1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * Copyright (c) Nokia Corporation, 2006, 2007 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 13 * the GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 * Author: Artem Bityutskiy (Битюцкий Артём) 20 */ 21 22 /* 23 * This file includes volume table manipulation code. The volume table is an 24 * on-flash table containing volume meta-data like name, number of reserved 25 * physical eraseblocks, type, etc. The volume table is stored in the so-called 26 * "layout volume". 27 * 28 * The layout volume is an internal volume which is organized as follows. It 29 * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical 30 * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each 31 * other. This redundancy guarantees robustness to unclean reboots. The volume 32 * table is basically an array of volume table records. Each record contains 33 * full information about the volume and protected by a CRC checksum. 34 * 35 * The volume table is changed, it is first changed in RAM. Then LEB 0 is 36 * erased, and the updated volume table is written back to LEB 0. Then same for 37 * LEB 1. This scheme guarantees recoverability from unclean reboots. 38 * 39 * In this UBI implementation the on-flash volume table does not contain any 40 * information about how many data static volumes contain. This information may 41 * be found from the scanning data. 42 * 43 * But it would still be beneficial to store this information in the volume 44 * table. For example, suppose we have a static volume X, and all its physical 45 * eraseblocks became bad for some reasons. Suppose we are attaching the 46 * corresponding MTD device, the scanning has found no logical eraseblocks 47 * corresponding to the volume X. According to the volume table volume X does 48 * exist. So we don't know whether it is just empty or all its physical 49 * eraseblocks went bad. So we cannot alarm the user about this corruption. 50 * 51 * The volume table also stores so-called "update marker", which is used for 52 * volume updates. Before updating the volume, the update marker is set, and 53 * after the update operation is finished, the update marker is cleared. So if 54 * the update operation was interrupted (e.g. by an unclean reboot) - the 55 * update marker is still there and we know that the volume's contents is 56 * damaged. 57 */ 58 59 #ifdef UBI_LINUX 60 #include <linux/crc32.h> 61 #include <linux/err.h> 62 #include <asm/div64.h> 63 #endif 64 65 #include <ubi_uboot.h> 66 #include "ubi.h" 67 68 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 69 static void paranoid_vtbl_check(const struct ubi_device *ubi); 70 #else 71 #define paranoid_vtbl_check(ubi) 72 #endif 73 74 /* Empty volume table record */ 75 static struct ubi_vtbl_record empty_vtbl_record; 76 77 /** 78 * ubi_change_vtbl_record - change volume table record. 79 * @ubi: UBI device description object 80 * @idx: table index to change 81 * @vtbl_rec: new volume table record 82 * 83 * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty 84 * volume table record is written. The caller does not have to calculate CRC of 85 * the record as it is done by this function. Returns zero in case of success 86 * and a negative error code in case of failure. 87 */ 88 int ubi_change_vtbl_record(struct ubi_device *ubi, int idx, 89 struct ubi_vtbl_record *vtbl_rec) 90 { 91 int i, err; 92 uint32_t crc; 93 struct ubi_volume *layout_vol; 94 95 ubi_assert(idx >= 0 && idx < ubi->vtbl_slots); 96 layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)]; 97 98 if (!vtbl_rec) 99 vtbl_rec = &empty_vtbl_record; 100 else { 101 crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC); 102 vtbl_rec->crc = cpu_to_be32(crc); 103 } 104 105 memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record)); 106 for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) { 107 err = ubi_eba_unmap_leb(ubi, layout_vol, i); 108 if (err) 109 return err; 110 111 err = ubi_eba_write_leb(ubi, layout_vol, i, ubi->vtbl, 0, 112 ubi->vtbl_size, UBI_LONGTERM); 113 if (err) 114 return err; 115 } 116 117 paranoid_vtbl_check(ubi); 118 return 0; 119 } 120 121 /** 122 * vtbl_check - check if volume table is not corrupted and contains sensible 123 * data. 124 * @ubi: UBI device description object 125 * @vtbl: volume table 126 * 127 * This function returns zero if @vtbl is all right, %1 if CRC is incorrect, 128 * and %-EINVAL if it contains inconsistent data. 129 */ 130 static int vtbl_check(const struct ubi_device *ubi, 131 const struct ubi_vtbl_record *vtbl) 132 { 133 int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len; 134 int upd_marker, err; 135 uint32_t crc; 136 const char *name; 137 138 for (i = 0; i < ubi->vtbl_slots; i++) { 139 cond_resched(); 140 141 reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs); 142 alignment = be32_to_cpu(vtbl[i].alignment); 143 data_pad = be32_to_cpu(vtbl[i].data_pad); 144 upd_marker = vtbl[i].upd_marker; 145 vol_type = vtbl[i].vol_type; 146 name_len = be16_to_cpu(vtbl[i].name_len); 147 name = (const char *) &vtbl[i].name[0]; 148 149 crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC); 150 if (be32_to_cpu(vtbl[i].crc) != crc) { 151 ubi_err("bad CRC at record %u: %#08x, not %#08x", 152 i, crc, be32_to_cpu(vtbl[i].crc)); 153 ubi_dbg_dump_vtbl_record(&vtbl[i], i); 154 return 1; 155 } 156 157 if (reserved_pebs == 0) { 158 if (memcmp(&vtbl[i], &empty_vtbl_record, 159 UBI_VTBL_RECORD_SIZE)) { 160 err = 2; 161 goto bad; 162 } 163 continue; 164 } 165 166 if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 || 167 name_len < 0) { 168 err = 3; 169 goto bad; 170 } 171 172 if (alignment > ubi->leb_size || alignment == 0) { 173 err = 4; 174 goto bad; 175 } 176 177 n = alignment & (ubi->min_io_size - 1); 178 if (alignment != 1 && n) { 179 err = 5; 180 goto bad; 181 } 182 183 n = ubi->leb_size % alignment; 184 if (data_pad != n) { 185 dbg_err("bad data_pad, has to be %d", n); 186 err = 6; 187 goto bad; 188 } 189 190 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) { 191 err = 7; 192 goto bad; 193 } 194 195 if (upd_marker != 0 && upd_marker != 1) { 196 err = 8; 197 goto bad; 198 } 199 200 if (reserved_pebs > ubi->good_peb_count) { 201 dbg_err("too large reserved_pebs, good PEBs %d", 202 ubi->good_peb_count); 203 err = 9; 204 goto bad; 205 } 206 207 if (name_len > UBI_VOL_NAME_MAX) { 208 err = 10; 209 goto bad; 210 } 211 212 if (name[0] == '\0') { 213 err = 11; 214 goto bad; 215 } 216 217 if (name_len != strnlen(name, name_len + 1)) { 218 err = 12; 219 goto bad; 220 } 221 } 222 223 /* Checks that all names are unique */ 224 for (i = 0; i < ubi->vtbl_slots - 1; i++) { 225 for (n = i + 1; n < ubi->vtbl_slots; n++) { 226 int len1 = be16_to_cpu(vtbl[i].name_len); 227 int len2 = be16_to_cpu(vtbl[n].name_len); 228 229 if (len1 > 0 && len1 == len2 && 230 !strncmp((char *)vtbl[i].name, (char *)vtbl[n].name, len1)) { 231 ubi_err("volumes %d and %d have the same name" 232 " \"%s\"", i, n, vtbl[i].name); 233 ubi_dbg_dump_vtbl_record(&vtbl[i], i); 234 ubi_dbg_dump_vtbl_record(&vtbl[n], n); 235 return -EINVAL; 236 } 237 } 238 } 239 240 return 0; 241 242 bad: 243 ubi_err("volume table check failed: record %d, error %d", i, err); 244 ubi_dbg_dump_vtbl_record(&vtbl[i], i); 245 return -EINVAL; 246 } 247 248 /** 249 * create_vtbl - create a copy of volume table. 250 * @ubi: UBI device description object 251 * @si: scanning information 252 * @copy: number of the volume table copy 253 * @vtbl: contents of the volume table 254 * 255 * This function returns zero in case of success and a negative error code in 256 * case of failure. 257 */ 258 static int create_vtbl(struct ubi_device *ubi, struct ubi_scan_info *si, 259 int copy, void *vtbl) 260 { 261 int err, tries = 0; 262 static struct ubi_vid_hdr *vid_hdr; 263 struct ubi_scan_volume *sv; 264 struct ubi_scan_leb *new_seb, *old_seb = NULL; 265 266 ubi_msg("create volume table (copy #%d)", copy + 1); 267 268 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); 269 if (!vid_hdr) 270 return -ENOMEM; 271 272 /* 273 * Check if there is a logical eraseblock which would have to contain 274 * this volume table copy was found during scanning. It has to be wiped 275 * out. 276 */ 277 sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOLUME_ID); 278 if (sv) 279 old_seb = ubi_scan_find_seb(sv, copy); 280 281 retry: 282 new_seb = ubi_scan_get_free_peb(ubi, si); 283 if (IS_ERR(new_seb)) { 284 err = PTR_ERR(new_seb); 285 goto out_free; 286 } 287 288 vid_hdr->vol_type = UBI_VID_DYNAMIC; 289 vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID); 290 vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT; 291 vid_hdr->data_size = vid_hdr->used_ebs = 292 vid_hdr->data_pad = cpu_to_be32(0); 293 vid_hdr->lnum = cpu_to_be32(copy); 294 vid_hdr->sqnum = cpu_to_be64(++si->max_sqnum); 295 vid_hdr->leb_ver = cpu_to_be32(old_seb ? old_seb->leb_ver + 1: 0); 296 297 /* The EC header is already there, write the VID header */ 298 err = ubi_io_write_vid_hdr(ubi, new_seb->pnum, vid_hdr); 299 if (err) 300 goto write_error; 301 302 /* Write the layout volume contents */ 303 err = ubi_io_write_data(ubi, vtbl, new_seb->pnum, 0, ubi->vtbl_size); 304 if (err) 305 goto write_error; 306 307 /* 308 * And add it to the scanning information. Don't delete the old 309 * @old_seb as it will be deleted and freed in 'ubi_scan_add_used()'. 310 */ 311 err = ubi_scan_add_used(ubi, si, new_seb->pnum, new_seb->ec, 312 vid_hdr, 0); 313 kfree(new_seb); 314 ubi_free_vid_hdr(ubi, vid_hdr); 315 return err; 316 317 write_error: 318 if (err == -EIO && ++tries <= 5) { 319 /* 320 * Probably this physical eraseblock went bad, try to pick 321 * another one. 322 */ 323 list_add_tail(&new_seb->u.list, &si->corr); 324 goto retry; 325 } 326 kfree(new_seb); 327 out_free: 328 ubi_free_vid_hdr(ubi, vid_hdr); 329 return err; 330 331 } 332 333 /** 334 * process_lvol - process the layout volume. 335 * @ubi: UBI device description object 336 * @si: scanning information 337 * @sv: layout volume scanning information 338 * 339 * This function is responsible for reading the layout volume, ensuring it is 340 * not corrupted, and recovering from corruptions if needed. Returns volume 341 * table in case of success and a negative error code in case of failure. 342 */ 343 static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi, 344 struct ubi_scan_info *si, 345 struct ubi_scan_volume *sv) 346 { 347 int err; 348 struct rb_node *rb; 349 struct ubi_scan_leb *seb; 350 struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL }; 351 int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1}; 352 353 /* 354 * UBI goes through the following steps when it changes the layout 355 * volume: 356 * a. erase LEB 0; 357 * b. write new data to LEB 0; 358 * c. erase LEB 1; 359 * d. write new data to LEB 1. 360 * 361 * Before the change, both LEBs contain the same data. 362 * 363 * Due to unclean reboots, the contents of LEB 0 may be lost, but there 364 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not. 365 * Similarly, LEB 1 may be lost, but there should be LEB 0. And 366 * finally, unclean reboots may result in a situation when neither LEB 367 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB 368 * 0 contains more recent information. 369 * 370 * So the plan is to first check LEB 0. Then 371 * a. if LEB 0 is OK, it must be containing the most resent data; then 372 * we compare it with LEB 1, and if they are different, we copy LEB 373 * 0 to LEB 1; 374 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1 375 * to LEB 0. 376 */ 377 378 dbg_msg("check layout volume"); 379 380 /* Read both LEB 0 and LEB 1 into memory */ 381 ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) { 382 leb[seb->lnum] = vmalloc(ubi->vtbl_size); 383 if (!leb[seb->lnum]) { 384 err = -ENOMEM; 385 goto out_free; 386 } 387 memset(leb[seb->lnum], 0, ubi->vtbl_size); 388 389 err = ubi_io_read_data(ubi, leb[seb->lnum], seb->pnum, 0, 390 ubi->vtbl_size); 391 if (err == UBI_IO_BITFLIPS || err == -EBADMSG) 392 /* 393 * Scrub the PEB later. Note, -EBADMSG indicates an 394 * uncorrectable ECC error, but we have our own CRC and 395 * the data will be checked later. If the data is OK, 396 * the PEB will be scrubbed (because we set 397 * seb->scrub). If the data is not OK, the contents of 398 * the PEB will be recovered from the second copy, and 399 * seb->scrub will be cleared in 400 * 'ubi_scan_add_used()'. 401 */ 402 seb->scrub = 1; 403 else if (err) 404 goto out_free; 405 } 406 407 err = -EINVAL; 408 if (leb[0]) { 409 leb_corrupted[0] = vtbl_check(ubi, leb[0]); 410 if (leb_corrupted[0] < 0) 411 goto out_free; 412 } 413 414 if (!leb_corrupted[0]) { 415 /* LEB 0 is OK */ 416 if (leb[1]) 417 leb_corrupted[1] = memcmp(leb[0], leb[1], ubi->vtbl_size); 418 if (leb_corrupted[1]) { 419 ubi_warn("volume table copy #2 is corrupted"); 420 err = create_vtbl(ubi, si, 1, leb[0]); 421 if (err) 422 goto out_free; 423 ubi_msg("volume table was restored"); 424 } 425 426 /* Both LEB 1 and LEB 2 are OK and consistent */ 427 vfree(leb[1]); 428 return leb[0]; 429 } else { 430 /* LEB 0 is corrupted or does not exist */ 431 if (leb[1]) { 432 leb_corrupted[1] = vtbl_check(ubi, leb[1]); 433 if (leb_corrupted[1] < 0) 434 goto out_free; 435 } 436 if (leb_corrupted[1]) { 437 /* Both LEB 0 and LEB 1 are corrupted */ 438 ubi_err("both volume tables are corrupted"); 439 goto out_free; 440 } 441 442 ubi_warn("volume table copy #1 is corrupted"); 443 err = create_vtbl(ubi, si, 0, leb[1]); 444 if (err) 445 goto out_free; 446 ubi_msg("volume table was restored"); 447 448 vfree(leb[0]); 449 return leb[1]; 450 } 451 452 out_free: 453 vfree(leb[0]); 454 vfree(leb[1]); 455 return ERR_PTR(err); 456 } 457 458 /** 459 * create_empty_lvol - create empty layout volume. 460 * @ubi: UBI device description object 461 * @si: scanning information 462 * 463 * This function returns volume table contents in case of success and a 464 * negative error code in case of failure. 465 */ 466 static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi, 467 struct ubi_scan_info *si) 468 { 469 int i; 470 struct ubi_vtbl_record *vtbl; 471 472 vtbl = vmalloc(ubi->vtbl_size); 473 if (!vtbl) 474 return ERR_PTR(-ENOMEM); 475 memset(vtbl, 0, ubi->vtbl_size); 476 477 for (i = 0; i < ubi->vtbl_slots; i++) 478 memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE); 479 480 for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) { 481 int err; 482 483 err = create_vtbl(ubi, si, i, vtbl); 484 if (err) { 485 vfree(vtbl); 486 return ERR_PTR(err); 487 } 488 } 489 490 return vtbl; 491 } 492 493 /** 494 * init_volumes - initialize volume information for existing volumes. 495 * @ubi: UBI device description object 496 * @si: scanning information 497 * @vtbl: volume table 498 * 499 * This function allocates volume description objects for existing volumes. 500 * Returns zero in case of success and a negative error code in case of 501 * failure. 502 */ 503 static int init_volumes(struct ubi_device *ubi, const struct ubi_scan_info *si, 504 const struct ubi_vtbl_record *vtbl) 505 { 506 int i, reserved_pebs = 0; 507 struct ubi_scan_volume *sv; 508 struct ubi_volume *vol; 509 510 for (i = 0; i < ubi->vtbl_slots; i++) { 511 cond_resched(); 512 513 if (be32_to_cpu(vtbl[i].reserved_pebs) == 0) 514 continue; /* Empty record */ 515 516 vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL); 517 if (!vol) 518 return -ENOMEM; 519 520 vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs); 521 vol->alignment = be32_to_cpu(vtbl[i].alignment); 522 vol->data_pad = be32_to_cpu(vtbl[i].data_pad); 523 vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ? 524 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME; 525 vol->name_len = be16_to_cpu(vtbl[i].name_len); 526 vol->usable_leb_size = ubi->leb_size - vol->data_pad; 527 memcpy(vol->name, vtbl[i].name, vol->name_len); 528 vol->name[vol->name_len] = '\0'; 529 vol->vol_id = i; 530 531 if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) { 532 /* Auto re-size flag may be set only for one volume */ 533 if (ubi->autoresize_vol_id != -1) { 534 ubi_err("more then one auto-resize volume (%d " 535 "and %d)", ubi->autoresize_vol_id, i); 536 kfree(vol); 537 return -EINVAL; 538 } 539 540 ubi->autoresize_vol_id = i; 541 } 542 543 ubi_assert(!ubi->volumes[i]); 544 ubi->volumes[i] = vol; 545 ubi->vol_count += 1; 546 vol->ubi = ubi; 547 reserved_pebs += vol->reserved_pebs; 548 549 /* 550 * In case of dynamic volume UBI knows nothing about how many 551 * data is stored there. So assume the whole volume is used. 552 */ 553 if (vol->vol_type == UBI_DYNAMIC_VOLUME) { 554 vol->used_ebs = vol->reserved_pebs; 555 vol->last_eb_bytes = vol->usable_leb_size; 556 vol->used_bytes = 557 (long long)vol->used_ebs * vol->usable_leb_size; 558 continue; 559 } 560 561 /* Static volumes only */ 562 sv = ubi_scan_find_sv(si, i); 563 if (!sv) { 564 /* 565 * No eraseblocks belonging to this volume found. We 566 * don't actually know whether this static volume is 567 * completely corrupted or just contains no data. And 568 * we cannot know this as long as data size is not 569 * stored on flash. So we just assume the volume is 570 * empty. FIXME: this should be handled. 571 */ 572 continue; 573 } 574 575 if (sv->leb_count != sv->used_ebs) { 576 /* 577 * We found a static volume which misses several 578 * eraseblocks. Treat it as corrupted. 579 */ 580 ubi_warn("static volume %d misses %d LEBs - corrupted", 581 sv->vol_id, sv->used_ebs - sv->leb_count); 582 vol->corrupted = 1; 583 continue; 584 } 585 586 vol->used_ebs = sv->used_ebs; 587 vol->used_bytes = 588 (long long)(vol->used_ebs - 1) * vol->usable_leb_size; 589 vol->used_bytes += sv->last_data_size; 590 vol->last_eb_bytes = sv->last_data_size; 591 } 592 593 /* And add the layout volume */ 594 vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL); 595 if (!vol) 596 return -ENOMEM; 597 598 vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS; 599 vol->alignment = 1; 600 vol->vol_type = UBI_DYNAMIC_VOLUME; 601 vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1; 602 memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1); 603 vol->usable_leb_size = ubi->leb_size; 604 vol->used_ebs = vol->reserved_pebs; 605 vol->last_eb_bytes = vol->reserved_pebs; 606 vol->used_bytes = 607 (long long)vol->used_ebs * (ubi->leb_size - vol->data_pad); 608 vol->vol_id = UBI_LAYOUT_VOLUME_ID; 609 vol->ref_count = 1; 610 611 ubi_assert(!ubi->volumes[i]); 612 ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol; 613 reserved_pebs += vol->reserved_pebs; 614 ubi->vol_count += 1; 615 vol->ubi = ubi; 616 617 if (reserved_pebs > ubi->avail_pebs) 618 ubi_err("not enough PEBs, required %d, available %d", 619 reserved_pebs, ubi->avail_pebs); 620 ubi->rsvd_pebs += reserved_pebs; 621 ubi->avail_pebs -= reserved_pebs; 622 623 return 0; 624 } 625 626 /** 627 * check_sv - check volume scanning information. 628 * @vol: UBI volume description object 629 * @sv: volume scanning information 630 * 631 * This function returns zero if the volume scanning information is consistent 632 * to the data read from the volume tabla, and %-EINVAL if not. 633 */ 634 static int check_sv(const struct ubi_volume *vol, 635 const struct ubi_scan_volume *sv) 636 { 637 int err; 638 639 if (sv->highest_lnum >= vol->reserved_pebs) { 640 err = 1; 641 goto bad; 642 } 643 if (sv->leb_count > vol->reserved_pebs) { 644 err = 2; 645 goto bad; 646 } 647 if (sv->vol_type != vol->vol_type) { 648 err = 3; 649 goto bad; 650 } 651 if (sv->used_ebs > vol->reserved_pebs) { 652 err = 4; 653 goto bad; 654 } 655 if (sv->data_pad != vol->data_pad) { 656 err = 5; 657 goto bad; 658 } 659 return 0; 660 661 bad: 662 ubi_err("bad scanning information, error %d", err); 663 ubi_dbg_dump_sv(sv); 664 ubi_dbg_dump_vol_info(vol); 665 return -EINVAL; 666 } 667 668 /** 669 * check_scanning_info - check that scanning information. 670 * @ubi: UBI device description object 671 * @si: scanning information 672 * 673 * Even though we protect on-flash data by CRC checksums, we still don't trust 674 * the media. This function ensures that scanning information is consistent to 675 * the information read from the volume table. Returns zero if the scanning 676 * information is OK and %-EINVAL if it is not. 677 */ 678 static int check_scanning_info(const struct ubi_device *ubi, 679 struct ubi_scan_info *si) 680 { 681 int err, i; 682 struct ubi_scan_volume *sv; 683 struct ubi_volume *vol; 684 685 if (si->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) { 686 ubi_err("scanning found %d volumes, maximum is %d + %d", 687 si->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots); 688 return -EINVAL; 689 } 690 691 if (si->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT && 692 si->highest_vol_id < UBI_INTERNAL_VOL_START) { 693 ubi_err("too large volume ID %d found by scanning", 694 si->highest_vol_id); 695 return -EINVAL; 696 } 697 698 for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { 699 cond_resched(); 700 701 sv = ubi_scan_find_sv(si, i); 702 vol = ubi->volumes[i]; 703 if (!vol) { 704 if (sv) 705 ubi_scan_rm_volume(si, sv); 706 continue; 707 } 708 709 if (vol->reserved_pebs == 0) { 710 ubi_assert(i < ubi->vtbl_slots); 711 712 if (!sv) 713 continue; 714 715 /* 716 * During scanning we found a volume which does not 717 * exist according to the information in the volume 718 * table. This must have happened due to an unclean 719 * reboot while the volume was being removed. Discard 720 * these eraseblocks. 721 */ 722 ubi_msg("finish volume %d removal", sv->vol_id); 723 ubi_scan_rm_volume(si, sv); 724 } else if (sv) { 725 err = check_sv(vol, sv); 726 if (err) 727 return err; 728 } 729 } 730 731 return 0; 732 } 733 734 /** 735 * ubi_read_volume_table - read volume table. 736 * information. 737 * @ubi: UBI device description object 738 * @si: scanning information 739 * 740 * This function reads volume table, checks it, recover from errors if needed, 741 * or creates it if needed. Returns zero in case of success and a negative 742 * error code in case of failure. 743 */ 744 int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_scan_info *si) 745 { 746 int i, err; 747 struct ubi_scan_volume *sv; 748 749 empty_vtbl_record.crc = cpu_to_be32(0xf116c36b); 750 751 /* 752 * The number of supported volumes is limited by the eraseblock size 753 * and by the UBI_MAX_VOLUMES constant. 754 */ 755 ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE; 756 if (ubi->vtbl_slots > UBI_MAX_VOLUMES) 757 ubi->vtbl_slots = UBI_MAX_VOLUMES; 758 759 ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE; 760 ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size); 761 762 sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOLUME_ID); 763 if (!sv) { 764 /* 765 * No logical eraseblocks belonging to the layout volume were 766 * found. This could mean that the flash is just empty. In 767 * this case we create empty layout volume. 768 * 769 * But if flash is not empty this must be a corruption or the 770 * MTD device just contains garbage. 771 */ 772 if (si->is_empty) { 773 ubi->vtbl = create_empty_lvol(ubi, si); 774 if (IS_ERR(ubi->vtbl)) 775 return PTR_ERR(ubi->vtbl); 776 } else { 777 ubi_err("the layout volume was not found"); 778 return -EINVAL; 779 } 780 } else { 781 if (sv->leb_count > UBI_LAYOUT_VOLUME_EBS) { 782 /* This must not happen with proper UBI images */ 783 dbg_err("too many LEBs (%d) in layout volume", 784 sv->leb_count); 785 return -EINVAL; 786 } 787 788 ubi->vtbl = process_lvol(ubi, si, sv); 789 if (IS_ERR(ubi->vtbl)) 790 return PTR_ERR(ubi->vtbl); 791 } 792 793 ubi->avail_pebs = ubi->good_peb_count; 794 795 /* 796 * The layout volume is OK, initialize the corresponding in-RAM data 797 * structures. 798 */ 799 err = init_volumes(ubi, si, ubi->vtbl); 800 if (err) 801 goto out_free; 802 803 /* 804 * Get sure that the scanning information is consistent to the 805 * information stored in the volume table. 806 */ 807 err = check_scanning_info(ubi, si); 808 if (err) 809 goto out_free; 810 811 return 0; 812 813 out_free: 814 vfree(ubi->vtbl); 815 for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) 816 if (ubi->volumes[i]) { 817 kfree(ubi->volumes[i]); 818 ubi->volumes[i] = NULL; 819 } 820 return err; 821 } 822 823 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 824 825 /** 826 * paranoid_vtbl_check - check volume table. 827 * @ubi: UBI device description object 828 */ 829 static void paranoid_vtbl_check(const struct ubi_device *ubi) 830 { 831 if (vtbl_check(ubi, ubi->vtbl)) { 832 ubi_err("paranoid check failed"); 833 BUG(); 834 } 835 } 836 837 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */ 838