xref: /openbmc/u-boot/drivers/mtd/ubi/wl.c (revision 2d92ba84)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * SPDX-License-Identifier:	GPL-2.0+
5  *
6  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
7  */
8 
9 /*
10  * UBI wear-leveling unit.
11  *
12  * This unit is responsible for wear-leveling. It works in terms of physical
13  * eraseblocks and erase counters and knows nothing about logical eraseblocks,
14  * volumes, etc. From this unit's perspective all physical eraseblocks are of
15  * two types - used and free. Used physical eraseblocks are those that were
16  * "get" by the 'ubi_wl_get_peb()' function, and free physical eraseblocks are
17  * those that were put by the 'ubi_wl_put_peb()' function.
18  *
19  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
20  * header. The rest of the physical eraseblock contains only 0xFF bytes.
21  *
22  * When physical eraseblocks are returned to the WL unit by means of the
23  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
24  * done asynchronously in context of the per-UBI device background thread,
25  * which is also managed by the WL unit.
26  *
27  * The wear-leveling is ensured by means of moving the contents of used
28  * physical eraseblocks with low erase counter to free physical eraseblocks
29  * with high erase counter.
30  *
31  * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
32  * an "optimal" physical eraseblock. For example, when it is known that the
33  * physical eraseblock will be "put" soon because it contains short-term data,
34  * the WL unit may pick a free physical eraseblock with low erase counter, and
35  * so forth.
36  *
37  * If the WL unit fails to erase a physical eraseblock, it marks it as bad.
38  *
39  * This unit is also responsible for scrubbing. If a bit-flip is detected in a
40  * physical eraseblock, it has to be moved. Technically this is the same as
41  * moving it for wear-leveling reasons.
42  *
43  * As it was said, for the UBI unit all physical eraseblocks are either "free"
44  * or "used". Free eraseblock are kept in the @wl->free RB-tree, while used
45  * eraseblocks are kept in a set of different RB-trees: @wl->used,
46  * @wl->prot.pnum, @wl->prot.aec, and @wl->scrub.
47  *
48  * Note, in this implementation, we keep a small in-RAM object for each physical
49  * eraseblock. This is surely not a scalable solution. But it appears to be good
50  * enough for moderately large flashes and it is simple. In future, one may
51  * re-work this unit and make it more scalable.
52  *
53  * At the moment this unit does not utilize the sequence number, which was
54  * introduced relatively recently. But it would be wise to do this because the
55  * sequence number of a logical eraseblock characterizes how old is it. For
56  * example, when we move a PEB with low erase counter, and we need to pick the
57  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
58  * pick target PEB with an average EC if our PEB is not very "old". This is a
59  * room for future re-works of the WL unit.
60  *
61  * FIXME: looks too complex, should be simplified (later).
62  */
63 
64 #ifdef UBI_LINUX
65 #include <linux/slab.h>
66 #include <linux/crc32.h>
67 #include <linux/freezer.h>
68 #include <linux/kthread.h>
69 #endif
70 
71 #include <ubi_uboot.h>
72 #include "ubi.h"
73 
74 /* Number of physical eraseblocks reserved for wear-leveling purposes */
75 #define WL_RESERVED_PEBS 1
76 
77 /*
78  * How many erase cycles are short term, unknown, and long term physical
79  * eraseblocks protected.
80  */
81 #define ST_PROTECTION 16
82 #define U_PROTECTION  10
83 #define LT_PROTECTION 4
84 
85 /*
86  * Maximum difference between two erase counters. If this threshold is
87  * exceeded, the WL unit starts moving data from used physical eraseblocks with
88  * low erase counter to free physical eraseblocks with high erase counter.
89  */
90 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
91 
92 /*
93  * When a physical eraseblock is moved, the WL unit has to pick the target
94  * physical eraseblock to move to. The simplest way would be just to pick the
95  * one with the highest erase counter. But in certain workloads this could lead
96  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
97  * situation when the picked physical eraseblock is constantly erased after the
98  * data is written to it. So, we have a constant which limits the highest erase
99  * counter of the free physical eraseblock to pick. Namely, the WL unit does
100  * not pick eraseblocks with erase counter greater then the lowest erase
101  * counter plus %WL_FREE_MAX_DIFF.
102  */
103 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
104 
105 /*
106  * Maximum number of consecutive background thread failures which is enough to
107  * switch to read-only mode.
108  */
109 #define WL_MAX_FAILURES 32
110 
111 /**
112  * struct ubi_wl_prot_entry - PEB protection entry.
113  * @rb_pnum: link in the @wl->prot.pnum RB-tree
114  * @rb_aec: link in the @wl->prot.aec RB-tree
115  * @abs_ec: the absolute erase counter value when the protection ends
116  * @e: the wear-leveling entry of the physical eraseblock under protection
117  *
118  * When the WL unit returns a physical eraseblock, the physical eraseblock is
119  * protected from being moved for some "time". For this reason, the physical
120  * eraseblock is not directly moved from the @wl->free tree to the @wl->used
121  * tree. There is one more tree in between where this physical eraseblock is
122  * temporarily stored (@wl->prot).
123  *
124  * All this protection stuff is needed because:
125  *  o we don't want to move physical eraseblocks just after we have given them
126  *    to the user; instead, we first want to let users fill them up with data;
127  *
128  *  o there is a chance that the user will put the physical eraseblock very
129  *    soon, so it makes sense not to move it for some time, but wait; this is
130  *    especially important in case of "short term" physical eraseblocks.
131  *
132  * Physical eraseblocks stay protected only for limited time. But the "time" is
133  * measured in erase cycles in this case. This is implemented with help of the
134  * absolute erase counter (@wl->abs_ec). When it reaches certain value, the
135  * physical eraseblocks are moved from the protection trees (@wl->prot.*) to
136  * the @wl->used tree.
137  *
138  * Protected physical eraseblocks are searched by physical eraseblock number
139  * (when they are put) and by the absolute erase counter (to check if it is
140  * time to move them to the @wl->used tree). So there are actually 2 RB-trees
141  * storing the protected physical eraseblocks: @wl->prot.pnum and
142  * @wl->prot.aec. They are referred to as the "protection" trees. The
143  * first one is indexed by the physical eraseblock number. The second one is
144  * indexed by the absolute erase counter. Both trees store
145  * &struct ubi_wl_prot_entry objects.
146  *
147  * Each physical eraseblock has 2 main states: free and used. The former state
148  * corresponds to the @wl->free tree. The latter state is split up on several
149  * sub-states:
150  * o the WL movement is allowed (@wl->used tree);
151  * o the WL movement is temporarily prohibited (@wl->prot.pnum and
152  * @wl->prot.aec trees);
153  * o scrubbing is needed (@wl->scrub tree).
154  *
155  * Depending on the sub-state, wear-leveling entries of the used physical
156  * eraseblocks may be kept in one of those trees.
157  */
158 struct ubi_wl_prot_entry {
159 	struct rb_node rb_pnum;
160 	struct rb_node rb_aec;
161 	unsigned long long abs_ec;
162 	struct ubi_wl_entry *e;
163 };
164 
165 /**
166  * struct ubi_work - UBI work description data structure.
167  * @list: a link in the list of pending works
168  * @func: worker function
169  * @priv: private data of the worker function
170  *
171  * @e: physical eraseblock to erase
172  * @torture: if the physical eraseblock has to be tortured
173  *
174  * The @func pointer points to the worker function. If the @cancel argument is
175  * not zero, the worker has to free the resources and exit immediately. The
176  * worker has to return zero in case of success and a negative error code in
177  * case of failure.
178  */
179 struct ubi_work {
180 	struct list_head list;
181 	int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel);
182 	/* The below fields are only relevant to erasure works */
183 	struct ubi_wl_entry *e;
184 	int torture;
185 };
186 
187 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
188 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec);
189 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
190 				     struct rb_root *root);
191 #else
192 #define paranoid_check_ec(ubi, pnum, ec) 0
193 #define paranoid_check_in_wl_tree(e, root)
194 #endif
195 
196 /**
197  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
198  * @e: the wear-leveling entry to add
199  * @root: the root of the tree
200  *
201  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
202  * the @ubi->used and @ubi->free RB-trees.
203  */
204 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
205 {
206 	struct rb_node **p, *parent = NULL;
207 
208 	p = &root->rb_node;
209 	while (*p) {
210 		struct ubi_wl_entry *e1;
211 
212 		parent = *p;
213 		e1 = rb_entry(parent, struct ubi_wl_entry, rb);
214 
215 		if (e->ec < e1->ec)
216 			p = &(*p)->rb_left;
217 		else if (e->ec > e1->ec)
218 			p = &(*p)->rb_right;
219 		else {
220 			ubi_assert(e->pnum != e1->pnum);
221 			if (e->pnum < e1->pnum)
222 				p = &(*p)->rb_left;
223 			else
224 				p = &(*p)->rb_right;
225 		}
226 	}
227 
228 	rb_link_node(&e->rb, parent, p);
229 	rb_insert_color(&e->rb, root);
230 }
231 
232 /**
233  * do_work - do one pending work.
234  * @ubi: UBI device description object
235  *
236  * This function returns zero in case of success and a negative error code in
237  * case of failure.
238  */
239 static int do_work(struct ubi_device *ubi)
240 {
241 	int err;
242 	struct ubi_work *wrk;
243 
244 	cond_resched();
245 
246 	/*
247 	 * @ubi->work_sem is used to synchronize with the workers. Workers take
248 	 * it in read mode, so many of them may be doing works at a time. But
249 	 * the queue flush code has to be sure the whole queue of works is
250 	 * done, and it takes the mutex in write mode.
251 	 */
252 	down_read(&ubi->work_sem);
253 	spin_lock(&ubi->wl_lock);
254 	if (list_empty(&ubi->works)) {
255 		spin_unlock(&ubi->wl_lock);
256 		up_read(&ubi->work_sem);
257 		return 0;
258 	}
259 
260 	wrk = list_entry(ubi->works.next, struct ubi_work, list);
261 	list_del(&wrk->list);
262 	ubi->works_count -= 1;
263 	ubi_assert(ubi->works_count >= 0);
264 	spin_unlock(&ubi->wl_lock);
265 
266 	/*
267 	 * Call the worker function. Do not touch the work structure
268 	 * after this call as it will have been freed or reused by that
269 	 * time by the worker function.
270 	 */
271 	err = wrk->func(ubi, wrk, 0);
272 	if (err)
273 		ubi_err("work failed with error code %d", err);
274 	up_read(&ubi->work_sem);
275 
276 	return err;
277 }
278 
279 /**
280  * produce_free_peb - produce a free physical eraseblock.
281  * @ubi: UBI device description object
282  *
283  * This function tries to make a free PEB by means of synchronous execution of
284  * pending works. This may be needed if, for example the background thread is
285  * disabled. Returns zero in case of success and a negative error code in case
286  * of failure.
287  */
288 static int produce_free_peb(struct ubi_device *ubi)
289 {
290 	int err;
291 
292 	spin_lock(&ubi->wl_lock);
293 	while (!ubi->free.rb_node) {
294 		spin_unlock(&ubi->wl_lock);
295 
296 		dbg_wl("do one work synchronously");
297 		err = do_work(ubi);
298 		if (err)
299 			return err;
300 
301 		spin_lock(&ubi->wl_lock);
302 	}
303 	spin_unlock(&ubi->wl_lock);
304 
305 	return 0;
306 }
307 
308 /**
309  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
310  * @e: the wear-leveling entry to check
311  * @root: the root of the tree
312  *
313  * This function returns non-zero if @e is in the @root RB-tree and zero if it
314  * is not.
315  */
316 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
317 {
318 	struct rb_node *p;
319 
320 	p = root->rb_node;
321 	while (p) {
322 		struct ubi_wl_entry *e1;
323 
324 		e1 = rb_entry(p, struct ubi_wl_entry, rb);
325 
326 		if (e->pnum == e1->pnum) {
327 			ubi_assert(e == e1);
328 			return 1;
329 		}
330 
331 		if (e->ec < e1->ec)
332 			p = p->rb_left;
333 		else if (e->ec > e1->ec)
334 			p = p->rb_right;
335 		else {
336 			ubi_assert(e->pnum != e1->pnum);
337 			if (e->pnum < e1->pnum)
338 				p = p->rb_left;
339 			else
340 				p = p->rb_right;
341 		}
342 	}
343 
344 	return 0;
345 }
346 
347 /**
348  * prot_tree_add - add physical eraseblock to protection trees.
349  * @ubi: UBI device description object
350  * @e: the physical eraseblock to add
351  * @pe: protection entry object to use
352  * @abs_ec: absolute erase counter value when this physical eraseblock has
353  * to be removed from the protection trees.
354  *
355  * @wl->lock has to be locked.
356  */
357 static void prot_tree_add(struct ubi_device *ubi, struct ubi_wl_entry *e,
358 			  struct ubi_wl_prot_entry *pe, int abs_ec)
359 {
360 	struct rb_node **p, *parent = NULL;
361 	struct ubi_wl_prot_entry *pe1;
362 
363 	pe->e = e;
364 	pe->abs_ec = ubi->abs_ec + abs_ec;
365 
366 	p = &ubi->prot.pnum.rb_node;
367 	while (*p) {
368 		parent = *p;
369 		pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_pnum);
370 
371 		if (e->pnum < pe1->e->pnum)
372 			p = &(*p)->rb_left;
373 		else
374 			p = &(*p)->rb_right;
375 	}
376 	rb_link_node(&pe->rb_pnum, parent, p);
377 	rb_insert_color(&pe->rb_pnum, &ubi->prot.pnum);
378 
379 	p = &ubi->prot.aec.rb_node;
380 	parent = NULL;
381 	while (*p) {
382 		parent = *p;
383 		pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_aec);
384 
385 		if (pe->abs_ec < pe1->abs_ec)
386 			p = &(*p)->rb_left;
387 		else
388 			p = &(*p)->rb_right;
389 	}
390 	rb_link_node(&pe->rb_aec, parent, p);
391 	rb_insert_color(&pe->rb_aec, &ubi->prot.aec);
392 }
393 
394 /**
395  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
396  * @root: the RB-tree where to look for
397  * @max: highest possible erase counter
398  *
399  * This function looks for a wear leveling entry with erase counter closest to
400  * @max and less then @max.
401  */
402 static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max)
403 {
404 	struct rb_node *p;
405 	struct ubi_wl_entry *e;
406 
407 	e = rb_entry(rb_first(root), struct ubi_wl_entry, rb);
408 	max += e->ec;
409 
410 	p = root->rb_node;
411 	while (p) {
412 		struct ubi_wl_entry *e1;
413 
414 		e1 = rb_entry(p, struct ubi_wl_entry, rb);
415 		if (e1->ec >= max)
416 			p = p->rb_left;
417 		else {
418 			p = p->rb_right;
419 			e = e1;
420 		}
421 	}
422 
423 	return e;
424 }
425 
426 /**
427  * ubi_wl_get_peb - get a physical eraseblock.
428  * @ubi: UBI device description object
429  * @dtype: type of data which will be stored in this physical eraseblock
430  *
431  * This function returns a physical eraseblock in case of success and a
432  * negative error code in case of failure. Might sleep.
433  */
434 int ubi_wl_get_peb(struct ubi_device *ubi, int dtype)
435 {
436 	int err, protect, medium_ec;
437 	struct ubi_wl_entry *e, *first, *last;
438 	struct ubi_wl_prot_entry *pe;
439 
440 	ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM ||
441 		   dtype == UBI_UNKNOWN);
442 
443 	pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_NOFS);
444 	if (!pe)
445 		return -ENOMEM;
446 
447 retry:
448 	spin_lock(&ubi->wl_lock);
449 	if (!ubi->free.rb_node) {
450 		if (ubi->works_count == 0) {
451 			ubi_assert(list_empty(&ubi->works));
452 			ubi_err("no free eraseblocks");
453 			spin_unlock(&ubi->wl_lock);
454 			kfree(pe);
455 			return -ENOSPC;
456 		}
457 		spin_unlock(&ubi->wl_lock);
458 
459 		err = produce_free_peb(ubi);
460 		if (err < 0) {
461 			kfree(pe);
462 			return err;
463 		}
464 		goto retry;
465 	}
466 
467 	switch (dtype) {
468 		case UBI_LONGTERM:
469 			/*
470 			 * For long term data we pick a physical eraseblock
471 			 * with high erase counter. But the highest erase
472 			 * counter we can pick is bounded by the the lowest
473 			 * erase counter plus %WL_FREE_MAX_DIFF.
474 			 */
475 			e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
476 			protect = LT_PROTECTION;
477 			break;
478 		case UBI_UNKNOWN:
479 			/*
480 			 * For unknown data we pick a physical eraseblock with
481 			 * medium erase counter. But we by no means can pick a
482 			 * physical eraseblock with erase counter greater or
483 			 * equivalent than the lowest erase counter plus
484 			 * %WL_FREE_MAX_DIFF.
485 			 */
486 			first = rb_entry(rb_first(&ubi->free),
487 					 struct ubi_wl_entry, rb);
488 			last = rb_entry(rb_last(&ubi->free),
489 					struct ubi_wl_entry, rb);
490 
491 			if (last->ec - first->ec < WL_FREE_MAX_DIFF)
492 				e = rb_entry(ubi->free.rb_node,
493 						struct ubi_wl_entry, rb);
494 			else {
495 				medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2;
496 				e = find_wl_entry(&ubi->free, medium_ec);
497 			}
498 			protect = U_PROTECTION;
499 			break;
500 		case UBI_SHORTTERM:
501 			/*
502 			 * For short term data we pick a physical eraseblock
503 			 * with the lowest erase counter as we expect it will
504 			 * be erased soon.
505 			 */
506 			e = rb_entry(rb_first(&ubi->free),
507 				     struct ubi_wl_entry, rb);
508 			protect = ST_PROTECTION;
509 			break;
510 		default:
511 			protect = 0;
512 			e = NULL;
513 			BUG();
514 	}
515 
516 	/*
517 	 * Move the physical eraseblock to the protection trees where it will
518 	 * be protected from being moved for some time.
519 	 */
520 	paranoid_check_in_wl_tree(e, &ubi->free);
521 	rb_erase(&e->rb, &ubi->free);
522 	prot_tree_add(ubi, e, pe, protect);
523 
524 	dbg_wl("PEB %d EC %d, protection %d", e->pnum, e->ec, protect);
525 	spin_unlock(&ubi->wl_lock);
526 
527 	return e->pnum;
528 }
529 
530 /**
531  * prot_tree_del - remove a physical eraseblock from the protection trees
532  * @ubi: UBI device description object
533  * @pnum: the physical eraseblock to remove
534  *
535  * This function returns PEB @pnum from the protection trees and returns zero
536  * in case of success and %-ENODEV if the PEB was not found in the protection
537  * trees.
538  */
539 static int prot_tree_del(struct ubi_device *ubi, int pnum)
540 {
541 	struct rb_node *p;
542 	struct ubi_wl_prot_entry *pe = NULL;
543 
544 	p = ubi->prot.pnum.rb_node;
545 	while (p) {
546 
547 		pe = rb_entry(p, struct ubi_wl_prot_entry, rb_pnum);
548 
549 		if (pnum == pe->e->pnum)
550 			goto found;
551 
552 		if (pnum < pe->e->pnum)
553 			p = p->rb_left;
554 		else
555 			p = p->rb_right;
556 	}
557 
558 	return -ENODEV;
559 
560 found:
561 	ubi_assert(pe->e->pnum == pnum);
562 	rb_erase(&pe->rb_aec, &ubi->prot.aec);
563 	rb_erase(&pe->rb_pnum, &ubi->prot.pnum);
564 	kfree(pe);
565 	return 0;
566 }
567 
568 /**
569  * sync_erase - synchronously erase a physical eraseblock.
570  * @ubi: UBI device description object
571  * @e: the the physical eraseblock to erase
572  * @torture: if the physical eraseblock has to be tortured
573  *
574  * This function returns zero in case of success and a negative error code in
575  * case of failure.
576  */
577 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, int torture)
578 {
579 	int err;
580 	struct ubi_ec_hdr *ec_hdr;
581 	unsigned long long ec = e->ec;
582 
583 	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
584 
585 	err = paranoid_check_ec(ubi, e->pnum, e->ec);
586 	if (err > 0)
587 		return -EINVAL;
588 
589 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
590 	if (!ec_hdr)
591 		return -ENOMEM;
592 
593 	err = ubi_io_sync_erase(ubi, e->pnum, torture);
594 	if (err < 0)
595 		goto out_free;
596 
597 	ec += err;
598 	if (ec > UBI_MAX_ERASECOUNTER) {
599 		/*
600 		 * Erase counter overflow. Upgrade UBI and use 64-bit
601 		 * erase counters internally.
602 		 */
603 		ubi_err("erase counter overflow at PEB %d, EC %llu",
604 			e->pnum, ec);
605 		err = -EINVAL;
606 		goto out_free;
607 	}
608 
609 	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
610 
611 	ec_hdr->ec = cpu_to_be64(ec);
612 
613 	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
614 	if (err)
615 		goto out_free;
616 
617 	e->ec = ec;
618 	spin_lock(&ubi->wl_lock);
619 	if (e->ec > ubi->max_ec)
620 		ubi->max_ec = e->ec;
621 	spin_unlock(&ubi->wl_lock);
622 
623 out_free:
624 	kfree(ec_hdr);
625 	return err;
626 }
627 
628 /**
629  * check_protection_over - check if it is time to stop protecting some
630  * physical eraseblocks.
631  * @ubi: UBI device description object
632  *
633  * This function is called after each erase operation, when the absolute erase
634  * counter is incremented, to check if some physical eraseblock  have not to be
635  * protected any longer. These physical eraseblocks are moved from the
636  * protection trees to the used tree.
637  */
638 static void check_protection_over(struct ubi_device *ubi)
639 {
640 	struct ubi_wl_prot_entry *pe;
641 
642 	/*
643 	 * There may be several protected physical eraseblock to remove,
644 	 * process them all.
645 	 */
646 	while (1) {
647 		spin_lock(&ubi->wl_lock);
648 		if (!ubi->prot.aec.rb_node) {
649 			spin_unlock(&ubi->wl_lock);
650 			break;
651 		}
652 
653 		pe = rb_entry(rb_first(&ubi->prot.aec),
654 			      struct ubi_wl_prot_entry, rb_aec);
655 
656 		if (pe->abs_ec > ubi->abs_ec) {
657 			spin_unlock(&ubi->wl_lock);
658 			break;
659 		}
660 
661 		dbg_wl("PEB %d protection over, abs_ec %llu, PEB abs_ec %llu",
662 		       pe->e->pnum, ubi->abs_ec, pe->abs_ec);
663 		rb_erase(&pe->rb_aec, &ubi->prot.aec);
664 		rb_erase(&pe->rb_pnum, &ubi->prot.pnum);
665 		wl_tree_add(pe->e, &ubi->used);
666 		spin_unlock(&ubi->wl_lock);
667 
668 		kfree(pe);
669 		cond_resched();
670 	}
671 }
672 
673 /**
674  * schedule_ubi_work - schedule a work.
675  * @ubi: UBI device description object
676  * @wrk: the work to schedule
677  *
678  * This function enqueues a work defined by @wrk to the tail of the pending
679  * works list.
680  */
681 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
682 {
683 	spin_lock(&ubi->wl_lock);
684 	list_add_tail(&wrk->list, &ubi->works);
685 	ubi_assert(ubi->works_count >= 0);
686 	ubi->works_count += 1;
687 
688 	/*
689 	 * U-Boot special: We have no bgt_thread in U-Boot!
690 	 * So just call do_work() here directly.
691 	 */
692 	do_work(ubi);
693 
694 	spin_unlock(&ubi->wl_lock);
695 }
696 
697 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
698 			int cancel);
699 
700 /**
701  * schedule_erase - schedule an erase work.
702  * @ubi: UBI device description object
703  * @e: the WL entry of the physical eraseblock to erase
704  * @torture: if the physical eraseblock has to be tortured
705  *
706  * This function returns zero in case of success and a %-ENOMEM in case of
707  * failure.
708  */
709 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
710 			  int torture)
711 {
712 	struct ubi_work *wl_wrk;
713 
714 	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
715 	       e->pnum, e->ec, torture);
716 
717 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
718 	if (!wl_wrk)
719 		return -ENOMEM;
720 
721 	wl_wrk->func = &erase_worker;
722 	wl_wrk->e = e;
723 	wl_wrk->torture = torture;
724 
725 	schedule_ubi_work(ubi, wl_wrk);
726 	return 0;
727 }
728 
729 /**
730  * wear_leveling_worker - wear-leveling worker function.
731  * @ubi: UBI device description object
732  * @wrk: the work object
733  * @cancel: non-zero if the worker has to free memory and exit
734  *
735  * This function copies a more worn out physical eraseblock to a less worn out
736  * one. Returns zero in case of success and a negative error code in case of
737  * failure.
738  */
739 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
740 				int cancel)
741 {
742 	int err, put = 0, scrubbing = 0, protect = 0;
743 	struct ubi_wl_prot_entry *uninitialized_var(pe);
744 	struct ubi_wl_entry *e1, *e2;
745 	struct ubi_vid_hdr *vid_hdr;
746 
747 	kfree(wrk);
748 
749 	if (cancel)
750 		return 0;
751 
752 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
753 	if (!vid_hdr)
754 		return -ENOMEM;
755 
756 	mutex_lock(&ubi->move_mutex);
757 	spin_lock(&ubi->wl_lock);
758 	ubi_assert(!ubi->move_from && !ubi->move_to);
759 	ubi_assert(!ubi->move_to_put);
760 
761 	if (!ubi->free.rb_node ||
762 	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
763 		/*
764 		 * No free physical eraseblocks? Well, they must be waiting in
765 		 * the queue to be erased. Cancel movement - it will be
766 		 * triggered again when a free physical eraseblock appears.
767 		 *
768 		 * No used physical eraseblocks? They must be temporarily
769 		 * protected from being moved. They will be moved to the
770 		 * @ubi->used tree later and the wear-leveling will be
771 		 * triggered again.
772 		 */
773 		dbg_wl("cancel WL, a list is empty: free %d, used %d",
774 		       !ubi->free.rb_node, !ubi->used.rb_node);
775 		goto out_cancel;
776 	}
777 
778 	if (!ubi->scrub.rb_node) {
779 		/*
780 		 * Now pick the least worn-out used physical eraseblock and a
781 		 * highly worn-out free physical eraseblock. If the erase
782 		 * counters differ much enough, start wear-leveling.
783 		 */
784 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb);
785 		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
786 
787 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
788 			dbg_wl("no WL needed: min used EC %d, max free EC %d",
789 			       e1->ec, e2->ec);
790 			goto out_cancel;
791 		}
792 		paranoid_check_in_wl_tree(e1, &ubi->used);
793 		rb_erase(&e1->rb, &ubi->used);
794 		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
795 		       e1->pnum, e1->ec, e2->pnum, e2->ec);
796 	} else {
797 		/* Perform scrubbing */
798 		scrubbing = 1;
799 		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, rb);
800 		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
801 		paranoid_check_in_wl_tree(e1, &ubi->scrub);
802 		rb_erase(&e1->rb, &ubi->scrub);
803 		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
804 	}
805 
806 	paranoid_check_in_wl_tree(e2, &ubi->free);
807 	rb_erase(&e2->rb, &ubi->free);
808 	ubi->move_from = e1;
809 	ubi->move_to = e2;
810 	spin_unlock(&ubi->wl_lock);
811 
812 	/*
813 	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
814 	 * We so far do not know which logical eraseblock our physical
815 	 * eraseblock (@e1) belongs to. We have to read the volume identifier
816 	 * header first.
817 	 *
818 	 * Note, we are protected from this PEB being unmapped and erased. The
819 	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
820 	 * which is being moved was unmapped.
821 	 */
822 
823 	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
824 	if (err && err != UBI_IO_BITFLIPS) {
825 		if (err == UBI_IO_PEB_FREE) {
826 			/*
827 			 * We are trying to move PEB without a VID header. UBI
828 			 * always write VID headers shortly after the PEB was
829 			 * given, so we have a situation when it did not have
830 			 * chance to write it down because it was preempted.
831 			 * Just re-schedule the work, so that next time it will
832 			 * likely have the VID header in place.
833 			 */
834 			dbg_wl("PEB %d has no VID header", e1->pnum);
835 			goto out_not_moved;
836 		}
837 
838 		ubi_err("error %d while reading VID header from PEB %d",
839 			err, e1->pnum);
840 		if (err > 0)
841 			err = -EIO;
842 		goto out_error;
843 	}
844 
845 	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
846 	if (err) {
847 
848 		if (err < 0)
849 			goto out_error;
850 		if (err == 1)
851 			goto out_not_moved;
852 
853 		/*
854 		 * For some reason the LEB was not moved - it might be because
855 		 * the volume is being deleted. We should prevent this PEB from
856 		 * being selected for wear-levelling movement for some "time",
857 		 * so put it to the protection tree.
858 		 */
859 
860 		dbg_wl("cancelled moving PEB %d", e1->pnum);
861 		pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_NOFS);
862 		if (!pe) {
863 			err = -ENOMEM;
864 			goto out_error;
865 		}
866 
867 		protect = 1;
868 	}
869 
870 	ubi_free_vid_hdr(ubi, vid_hdr);
871 	spin_lock(&ubi->wl_lock);
872 	if (protect)
873 		prot_tree_add(ubi, e1, pe, protect);
874 	if (!ubi->move_to_put)
875 		wl_tree_add(e2, &ubi->used);
876 	else
877 		put = 1;
878 	ubi->move_from = ubi->move_to = NULL;
879 	ubi->move_to_put = ubi->wl_scheduled = 0;
880 	spin_unlock(&ubi->wl_lock);
881 
882 	if (put) {
883 		/*
884 		 * Well, the target PEB was put meanwhile, schedule it for
885 		 * erasure.
886 		 */
887 		dbg_wl("PEB %d was put meanwhile, erase", e2->pnum);
888 		err = schedule_erase(ubi, e2, 0);
889 		if (err)
890 			goto out_error;
891 	}
892 
893 	if (!protect) {
894 		err = schedule_erase(ubi, e1, 0);
895 		if (err)
896 			goto out_error;
897 	}
898 
899 
900 	dbg_wl("done");
901 	mutex_unlock(&ubi->move_mutex);
902 	return 0;
903 
904 	/*
905 	 * For some reasons the LEB was not moved, might be an error, might be
906 	 * something else. @e1 was not changed, so return it back. @e2 might
907 	 * be changed, schedule it for erasure.
908 	 */
909 out_not_moved:
910 	ubi_free_vid_hdr(ubi, vid_hdr);
911 	spin_lock(&ubi->wl_lock);
912 	if (scrubbing)
913 		wl_tree_add(e1, &ubi->scrub);
914 	else
915 		wl_tree_add(e1, &ubi->used);
916 	ubi->move_from = ubi->move_to = NULL;
917 	ubi->move_to_put = ubi->wl_scheduled = 0;
918 	spin_unlock(&ubi->wl_lock);
919 
920 	err = schedule_erase(ubi, e2, 0);
921 	if (err)
922 		goto out_error;
923 
924 	mutex_unlock(&ubi->move_mutex);
925 	return 0;
926 
927 out_error:
928 	ubi_err("error %d while moving PEB %d to PEB %d",
929 		err, e1->pnum, e2->pnum);
930 
931 	ubi_free_vid_hdr(ubi, vid_hdr);
932 	spin_lock(&ubi->wl_lock);
933 	ubi->move_from = ubi->move_to = NULL;
934 	ubi->move_to_put = ubi->wl_scheduled = 0;
935 	spin_unlock(&ubi->wl_lock);
936 
937 	kmem_cache_free(ubi_wl_entry_slab, e1);
938 	kmem_cache_free(ubi_wl_entry_slab, e2);
939 	ubi_ro_mode(ubi);
940 
941 	mutex_unlock(&ubi->move_mutex);
942 	return err;
943 
944 out_cancel:
945 	ubi->wl_scheduled = 0;
946 	spin_unlock(&ubi->wl_lock);
947 	mutex_unlock(&ubi->move_mutex);
948 	ubi_free_vid_hdr(ubi, vid_hdr);
949 	return 0;
950 }
951 
952 /**
953  * ensure_wear_leveling - schedule wear-leveling if it is needed.
954  * @ubi: UBI device description object
955  *
956  * This function checks if it is time to start wear-leveling and schedules it
957  * if yes. This function returns zero in case of success and a negative error
958  * code in case of failure.
959  */
960 static int ensure_wear_leveling(struct ubi_device *ubi)
961 {
962 	int err = 0;
963 	struct ubi_wl_entry *e1;
964 	struct ubi_wl_entry *e2;
965 	struct ubi_work *wrk;
966 
967 	spin_lock(&ubi->wl_lock);
968 	if (ubi->wl_scheduled)
969 		/* Wear-leveling is already in the work queue */
970 		goto out_unlock;
971 
972 	/*
973 	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
974 	 * the WL worker has to be scheduled anyway.
975 	 */
976 	if (!ubi->scrub.rb_node) {
977 		if (!ubi->used.rb_node || !ubi->free.rb_node)
978 			/* No physical eraseblocks - no deal */
979 			goto out_unlock;
980 
981 		/*
982 		 * We schedule wear-leveling only if the difference between the
983 		 * lowest erase counter of used physical eraseblocks and a high
984 		 * erase counter of free physical eraseblocks is greater then
985 		 * %UBI_WL_THRESHOLD.
986 		 */
987 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb);
988 		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
989 
990 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
991 			goto out_unlock;
992 		dbg_wl("schedule wear-leveling");
993 	} else
994 		dbg_wl("schedule scrubbing");
995 
996 	ubi->wl_scheduled = 1;
997 	spin_unlock(&ubi->wl_lock);
998 
999 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1000 	if (!wrk) {
1001 		err = -ENOMEM;
1002 		goto out_cancel;
1003 	}
1004 
1005 	wrk->func = &wear_leveling_worker;
1006 	schedule_ubi_work(ubi, wrk);
1007 	return err;
1008 
1009 out_cancel:
1010 	spin_lock(&ubi->wl_lock);
1011 	ubi->wl_scheduled = 0;
1012 out_unlock:
1013 	spin_unlock(&ubi->wl_lock);
1014 	return err;
1015 }
1016 
1017 /**
1018  * erase_worker - physical eraseblock erase worker function.
1019  * @ubi: UBI device description object
1020  * @wl_wrk: the work object
1021  * @cancel: non-zero if the worker has to free memory and exit
1022  *
1023  * This function erases a physical eraseblock and perform torture testing if
1024  * needed. It also takes care about marking the physical eraseblock bad if
1025  * needed. Returns zero in case of success and a negative error code in case of
1026  * failure.
1027  */
1028 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1029 			int cancel)
1030 {
1031 	struct ubi_wl_entry *e = wl_wrk->e;
1032 	int pnum = e->pnum, err, need;
1033 
1034 	if (cancel) {
1035 		dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1036 		kfree(wl_wrk);
1037 		kmem_cache_free(ubi_wl_entry_slab, e);
1038 		return 0;
1039 	}
1040 
1041 	dbg_wl("erase PEB %d EC %d", pnum, e->ec);
1042 
1043 	err = sync_erase(ubi, e, wl_wrk->torture);
1044 	if (!err) {
1045 		/* Fine, we've erased it successfully */
1046 		kfree(wl_wrk);
1047 
1048 		spin_lock(&ubi->wl_lock);
1049 		ubi->abs_ec += 1;
1050 		wl_tree_add(e, &ubi->free);
1051 		spin_unlock(&ubi->wl_lock);
1052 
1053 		/*
1054 		 * One more erase operation has happened, take care about protected
1055 		 * physical eraseblocks.
1056 		 */
1057 		check_protection_over(ubi);
1058 
1059 		/* And take care about wear-leveling */
1060 		err = ensure_wear_leveling(ubi);
1061 		return err;
1062 	}
1063 
1064 	ubi_err("failed to erase PEB %d, error %d", pnum, err);
1065 	kfree(wl_wrk);
1066 	kmem_cache_free(ubi_wl_entry_slab, e);
1067 
1068 	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1069 	    err == -EBUSY) {
1070 		int err1;
1071 
1072 		/* Re-schedule the LEB for erasure */
1073 		err1 = schedule_erase(ubi, e, 0);
1074 		if (err1) {
1075 			err = err1;
1076 			goto out_ro;
1077 		}
1078 		return err;
1079 	} else if (err != -EIO) {
1080 		/*
1081 		 * If this is not %-EIO, we have no idea what to do. Scheduling
1082 		 * this physical eraseblock for erasure again would cause
1083 		 * errors again and again. Well, lets switch to RO mode.
1084 		 */
1085 		goto out_ro;
1086 	}
1087 
1088 	/* It is %-EIO, the PEB went bad */
1089 
1090 	if (!ubi->bad_allowed) {
1091 		ubi_err("bad physical eraseblock %d detected", pnum);
1092 		goto out_ro;
1093 	}
1094 
1095 	spin_lock(&ubi->volumes_lock);
1096 	need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1;
1097 	if (need > 0) {
1098 		need = ubi->avail_pebs >= need ? need : ubi->avail_pebs;
1099 		ubi->avail_pebs -= need;
1100 		ubi->rsvd_pebs += need;
1101 		ubi->beb_rsvd_pebs += need;
1102 		if (need > 0)
1103 			ubi_msg("reserve more %d PEBs", need);
1104 	}
1105 
1106 	if (ubi->beb_rsvd_pebs == 0) {
1107 		spin_unlock(&ubi->volumes_lock);
1108 		ubi_err("no reserved physical eraseblocks");
1109 		goto out_ro;
1110 	}
1111 
1112 	spin_unlock(&ubi->volumes_lock);
1113 	ubi_msg("mark PEB %d as bad", pnum);
1114 
1115 	err = ubi_io_mark_bad(ubi, pnum);
1116 	if (err)
1117 		goto out_ro;
1118 
1119 	spin_lock(&ubi->volumes_lock);
1120 	ubi->beb_rsvd_pebs -= 1;
1121 	ubi->bad_peb_count += 1;
1122 	ubi->good_peb_count -= 1;
1123 	ubi_calculate_reserved(ubi);
1124 	if (ubi->beb_rsvd_pebs == 0)
1125 		ubi_warn("last PEB from the reserved pool was used");
1126 	spin_unlock(&ubi->volumes_lock);
1127 
1128 	return err;
1129 
1130 out_ro:
1131 	ubi_ro_mode(ubi);
1132 	return err;
1133 }
1134 
1135 /**
1136  * ubi_wl_put_peb - return a physical eraseblock to the wear-leveling unit.
1137  * @ubi: UBI device description object
1138  * @pnum: physical eraseblock to return
1139  * @torture: if this physical eraseblock has to be tortured
1140  *
1141  * This function is called to return physical eraseblock @pnum to the pool of
1142  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1143  * occurred to this @pnum and it has to be tested. This function returns zero
1144  * in case of success, and a negative error code in case of failure.
1145  */
1146 int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture)
1147 {
1148 	int err;
1149 	struct ubi_wl_entry *e;
1150 
1151 	dbg_wl("PEB %d", pnum);
1152 	ubi_assert(pnum >= 0);
1153 	ubi_assert(pnum < ubi->peb_count);
1154 
1155 retry:
1156 	spin_lock(&ubi->wl_lock);
1157 	e = ubi->lookuptbl[pnum];
1158 	if (e == ubi->move_from) {
1159 		/*
1160 		 * User is putting the physical eraseblock which was selected to
1161 		 * be moved. It will be scheduled for erasure in the
1162 		 * wear-leveling worker.
1163 		 */
1164 		dbg_wl("PEB %d is being moved, wait", pnum);
1165 		spin_unlock(&ubi->wl_lock);
1166 
1167 		/* Wait for the WL worker by taking the @ubi->move_mutex */
1168 		mutex_lock(&ubi->move_mutex);
1169 		mutex_unlock(&ubi->move_mutex);
1170 		goto retry;
1171 	} else if (e == ubi->move_to) {
1172 		/*
1173 		 * User is putting the physical eraseblock which was selected
1174 		 * as the target the data is moved to. It may happen if the EBA
1175 		 * unit already re-mapped the LEB in 'ubi_eba_copy_leb()' but
1176 		 * the WL unit has not put the PEB to the "used" tree yet, but
1177 		 * it is about to do this. So we just set a flag which will
1178 		 * tell the WL worker that the PEB is not needed anymore and
1179 		 * should be scheduled for erasure.
1180 		 */
1181 		dbg_wl("PEB %d is the target of data moving", pnum);
1182 		ubi_assert(!ubi->move_to_put);
1183 		ubi->move_to_put = 1;
1184 		spin_unlock(&ubi->wl_lock);
1185 		return 0;
1186 	} else {
1187 		if (in_wl_tree(e, &ubi->used)) {
1188 			paranoid_check_in_wl_tree(e, &ubi->used);
1189 			rb_erase(&e->rb, &ubi->used);
1190 		} else if (in_wl_tree(e, &ubi->scrub)) {
1191 			paranoid_check_in_wl_tree(e, &ubi->scrub);
1192 			rb_erase(&e->rb, &ubi->scrub);
1193 		} else {
1194 			err = prot_tree_del(ubi, e->pnum);
1195 			if (err) {
1196 				ubi_err("PEB %d not found", pnum);
1197 				ubi_ro_mode(ubi);
1198 				spin_unlock(&ubi->wl_lock);
1199 				return err;
1200 			}
1201 		}
1202 	}
1203 	spin_unlock(&ubi->wl_lock);
1204 
1205 	err = schedule_erase(ubi, e, torture);
1206 	if (err) {
1207 		spin_lock(&ubi->wl_lock);
1208 		wl_tree_add(e, &ubi->used);
1209 		spin_unlock(&ubi->wl_lock);
1210 	}
1211 
1212 	return err;
1213 }
1214 
1215 /**
1216  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1217  * @ubi: UBI device description object
1218  * @pnum: the physical eraseblock to schedule
1219  *
1220  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1221  * needs scrubbing. This function schedules a physical eraseblock for
1222  * scrubbing which is done in background. This function returns zero in case of
1223  * success and a negative error code in case of failure.
1224  */
1225 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1226 {
1227 	struct ubi_wl_entry *e;
1228 
1229 	ubi_msg("schedule PEB %d for scrubbing", pnum);
1230 
1231 retry:
1232 	spin_lock(&ubi->wl_lock);
1233 	e = ubi->lookuptbl[pnum];
1234 	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub)) {
1235 		spin_unlock(&ubi->wl_lock);
1236 		return 0;
1237 	}
1238 
1239 	if (e == ubi->move_to) {
1240 		/*
1241 		 * This physical eraseblock was used to move data to. The data
1242 		 * was moved but the PEB was not yet inserted to the proper
1243 		 * tree. We should just wait a little and let the WL worker
1244 		 * proceed.
1245 		 */
1246 		spin_unlock(&ubi->wl_lock);
1247 		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1248 		yield();
1249 		goto retry;
1250 	}
1251 
1252 	if (in_wl_tree(e, &ubi->used)) {
1253 		paranoid_check_in_wl_tree(e, &ubi->used);
1254 		rb_erase(&e->rb, &ubi->used);
1255 	} else {
1256 		int err;
1257 
1258 		err = prot_tree_del(ubi, e->pnum);
1259 		if (err) {
1260 			ubi_err("PEB %d not found", pnum);
1261 			ubi_ro_mode(ubi);
1262 			spin_unlock(&ubi->wl_lock);
1263 			return err;
1264 		}
1265 	}
1266 
1267 	wl_tree_add(e, &ubi->scrub);
1268 	spin_unlock(&ubi->wl_lock);
1269 
1270 	/*
1271 	 * Technically scrubbing is the same as wear-leveling, so it is done
1272 	 * by the WL worker.
1273 	 */
1274 	return ensure_wear_leveling(ubi);
1275 }
1276 
1277 /**
1278  * ubi_wl_flush - flush all pending works.
1279  * @ubi: UBI device description object
1280  *
1281  * This function returns zero in case of success and a negative error code in
1282  * case of failure.
1283  */
1284 int ubi_wl_flush(struct ubi_device *ubi)
1285 {
1286 	int err;
1287 
1288 	/*
1289 	 * Erase while the pending works queue is not empty, but not more then
1290 	 * the number of currently pending works.
1291 	 */
1292 	dbg_wl("flush (%d pending works)", ubi->works_count);
1293 	while (ubi->works_count) {
1294 		err = do_work(ubi);
1295 		if (err)
1296 			return err;
1297 	}
1298 
1299 	/*
1300 	 * Make sure all the works which have been done in parallel are
1301 	 * finished.
1302 	 */
1303 	down_write(&ubi->work_sem);
1304 	up_write(&ubi->work_sem);
1305 
1306 	/*
1307 	 * And in case last was the WL worker and it cancelled the LEB
1308 	 * movement, flush again.
1309 	 */
1310 	while (ubi->works_count) {
1311 		dbg_wl("flush more (%d pending works)", ubi->works_count);
1312 		err = do_work(ubi);
1313 		if (err)
1314 			return err;
1315 	}
1316 
1317 	return 0;
1318 }
1319 
1320 /**
1321  * tree_destroy - destroy an RB-tree.
1322  * @root: the root of the tree to destroy
1323  */
1324 static void tree_destroy(struct rb_root *root)
1325 {
1326 	struct rb_node *rb;
1327 	struct ubi_wl_entry *e;
1328 
1329 	rb = root->rb_node;
1330 	while (rb) {
1331 		if (rb->rb_left)
1332 			rb = rb->rb_left;
1333 		else if (rb->rb_right)
1334 			rb = rb->rb_right;
1335 		else {
1336 			e = rb_entry(rb, struct ubi_wl_entry, rb);
1337 
1338 			rb = rb_parent(rb);
1339 			if (rb) {
1340 				if (rb->rb_left == &e->rb)
1341 					rb->rb_left = NULL;
1342 				else
1343 					rb->rb_right = NULL;
1344 			}
1345 
1346 			kmem_cache_free(ubi_wl_entry_slab, e);
1347 		}
1348 	}
1349 }
1350 
1351 /**
1352  * ubi_thread - UBI background thread.
1353  * @u: the UBI device description object pointer
1354  */
1355 int ubi_thread(void *u)
1356 {
1357 	int failures = 0;
1358 	struct ubi_device *ubi = u;
1359 
1360 	ubi_msg("background thread \"%s\" started, PID %d",
1361 		ubi->bgt_name, task_pid_nr(current));
1362 
1363 	set_freezable();
1364 	for (;;) {
1365 		int err;
1366 
1367 		if (kthread_should_stop())
1368 			break;
1369 
1370 		if (try_to_freeze())
1371 			continue;
1372 
1373 		spin_lock(&ubi->wl_lock);
1374 		if (list_empty(&ubi->works) || ubi->ro_mode ||
1375 			       !ubi->thread_enabled) {
1376 			set_current_state(TASK_INTERRUPTIBLE);
1377 			spin_unlock(&ubi->wl_lock);
1378 			schedule();
1379 			continue;
1380 		}
1381 		spin_unlock(&ubi->wl_lock);
1382 
1383 		err = do_work(ubi);
1384 		if (err) {
1385 			ubi_err("%s: work failed with error code %d",
1386 				ubi->bgt_name, err);
1387 			if (failures++ > WL_MAX_FAILURES) {
1388 				/*
1389 				 * Too many failures, disable the thread and
1390 				 * switch to read-only mode.
1391 				 */
1392 				ubi_msg("%s: %d consecutive failures",
1393 					ubi->bgt_name, WL_MAX_FAILURES);
1394 				ubi_ro_mode(ubi);
1395 				break;
1396 			}
1397 		} else
1398 			failures = 0;
1399 
1400 		cond_resched();
1401 	}
1402 
1403 	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1404 	return 0;
1405 }
1406 
1407 /**
1408  * cancel_pending - cancel all pending works.
1409  * @ubi: UBI device description object
1410  */
1411 static void cancel_pending(struct ubi_device *ubi)
1412 {
1413 	while (!list_empty(&ubi->works)) {
1414 		struct ubi_work *wrk;
1415 
1416 		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1417 		list_del(&wrk->list);
1418 		wrk->func(ubi, wrk, 1);
1419 		ubi->works_count -= 1;
1420 		ubi_assert(ubi->works_count >= 0);
1421 	}
1422 }
1423 
1424 /**
1425  * ubi_wl_init_scan - initialize the wear-leveling unit using scanning
1426  * information.
1427  * @ubi: UBI device description object
1428  * @si: scanning information
1429  *
1430  * This function returns zero in case of success, and a negative error code in
1431  * case of failure.
1432  */
1433 int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1434 {
1435 	int err;
1436 	struct rb_node *rb1, *rb2;
1437 	struct ubi_scan_volume *sv;
1438 	struct ubi_scan_leb *seb, *tmp;
1439 	struct ubi_wl_entry *e;
1440 
1441 
1442 	ubi->used = ubi->free = ubi->scrub = RB_ROOT;
1443 	ubi->prot.pnum = ubi->prot.aec = RB_ROOT;
1444 	spin_lock_init(&ubi->wl_lock);
1445 	mutex_init(&ubi->move_mutex);
1446 	init_rwsem(&ubi->work_sem);
1447 	ubi->max_ec = si->max_ec;
1448 	INIT_LIST_HEAD(&ubi->works);
1449 
1450 	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1451 
1452 	err = -ENOMEM;
1453 	ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1454 	if (!ubi->lookuptbl)
1455 		return err;
1456 
1457 	list_for_each_entry_safe(seb, tmp, &si->erase, u.list) {
1458 		cond_resched();
1459 
1460 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1461 		if (!e)
1462 			goto out_free;
1463 
1464 		e->pnum = seb->pnum;
1465 		e->ec = seb->ec;
1466 		ubi->lookuptbl[e->pnum] = e;
1467 		if (schedule_erase(ubi, e, 0)) {
1468 			kmem_cache_free(ubi_wl_entry_slab, e);
1469 			goto out_free;
1470 		}
1471 	}
1472 
1473 	list_for_each_entry(seb, &si->free, u.list) {
1474 		cond_resched();
1475 
1476 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1477 		if (!e)
1478 			goto out_free;
1479 
1480 		e->pnum = seb->pnum;
1481 		e->ec = seb->ec;
1482 		ubi_assert(e->ec >= 0);
1483 		wl_tree_add(e, &ubi->free);
1484 		ubi->lookuptbl[e->pnum] = e;
1485 	}
1486 
1487 	list_for_each_entry(seb, &si->corr, u.list) {
1488 		cond_resched();
1489 
1490 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1491 		if (!e)
1492 			goto out_free;
1493 
1494 		e->pnum = seb->pnum;
1495 		e->ec = seb->ec;
1496 		ubi->lookuptbl[e->pnum] = e;
1497 		if (schedule_erase(ubi, e, 0)) {
1498 			kmem_cache_free(ubi_wl_entry_slab, e);
1499 			goto out_free;
1500 		}
1501 	}
1502 
1503 	ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1504 		ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1505 			cond_resched();
1506 
1507 			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1508 			if (!e)
1509 				goto out_free;
1510 
1511 			e->pnum = seb->pnum;
1512 			e->ec = seb->ec;
1513 			ubi->lookuptbl[e->pnum] = e;
1514 			if (!seb->scrub) {
1515 				dbg_wl("add PEB %d EC %d to the used tree",
1516 				       e->pnum, e->ec);
1517 				wl_tree_add(e, &ubi->used);
1518 			} else {
1519 				dbg_wl("add PEB %d EC %d to the scrub tree",
1520 				       e->pnum, e->ec);
1521 				wl_tree_add(e, &ubi->scrub);
1522 			}
1523 		}
1524 	}
1525 
1526 	if (ubi->avail_pebs < WL_RESERVED_PEBS) {
1527 		ubi_err("no enough physical eraseblocks (%d, need %d)",
1528 			ubi->avail_pebs, WL_RESERVED_PEBS);
1529 		err = -ENOSPC;
1530 		goto out_free;
1531 	}
1532 	ubi->avail_pebs -= WL_RESERVED_PEBS;
1533 	ubi->rsvd_pebs += WL_RESERVED_PEBS;
1534 
1535 	/* Schedule wear-leveling if needed */
1536 	err = ensure_wear_leveling(ubi);
1537 	if (err)
1538 		goto out_free;
1539 
1540 	return 0;
1541 
1542 out_free:
1543 	cancel_pending(ubi);
1544 	tree_destroy(&ubi->used);
1545 	tree_destroy(&ubi->free);
1546 	tree_destroy(&ubi->scrub);
1547 	kfree(ubi->lookuptbl);
1548 	return err;
1549 }
1550 
1551 /**
1552  * protection_trees_destroy - destroy the protection RB-trees.
1553  * @ubi: UBI device description object
1554  */
1555 static void protection_trees_destroy(struct ubi_device *ubi)
1556 {
1557 	struct rb_node *rb;
1558 	struct ubi_wl_prot_entry *pe;
1559 
1560 	rb = ubi->prot.aec.rb_node;
1561 	while (rb) {
1562 		if (rb->rb_left)
1563 			rb = rb->rb_left;
1564 		else if (rb->rb_right)
1565 			rb = rb->rb_right;
1566 		else {
1567 			pe = rb_entry(rb, struct ubi_wl_prot_entry, rb_aec);
1568 
1569 			rb = rb_parent(rb);
1570 			if (rb) {
1571 				if (rb->rb_left == &pe->rb_aec)
1572 					rb->rb_left = NULL;
1573 				else
1574 					rb->rb_right = NULL;
1575 			}
1576 
1577 			kmem_cache_free(ubi_wl_entry_slab, pe->e);
1578 			kfree(pe);
1579 		}
1580 	}
1581 }
1582 
1583 /**
1584  * ubi_wl_close - close the wear-leveling unit.
1585  * @ubi: UBI device description object
1586  */
1587 void ubi_wl_close(struct ubi_device *ubi)
1588 {
1589 	dbg_wl("close the UBI wear-leveling unit");
1590 
1591 	cancel_pending(ubi);
1592 	protection_trees_destroy(ubi);
1593 	tree_destroy(&ubi->used);
1594 	tree_destroy(&ubi->free);
1595 	tree_destroy(&ubi->scrub);
1596 	kfree(ubi->lookuptbl);
1597 }
1598 
1599 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1600 
1601 /**
1602  * paranoid_check_ec - make sure that the erase counter of a physical eraseblock
1603  * is correct.
1604  * @ubi: UBI device description object
1605  * @pnum: the physical eraseblock number to check
1606  * @ec: the erase counter to check
1607  *
1608  * This function returns zero if the erase counter of physical eraseblock @pnum
1609  * is equivalent to @ec, %1 if not, and a negative error code if an error
1610  * occurred.
1611  */
1612 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec)
1613 {
1614 	int err;
1615 	long long read_ec;
1616 	struct ubi_ec_hdr *ec_hdr;
1617 
1618 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1619 	if (!ec_hdr)
1620 		return -ENOMEM;
1621 
1622 	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1623 	if (err && err != UBI_IO_BITFLIPS) {
1624 		/* The header does not have to exist */
1625 		err = 0;
1626 		goto out_free;
1627 	}
1628 
1629 	read_ec = be64_to_cpu(ec_hdr->ec);
1630 	if (ec != read_ec) {
1631 		ubi_err("paranoid check failed for PEB %d", pnum);
1632 		ubi_err("read EC is %lld, should be %d", read_ec, ec);
1633 		ubi_dbg_dump_stack();
1634 		err = 1;
1635 	} else
1636 		err = 0;
1637 
1638 out_free:
1639 	kfree(ec_hdr);
1640 	return err;
1641 }
1642 
1643 /**
1644  * paranoid_check_in_wl_tree - make sure that a wear-leveling entry is present
1645  * in a WL RB-tree.
1646  * @e: the wear-leveling entry to check
1647  * @root: the root of the tree
1648  *
1649  * This function returns zero if @e is in the @root RB-tree and %1 if it
1650  * is not.
1651  */
1652 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
1653 				     struct rb_root *root)
1654 {
1655 	if (in_wl_tree(e, root))
1656 		return 0;
1657 
1658 	ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ",
1659 		e->pnum, e->ec, root);
1660 	ubi_dbg_dump_stack();
1661 	return 1;
1662 }
1663 
1664 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */
1665