * ubi_wl_close - close the wear-leveling sub-system.
2037  * @ubi: UBI device description object
2038  */
2039 void ubi_wl_close(struct ubi_device *ubi)
2040 {
2041 	dbg_wl("close the WL sub-system");
2042 	cancel_pending(ubi);
2043 	protection_queue_destroy(ubi);
2044 	tree_destroy(&ubi->used);
2045 	tree_destroy(&ubi->erroneous);
2046 	tree_destroy(&ubi->free);
2047 	tree_destroy(&ubi->scrub);
2048 	kfree(ubi->lookuptbl);
2049 }
2050 
2051 /**
2052  * self_check_ec - make sure that the erase counter of a PEB is correct.
2053  * @ubi: UBI device description object
2054  * @pnum: the physical eraseblock number to check
2055  * @ec: the erase counter to check
2056  *
2057  * This function returns zero if the erase counter of physical eraseblock @pnum
2058  * is equivalent to @ec, and a negative error code if not or if an error
2059  * occurred.
2060  */
2061 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
2062 {
2063 	int err;
2064 	long long read_ec;
2065 	struct ubi_ec_hdr *ec_hdr;
2066 
2067 	if (!ubi_dbg_chk_gen(ubi))
2068 		return 0;
2069 
2070 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
2071 	if (!ec_hdr)
2072 		return -ENOMEM;
2073 
2074 	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2075 	if (err && err != UBI_IO_BITFLIPS) {
2076 		/* The header does not have to exist */
2077 		err = 0;
2078 		goto out_free;
2079 	}
2080 
2081 	read_ec = be64_to_cpu(ec_hdr->ec);
2082 	if (ec != read_ec && read_ec - ec > 1) {
2083 		ubi_err("self-check failed for PEB %d", pnum);
2084 		ubi_err("read EC is %lld, should be %d", read_ec, ec);
2085 		dump_stack();
2086 		err = 1;
2087 	} else
2088 		err = 0;
2089 
2090 out_free:
2091 	kfree(ec_hdr);
2092 	return err;
2093 }
2094 
2095 /**
2096  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2097  * @ubi: UBI device description object
2098  * @e: the wear-leveling entry to check
2099  * @root: the root of the tree
2100  *
2101  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2102  * is not.
2103  */
2104 static int self_check_in_wl_tree(const struct ubi_device *ubi,
2105 				 struct ubi_wl_entry *e, struct rb_root *root)
2106 {
2107 	if (!ubi_dbg_chk_gen(ubi))
2108 		return 0;
2109 
2110 	if (in_wl_tree(e, root))
2111 		return 0;
2112 
2113 	ubi_err("self-check failed for PEB %d, EC %d, RB-tree %p ",
2114 		e->pnum, e->ec, root);
2115 	dump_stack();
2116 	return -EINVAL;
2117 }
2118 
2119 /**
2120  * self_check_in_pq - check if wear-leveling entry is in the protection
2121  *                        queue.
2122  * @ubi: UBI device description object
2123  * @e: the wear-leveling entry to check
2124  *
2125  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2126  */
2127 static int self_check_in_pq(const struct ubi_device *ubi,
2128 			    struct ubi_wl_entry *e)
2129 {
2130 	struct ubi_wl_entry *p;
2131 	int i;
2132 
2133 	if (!ubi_dbg_chk_gen(ubi))
2134 		return 0;
2135 
2136 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
2137 		list_for_each_entry(p, &ubi->pq[i], u.list)
2138 			if (p == e)
2139 				return 0;
2140 
2141 	ubi_err("self-check failed for PEB %d, EC %d, Protect queue",
2142 		e->pnum, e->ec);
2143 	dump_stack();
2144 	return -EINVAL;
2145 }
2146