1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * 4 * SPDX-License-Identifier: GPL-2.0+ 5 * 6 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner 7 */ 8 9 /* 10 * UBI wear-leveling sub-system. 11 * 12 * This sub-system is responsible for wear-leveling. It works in terms of 13 * physical eraseblocks and erase counters and knows nothing about logical 14 * eraseblocks, volumes, etc. From this sub-system's perspective all physical 15 * eraseblocks are of two types - used and free. Used physical eraseblocks are 16 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical 17 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function. 18 * 19 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter 20 * header. The rest of the physical eraseblock contains only %0xFF bytes. 21 * 22 * When physical eraseblocks are returned to the WL sub-system by means of the 23 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is 24 * done asynchronously in context of the per-UBI device background thread, 25 * which is also managed by the WL sub-system. 26 * 27 * The wear-leveling is ensured by means of moving the contents of used 28 * physical eraseblocks with low erase counter to free physical eraseblocks 29 * with high erase counter. 30 * 31 * If the WL sub-system fails to erase a physical eraseblock, it marks it as 32 * bad. 33 * 34 * This sub-system is also responsible for scrubbing. If a bit-flip is detected 35 * in a physical eraseblock, it has to be moved. Technically this is the same 36 * as moving it for wear-leveling reasons. 37 * 38 * As it was said, for the UBI sub-system all physical eraseblocks are either 39 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while 40 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub 41 * RB-trees, as well as (temporarily) in the @wl->pq queue. 42 * 43 * When the WL sub-system returns a physical eraseblock, the physical 44 * eraseblock is protected from being moved for some "time". For this reason, 45 * the physical eraseblock is not directly moved from the @wl->free tree to the 46 * @wl->used tree. There is a protection queue in between where this 47 * physical eraseblock is temporarily stored (@wl->pq). 48 * 49 * All this protection stuff is needed because: 50 * o we don't want to move physical eraseblocks just after we have given them 51 * to the user; instead, we first want to let users fill them up with data; 52 * 53 * o there is a chance that the user will put the physical eraseblock very 54 * soon, so it makes sense not to move it for some time, but wait. 55 * 56 * Physical eraseblocks stay protected only for limited time. But the "time" is 57 * measured in erase cycles in this case. This is implemented with help of the 58 * protection queue. Eraseblocks are put to the tail of this queue when they 59 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the 60 * head of the queue on each erase operation (for any eraseblock). So the 61 * length of the queue defines how may (global) erase cycles PEBs are protected. 62 * 63 * To put it differently, each physical eraseblock has 2 main states: free and 64 * used. The former state corresponds to the @wl->free tree. The latter state 65 * is split up on several sub-states: 66 * o the WL movement is allowed (@wl->used tree); 67 * o the WL movement is disallowed (@wl->erroneous) because the PEB is 68 * erroneous - e.g., there was a read error; 69 * o the WL movement is temporarily prohibited (@wl->pq queue); 70 * o scrubbing is needed (@wl->scrub tree). 71 * 72 * Depending on the sub-state, wear-leveling entries of the used physical 73 * eraseblocks may be kept in one of those structures. 74 * 75 * Note, in this implementation, we keep a small in-RAM object for each physical 76 * eraseblock. This is surely not a scalable solution. But it appears to be good 77 * enough for moderately large flashes and it is simple. In future, one may 78 * re-work this sub-system and make it more scalable. 79 * 80 * At the moment this sub-system does not utilize the sequence number, which 81 * was introduced relatively recently. But it would be wise to do this because 82 * the sequence number of a logical eraseblock characterizes how old is it. For 83 * example, when we move a PEB with low erase counter, and we need to pick the 84 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we 85 * pick target PEB with an average EC if our PEB is not very "old". This is a 86 * room for future re-works of the WL sub-system. 87 */ 88 89 #ifndef __UBOOT__ 90 #include <linux/slab.h> 91 #include <linux/crc32.h> 92 #include <linux/freezer.h> 93 #include <linux/kthread.h> 94 #else 95 #include <ubi_uboot.h> 96 #endif 97 98 #include "ubi.h" 99 100 /* Number of physical eraseblocks reserved for wear-leveling purposes */ 101 #define WL_RESERVED_PEBS 1 102 103 /* 104 * Maximum difference between two erase counters. If this threshold is 105 * exceeded, the WL sub-system starts moving data from used physical 106 * eraseblocks with low erase counter to free physical eraseblocks with high 107 * erase counter. 108 */ 109 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD 110 111 /* 112 * When a physical eraseblock is moved, the WL sub-system has to pick the target 113 * physical eraseblock to move to. The simplest way would be just to pick the 114 * one with the highest erase counter. But in certain workloads this could lead 115 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a 116 * situation when the picked physical eraseblock is constantly erased after the 117 * data is written to it. So, we have a constant which limits the highest erase 118 * counter of the free physical eraseblock to pick. Namely, the WL sub-system 119 * does not pick eraseblocks with erase counter greater than the lowest erase 120 * counter plus %WL_FREE_MAX_DIFF. 121 */ 122 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD) 123 124 /* 125 * Maximum number of consecutive background thread failures which is enough to 126 * switch to read-only mode. 127 */ 128 #define WL_MAX_FAILURES 32 129 130 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec); 131 static int self_check_in_wl_tree(const struct ubi_device *ubi, 132 struct ubi_wl_entry *e, struct rb_root *root); 133 static int self_check_in_pq(const struct ubi_device *ubi, 134 struct ubi_wl_entry *e); 135 136 #ifdef CONFIG_MTD_UBI_FASTMAP 137 #ifndef __UBOOT__ 138 /** 139 * update_fastmap_work_fn - calls ubi_update_fastmap from a work queue 140 * @wrk: the work description object 141 */ 142 static void update_fastmap_work_fn(struct work_struct *wrk) 143 { 144 struct ubi_device *ubi = container_of(wrk, struct ubi_device, fm_work); 145 ubi_update_fastmap(ubi); 146 } 147 #endif 148 149 /** 150 * ubi_ubi_is_fm_block - returns 1 if a PEB is currently used in a fastmap. 151 * @ubi: UBI device description object 152 * @pnum: the to be checked PEB 153 */ 154 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum) 155 { 156 int i; 157 158 if (!ubi->fm) 159 return 0; 160 161 for (i = 0; i < ubi->fm->used_blocks; i++) 162 if (ubi->fm->e[i]->pnum == pnum) 163 return 1; 164 165 return 0; 166 } 167 #else 168 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum) 169 { 170 return 0; 171 } 172 #endif 173 174 /** 175 * wl_tree_add - add a wear-leveling entry to a WL RB-tree. 176 * @e: the wear-leveling entry to add 177 * @root: the root of the tree 178 * 179 * Note, we use (erase counter, physical eraseblock number) pairs as keys in 180 * the @ubi->used and @ubi->free RB-trees. 181 */ 182 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root) 183 { 184 struct rb_node **p, *parent = NULL; 185 186 p = &root->rb_node; 187 while (*p) { 188 struct ubi_wl_entry *e1; 189 190 parent = *p; 191 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb); 192 193 if (e->ec < e1->ec) 194 p = &(*p)->rb_left; 195 else if (e->ec > e1->ec) 196 p = &(*p)->rb_right; 197 else { 198 ubi_assert(e->pnum != e1->pnum); 199 if (e->pnum < e1->pnum) 200 p = &(*p)->rb_left; 201 else 202 p = &(*p)->rb_right; 203 } 204 } 205 206 rb_link_node(&e->u.rb, parent, p); 207 rb_insert_color(&e->u.rb, root); 208 } 209 210 /** 211 * do_work - do one pending work. 212 * @ubi: UBI device description object 213 * 214 * This function returns zero in case of success and a negative error code in 215 * case of failure. 216 */ 217 static int do_work(struct ubi_device *ubi) 218 { 219 int err; 220 struct ubi_work *wrk; 221 222 cond_resched(); 223 224 /* 225 * @ubi->work_sem is used to synchronize with the workers. Workers take 226 * it in read mode, so many of them may be doing works at a time. But 227 * the queue flush code has to be sure the whole queue of works is 228 * done, and it takes the mutex in write mode. 229 */ 230 down_read(&ubi->work_sem); 231 spin_lock(&ubi->wl_lock); 232 if (list_empty(&ubi->works)) { 233 spin_unlock(&ubi->wl_lock); 234 up_read(&ubi->work_sem); 235 return 0; 236 } 237 238 wrk = list_entry(ubi->works.next, struct ubi_work, list); 239 list_del(&wrk->list); 240 ubi->works_count -= 1; 241 ubi_assert(ubi->works_count >= 0); 242 spin_unlock(&ubi->wl_lock); 243 244 /* 245 * Call the worker function. Do not touch the work structure 246 * after this call as it will have been freed or reused by that 247 * time by the worker function. 248 */ 249 err = wrk->func(ubi, wrk, 0); 250 if (err) 251 ubi_err("work failed with error code %d", err); 252 up_read(&ubi->work_sem); 253 254 return err; 255 } 256 257 /** 258 * produce_free_peb - produce a free physical eraseblock. 259 * @ubi: UBI device description object 260 * 261 * This function tries to make a free PEB by means of synchronous execution of 262 * pending works. This may be needed if, for example the background thread is 263 * disabled. Returns zero in case of success and a negative error code in case 264 * of failure. 265 */ 266 static int produce_free_peb(struct ubi_device *ubi) 267 { 268 int err; 269 270 while (!ubi->free.rb_node) { 271 spin_unlock(&ubi->wl_lock); 272 273 dbg_wl("do one work synchronously"); 274 err = do_work(ubi); 275 276 spin_lock(&ubi->wl_lock); 277 if (err) 278 return err; 279 } 280 281 return 0; 282 } 283 284 /** 285 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree. 286 * @e: the wear-leveling entry to check 287 * @root: the root of the tree 288 * 289 * This function returns non-zero if @e is in the @root RB-tree and zero if it 290 * is not. 291 */ 292 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) 293 { 294 struct rb_node *p; 295 296 p = root->rb_node; 297 while (p) { 298 struct ubi_wl_entry *e1; 299 300 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 301 302 if (e->pnum == e1->pnum) { 303 ubi_assert(e == e1); 304 return 1; 305 } 306 307 if (e->ec < e1->ec) 308 p = p->rb_left; 309 else if (e->ec > e1->ec) 310 p = p->rb_right; 311 else { 312 ubi_assert(e->pnum != e1->pnum); 313 if (e->pnum < e1->pnum) 314 p = p->rb_left; 315 else 316 p = p->rb_right; 317 } 318 } 319 320 return 0; 321 } 322 323 /** 324 * prot_queue_add - add physical eraseblock to the protection queue. 325 * @ubi: UBI device description object 326 * @e: the physical eraseblock to add 327 * 328 * This function adds @e to the tail of the protection queue @ubi->pq, where 329 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be 330 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to 331 * be locked. 332 */ 333 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e) 334 { 335 int pq_tail = ubi->pq_head - 1; 336 337 if (pq_tail < 0) 338 pq_tail = UBI_PROT_QUEUE_LEN - 1; 339 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN); 340 list_add_tail(&e->u.list, &ubi->pq[pq_tail]); 341 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec); 342 } 343 344 /** 345 * find_wl_entry - find wear-leveling entry closest to certain erase counter. 346 * @ubi: UBI device description object 347 * @root: the RB-tree where to look for 348 * @diff: maximum possible difference from the smallest erase counter 349 * 350 * This function looks for a wear leveling entry with erase counter closest to 351 * min + @diff, where min is the smallest erase counter. 352 */ 353 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi, 354 struct rb_root *root, int diff) 355 { 356 struct rb_node *p; 357 struct ubi_wl_entry *e, *prev_e = NULL; 358 int max; 359 360 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 361 max = e->ec + diff; 362 363 p = root->rb_node; 364 while (p) { 365 struct ubi_wl_entry *e1; 366 367 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 368 if (e1->ec >= max) 369 p = p->rb_left; 370 else { 371 p = p->rb_right; 372 prev_e = e; 373 e = e1; 374 } 375 } 376 377 /* If no fastmap has been written and this WL entry can be used 378 * as anchor PEB, hold it back and return the second best WL entry 379 * such that fastmap can use the anchor PEB later. */ 380 if (prev_e && !ubi->fm_disabled && 381 !ubi->fm && e->pnum < UBI_FM_MAX_START) 382 return prev_e; 383 384 return e; 385 } 386 387 /** 388 * find_mean_wl_entry - find wear-leveling entry with medium erase counter. 389 * @ubi: UBI device description object 390 * @root: the RB-tree where to look for 391 * 392 * This function looks for a wear leveling entry with medium erase counter, 393 * but not greater or equivalent than the lowest erase counter plus 394 * %WL_FREE_MAX_DIFF/2. 395 */ 396 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi, 397 struct rb_root *root) 398 { 399 struct ubi_wl_entry *e, *first, *last; 400 401 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 402 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb); 403 404 if (last->ec - first->ec < WL_FREE_MAX_DIFF) { 405 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb); 406 407 #ifdef CONFIG_MTD_UBI_FASTMAP 408 /* If no fastmap has been written and this WL entry can be used 409 * as anchor PEB, hold it back and return the second best 410 * WL entry such that fastmap can use the anchor PEB later. */ 411 if (e && !ubi->fm_disabled && !ubi->fm && 412 e->pnum < UBI_FM_MAX_START) 413 e = rb_entry(rb_next(root->rb_node), 414 struct ubi_wl_entry, u.rb); 415 #endif 416 } else 417 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2); 418 419 return e; 420 } 421 422 #ifdef CONFIG_MTD_UBI_FASTMAP 423 /** 424 * find_anchor_wl_entry - find wear-leveling entry to used as anchor PEB. 425 * @root: the RB-tree where to look for 426 */ 427 static struct ubi_wl_entry *find_anchor_wl_entry(struct rb_root *root) 428 { 429 struct rb_node *p; 430 struct ubi_wl_entry *e, *victim = NULL; 431 int max_ec = UBI_MAX_ERASECOUNTER; 432 433 ubi_rb_for_each_entry(p, e, root, u.rb) { 434 if (e->pnum < UBI_FM_MAX_START && e->ec < max_ec) { 435 victim = e; 436 max_ec = e->ec; 437 } 438 } 439 440 return victim; 441 } 442 443 static int anchor_pebs_avalible(struct rb_root *root) 444 { 445 struct rb_node *p; 446 struct ubi_wl_entry *e; 447 448 ubi_rb_for_each_entry(p, e, root, u.rb) 449 if (e->pnum < UBI_FM_MAX_START) 450 return 1; 451 452 return 0; 453 } 454 455 /** 456 * ubi_wl_get_fm_peb - find a physical erase block with a given maximal number. 457 * @ubi: UBI device description object 458 * @anchor: This PEB will be used as anchor PEB by fastmap 459 * 460 * The function returns a physical erase block with a given maximal number 461 * and removes it from the wl subsystem. 462 * Must be called with wl_lock held! 463 */ 464 struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor) 465 { 466 struct ubi_wl_entry *e = NULL; 467 468 if (!ubi->free.rb_node || (ubi->free_count - ubi->beb_rsvd_pebs < 1)) 469 goto out; 470 471 if (anchor) 472 e = find_anchor_wl_entry(&ubi->free); 473 else 474 e = find_mean_wl_entry(ubi, &ubi->free); 475 476 if (!e) 477 goto out; 478 479 self_check_in_wl_tree(ubi, e, &ubi->free); 480 481 /* remove it from the free list, 482 * the wl subsystem does no longer know this erase block */ 483 rb_erase(&e->u.rb, &ubi->free); 484 ubi->free_count--; 485 out: 486 return e; 487 } 488 #endif 489 490 /** 491 * __wl_get_peb - get a physical eraseblock. 492 * @ubi: UBI device description object 493 * 494 * This function returns a physical eraseblock in case of success and a 495 * negative error code in case of failure. 496 */ 497 static int __wl_get_peb(struct ubi_device *ubi) 498 { 499 int err; 500 struct ubi_wl_entry *e; 501 502 retry: 503 if (!ubi->free.rb_node) { 504 if (ubi->works_count == 0) { 505 ubi_err("no free eraseblocks"); 506 ubi_assert(list_empty(&ubi->works)); 507 return -ENOSPC; 508 } 509 510 err = produce_free_peb(ubi); 511 if (err < 0) 512 return err; 513 goto retry; 514 } 515 516 e = find_mean_wl_entry(ubi, &ubi->free); 517 if (!e) { 518 ubi_err("no free eraseblocks"); 519 return -ENOSPC; 520 } 521 522 self_check_in_wl_tree(ubi, e, &ubi->free); 523 524 /* 525 * Move the physical eraseblock to the protection queue where it will 526 * be protected from being moved for some time. 527 */ 528 rb_erase(&e->u.rb, &ubi->free); 529 ubi->free_count--; 530 dbg_wl("PEB %d EC %d", e->pnum, e->ec); 531 #ifndef CONFIG_MTD_UBI_FASTMAP 532 /* We have to enqueue e only if fastmap is disabled, 533 * is fastmap enabled prot_queue_add() will be called by 534 * ubi_wl_get_peb() after removing e from the pool. */ 535 prot_queue_add(ubi, e); 536 #endif 537 return e->pnum; 538 } 539 540 #ifdef CONFIG_MTD_UBI_FASTMAP 541 /** 542 * return_unused_pool_pebs - returns unused PEB to the free tree. 543 * @ubi: UBI device description object 544 * @pool: fastmap pool description object 545 */ 546 static void return_unused_pool_pebs(struct ubi_device *ubi, 547 struct ubi_fm_pool *pool) 548 { 549 int i; 550 struct ubi_wl_entry *e; 551 552 for (i = pool->used; i < pool->size; i++) { 553 e = ubi->lookuptbl[pool->pebs[i]]; 554 wl_tree_add(e, &ubi->free); 555 ubi->free_count++; 556 } 557 } 558 559 /** 560 * refill_wl_pool - refills all the fastmap pool used by the 561 * WL sub-system. 562 * @ubi: UBI device description object 563 */ 564 static void refill_wl_pool(struct ubi_device *ubi) 565 { 566 struct ubi_wl_entry *e; 567 struct ubi_fm_pool *pool = &ubi->fm_wl_pool; 568 569 return_unused_pool_pebs(ubi, pool); 570 571 for (pool->size = 0; pool->size < pool->max_size; pool->size++) { 572 if (!ubi->free.rb_node || 573 (ubi->free_count - ubi->beb_rsvd_pebs < 5)) 574 break; 575 576 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 577 self_check_in_wl_tree(ubi, e, &ubi->free); 578 rb_erase(&e->u.rb, &ubi->free); 579 ubi->free_count--; 580 581 pool->pebs[pool->size] = e->pnum; 582 } 583 pool->used = 0; 584 } 585 586 /** 587 * refill_wl_user_pool - refills all the fastmap pool used by ubi_wl_get_peb. 588 * @ubi: UBI device description object 589 */ 590 static void refill_wl_user_pool(struct ubi_device *ubi) 591 { 592 struct ubi_fm_pool *pool = &ubi->fm_pool; 593 594 return_unused_pool_pebs(ubi, pool); 595 596 for (pool->size = 0; pool->size < pool->max_size; pool->size++) { 597 pool->pebs[pool->size] = __wl_get_peb(ubi); 598 if (pool->pebs[pool->size] < 0) 599 break; 600 } 601 pool->used = 0; 602 } 603 604 /** 605 * ubi_refill_pools - refills all fastmap PEB pools. 606 * @ubi: UBI device description object 607 */ 608 void ubi_refill_pools(struct ubi_device *ubi) 609 { 610 spin_lock(&ubi->wl_lock); 611 refill_wl_pool(ubi); 612 refill_wl_user_pool(ubi); 613 spin_unlock(&ubi->wl_lock); 614 } 615 616 /* ubi_wl_get_peb - works exaclty like __wl_get_peb but keeps track of 617 * the fastmap pool. 618 */ 619 int ubi_wl_get_peb(struct ubi_device *ubi) 620 { 621 int ret; 622 struct ubi_fm_pool *pool = &ubi->fm_pool; 623 struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool; 624 625 if (!pool->size || !wl_pool->size || pool->used == pool->size || 626 wl_pool->used == wl_pool->size) 627 ubi_update_fastmap(ubi); 628 629 /* we got not a single free PEB */ 630 if (!pool->size) 631 ret = -ENOSPC; 632 else { 633 spin_lock(&ubi->wl_lock); 634 ret = pool->pebs[pool->used++]; 635 prot_queue_add(ubi, ubi->lookuptbl[ret]); 636 spin_unlock(&ubi->wl_lock); 637 } 638 639 return ret; 640 } 641 642 /* get_peb_for_wl - returns a PEB to be used internally by the WL sub-system. 643 * 644 * @ubi: UBI device description object 645 */ 646 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi) 647 { 648 struct ubi_fm_pool *pool = &ubi->fm_wl_pool; 649 int pnum; 650 651 if (pool->used == pool->size || !pool->size) { 652 /* We cannot update the fastmap here because this 653 * function is called in atomic context. 654 * Let's fail here and refill/update it as soon as possible. */ 655 #ifndef __UBOOT__ 656 schedule_work(&ubi->fm_work); 657 #else 658 /* In U-Boot we must call this directly */ 659 ubi_update_fastmap(ubi); 660 #endif 661 return NULL; 662 } else { 663 pnum = pool->pebs[pool->used++]; 664 return ubi->lookuptbl[pnum]; 665 } 666 } 667 #else 668 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi) 669 { 670 struct ubi_wl_entry *e; 671 672 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 673 self_check_in_wl_tree(ubi, e, &ubi->free); 674 ubi->free_count--; 675 ubi_assert(ubi->free_count >= 0); 676 rb_erase(&e->u.rb, &ubi->free); 677 678 return e; 679 } 680 681 int ubi_wl_get_peb(struct ubi_device *ubi) 682 { 683 int peb, err; 684 685 spin_lock(&ubi->wl_lock); 686 peb = __wl_get_peb(ubi); 687 spin_unlock(&ubi->wl_lock); 688 689 if (peb < 0) 690 return peb; 691 692 err = ubi_self_check_all_ff(ubi, peb, ubi->vid_hdr_aloffset, 693 ubi->peb_size - ubi->vid_hdr_aloffset); 694 if (err) { 695 ubi_err("new PEB %d does not contain all 0xFF bytes", peb); 696 return err; 697 } 698 699 return peb; 700 } 701 #endif 702 703 /** 704 * prot_queue_del - remove a physical eraseblock from the protection queue. 705 * @ubi: UBI device description object 706 * @pnum: the physical eraseblock to remove 707 * 708 * This function deletes PEB @pnum from the protection queue and returns zero 709 * in case of success and %-ENODEV if the PEB was not found. 710 */ 711 static int prot_queue_del(struct ubi_device *ubi, int pnum) 712 { 713 struct ubi_wl_entry *e; 714 715 e = ubi->lookuptbl[pnum]; 716 if (!e) 717 return -ENODEV; 718 719 if (self_check_in_pq(ubi, e)) 720 return -ENODEV; 721 722 list_del(&e->u.list); 723 dbg_wl("deleted PEB %d from the protection queue", e->pnum); 724 return 0; 725 } 726 727 /** 728 * sync_erase - synchronously erase a physical eraseblock. 729 * @ubi: UBI device description object 730 * @e: the the physical eraseblock to erase 731 * @torture: if the physical eraseblock has to be tortured 732 * 733 * This function returns zero in case of success and a negative error code in 734 * case of failure. 735 */ 736 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 737 int torture) 738 { 739 int err; 740 struct ubi_ec_hdr *ec_hdr; 741 unsigned long long ec = e->ec; 742 743 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); 744 745 err = self_check_ec(ubi, e->pnum, e->ec); 746 if (err) 747 return -EINVAL; 748 749 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 750 if (!ec_hdr) 751 return -ENOMEM; 752 753 err = ubi_io_sync_erase(ubi, e->pnum, torture); 754 if (err < 0) 755 goto out_free; 756 757 ec += err; 758 if (ec > UBI_MAX_ERASECOUNTER) { 759 /* 760 * Erase counter overflow. Upgrade UBI and use 64-bit 761 * erase counters internally. 762 */ 763 ubi_err("erase counter overflow at PEB %d, EC %llu", 764 e->pnum, ec); 765 err = -EINVAL; 766 goto out_free; 767 } 768 769 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec); 770 771 ec_hdr->ec = cpu_to_be64(ec); 772 773 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr); 774 if (err) 775 goto out_free; 776 777 e->ec = ec; 778 spin_lock(&ubi->wl_lock); 779 if (e->ec > ubi->max_ec) 780 ubi->max_ec = e->ec; 781 spin_unlock(&ubi->wl_lock); 782 783 out_free: 784 kfree(ec_hdr); 785 return err; 786 } 787 788 /** 789 * serve_prot_queue - check if it is time to stop protecting PEBs. 790 * @ubi: UBI device description object 791 * 792 * This function is called after each erase operation and removes PEBs from the 793 * tail of the protection queue. These PEBs have been protected for long enough 794 * and should be moved to the used tree. 795 */ 796 static void serve_prot_queue(struct ubi_device *ubi) 797 { 798 struct ubi_wl_entry *e, *tmp; 799 int count; 800 801 /* 802 * There may be several protected physical eraseblock to remove, 803 * process them all. 804 */ 805 repeat: 806 count = 0; 807 spin_lock(&ubi->wl_lock); 808 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) { 809 dbg_wl("PEB %d EC %d protection over, move to used tree", 810 e->pnum, e->ec); 811 812 list_del(&e->u.list); 813 wl_tree_add(e, &ubi->used); 814 if (count++ > 32) { 815 /* 816 * Let's be nice and avoid holding the spinlock for 817 * too long. 818 */ 819 spin_unlock(&ubi->wl_lock); 820 cond_resched(); 821 goto repeat; 822 } 823 } 824 825 ubi->pq_head += 1; 826 if (ubi->pq_head == UBI_PROT_QUEUE_LEN) 827 ubi->pq_head = 0; 828 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN); 829 spin_unlock(&ubi->wl_lock); 830 } 831 832 /** 833 * __schedule_ubi_work - schedule a work. 834 * @ubi: UBI device description object 835 * @wrk: the work to schedule 836 * 837 * This function adds a work defined by @wrk to the tail of the pending works 838 * list. Can only be used of ubi->work_sem is already held in read mode! 839 */ 840 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 841 { 842 spin_lock(&ubi->wl_lock); 843 list_add_tail(&wrk->list, &ubi->works); 844 ubi_assert(ubi->works_count >= 0); 845 ubi->works_count += 1; 846 #ifndef __UBOOT__ 847 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi)) 848 wake_up_process(ubi->bgt_thread); 849 #else 850 /* 851 * U-Boot special: We have no bgt_thread in U-Boot! 852 * So just call do_work() here directly. 853 */ 854 do_work(ubi); 855 #endif 856 spin_unlock(&ubi->wl_lock); 857 } 858 859 /** 860 * schedule_ubi_work - schedule a work. 861 * @ubi: UBI device description object 862 * @wrk: the work to schedule 863 * 864 * This function adds a work defined by @wrk to the tail of the pending works 865 * list. 866 */ 867 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 868 { 869 down_read(&ubi->work_sem); 870 __schedule_ubi_work(ubi, wrk); 871 up_read(&ubi->work_sem); 872 } 873 874 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 875 int cancel); 876 877 #ifdef CONFIG_MTD_UBI_FASTMAP 878 /** 879 * ubi_is_erase_work - checks whether a work is erase work. 880 * @wrk: The work object to be checked 881 */ 882 int ubi_is_erase_work(struct ubi_work *wrk) 883 { 884 return wrk->func == erase_worker; 885 } 886 #endif 887 888 /** 889 * schedule_erase - schedule an erase work. 890 * @ubi: UBI device description object 891 * @e: the WL entry of the physical eraseblock to erase 892 * @vol_id: the volume ID that last used this PEB 893 * @lnum: the last used logical eraseblock number for the PEB 894 * @torture: if the physical eraseblock has to be tortured 895 * 896 * This function returns zero in case of success and a %-ENOMEM in case of 897 * failure. 898 */ 899 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 900 int vol_id, int lnum, int torture) 901 { 902 struct ubi_work *wl_wrk; 903 904 ubi_assert(e); 905 ubi_assert(!ubi_is_fm_block(ubi, e->pnum)); 906 907 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", 908 e->pnum, e->ec, torture); 909 910 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 911 if (!wl_wrk) 912 return -ENOMEM; 913 914 wl_wrk->func = &erase_worker; 915 wl_wrk->e = e; 916 wl_wrk->vol_id = vol_id; 917 wl_wrk->lnum = lnum; 918 wl_wrk->torture = torture; 919 920 schedule_ubi_work(ubi, wl_wrk); 921 return 0; 922 } 923 924 /** 925 * do_sync_erase - run the erase worker synchronously. 926 * @ubi: UBI device description object 927 * @e: the WL entry of the physical eraseblock to erase 928 * @vol_id: the volume ID that last used this PEB 929 * @lnum: the last used logical eraseblock number for the PEB 930 * @torture: if the physical eraseblock has to be tortured 931 * 932 */ 933 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 934 int vol_id, int lnum, int torture) 935 { 936 struct ubi_work *wl_wrk; 937 938 dbg_wl("sync erase of PEB %i", e->pnum); 939 940 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 941 if (!wl_wrk) 942 return -ENOMEM; 943 944 wl_wrk->e = e; 945 wl_wrk->vol_id = vol_id; 946 wl_wrk->lnum = lnum; 947 wl_wrk->torture = torture; 948 949 return erase_worker(ubi, wl_wrk, 0); 950 } 951 952 #ifdef CONFIG_MTD_UBI_FASTMAP 953 /** 954 * ubi_wl_put_fm_peb - returns a PEB used in a fastmap to the wear-leveling 955 * sub-system. 956 * see: ubi_wl_put_peb() 957 * 958 * @ubi: UBI device description object 959 * @fm_e: physical eraseblock to return 960 * @lnum: the last used logical eraseblock number for the PEB 961 * @torture: if this physical eraseblock has to be tortured 962 */ 963 int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *fm_e, 964 int lnum, int torture) 965 { 966 struct ubi_wl_entry *e; 967 int vol_id, pnum = fm_e->pnum; 968 969 dbg_wl("PEB %d", pnum); 970 971 ubi_assert(pnum >= 0); 972 ubi_assert(pnum < ubi->peb_count); 973 974 spin_lock(&ubi->wl_lock); 975 e = ubi->lookuptbl[pnum]; 976 977 /* This can happen if we recovered from a fastmap the very 978 * first time and writing now a new one. In this case the wl system 979 * has never seen any PEB used by the original fastmap. 980 */ 981 if (!e) { 982 e = fm_e; 983 ubi_assert(e->ec >= 0); 984 ubi->lookuptbl[pnum] = e; 985 } else { 986 e->ec = fm_e->ec; 987 kfree(fm_e); 988 } 989 990 spin_unlock(&ubi->wl_lock); 991 992 vol_id = lnum ? UBI_FM_DATA_VOLUME_ID : UBI_FM_SB_VOLUME_ID; 993 return schedule_erase(ubi, e, vol_id, lnum, torture); 994 } 995 #endif 996 997 /** 998 * wear_leveling_worker - wear-leveling worker function. 999 * @ubi: UBI device description object 1000 * @wrk: the work object 1001 * @cancel: non-zero if the worker has to free memory and exit 1002 * 1003 * This function copies a more worn out physical eraseblock to a less worn out 1004 * one. Returns zero in case of success and a negative error code in case of 1005 * failure. 1006 */ 1007 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, 1008 int cancel) 1009 { 1010 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0; 1011 int vol_id = -1, uninitialized_var(lnum); 1012 #ifdef CONFIG_MTD_UBI_FASTMAP 1013 int anchor = wrk->anchor; 1014 #endif 1015 struct ubi_wl_entry *e1, *e2; 1016 struct ubi_vid_hdr *vid_hdr; 1017 1018 kfree(wrk); 1019 if (cancel) 1020 return 0; 1021 1022 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 1023 if (!vid_hdr) 1024 return -ENOMEM; 1025 1026 mutex_lock(&ubi->move_mutex); 1027 spin_lock(&ubi->wl_lock); 1028 ubi_assert(!ubi->move_from && !ubi->move_to); 1029 ubi_assert(!ubi->move_to_put); 1030 1031 if (!ubi->free.rb_node || 1032 (!ubi->used.rb_node && !ubi->scrub.rb_node)) { 1033 /* 1034 * No free physical eraseblocks? Well, they must be waiting in 1035 * the queue to be erased. Cancel movement - it will be 1036 * triggered again when a free physical eraseblock appears. 1037 * 1038 * No used physical eraseblocks? They must be temporarily 1039 * protected from being moved. They will be moved to the 1040 * @ubi->used tree later and the wear-leveling will be 1041 * triggered again. 1042 */ 1043 dbg_wl("cancel WL, a list is empty: free %d, used %d", 1044 !ubi->free.rb_node, !ubi->used.rb_node); 1045 goto out_cancel; 1046 } 1047 1048 #ifdef CONFIG_MTD_UBI_FASTMAP 1049 /* Check whether we need to produce an anchor PEB */ 1050 if (!anchor) 1051 anchor = !anchor_pebs_avalible(&ubi->free); 1052 1053 if (anchor) { 1054 e1 = find_anchor_wl_entry(&ubi->used); 1055 if (!e1) 1056 goto out_cancel; 1057 e2 = get_peb_for_wl(ubi); 1058 if (!e2) 1059 goto out_cancel; 1060 1061 self_check_in_wl_tree(ubi, e1, &ubi->used); 1062 rb_erase(&e1->u.rb, &ubi->used); 1063 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum); 1064 } else if (!ubi->scrub.rb_node) { 1065 #else 1066 if (!ubi->scrub.rb_node) { 1067 #endif 1068 /* 1069 * Now pick the least worn-out used physical eraseblock and a 1070 * highly worn-out free physical eraseblock. If the erase 1071 * counters differ much enough, start wear-leveling. 1072 */ 1073 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 1074 e2 = get_peb_for_wl(ubi); 1075 if (!e2) 1076 goto out_cancel; 1077 1078 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { 1079 dbg_wl("no WL needed: min used EC %d, max free EC %d", 1080 e1->ec, e2->ec); 1081 1082 /* Give the unused PEB back */ 1083 wl_tree_add(e2, &ubi->free); 1084 ubi->free_count++; 1085 goto out_cancel; 1086 } 1087 self_check_in_wl_tree(ubi, e1, &ubi->used); 1088 rb_erase(&e1->u.rb, &ubi->used); 1089 dbg_wl("move PEB %d EC %d to PEB %d EC %d", 1090 e1->pnum, e1->ec, e2->pnum, e2->ec); 1091 } else { 1092 /* Perform scrubbing */ 1093 scrubbing = 1; 1094 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb); 1095 e2 = get_peb_for_wl(ubi); 1096 if (!e2) 1097 goto out_cancel; 1098 1099 self_check_in_wl_tree(ubi, e1, &ubi->scrub); 1100 rb_erase(&e1->u.rb, &ubi->scrub); 1101 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); 1102 } 1103 1104 ubi->move_from = e1; 1105 ubi->move_to = e2; 1106 spin_unlock(&ubi->wl_lock); 1107 1108 /* 1109 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum. 1110 * We so far do not know which logical eraseblock our physical 1111 * eraseblock (@e1) belongs to. We have to read the volume identifier 1112 * header first. 1113 * 1114 * Note, we are protected from this PEB being unmapped and erased. The 1115 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB 1116 * which is being moved was unmapped. 1117 */ 1118 1119 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0); 1120 if (err && err != UBI_IO_BITFLIPS) { 1121 if (err == UBI_IO_FF) { 1122 /* 1123 * We are trying to move PEB without a VID header. UBI 1124 * always write VID headers shortly after the PEB was 1125 * given, so we have a situation when it has not yet 1126 * had a chance to write it, because it was preempted. 1127 * So add this PEB to the protection queue so far, 1128 * because presumably more data will be written there 1129 * (including the missing VID header), and then we'll 1130 * move it. 1131 */ 1132 dbg_wl("PEB %d has no VID header", e1->pnum); 1133 protect = 1; 1134 goto out_not_moved; 1135 } else if (err == UBI_IO_FF_BITFLIPS) { 1136 /* 1137 * The same situation as %UBI_IO_FF, but bit-flips were 1138 * detected. It is better to schedule this PEB for 1139 * scrubbing. 1140 */ 1141 dbg_wl("PEB %d has no VID header but has bit-flips", 1142 e1->pnum); 1143 scrubbing = 1; 1144 goto out_not_moved; 1145 } 1146 1147 ubi_err("error %d while reading VID header from PEB %d", 1148 err, e1->pnum); 1149 goto out_error; 1150 } 1151 1152 vol_id = be32_to_cpu(vid_hdr->vol_id); 1153 lnum = be32_to_cpu(vid_hdr->lnum); 1154 1155 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr); 1156 if (err) { 1157 if (err == MOVE_CANCEL_RACE) { 1158 /* 1159 * The LEB has not been moved because the volume is 1160 * being deleted or the PEB has been put meanwhile. We 1161 * should prevent this PEB from being selected for 1162 * wear-leveling movement again, so put it to the 1163 * protection queue. 1164 */ 1165 protect = 1; 1166 goto out_not_moved; 1167 } 1168 if (err == MOVE_RETRY) { 1169 scrubbing = 1; 1170 goto out_not_moved; 1171 } 1172 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR || 1173 err == MOVE_TARGET_RD_ERR) { 1174 /* 1175 * Target PEB had bit-flips or write error - torture it. 1176 */ 1177 torture = 1; 1178 goto out_not_moved; 1179 } 1180 1181 if (err == MOVE_SOURCE_RD_ERR) { 1182 /* 1183 * An error happened while reading the source PEB. Do 1184 * not switch to R/O mode in this case, and give the 1185 * upper layers a possibility to recover from this, 1186 * e.g. by unmapping corresponding LEB. Instead, just 1187 * put this PEB to the @ubi->erroneous list to prevent 1188 * UBI from trying to move it over and over again. 1189 */ 1190 if (ubi->erroneous_peb_count > ubi->max_erroneous) { 1191 ubi_err("too many erroneous eraseblocks (%d)", 1192 ubi->erroneous_peb_count); 1193 goto out_error; 1194 } 1195 erroneous = 1; 1196 goto out_not_moved; 1197 } 1198 1199 if (err < 0) 1200 goto out_error; 1201 1202 ubi_assert(0); 1203 } 1204 1205 /* The PEB has been successfully moved */ 1206 if (scrubbing) 1207 ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d", 1208 e1->pnum, vol_id, lnum, e2->pnum); 1209 ubi_free_vid_hdr(ubi, vid_hdr); 1210 1211 spin_lock(&ubi->wl_lock); 1212 if (!ubi->move_to_put) { 1213 wl_tree_add(e2, &ubi->used); 1214 e2 = NULL; 1215 } 1216 ubi->move_from = ubi->move_to = NULL; 1217 ubi->move_to_put = ubi->wl_scheduled = 0; 1218 spin_unlock(&ubi->wl_lock); 1219 1220 err = do_sync_erase(ubi, e1, vol_id, lnum, 0); 1221 if (err) { 1222 kmem_cache_free(ubi_wl_entry_slab, e1); 1223 if (e2) 1224 kmem_cache_free(ubi_wl_entry_slab, e2); 1225 goto out_ro; 1226 } 1227 1228 if (e2) { 1229 /* 1230 * Well, the target PEB was put meanwhile, schedule it for 1231 * erasure. 1232 */ 1233 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase", 1234 e2->pnum, vol_id, lnum); 1235 err = do_sync_erase(ubi, e2, vol_id, lnum, 0); 1236 if (err) { 1237 kmem_cache_free(ubi_wl_entry_slab, e2); 1238 goto out_ro; 1239 } 1240 } 1241 1242 dbg_wl("done"); 1243 mutex_unlock(&ubi->move_mutex); 1244 return 0; 1245 1246 /* 1247 * For some reasons the LEB was not moved, might be an error, might be 1248 * something else. @e1 was not changed, so return it back. @e2 might 1249 * have been changed, schedule it for erasure. 1250 */ 1251 out_not_moved: 1252 if (vol_id != -1) 1253 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)", 1254 e1->pnum, vol_id, lnum, e2->pnum, err); 1255 else 1256 dbg_wl("cancel moving PEB %d to PEB %d (%d)", 1257 e1->pnum, e2->pnum, err); 1258 spin_lock(&ubi->wl_lock); 1259 if (protect) 1260 prot_queue_add(ubi, e1); 1261 else if (erroneous) { 1262 wl_tree_add(e1, &ubi->erroneous); 1263 ubi->erroneous_peb_count += 1; 1264 } else if (scrubbing) 1265 wl_tree_add(e1, &ubi->scrub); 1266 else 1267 wl_tree_add(e1, &ubi->used); 1268 ubi_assert(!ubi->move_to_put); 1269 ubi->move_from = ubi->move_to = NULL; 1270 ubi->wl_scheduled = 0; 1271 spin_unlock(&ubi->wl_lock); 1272 1273 ubi_free_vid_hdr(ubi, vid_hdr); 1274 err = do_sync_erase(ubi, e2, vol_id, lnum, torture); 1275 if (err) { 1276 kmem_cache_free(ubi_wl_entry_slab, e2); 1277 goto out_ro; 1278 } 1279 mutex_unlock(&ubi->move_mutex); 1280 return 0; 1281 1282 out_error: 1283 if (vol_id != -1) 1284 ubi_err("error %d while moving PEB %d to PEB %d", 1285 err, e1->pnum, e2->pnum); 1286 else 1287 ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d", 1288 err, e1->pnum, vol_id, lnum, e2->pnum); 1289 spin_lock(&ubi->wl_lock); 1290 ubi->move_from = ubi->move_to = NULL; 1291 ubi->move_to_put = ubi->wl_scheduled = 0; 1292 spin_unlock(&ubi->wl_lock); 1293 1294 ubi_free_vid_hdr(ubi, vid_hdr); 1295 kmem_cache_free(ubi_wl_entry_slab, e1); 1296 kmem_cache_free(ubi_wl_entry_slab, e2); 1297 1298 out_ro: 1299 ubi_ro_mode(ubi); 1300 mutex_unlock(&ubi->move_mutex); 1301 ubi_assert(err != 0); 1302 return err < 0 ? err : -EIO; 1303 1304 out_cancel: 1305 ubi->wl_scheduled = 0; 1306 spin_unlock(&ubi->wl_lock); 1307 mutex_unlock(&ubi->move_mutex); 1308 ubi_free_vid_hdr(ubi, vid_hdr); 1309 return 0; 1310 } 1311 1312 /** 1313 * ensure_wear_leveling - schedule wear-leveling if it is needed. 1314 * @ubi: UBI device description object 1315 * @nested: set to non-zero if this function is called from UBI worker 1316 * 1317 * This function checks if it is time to start wear-leveling and schedules it 1318 * if yes. This function returns zero in case of success and a negative error 1319 * code in case of failure. 1320 */ 1321 static int ensure_wear_leveling(struct ubi_device *ubi, int nested) 1322 { 1323 int err = 0; 1324 struct ubi_wl_entry *e1; 1325 struct ubi_wl_entry *e2; 1326 struct ubi_work *wrk; 1327 1328 spin_lock(&ubi->wl_lock); 1329 if (ubi->wl_scheduled) 1330 /* Wear-leveling is already in the work queue */ 1331 goto out_unlock; 1332 1333 /* 1334 * If the ubi->scrub tree is not empty, scrubbing is needed, and the 1335 * the WL worker has to be scheduled anyway. 1336 */ 1337 if (!ubi->scrub.rb_node) { 1338 if (!ubi->used.rb_node || !ubi->free.rb_node) 1339 /* No physical eraseblocks - no deal */ 1340 goto out_unlock; 1341 1342 /* 1343 * We schedule wear-leveling only if the difference between the 1344 * lowest erase counter of used physical eraseblocks and a high 1345 * erase counter of free physical eraseblocks is greater than 1346 * %UBI_WL_THRESHOLD. 1347 */ 1348 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 1349 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 1350 1351 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) 1352 goto out_unlock; 1353 dbg_wl("schedule wear-leveling"); 1354 } else 1355 dbg_wl("schedule scrubbing"); 1356 1357 ubi->wl_scheduled = 1; 1358 spin_unlock(&ubi->wl_lock); 1359 1360 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 1361 if (!wrk) { 1362 err = -ENOMEM; 1363 goto out_cancel; 1364 } 1365 1366 wrk->anchor = 0; 1367 wrk->func = &wear_leveling_worker; 1368 if (nested) 1369 __schedule_ubi_work(ubi, wrk); 1370 else 1371 schedule_ubi_work(ubi, wrk); 1372 return err; 1373 1374 out_cancel: 1375 spin_lock(&ubi->wl_lock); 1376 ubi->wl_scheduled = 0; 1377 out_unlock: 1378 spin_unlock(&ubi->wl_lock); 1379 return err; 1380 } 1381 1382 #ifdef CONFIG_MTD_UBI_FASTMAP 1383 /** 1384 * ubi_ensure_anchor_pebs - schedule wear-leveling to produce an anchor PEB. 1385 * @ubi: UBI device description object 1386 */ 1387 int ubi_ensure_anchor_pebs(struct ubi_device *ubi) 1388 { 1389 struct ubi_work *wrk; 1390 1391 spin_lock(&ubi->wl_lock); 1392 if (ubi->wl_scheduled) { 1393 spin_unlock(&ubi->wl_lock); 1394 return 0; 1395 } 1396 ubi->wl_scheduled = 1; 1397 spin_unlock(&ubi->wl_lock); 1398 1399 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 1400 if (!wrk) { 1401 spin_lock(&ubi->wl_lock); 1402 ubi->wl_scheduled = 0; 1403 spin_unlock(&ubi->wl_lock); 1404 return -ENOMEM; 1405 } 1406 1407 wrk->anchor = 1; 1408 wrk->func = &wear_leveling_worker; 1409 schedule_ubi_work(ubi, wrk); 1410 return 0; 1411 } 1412 #endif 1413 1414 /** 1415 * erase_worker - physical eraseblock erase worker function. 1416 * @ubi: UBI device description object 1417 * @wl_wrk: the work object 1418 * @cancel: non-zero if the worker has to free memory and exit 1419 * 1420 * This function erases a physical eraseblock and perform torture testing if 1421 * needed. It also takes care about marking the physical eraseblock bad if 1422 * needed. Returns zero in case of success and a negative error code in case of 1423 * failure. 1424 */ 1425 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 1426 int cancel) 1427 { 1428 struct ubi_wl_entry *e = wl_wrk->e; 1429 int pnum = e->pnum; 1430 int vol_id = wl_wrk->vol_id; 1431 int lnum = wl_wrk->lnum; 1432 int err, available_consumed = 0; 1433 1434 if (cancel) { 1435 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec); 1436 kfree(wl_wrk); 1437 kmem_cache_free(ubi_wl_entry_slab, e); 1438 return 0; 1439 } 1440 1441 dbg_wl("erase PEB %d EC %d LEB %d:%d", 1442 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum); 1443 1444 ubi_assert(!ubi_is_fm_block(ubi, e->pnum)); 1445 1446 err = sync_erase(ubi, e, wl_wrk->torture); 1447 if (!err) { 1448 /* Fine, we've erased it successfully */ 1449 kfree(wl_wrk); 1450 1451 spin_lock(&ubi->wl_lock); 1452 wl_tree_add(e, &ubi->free); 1453 ubi->free_count++; 1454 spin_unlock(&ubi->wl_lock); 1455 1456 /* 1457 * One more erase operation has happened, take care about 1458 * protected physical eraseblocks. 1459 */ 1460 serve_prot_queue(ubi); 1461 1462 /* And take care about wear-leveling */ 1463 err = ensure_wear_leveling(ubi, 1); 1464 return err; 1465 } 1466 1467 ubi_err("failed to erase PEB %d, error %d", pnum, err); 1468 kfree(wl_wrk); 1469 1470 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN || 1471 err == -EBUSY) { 1472 int err1; 1473 1474 /* Re-schedule the LEB for erasure */ 1475 err1 = schedule_erase(ubi, e, vol_id, lnum, 0); 1476 if (err1) { 1477 err = err1; 1478 goto out_ro; 1479 } 1480 return err; 1481 } 1482 1483 kmem_cache_free(ubi_wl_entry_slab, e); 1484 if (err != -EIO) 1485 /* 1486 * If this is not %-EIO, we have no idea what to do. Scheduling 1487 * this physical eraseblock for erasure again would cause 1488 * errors again and again. Well, lets switch to R/O mode. 1489 */ 1490 goto out_ro; 1491 1492 /* It is %-EIO, the PEB went bad */ 1493 1494 if (!ubi->bad_allowed) { 1495 ubi_err("bad physical eraseblock %d detected", pnum); 1496 goto out_ro; 1497 } 1498 1499 spin_lock(&ubi->volumes_lock); 1500 if (ubi->beb_rsvd_pebs == 0) { 1501 if (ubi->avail_pebs == 0) { 1502 spin_unlock(&ubi->volumes_lock); 1503 ubi_err("no reserved/available physical eraseblocks"); 1504 goto out_ro; 1505 } 1506 ubi->avail_pebs -= 1; 1507 available_consumed = 1; 1508 } 1509 spin_unlock(&ubi->volumes_lock); 1510 1511 ubi_msg("mark PEB %d as bad", pnum); 1512 err = ubi_io_mark_bad(ubi, pnum); 1513 if (err) 1514 goto out_ro; 1515 1516 spin_lock(&ubi->volumes_lock); 1517 if (ubi->beb_rsvd_pebs > 0) { 1518 if (available_consumed) { 1519 /* 1520 * The amount of reserved PEBs increased since we last 1521 * checked. 1522 */ 1523 ubi->avail_pebs += 1; 1524 available_consumed = 0; 1525 } 1526 ubi->beb_rsvd_pebs -= 1; 1527 } 1528 ubi->bad_peb_count += 1; 1529 ubi->good_peb_count -= 1; 1530 ubi_calculate_reserved(ubi); 1531 if (available_consumed) 1532 ubi_warn("no PEBs in the reserved pool, used an available PEB"); 1533 else if (ubi->beb_rsvd_pebs) 1534 ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs); 1535 else 1536 ubi_warn("last PEB from the reserve was used"); 1537 spin_unlock(&ubi->volumes_lock); 1538 1539 return err; 1540 1541 out_ro: 1542 if (available_consumed) { 1543 spin_lock(&ubi->volumes_lock); 1544 ubi->avail_pebs += 1; 1545 spin_unlock(&ubi->volumes_lock); 1546 } 1547 ubi_ro_mode(ubi); 1548 return err; 1549 } 1550 1551 /** 1552 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system. 1553 * @ubi: UBI device description object 1554 * @vol_id: the volume ID that last used this PEB 1555 * @lnum: the last used logical eraseblock number for the PEB 1556 * @pnum: physical eraseblock to return 1557 * @torture: if this physical eraseblock has to be tortured 1558 * 1559 * This function is called to return physical eraseblock @pnum to the pool of 1560 * free physical eraseblocks. The @torture flag has to be set if an I/O error 1561 * occurred to this @pnum and it has to be tested. This function returns zero 1562 * in case of success, and a negative error code in case of failure. 1563 */ 1564 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum, 1565 int pnum, int torture) 1566 { 1567 int err; 1568 struct ubi_wl_entry *e; 1569 1570 dbg_wl("PEB %d", pnum); 1571 ubi_assert(pnum >= 0); 1572 ubi_assert(pnum < ubi->peb_count); 1573 1574 retry: 1575 spin_lock(&ubi->wl_lock); 1576 e = ubi->lookuptbl[pnum]; 1577 if (e == ubi->move_from) { 1578 /* 1579 * User is putting the physical eraseblock which was selected to 1580 * be moved. It will be scheduled for erasure in the 1581 * wear-leveling worker. 1582 */ 1583 dbg_wl("PEB %d is being moved, wait", pnum); 1584 spin_unlock(&ubi->wl_lock); 1585 1586 /* Wait for the WL worker by taking the @ubi->move_mutex */ 1587 mutex_lock(&ubi->move_mutex); 1588 mutex_unlock(&ubi->move_mutex); 1589 goto retry; 1590 } else if (e == ubi->move_to) { 1591 /* 1592 * User is putting the physical eraseblock which was selected 1593 * as the target the data is moved to. It may happen if the EBA 1594 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()' 1595 * but the WL sub-system has not put the PEB to the "used" tree 1596 * yet, but it is about to do this. So we just set a flag which 1597 * will tell the WL worker that the PEB is not needed anymore 1598 * and should be scheduled for erasure. 1599 */ 1600 dbg_wl("PEB %d is the target of data moving", pnum); 1601 ubi_assert(!ubi->move_to_put); 1602 ubi->move_to_put = 1; 1603 spin_unlock(&ubi->wl_lock); 1604 return 0; 1605 } else { 1606 if (in_wl_tree(e, &ubi->used)) { 1607 self_check_in_wl_tree(ubi, e, &ubi->used); 1608 rb_erase(&e->u.rb, &ubi->used); 1609 } else if (in_wl_tree(e, &ubi->scrub)) { 1610 self_check_in_wl_tree(ubi, e, &ubi->scrub); 1611 rb_erase(&e->u.rb, &ubi->scrub); 1612 } else if (in_wl_tree(e, &ubi->erroneous)) { 1613 self_check_in_wl_tree(ubi, e, &ubi->erroneous); 1614 rb_erase(&e->u.rb, &ubi->erroneous); 1615 ubi->erroneous_peb_count -= 1; 1616 ubi_assert(ubi->erroneous_peb_count >= 0); 1617 /* Erroneous PEBs should be tortured */ 1618 torture = 1; 1619 } else { 1620 err = prot_queue_del(ubi, e->pnum); 1621 if (err) { 1622 ubi_err("PEB %d not found", pnum); 1623 ubi_ro_mode(ubi); 1624 spin_unlock(&ubi->wl_lock); 1625 return err; 1626 } 1627 } 1628 } 1629 spin_unlock(&ubi->wl_lock); 1630 1631 err = schedule_erase(ubi, e, vol_id, lnum, torture); 1632 if (err) { 1633 spin_lock(&ubi->wl_lock); 1634 wl_tree_add(e, &ubi->used); 1635 spin_unlock(&ubi->wl_lock); 1636 } 1637 1638 return err; 1639 } 1640 1641 /** 1642 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing. 1643 * @ubi: UBI device description object 1644 * @pnum: the physical eraseblock to schedule 1645 * 1646 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock 1647 * needs scrubbing. This function schedules a physical eraseblock for 1648 * scrubbing which is done in background. This function returns zero in case of 1649 * success and a negative error code in case of failure. 1650 */ 1651 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) 1652 { 1653 struct ubi_wl_entry *e; 1654 1655 ubi_msg("schedule PEB %d for scrubbing", pnum); 1656 1657 retry: 1658 spin_lock(&ubi->wl_lock); 1659 e = ubi->lookuptbl[pnum]; 1660 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) || 1661 in_wl_tree(e, &ubi->erroneous)) { 1662 spin_unlock(&ubi->wl_lock); 1663 return 0; 1664 } 1665 1666 if (e == ubi->move_to) { 1667 /* 1668 * This physical eraseblock was used to move data to. The data 1669 * was moved but the PEB was not yet inserted to the proper 1670 * tree. We should just wait a little and let the WL worker 1671 * proceed. 1672 */ 1673 spin_unlock(&ubi->wl_lock); 1674 dbg_wl("the PEB %d is not in proper tree, retry", pnum); 1675 yield(); 1676 goto retry; 1677 } 1678 1679 if (in_wl_tree(e, &ubi->used)) { 1680 self_check_in_wl_tree(ubi, e, &ubi->used); 1681 rb_erase(&e->u.rb, &ubi->used); 1682 } else { 1683 int err; 1684 1685 err = prot_queue_del(ubi, e->pnum); 1686 if (err) { 1687 ubi_err("PEB %d not found", pnum); 1688 ubi_ro_mode(ubi); 1689 spin_unlock(&ubi->wl_lock); 1690 return err; 1691 } 1692 } 1693 1694 wl_tree_add(e, &ubi->scrub); 1695 spin_unlock(&ubi->wl_lock); 1696 1697 /* 1698 * Technically scrubbing is the same as wear-leveling, so it is done 1699 * by the WL worker. 1700 */ 1701 return ensure_wear_leveling(ubi, 0); 1702 } 1703 1704 /** 1705 * ubi_wl_flush - flush all pending works. 1706 * @ubi: UBI device description object 1707 * @vol_id: the volume id to flush for 1708 * @lnum: the logical eraseblock number to flush for 1709 * 1710 * This function executes all pending works for a particular volume id / 1711 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it 1712 * acts as a wildcard for all of the corresponding volume numbers or logical 1713 * eraseblock numbers. It returns zero in case of success and a negative error 1714 * code in case of failure. 1715 */ 1716 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum) 1717 { 1718 int err = 0; 1719 int found = 1; 1720 1721 /* 1722 * Erase while the pending works queue is not empty, but not more than 1723 * the number of currently pending works. 1724 */ 1725 dbg_wl("flush pending work for LEB %d:%d (%d pending works)", 1726 vol_id, lnum, ubi->works_count); 1727 1728 while (found) { 1729 struct ubi_work *wrk; 1730 found = 0; 1731 1732 down_read(&ubi->work_sem); 1733 spin_lock(&ubi->wl_lock); 1734 list_for_each_entry(wrk, &ubi->works, list) { 1735 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) && 1736 (lnum == UBI_ALL || wrk->lnum == lnum)) { 1737 list_del(&wrk->list); 1738 ubi->works_count -= 1; 1739 ubi_assert(ubi->works_count >= 0); 1740 spin_unlock(&ubi->wl_lock); 1741 1742 err = wrk->func(ubi, wrk, 0); 1743 if (err) { 1744 up_read(&ubi->work_sem); 1745 return err; 1746 } 1747 1748 spin_lock(&ubi->wl_lock); 1749 found = 1; 1750 break; 1751 } 1752 } 1753 spin_unlock(&ubi->wl_lock); 1754 up_read(&ubi->work_sem); 1755 } 1756 1757 /* 1758 * Make sure all the works which have been done in parallel are 1759 * finished. 1760 */ 1761 down_write(&ubi->work_sem); 1762 up_write(&ubi->work_sem); 1763 1764 return err; 1765 } 1766 1767 /** 1768 * tree_destroy - destroy an RB-tree. 1769 * @root: the root of the tree to destroy 1770 */ 1771 static void tree_destroy(struct rb_root *root) 1772 { 1773 struct rb_node *rb; 1774 struct ubi_wl_entry *e; 1775 1776 rb = root->rb_node; 1777 while (rb) { 1778 if (rb->rb_left) 1779 rb = rb->rb_left; 1780 else if (rb->rb_right) 1781 rb = rb->rb_right; 1782 else { 1783 e = rb_entry(rb, struct ubi_wl_entry, u.rb); 1784 1785 rb = rb_parent(rb); 1786 if (rb) { 1787 if (rb->rb_left == &e->u.rb) 1788 rb->rb_left = NULL; 1789 else 1790 rb->rb_right = NULL; 1791 } 1792 1793 kmem_cache_free(ubi_wl_entry_slab, e); 1794 } 1795 } 1796 } 1797 1798 /** 1799 * ubi_thread - UBI background thread. 1800 * @u: the UBI device description object pointer 1801 */ 1802 int ubi_thread(void *u) 1803 { 1804 int failures = 0; 1805 struct ubi_device *ubi = u; 1806 1807 ubi_msg("background thread \"%s\" started, PID %d", 1808 ubi->bgt_name, task_pid_nr(current)); 1809 1810 set_freezable(); 1811 for (;;) { 1812 int err; 1813 1814 if (kthread_should_stop()) 1815 break; 1816 1817 if (try_to_freeze()) 1818 continue; 1819 1820 spin_lock(&ubi->wl_lock); 1821 if (list_empty(&ubi->works) || ubi->ro_mode || 1822 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) { 1823 set_current_state(TASK_INTERRUPTIBLE); 1824 spin_unlock(&ubi->wl_lock); 1825 schedule(); 1826 continue; 1827 } 1828 spin_unlock(&ubi->wl_lock); 1829 1830 err = do_work(ubi); 1831 if (err) { 1832 ubi_err("%s: work failed with error code %d", 1833 ubi->bgt_name, err); 1834 if (failures++ > WL_MAX_FAILURES) { 1835 /* 1836 * Too many failures, disable the thread and 1837 * switch to read-only mode. 1838 */ 1839 ubi_msg("%s: %d consecutive failures", 1840 ubi->bgt_name, WL_MAX_FAILURES); 1841 ubi_ro_mode(ubi); 1842 ubi->thread_enabled = 0; 1843 continue; 1844 } 1845 } else 1846 failures = 0; 1847 1848 cond_resched(); 1849 } 1850 1851 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name); 1852 return 0; 1853 } 1854 1855 /** 1856 * cancel_pending - cancel all pending works. 1857 * @ubi: UBI device description object 1858 */ 1859 static void cancel_pending(struct ubi_device *ubi) 1860 { 1861 while (!list_empty(&ubi->works)) { 1862 struct ubi_work *wrk; 1863 1864 wrk = list_entry(ubi->works.next, struct ubi_work, list); 1865 list_del(&wrk->list); 1866 wrk->func(ubi, wrk, 1); 1867 ubi->works_count -= 1; 1868 ubi_assert(ubi->works_count >= 0); 1869 } 1870 } 1871 1872 /** 1873 * ubi_wl_init - initialize the WL sub-system using attaching information. 1874 * @ubi: UBI device description object 1875 * @ai: attaching information 1876 * 1877 * This function returns zero in case of success, and a negative error code in 1878 * case of failure. 1879 */ 1880 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai) 1881 { 1882 int err, i, reserved_pebs, found_pebs = 0; 1883 struct rb_node *rb1, *rb2; 1884 struct ubi_ainf_volume *av; 1885 struct ubi_ainf_peb *aeb, *tmp; 1886 struct ubi_wl_entry *e; 1887 1888 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT; 1889 spin_lock_init(&ubi->wl_lock); 1890 mutex_init(&ubi->move_mutex); 1891 init_rwsem(&ubi->work_sem); 1892 ubi->max_ec = ai->max_ec; 1893 INIT_LIST_HEAD(&ubi->works); 1894 #ifndef __UBOOT__ 1895 #ifdef CONFIG_MTD_UBI_FASTMAP 1896 INIT_WORK(&ubi->fm_work, update_fastmap_work_fn); 1897 #endif 1898 #endif 1899 1900 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); 1901 1902 err = -ENOMEM; 1903 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL); 1904 if (!ubi->lookuptbl) 1905 return err; 1906 1907 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++) 1908 INIT_LIST_HEAD(&ubi->pq[i]); 1909 ubi->pq_head = 0; 1910 1911 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) { 1912 cond_resched(); 1913 1914 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1915 if (!e) 1916 goto out_free; 1917 1918 e->pnum = aeb->pnum; 1919 e->ec = aeb->ec; 1920 ubi_assert(!ubi_is_fm_block(ubi, e->pnum)); 1921 ubi->lookuptbl[e->pnum] = e; 1922 if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) { 1923 kmem_cache_free(ubi_wl_entry_slab, e); 1924 goto out_free; 1925 } 1926 1927 found_pebs++; 1928 } 1929 1930 ubi->free_count = 0; 1931 list_for_each_entry(aeb, &ai->free, u.list) { 1932 cond_resched(); 1933 1934 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1935 if (!e) 1936 goto out_free; 1937 1938 e->pnum = aeb->pnum; 1939 e->ec = aeb->ec; 1940 ubi_assert(e->ec >= 0); 1941 ubi_assert(!ubi_is_fm_block(ubi, e->pnum)); 1942 1943 wl_tree_add(e, &ubi->free); 1944 ubi->free_count++; 1945 1946 ubi->lookuptbl[e->pnum] = e; 1947 1948 found_pebs++; 1949 } 1950 1951 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { 1952 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { 1953 cond_resched(); 1954 1955 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1956 if (!e) 1957 goto out_free; 1958 1959 e->pnum = aeb->pnum; 1960 e->ec = aeb->ec; 1961 ubi->lookuptbl[e->pnum] = e; 1962 1963 if (!aeb->scrub) { 1964 dbg_wl("add PEB %d EC %d to the used tree", 1965 e->pnum, e->ec); 1966 wl_tree_add(e, &ubi->used); 1967 } else { 1968 dbg_wl("add PEB %d EC %d to the scrub tree", 1969 e->pnum, e->ec); 1970 wl_tree_add(e, &ubi->scrub); 1971 } 1972 1973 found_pebs++; 1974 } 1975 } 1976 1977 dbg_wl("found %i PEBs", found_pebs); 1978 1979 if (ubi->fm) 1980 ubi_assert(ubi->good_peb_count == \ 1981 found_pebs + ubi->fm->used_blocks); 1982 else 1983 ubi_assert(ubi->good_peb_count == found_pebs); 1984 1985 reserved_pebs = WL_RESERVED_PEBS; 1986 #ifdef CONFIG_MTD_UBI_FASTMAP 1987 /* Reserve enough LEBs to store two fastmaps. */ 1988 reserved_pebs += (ubi->fm_size / ubi->leb_size) * 2; 1989 #endif 1990 1991 if (ubi->avail_pebs < reserved_pebs) { 1992 ubi_err("no enough physical eraseblocks (%d, need %d)", 1993 ubi->avail_pebs, reserved_pebs); 1994 if (ubi->corr_peb_count) 1995 ubi_err("%d PEBs are corrupted and not used", 1996 ubi->corr_peb_count); 1997 goto out_free; 1998 } 1999 ubi->avail_pebs -= reserved_pebs; 2000 ubi->rsvd_pebs += reserved_pebs; 2001 2002 /* Schedule wear-leveling if needed */ 2003 err = ensure_wear_leveling(ubi, 0); 2004 if (err) 2005 goto out_free; 2006 2007 return 0; 2008 2009 out_free: 2010 cancel_pending(ubi); 2011 tree_destroy(&ubi->used); 2012 tree_destroy(&ubi->free); 2013 tree_destroy(&ubi->scrub); 2014 kfree(ubi->lookuptbl); 2015 return err; 2016 } 2017 2018 /** 2019 * protection_queue_destroy - destroy the protection queue. 2020 * @ubi: UBI device description object 2021 */ 2022 static void protection_queue_destroy(struct ubi_device *ubi) 2023 { 2024 int i; 2025 struct ubi_wl_entry *e, *tmp; 2026 2027 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) { 2028 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) { 2029 list_del(&e->u.list); 2030 kmem_cache_free(ubi_wl_entry_slab, e); 2031 } 2032 } 2033 } 2034 2035 /** 2036 * ubi_wl_close - close the wear-leveling sub-system. 2037 * @ubi: UBI device description object 2038 */ 2039 void ubi_wl_close(struct ubi_device *ubi) 2040 { 2041 dbg_wl("close the WL sub-system"); 2042 cancel_pending(ubi); 2043 protection_queue_destroy(ubi); 2044 tree_destroy(&ubi->used); 2045 tree_destroy(&ubi->erroneous); 2046 tree_destroy(&ubi->free); 2047 tree_destroy(&ubi->scrub); 2048 kfree(ubi->lookuptbl); 2049 } 2050 2051 /** 2052 * self_check_ec - make sure that the erase counter of a PEB is correct. 2053 * @ubi: UBI device description object 2054 * @pnum: the physical eraseblock number to check 2055 * @ec: the erase counter to check 2056 * 2057 * This function returns zero if the erase counter of physical eraseblock @pnum 2058 * is equivalent to @ec, and a negative error code if not or if an error 2059 * occurred. 2060 */ 2061 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec) 2062 { 2063 int err; 2064 long long read_ec; 2065 struct ubi_ec_hdr *ec_hdr; 2066 2067 if (!ubi_dbg_chk_gen(ubi)) 2068 return 0; 2069 2070 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 2071 if (!ec_hdr) 2072 return -ENOMEM; 2073 2074 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); 2075 if (err && err != UBI_IO_BITFLIPS) { 2076 /* The header does not have to exist */ 2077 err = 0; 2078 goto out_free; 2079 } 2080 2081 read_ec = be64_to_cpu(ec_hdr->ec); 2082 if (ec != read_ec && read_ec - ec > 1) { 2083 ubi_err("self-check failed for PEB %d", pnum); 2084 ubi_err("read EC is %lld, should be %d", read_ec, ec); 2085 dump_stack(); 2086 err = 1; 2087 } else 2088 err = 0; 2089 2090 out_free: 2091 kfree(ec_hdr); 2092 return err; 2093 } 2094 2095 /** 2096 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree. 2097 * @ubi: UBI device description object 2098 * @e: the wear-leveling entry to check 2099 * @root: the root of the tree 2100 * 2101 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it 2102 * is not. 2103 */ 2104 static int self_check_in_wl_tree(const struct ubi_device *ubi, 2105 struct ubi_wl_entry *e, struct rb_root *root) 2106 { 2107 if (!ubi_dbg_chk_gen(ubi)) 2108 return 0; 2109 2110 if (in_wl_tree(e, root)) 2111 return 0; 2112 2113 ubi_err("self-check failed for PEB %d, EC %d, RB-tree %p ", 2114 e->pnum, e->ec, root); 2115 dump_stack(); 2116 return -EINVAL; 2117 } 2118 2119 /** 2120 * self_check_in_pq - check if wear-leveling entry is in the protection 2121 * queue. 2122 * @ubi: UBI device description object 2123 * @e: the wear-leveling entry to check 2124 * 2125 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not. 2126 */ 2127 static int self_check_in_pq(const struct ubi_device *ubi, 2128 struct ubi_wl_entry *e) 2129 { 2130 struct ubi_wl_entry *p; 2131 int i; 2132 2133 if (!ubi_dbg_chk_gen(ubi)) 2134 return 0; 2135 2136 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) 2137 list_for_each_entry(p, &ubi->pq[i], u.list) 2138 if (p == e) 2139 return 0; 2140 2141 ubi_err("self-check failed for PEB %d, EC %d, Protect queue", 2142 e->pnum, e->ec); 2143 dump_stack(); 2144 return -EINVAL; 2145 } 2146