xref: /openbmc/u-boot/drivers/mtd/ubi/vtbl.c (revision 909ea9aa)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2006, 2007
4  *
5  * SPDX-License-Identifier:	GPL-2.0+
6  *
7  * Author: Artem Bityutskiy (Битюцкий Артём)
8  */
9 
10 /*
11  * This file includes volume table manipulation code. The volume table is an
12  * on-flash table containing volume meta-data like name, number of reserved
13  * physical eraseblocks, type, etc. The volume table is stored in the so-called
14  * "layout volume".
15  *
16  * The layout volume is an internal volume which is organized as follows. It
17  * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical
18  * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each
19  * other. This redundancy guarantees robustness to unclean reboots. The volume
20  * table is basically an array of volume table records. Each record contains
21  * full information about the volume and protected by a CRC checksum.
22  *
23  * The volume table is changed, it is first changed in RAM. Then LEB 0 is
24  * erased, and the updated volume table is written back to LEB 0. Then same for
25  * LEB 1. This scheme guarantees recoverability from unclean reboots.
26  *
27  * In this UBI implementation the on-flash volume table does not contain any
28  * information about how many data static volumes contain. This information may
29  * be found from the scanning data.
30  *
31  * But it would still be beneficial to store this information in the volume
32  * table. For example, suppose we have a static volume X, and all its physical
33  * eraseblocks became bad for some reasons. Suppose we are attaching the
34  * corresponding MTD device, the scanning has found no logical eraseblocks
35  * corresponding to the volume X. According to the volume table volume X does
36  * exist. So we don't know whether it is just empty or all its physical
37  * eraseblocks went bad. So we cannot alarm the user about this corruption.
38  *
39  * The volume table also stores so-called "update marker", which is used for
40  * volume updates. Before updating the volume, the update marker is set, and
41  * after the update operation is finished, the update marker is cleared. So if
42  * the update operation was interrupted (e.g. by an unclean reboot) - the
43  * update marker is still there and we know that the volume's contents is
44  * damaged.
45  */
46 
47 #ifdef UBI_LINUX
48 #include <linux/crc32.h>
49 #include <linux/err.h>
50 #include <asm/div64.h>
51 #endif
52 
53 #include <ubi_uboot.h>
54 #include "ubi.h"
55 
56 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
57 static void paranoid_vtbl_check(const struct ubi_device *ubi);
58 #else
59 #define paranoid_vtbl_check(ubi)
60 #endif
61 
62 /* Empty volume table record */
63 static struct ubi_vtbl_record empty_vtbl_record;
64 
65 /**
66  * ubi_change_vtbl_record - change volume table record.
67  * @ubi: UBI device description object
68  * @idx: table index to change
69  * @vtbl_rec: new volume table record
70  *
71  * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty
72  * volume table record is written. The caller does not have to calculate CRC of
73  * the record as it is done by this function. Returns zero in case of success
74  * and a negative error code in case of failure.
75  */
76 int ubi_change_vtbl_record(struct ubi_device *ubi, int idx,
77 			   struct ubi_vtbl_record *vtbl_rec)
78 {
79 	int i, err;
80 	uint32_t crc;
81 	struct ubi_volume *layout_vol;
82 
83 	ubi_assert(idx >= 0 && idx < ubi->vtbl_slots);
84 	layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)];
85 
86 	if (!vtbl_rec)
87 		vtbl_rec = &empty_vtbl_record;
88 	else {
89 		crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC);
90 		vtbl_rec->crc = cpu_to_be32(crc);
91 	}
92 
93 	memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record));
94 	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
95 		err = ubi_eba_unmap_leb(ubi, layout_vol, i);
96 		if (err)
97 			return err;
98 
99 		err = ubi_eba_write_leb(ubi, layout_vol, i, ubi->vtbl, 0,
100 					ubi->vtbl_size, UBI_LONGTERM);
101 		if (err)
102 			return err;
103 	}
104 
105 	paranoid_vtbl_check(ubi);
106 	return 0;
107 }
108 
109 /**
110  * vtbl_check - check if volume table is not corrupted and contains sensible
111  *              data.
112  * @ubi: UBI device description object
113  * @vtbl: volume table
114  *
115  * This function returns zero if @vtbl is all right, %1 if CRC is incorrect,
116  * and %-EINVAL if it contains inconsistent data.
117  */
118 static int vtbl_check(const struct ubi_device *ubi,
119 		      const struct ubi_vtbl_record *vtbl)
120 {
121 	int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len;
122 	int upd_marker, err;
123 	uint32_t crc;
124 	const char *name;
125 
126 	for (i = 0; i < ubi->vtbl_slots; i++) {
127 		cond_resched();
128 
129 		reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
130 		alignment = be32_to_cpu(vtbl[i].alignment);
131 		data_pad = be32_to_cpu(vtbl[i].data_pad);
132 		upd_marker = vtbl[i].upd_marker;
133 		vol_type = vtbl[i].vol_type;
134 		name_len = be16_to_cpu(vtbl[i].name_len);
135 		name = (const char *) &vtbl[i].name[0];
136 
137 		crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC);
138 		if (be32_to_cpu(vtbl[i].crc) != crc) {
139 			ubi_err("bad CRC at record %u: %#08x, not %#08x",
140 				 i, crc, be32_to_cpu(vtbl[i].crc));
141 			ubi_dbg_dump_vtbl_record(&vtbl[i], i);
142 			return 1;
143 		}
144 
145 		if (reserved_pebs == 0) {
146 			if (memcmp(&vtbl[i], &empty_vtbl_record,
147 						UBI_VTBL_RECORD_SIZE)) {
148 				err = 2;
149 				goto bad;
150 			}
151 			continue;
152 		}
153 
154 		if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 ||
155 		    name_len < 0) {
156 			err = 3;
157 			goto bad;
158 		}
159 
160 		if (alignment > ubi->leb_size || alignment == 0) {
161 			err = 4;
162 			goto bad;
163 		}
164 
165 		n = alignment & (ubi->min_io_size - 1);
166 		if (alignment != 1 && n) {
167 			err = 5;
168 			goto bad;
169 		}
170 
171 		n = ubi->leb_size % alignment;
172 		if (data_pad != n) {
173 			dbg_err("bad data_pad, has to be %d", n);
174 			err = 6;
175 			goto bad;
176 		}
177 
178 		if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
179 			err = 7;
180 			goto bad;
181 		}
182 
183 		if (upd_marker != 0 && upd_marker != 1) {
184 			err = 8;
185 			goto bad;
186 		}
187 
188 		if (reserved_pebs > ubi->good_peb_count) {
189 			dbg_err("too large reserved_pebs, good PEBs %d",
190 				ubi->good_peb_count);
191 			err = 9;
192 			goto bad;
193 		}
194 
195 		if (name_len > UBI_VOL_NAME_MAX) {
196 			err = 10;
197 			goto bad;
198 		}
199 
200 		if (name[0] == '\0') {
201 			err = 11;
202 			goto bad;
203 		}
204 
205 		if (name_len != strnlen(name, name_len + 1)) {
206 			err = 12;
207 			goto bad;
208 		}
209 	}
210 
211 	/* Checks that all names are unique */
212 	for (i = 0; i < ubi->vtbl_slots - 1; i++) {
213 		for (n = i + 1; n < ubi->vtbl_slots; n++) {
214 			int len1 = be16_to_cpu(vtbl[i].name_len);
215 			int len2 = be16_to_cpu(vtbl[n].name_len);
216 
217 			if (len1 > 0 && len1 == len2 &&
218 			    !strncmp((char *)vtbl[i].name, (char *)vtbl[n].name, len1)) {
219 				ubi_err("volumes %d and %d have the same name"
220 					" \"%s\"", i, n, vtbl[i].name);
221 				ubi_dbg_dump_vtbl_record(&vtbl[i], i);
222 				ubi_dbg_dump_vtbl_record(&vtbl[n], n);
223 				return -EINVAL;
224 			}
225 		}
226 	}
227 
228 	return 0;
229 
230 bad:
231 	ubi_err("volume table check failed: record %d, error %d", i, err);
232 	ubi_dbg_dump_vtbl_record(&vtbl[i], i);
233 	return -EINVAL;
234 }
235 
236 /**
237  * create_vtbl - create a copy of volume table.
238  * @ubi: UBI device description object
239  * @si: scanning information
240  * @copy: number of the volume table copy
241  * @vtbl: contents of the volume table
242  *
243  * This function returns zero in case of success and a negative error code in
244  * case of failure.
245  */
246 static int create_vtbl(struct ubi_device *ubi, struct ubi_scan_info *si,
247 		       int copy, void *vtbl)
248 {
249 	int err, tries = 0;
250 	static struct ubi_vid_hdr *vid_hdr;
251 	struct ubi_scan_volume *sv;
252 	struct ubi_scan_leb *new_seb, *old_seb = NULL;
253 
254 	ubi_msg("create volume table (copy #%d)", copy + 1);
255 
256 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
257 	if (!vid_hdr)
258 		return -ENOMEM;
259 
260 	/*
261 	 * Check if there is a logical eraseblock which would have to contain
262 	 * this volume table copy was found during scanning. It has to be wiped
263 	 * out.
264 	 */
265 	sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOLUME_ID);
266 	if (sv)
267 		old_seb = ubi_scan_find_seb(sv, copy);
268 
269 retry:
270 	new_seb = ubi_scan_get_free_peb(ubi, si);
271 	if (IS_ERR(new_seb)) {
272 		err = PTR_ERR(new_seb);
273 		goto out_free;
274 	}
275 
276 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
277 	vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID);
278 	vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT;
279 	vid_hdr->data_size = vid_hdr->used_ebs =
280 			     vid_hdr->data_pad = cpu_to_be32(0);
281 	vid_hdr->lnum = cpu_to_be32(copy);
282 	vid_hdr->sqnum = cpu_to_be64(++si->max_sqnum);
283 	vid_hdr->leb_ver = cpu_to_be32(old_seb ? old_seb->leb_ver + 1: 0);
284 
285 	/* The EC header is already there, write the VID header */
286 	err = ubi_io_write_vid_hdr(ubi, new_seb->pnum, vid_hdr);
287 	if (err)
288 		goto write_error;
289 
290 	/* Write the layout volume contents */
291 	err = ubi_io_write_data(ubi, vtbl, new_seb->pnum, 0, ubi->vtbl_size);
292 	if (err)
293 		goto write_error;
294 
295 	/*
296 	 * And add it to the scanning information. Don't delete the old
297 	 * @old_seb as it will be deleted and freed in 'ubi_scan_add_used()'.
298 	 */
299 	err = ubi_scan_add_used(ubi, si, new_seb->pnum, new_seb->ec,
300 				vid_hdr, 0);
301 	kfree(new_seb);
302 	ubi_free_vid_hdr(ubi, vid_hdr);
303 	return err;
304 
305 write_error:
306 	if (err == -EIO && ++tries <= 5) {
307 		/*
308 		 * Probably this physical eraseblock went bad, try to pick
309 		 * another one.
310 		 */
311 		list_add_tail(&new_seb->u.list, &si->corr);
312 		goto retry;
313 	}
314 	kfree(new_seb);
315 out_free:
316 	ubi_free_vid_hdr(ubi, vid_hdr);
317 	return err;
318 
319 }
320 
321 /**
322  * process_lvol - process the layout volume.
323  * @ubi: UBI device description object
324  * @si: scanning information
325  * @sv: layout volume scanning information
326  *
327  * This function is responsible for reading the layout volume, ensuring it is
328  * not corrupted, and recovering from corruptions if needed. Returns volume
329  * table in case of success and a negative error code in case of failure.
330  */
331 static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi,
332 					    struct ubi_scan_info *si,
333 					    struct ubi_scan_volume *sv)
334 {
335 	int err;
336 	struct rb_node *rb;
337 	struct ubi_scan_leb *seb;
338 	struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL };
339 	int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1};
340 
341 	/*
342 	 * UBI goes through the following steps when it changes the layout
343 	 * volume:
344 	 * a. erase LEB 0;
345 	 * b. write new data to LEB 0;
346 	 * c. erase LEB 1;
347 	 * d. write new data to LEB 1.
348 	 *
349 	 * Before the change, both LEBs contain the same data.
350 	 *
351 	 * Due to unclean reboots, the contents of LEB 0 may be lost, but there
352 	 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not.
353 	 * Similarly, LEB 1 may be lost, but there should be LEB 0. And
354 	 * finally, unclean reboots may result in a situation when neither LEB
355 	 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB
356 	 * 0 contains more recent information.
357 	 *
358 	 * So the plan is to first check LEB 0. Then
359 	 * a. if LEB 0 is OK, it must be containing the most resent data; then
360 	 *    we compare it with LEB 1, and if they are different, we copy LEB
361 	 *    0 to LEB 1;
362 	 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1
363 	 *    to LEB 0.
364 	 */
365 
366 	dbg_msg("check layout volume");
367 
368 	/* Read both LEB 0 and LEB 1 into memory */
369 	ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) {
370 		leb[seb->lnum] = vmalloc(ubi->vtbl_size);
371 		if (!leb[seb->lnum]) {
372 			err = -ENOMEM;
373 			goto out_free;
374 		}
375 		memset(leb[seb->lnum], 0, ubi->vtbl_size);
376 
377 		err = ubi_io_read_data(ubi, leb[seb->lnum], seb->pnum, 0,
378 				       ubi->vtbl_size);
379 		if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err))
380 			/*
381 			 * Scrub the PEB later. Note, -EBADMSG indicates an
382 			 * uncorrectable ECC error, but we have our own CRC and
383 			 * the data will be checked later. If the data is OK,
384 			 * the PEB will be scrubbed (because we set
385 			 * seb->scrub). If the data is not OK, the contents of
386 			 * the PEB will be recovered from the second copy, and
387 			 * seb->scrub will be cleared in
388 			 * 'ubi_scan_add_used()'.
389 			 */
390 			seb->scrub = 1;
391 		else if (err)
392 			goto out_free;
393 	}
394 
395 	err = -EINVAL;
396 	if (leb[0]) {
397 		leb_corrupted[0] = vtbl_check(ubi, leb[0]);
398 		if (leb_corrupted[0] < 0)
399 			goto out_free;
400 	}
401 
402 	if (!leb_corrupted[0]) {
403 		/* LEB 0 is OK */
404 		if (leb[1])
405 			leb_corrupted[1] = memcmp(leb[0], leb[1], ubi->vtbl_size);
406 		if (leb_corrupted[1]) {
407 			ubi_warn("volume table copy #2 is corrupted");
408 			err = create_vtbl(ubi, si, 1, leb[0]);
409 			if (err)
410 				goto out_free;
411 			ubi_msg("volume table was restored");
412 		}
413 
414 		/* Both LEB 1 and LEB 2 are OK and consistent */
415 		vfree(leb[1]);
416 		return leb[0];
417 	} else {
418 		/* LEB 0 is corrupted or does not exist */
419 		if (leb[1]) {
420 			leb_corrupted[1] = vtbl_check(ubi, leb[1]);
421 			if (leb_corrupted[1] < 0)
422 				goto out_free;
423 		}
424 		if (leb_corrupted[1]) {
425 			/* Both LEB 0 and LEB 1 are corrupted */
426 			ubi_err("both volume tables are corrupted");
427 			goto out_free;
428 		}
429 
430 		ubi_warn("volume table copy #1 is corrupted");
431 		err = create_vtbl(ubi, si, 0, leb[1]);
432 		if (err)
433 			goto out_free;
434 		ubi_msg("volume table was restored");
435 
436 		vfree(leb[0]);
437 		return leb[1];
438 	}
439 
440 out_free:
441 	vfree(leb[0]);
442 	vfree(leb[1]);
443 	return ERR_PTR(err);
444 }
445 
446 /**
447  * create_empty_lvol - create empty layout volume.
448  * @ubi: UBI device description object
449  * @si: scanning information
450  *
451  * This function returns volume table contents in case of success and a
452  * negative error code in case of failure.
453  */
454 static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi,
455 						 struct ubi_scan_info *si)
456 {
457 	int i;
458 	struct ubi_vtbl_record *vtbl;
459 
460 	vtbl = vmalloc(ubi->vtbl_size);
461 	if (!vtbl)
462 		return ERR_PTR(-ENOMEM);
463 	memset(vtbl, 0, ubi->vtbl_size);
464 
465 	for (i = 0; i < ubi->vtbl_slots; i++)
466 		memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE);
467 
468 	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
469 		int err;
470 
471 		err = create_vtbl(ubi, si, i, vtbl);
472 		if (err) {
473 			vfree(vtbl);
474 			return ERR_PTR(err);
475 		}
476 	}
477 
478 	return vtbl;
479 }
480 
481 /**
482  * init_volumes - initialize volume information for existing volumes.
483  * @ubi: UBI device description object
484  * @si: scanning information
485  * @vtbl: volume table
486  *
487  * This function allocates volume description objects for existing volumes.
488  * Returns zero in case of success and a negative error code in case of
489  * failure.
490  */
491 static int init_volumes(struct ubi_device *ubi, const struct ubi_scan_info *si,
492 			const struct ubi_vtbl_record *vtbl)
493 {
494 	int i, reserved_pebs = 0;
495 	struct ubi_scan_volume *sv;
496 	struct ubi_volume *vol;
497 
498 	for (i = 0; i < ubi->vtbl_slots; i++) {
499 		cond_resched();
500 
501 		if (be32_to_cpu(vtbl[i].reserved_pebs) == 0)
502 			continue; /* Empty record */
503 
504 		vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
505 		if (!vol)
506 			return -ENOMEM;
507 
508 		vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
509 		vol->alignment = be32_to_cpu(vtbl[i].alignment);
510 		vol->data_pad = be32_to_cpu(vtbl[i].data_pad);
511 		vol->upd_marker = vtbl[i].upd_marker;
512 		vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ?
513 					UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
514 		vol->name_len = be16_to_cpu(vtbl[i].name_len);
515 		vol->usable_leb_size = ubi->leb_size - vol->data_pad;
516 		memcpy(vol->name, vtbl[i].name, vol->name_len);
517 		vol->name[vol->name_len] = '\0';
518 		vol->vol_id = i;
519 
520 		if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) {
521 			/* Auto re-size flag may be set only for one volume */
522 			if (ubi->autoresize_vol_id != -1) {
523 				ubi_err("more then one auto-resize volume (%d "
524 					"and %d)", ubi->autoresize_vol_id, i);
525 				kfree(vol);
526 				return -EINVAL;
527 			}
528 
529 			ubi->autoresize_vol_id = i;
530 		}
531 
532 		ubi_assert(!ubi->volumes[i]);
533 		ubi->volumes[i] = vol;
534 		ubi->vol_count += 1;
535 		vol->ubi = ubi;
536 		reserved_pebs += vol->reserved_pebs;
537 
538 		/*
539 		 * In case of dynamic volume UBI knows nothing about how many
540 		 * data is stored there. So assume the whole volume is used.
541 		 */
542 		if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
543 			vol->used_ebs = vol->reserved_pebs;
544 			vol->last_eb_bytes = vol->usable_leb_size;
545 			vol->used_bytes =
546 				(long long)vol->used_ebs * vol->usable_leb_size;
547 			continue;
548 		}
549 
550 		/* Static volumes only */
551 		sv = ubi_scan_find_sv(si, i);
552 		if (!sv) {
553 			/*
554 			 * No eraseblocks belonging to this volume found. We
555 			 * don't actually know whether this static volume is
556 			 * completely corrupted or just contains no data. And
557 			 * we cannot know this as long as data size is not
558 			 * stored on flash. So we just assume the volume is
559 			 * empty. FIXME: this should be handled.
560 			 */
561 			continue;
562 		}
563 
564 		if (sv->leb_count != sv->used_ebs) {
565 			/*
566 			 * We found a static volume which misses several
567 			 * eraseblocks. Treat it as corrupted.
568 			 */
569 			ubi_warn("static volume %d misses %d LEBs - corrupted",
570 				 sv->vol_id, sv->used_ebs - sv->leb_count);
571 			vol->corrupted = 1;
572 			continue;
573 		}
574 
575 		vol->used_ebs = sv->used_ebs;
576 		vol->used_bytes =
577 			(long long)(vol->used_ebs - 1) * vol->usable_leb_size;
578 		vol->used_bytes += sv->last_data_size;
579 		vol->last_eb_bytes = sv->last_data_size;
580 	}
581 
582 	/* And add the layout volume */
583 	vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
584 	if (!vol)
585 		return -ENOMEM;
586 
587 	vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS;
588 	vol->alignment = 1;
589 	vol->vol_type = UBI_DYNAMIC_VOLUME;
590 	vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1;
591 	memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1);
592 	vol->usable_leb_size = ubi->leb_size;
593 	vol->used_ebs = vol->reserved_pebs;
594 	vol->last_eb_bytes = vol->reserved_pebs;
595 	vol->used_bytes =
596 		(long long)vol->used_ebs * (ubi->leb_size - vol->data_pad);
597 	vol->vol_id = UBI_LAYOUT_VOLUME_ID;
598 	vol->ref_count = 1;
599 
600 	ubi_assert(!ubi->volumes[i]);
601 	ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol;
602 	reserved_pebs += vol->reserved_pebs;
603 	ubi->vol_count += 1;
604 	vol->ubi = ubi;
605 
606 	if (reserved_pebs > ubi->avail_pebs)
607 		ubi_err("not enough PEBs, required %d, available %d",
608 			reserved_pebs, ubi->avail_pebs);
609 	ubi->rsvd_pebs += reserved_pebs;
610 	ubi->avail_pebs -= reserved_pebs;
611 
612 	return 0;
613 }
614 
615 /**
616  * check_sv - check volume scanning information.
617  * @vol: UBI volume description object
618  * @sv: volume scanning information
619  *
620  * This function returns zero if the volume scanning information is consistent
621  * to the data read from the volume tabla, and %-EINVAL if not.
622  */
623 static int check_sv(const struct ubi_volume *vol,
624 		    const struct ubi_scan_volume *sv)
625 {
626 	int err;
627 
628 	if (sv->highest_lnum >= vol->reserved_pebs) {
629 		err = 1;
630 		goto bad;
631 	}
632 	if (sv->leb_count > vol->reserved_pebs) {
633 		err = 2;
634 		goto bad;
635 	}
636 	if (sv->vol_type != vol->vol_type) {
637 		err = 3;
638 		goto bad;
639 	}
640 	if (sv->used_ebs > vol->reserved_pebs) {
641 		err = 4;
642 		goto bad;
643 	}
644 	if (sv->data_pad != vol->data_pad) {
645 		err = 5;
646 		goto bad;
647 	}
648 	return 0;
649 
650 bad:
651 	ubi_err("bad scanning information, error %d", err);
652 	ubi_dbg_dump_sv(sv);
653 	ubi_dbg_dump_vol_info(vol);
654 	return -EINVAL;
655 }
656 
657 /**
658  * check_scanning_info - check that scanning information.
659  * @ubi: UBI device description object
660  * @si: scanning information
661  *
662  * Even though we protect on-flash data by CRC checksums, we still don't trust
663  * the media. This function ensures that scanning information is consistent to
664  * the information read from the volume table. Returns zero if the scanning
665  * information is OK and %-EINVAL if it is not.
666  */
667 static int check_scanning_info(const struct ubi_device *ubi,
668 			       struct ubi_scan_info *si)
669 {
670 	int err, i;
671 	struct ubi_scan_volume *sv;
672 	struct ubi_volume *vol;
673 
674 	if (si->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) {
675 		ubi_err("scanning found %d volumes, maximum is %d + %d",
676 			si->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots);
677 		return -EINVAL;
678 	}
679 
680 	if (si->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT &&
681 	    si->highest_vol_id < UBI_INTERNAL_VOL_START) {
682 		ubi_err("too large volume ID %d found by scanning",
683 			si->highest_vol_id);
684 		return -EINVAL;
685 	}
686 
687 	for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
688 		cond_resched();
689 
690 		sv = ubi_scan_find_sv(si, i);
691 		vol = ubi->volumes[i];
692 		if (!vol) {
693 			if (sv)
694 				ubi_scan_rm_volume(si, sv);
695 			continue;
696 		}
697 
698 		if (vol->reserved_pebs == 0) {
699 			ubi_assert(i < ubi->vtbl_slots);
700 
701 			if (!sv)
702 				continue;
703 
704 			/*
705 			 * During scanning we found a volume which does not
706 			 * exist according to the information in the volume
707 			 * table. This must have happened due to an unclean
708 			 * reboot while the volume was being removed. Discard
709 			 * these eraseblocks.
710 			 */
711 			ubi_msg("finish volume %d removal", sv->vol_id);
712 			ubi_scan_rm_volume(si, sv);
713 		} else if (sv) {
714 			err = check_sv(vol, sv);
715 			if (err)
716 				return err;
717 		}
718 	}
719 
720 	return 0;
721 }
722 
723 /**
724  * ubi_read_volume_table - read volume table.
725  * information.
726  * @ubi: UBI device description object
727  * @si: scanning information
728  *
729  * This function reads volume table, checks it, recover from errors if needed,
730  * or creates it if needed. Returns zero in case of success and a negative
731  * error code in case of failure.
732  */
733 int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_scan_info *si)
734 {
735 	int i, err;
736 	struct ubi_scan_volume *sv;
737 
738 	empty_vtbl_record.crc = cpu_to_be32(0xf116c36b);
739 
740 	/*
741 	 * The number of supported volumes is limited by the eraseblock size
742 	 * and by the UBI_MAX_VOLUMES constant.
743 	 */
744 	ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE;
745 	if (ubi->vtbl_slots > UBI_MAX_VOLUMES)
746 		ubi->vtbl_slots = UBI_MAX_VOLUMES;
747 
748 	ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE;
749 	ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size);
750 
751 	sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOLUME_ID);
752 	if (!sv) {
753 		/*
754 		 * No logical eraseblocks belonging to the layout volume were
755 		 * found. This could mean that the flash is just empty. In
756 		 * this case we create empty layout volume.
757 		 *
758 		 * But if flash is not empty this must be a corruption or the
759 		 * MTD device just contains garbage.
760 		 */
761 		if (si->is_empty) {
762 			ubi->vtbl = create_empty_lvol(ubi, si);
763 			if (IS_ERR(ubi->vtbl))
764 				return PTR_ERR(ubi->vtbl);
765 		} else {
766 			ubi_err("the layout volume was not found");
767 			return -EINVAL;
768 		}
769 	} else {
770 		if (sv->leb_count > UBI_LAYOUT_VOLUME_EBS) {
771 			/* This must not happen with proper UBI images */
772 			dbg_err("too many LEBs (%d) in layout volume",
773 				sv->leb_count);
774 			return -EINVAL;
775 		}
776 
777 		ubi->vtbl = process_lvol(ubi, si, sv);
778 		if (IS_ERR(ubi->vtbl))
779 			return PTR_ERR(ubi->vtbl);
780 	}
781 
782 	ubi->avail_pebs = ubi->good_peb_count;
783 
784 	/*
785 	 * The layout volume is OK, initialize the corresponding in-RAM data
786 	 * structures.
787 	 */
788 	err = init_volumes(ubi, si, ubi->vtbl);
789 	if (err)
790 		goto out_free;
791 
792 	/*
793 	 * Get sure that the scanning information is consistent to the
794 	 * information stored in the volume table.
795 	 */
796 	err = check_scanning_info(ubi, si);
797 	if (err)
798 		goto out_free;
799 
800 	return 0;
801 
802 out_free:
803 	vfree(ubi->vtbl);
804 	for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++)
805 		if (ubi->volumes[i]) {
806 			kfree(ubi->volumes[i]);
807 			ubi->volumes[i] = NULL;
808 		}
809 	return err;
810 }
811 
812 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
813 
814 /**
815  * paranoid_vtbl_check - check volume table.
816  * @ubi: UBI device description object
817  */
818 static void paranoid_vtbl_check(const struct ubi_device *ubi)
819 {
820 	if (vtbl_check(ubi, ubi->vtbl)) {
821 		ubi_err("paranoid check failed");
822 		BUG();
823 	}
824 }
825 
826 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */
827