1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * Copyright (c) Nokia Corporation, 2006, 2007 4 * 5 * SPDX-License-Identifier: GPL-2.0+ 6 * 7 * Author: Artem Bityutskiy (Битюцкий Артём) 8 */ 9 10 /* 11 * This file includes volume table manipulation code. The volume table is an 12 * on-flash table containing volume meta-data like name, number of reserved 13 * physical eraseblocks, type, etc. The volume table is stored in the so-called 14 * "layout volume". 15 * 16 * The layout volume is an internal volume which is organized as follows. It 17 * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical 18 * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each 19 * other. This redundancy guarantees robustness to unclean reboots. The volume 20 * table is basically an array of volume table records. Each record contains 21 * full information about the volume and protected by a CRC checksum. 22 * 23 * The volume table is changed, it is first changed in RAM. Then LEB 0 is 24 * erased, and the updated volume table is written back to LEB 0. Then same for 25 * LEB 1. This scheme guarantees recoverability from unclean reboots. 26 * 27 * In this UBI implementation the on-flash volume table does not contain any 28 * information about how many data static volumes contain. This information may 29 * be found from the scanning data. 30 * 31 * But it would still be beneficial to store this information in the volume 32 * table. For example, suppose we have a static volume X, and all its physical 33 * eraseblocks became bad for some reasons. Suppose we are attaching the 34 * corresponding MTD device, the scanning has found no logical eraseblocks 35 * corresponding to the volume X. According to the volume table volume X does 36 * exist. So we don't know whether it is just empty or all its physical 37 * eraseblocks went bad. So we cannot alarm the user about this corruption. 38 * 39 * The volume table also stores so-called "update marker", which is used for 40 * volume updates. Before updating the volume, the update marker is set, and 41 * after the update operation is finished, the update marker is cleared. So if 42 * the update operation was interrupted (e.g. by an unclean reboot) - the 43 * update marker is still there and we know that the volume's contents is 44 * damaged. 45 */ 46 47 #ifdef UBI_LINUX 48 #include <linux/crc32.h> 49 #include <linux/err.h> 50 #include <asm/div64.h> 51 #endif 52 53 #include <ubi_uboot.h> 54 #include "ubi.h" 55 56 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 57 static void paranoid_vtbl_check(const struct ubi_device *ubi); 58 #else 59 #define paranoid_vtbl_check(ubi) 60 #endif 61 62 /* Empty volume table record */ 63 static struct ubi_vtbl_record empty_vtbl_record; 64 65 /** 66 * ubi_change_vtbl_record - change volume table record. 67 * @ubi: UBI device description object 68 * @idx: table index to change 69 * @vtbl_rec: new volume table record 70 * 71 * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty 72 * volume table record is written. The caller does not have to calculate CRC of 73 * the record as it is done by this function. Returns zero in case of success 74 * and a negative error code in case of failure. 75 */ 76 int ubi_change_vtbl_record(struct ubi_device *ubi, int idx, 77 struct ubi_vtbl_record *vtbl_rec) 78 { 79 int i, err; 80 uint32_t crc; 81 struct ubi_volume *layout_vol; 82 83 ubi_assert(idx >= 0 && idx < ubi->vtbl_slots); 84 layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)]; 85 86 if (!vtbl_rec) 87 vtbl_rec = &empty_vtbl_record; 88 else { 89 crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC); 90 vtbl_rec->crc = cpu_to_be32(crc); 91 } 92 93 memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record)); 94 for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) { 95 err = ubi_eba_unmap_leb(ubi, layout_vol, i); 96 if (err) 97 return err; 98 99 err = ubi_eba_write_leb(ubi, layout_vol, i, ubi->vtbl, 0, 100 ubi->vtbl_size, UBI_LONGTERM); 101 if (err) 102 return err; 103 } 104 105 paranoid_vtbl_check(ubi); 106 return 0; 107 } 108 109 /** 110 * vtbl_check - check if volume table is not corrupted and contains sensible 111 * data. 112 * @ubi: UBI device description object 113 * @vtbl: volume table 114 * 115 * This function returns zero if @vtbl is all right, %1 if CRC is incorrect, 116 * and %-EINVAL if it contains inconsistent data. 117 */ 118 static int vtbl_check(const struct ubi_device *ubi, 119 const struct ubi_vtbl_record *vtbl) 120 { 121 int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len; 122 int upd_marker, err; 123 uint32_t crc; 124 const char *name; 125 126 for (i = 0; i < ubi->vtbl_slots; i++) { 127 cond_resched(); 128 129 reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs); 130 alignment = be32_to_cpu(vtbl[i].alignment); 131 data_pad = be32_to_cpu(vtbl[i].data_pad); 132 upd_marker = vtbl[i].upd_marker; 133 vol_type = vtbl[i].vol_type; 134 name_len = be16_to_cpu(vtbl[i].name_len); 135 name = (const char *) &vtbl[i].name[0]; 136 137 crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC); 138 if (be32_to_cpu(vtbl[i].crc) != crc) { 139 ubi_err("bad CRC at record %u: %#08x, not %#08x", 140 i, crc, be32_to_cpu(vtbl[i].crc)); 141 ubi_dbg_dump_vtbl_record(&vtbl[i], i); 142 return 1; 143 } 144 145 if (reserved_pebs == 0) { 146 if (memcmp(&vtbl[i], &empty_vtbl_record, 147 UBI_VTBL_RECORD_SIZE)) { 148 err = 2; 149 goto bad; 150 } 151 continue; 152 } 153 154 if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 || 155 name_len < 0) { 156 err = 3; 157 goto bad; 158 } 159 160 if (alignment > ubi->leb_size || alignment == 0) { 161 err = 4; 162 goto bad; 163 } 164 165 n = alignment & (ubi->min_io_size - 1); 166 if (alignment != 1 && n) { 167 err = 5; 168 goto bad; 169 } 170 171 n = ubi->leb_size % alignment; 172 if (data_pad != n) { 173 dbg_err("bad data_pad, has to be %d", n); 174 err = 6; 175 goto bad; 176 } 177 178 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) { 179 err = 7; 180 goto bad; 181 } 182 183 if (upd_marker != 0 && upd_marker != 1) { 184 err = 8; 185 goto bad; 186 } 187 188 if (reserved_pebs > ubi->good_peb_count) { 189 dbg_err("too large reserved_pebs, good PEBs %d", 190 ubi->good_peb_count); 191 err = 9; 192 goto bad; 193 } 194 195 if (name_len > UBI_VOL_NAME_MAX) { 196 err = 10; 197 goto bad; 198 } 199 200 if (name[0] == '\0') { 201 err = 11; 202 goto bad; 203 } 204 205 if (name_len != strnlen(name, name_len + 1)) { 206 err = 12; 207 goto bad; 208 } 209 } 210 211 /* Checks that all names are unique */ 212 for (i = 0; i < ubi->vtbl_slots - 1; i++) { 213 for (n = i + 1; n < ubi->vtbl_slots; n++) { 214 int len1 = be16_to_cpu(vtbl[i].name_len); 215 int len2 = be16_to_cpu(vtbl[n].name_len); 216 217 if (len1 > 0 && len1 == len2 && 218 !strncmp((char *)vtbl[i].name, (char *)vtbl[n].name, len1)) { 219 ubi_err("volumes %d and %d have the same name" 220 " \"%s\"", i, n, vtbl[i].name); 221 ubi_dbg_dump_vtbl_record(&vtbl[i], i); 222 ubi_dbg_dump_vtbl_record(&vtbl[n], n); 223 return -EINVAL; 224 } 225 } 226 } 227 228 return 0; 229 230 bad: 231 ubi_err("volume table check failed: record %d, error %d", i, err); 232 ubi_dbg_dump_vtbl_record(&vtbl[i], i); 233 return -EINVAL; 234 } 235 236 /** 237 * create_vtbl - create a copy of volume table. 238 * @ubi: UBI device description object 239 * @si: scanning information 240 * @copy: number of the volume table copy 241 * @vtbl: contents of the volume table 242 * 243 * This function returns zero in case of success and a negative error code in 244 * case of failure. 245 */ 246 static int create_vtbl(struct ubi_device *ubi, struct ubi_scan_info *si, 247 int copy, void *vtbl) 248 { 249 int err, tries = 0; 250 static struct ubi_vid_hdr *vid_hdr; 251 struct ubi_scan_volume *sv; 252 struct ubi_scan_leb *new_seb, *old_seb = NULL; 253 254 ubi_msg("create volume table (copy #%d)", copy + 1); 255 256 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); 257 if (!vid_hdr) 258 return -ENOMEM; 259 260 /* 261 * Check if there is a logical eraseblock which would have to contain 262 * this volume table copy was found during scanning. It has to be wiped 263 * out. 264 */ 265 sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOLUME_ID); 266 if (sv) 267 old_seb = ubi_scan_find_seb(sv, copy); 268 269 retry: 270 new_seb = ubi_scan_get_free_peb(ubi, si); 271 if (IS_ERR(new_seb)) { 272 err = PTR_ERR(new_seb); 273 goto out_free; 274 } 275 276 vid_hdr->vol_type = UBI_VID_DYNAMIC; 277 vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID); 278 vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT; 279 vid_hdr->data_size = vid_hdr->used_ebs = 280 vid_hdr->data_pad = cpu_to_be32(0); 281 vid_hdr->lnum = cpu_to_be32(copy); 282 vid_hdr->sqnum = cpu_to_be64(++si->max_sqnum); 283 vid_hdr->leb_ver = cpu_to_be32(old_seb ? old_seb->leb_ver + 1: 0); 284 285 /* The EC header is already there, write the VID header */ 286 err = ubi_io_write_vid_hdr(ubi, new_seb->pnum, vid_hdr); 287 if (err) 288 goto write_error; 289 290 /* Write the layout volume contents */ 291 err = ubi_io_write_data(ubi, vtbl, new_seb->pnum, 0, ubi->vtbl_size); 292 if (err) 293 goto write_error; 294 295 /* 296 * And add it to the scanning information. Don't delete the old 297 * @old_seb as it will be deleted and freed in 'ubi_scan_add_used()'. 298 */ 299 err = ubi_scan_add_used(ubi, si, new_seb->pnum, new_seb->ec, 300 vid_hdr, 0); 301 kfree(new_seb); 302 ubi_free_vid_hdr(ubi, vid_hdr); 303 return err; 304 305 write_error: 306 if (err == -EIO && ++tries <= 5) { 307 /* 308 * Probably this physical eraseblock went bad, try to pick 309 * another one. 310 */ 311 list_add_tail(&new_seb->u.list, &si->corr); 312 goto retry; 313 } 314 kfree(new_seb); 315 out_free: 316 ubi_free_vid_hdr(ubi, vid_hdr); 317 return err; 318 319 } 320 321 /** 322 * process_lvol - process the layout volume. 323 * @ubi: UBI device description object 324 * @si: scanning information 325 * @sv: layout volume scanning information 326 * 327 * This function is responsible for reading the layout volume, ensuring it is 328 * not corrupted, and recovering from corruptions if needed. Returns volume 329 * table in case of success and a negative error code in case of failure. 330 */ 331 static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi, 332 struct ubi_scan_info *si, 333 struct ubi_scan_volume *sv) 334 { 335 int err; 336 struct rb_node *rb; 337 struct ubi_scan_leb *seb; 338 struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL }; 339 int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1}; 340 341 /* 342 * UBI goes through the following steps when it changes the layout 343 * volume: 344 * a. erase LEB 0; 345 * b. write new data to LEB 0; 346 * c. erase LEB 1; 347 * d. write new data to LEB 1. 348 * 349 * Before the change, both LEBs contain the same data. 350 * 351 * Due to unclean reboots, the contents of LEB 0 may be lost, but there 352 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not. 353 * Similarly, LEB 1 may be lost, but there should be LEB 0. And 354 * finally, unclean reboots may result in a situation when neither LEB 355 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB 356 * 0 contains more recent information. 357 * 358 * So the plan is to first check LEB 0. Then 359 * a. if LEB 0 is OK, it must be containing the most resent data; then 360 * we compare it with LEB 1, and if they are different, we copy LEB 361 * 0 to LEB 1; 362 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1 363 * to LEB 0. 364 */ 365 366 dbg_msg("check layout volume"); 367 368 /* Read both LEB 0 and LEB 1 into memory */ 369 ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) { 370 leb[seb->lnum] = vmalloc(ubi->vtbl_size); 371 if (!leb[seb->lnum]) { 372 err = -ENOMEM; 373 goto out_free; 374 } 375 memset(leb[seb->lnum], 0, ubi->vtbl_size); 376 377 err = ubi_io_read_data(ubi, leb[seb->lnum], seb->pnum, 0, 378 ubi->vtbl_size); 379 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) 380 /* 381 * Scrub the PEB later. Note, -EBADMSG indicates an 382 * uncorrectable ECC error, but we have our own CRC and 383 * the data will be checked later. If the data is OK, 384 * the PEB will be scrubbed (because we set 385 * seb->scrub). If the data is not OK, the contents of 386 * the PEB will be recovered from the second copy, and 387 * seb->scrub will be cleared in 388 * 'ubi_scan_add_used()'. 389 */ 390 seb->scrub = 1; 391 else if (err) 392 goto out_free; 393 } 394 395 err = -EINVAL; 396 if (leb[0]) { 397 leb_corrupted[0] = vtbl_check(ubi, leb[0]); 398 if (leb_corrupted[0] < 0) 399 goto out_free; 400 } 401 402 if (!leb_corrupted[0]) { 403 /* LEB 0 is OK */ 404 if (leb[1]) 405 leb_corrupted[1] = memcmp(leb[0], leb[1], ubi->vtbl_size); 406 if (leb_corrupted[1]) { 407 ubi_warn("volume table copy #2 is corrupted"); 408 err = create_vtbl(ubi, si, 1, leb[0]); 409 if (err) 410 goto out_free; 411 ubi_msg("volume table was restored"); 412 } 413 414 /* Both LEB 1 and LEB 2 are OK and consistent */ 415 vfree(leb[1]); 416 return leb[0]; 417 } else { 418 /* LEB 0 is corrupted or does not exist */ 419 if (leb[1]) { 420 leb_corrupted[1] = vtbl_check(ubi, leb[1]); 421 if (leb_corrupted[1] < 0) 422 goto out_free; 423 } 424 if (leb_corrupted[1]) { 425 /* Both LEB 0 and LEB 1 are corrupted */ 426 ubi_err("both volume tables are corrupted"); 427 goto out_free; 428 } 429 430 ubi_warn("volume table copy #1 is corrupted"); 431 err = create_vtbl(ubi, si, 0, leb[1]); 432 if (err) 433 goto out_free; 434 ubi_msg("volume table was restored"); 435 436 vfree(leb[0]); 437 return leb[1]; 438 } 439 440 out_free: 441 vfree(leb[0]); 442 vfree(leb[1]); 443 return ERR_PTR(err); 444 } 445 446 /** 447 * create_empty_lvol - create empty layout volume. 448 * @ubi: UBI device description object 449 * @si: scanning information 450 * 451 * This function returns volume table contents in case of success and a 452 * negative error code in case of failure. 453 */ 454 static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi, 455 struct ubi_scan_info *si) 456 { 457 int i; 458 struct ubi_vtbl_record *vtbl; 459 460 vtbl = vmalloc(ubi->vtbl_size); 461 if (!vtbl) 462 return ERR_PTR(-ENOMEM); 463 memset(vtbl, 0, ubi->vtbl_size); 464 465 for (i = 0; i < ubi->vtbl_slots; i++) 466 memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE); 467 468 for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) { 469 int err; 470 471 err = create_vtbl(ubi, si, i, vtbl); 472 if (err) { 473 vfree(vtbl); 474 return ERR_PTR(err); 475 } 476 } 477 478 return vtbl; 479 } 480 481 /** 482 * init_volumes - initialize volume information for existing volumes. 483 * @ubi: UBI device description object 484 * @si: scanning information 485 * @vtbl: volume table 486 * 487 * This function allocates volume description objects for existing volumes. 488 * Returns zero in case of success and a negative error code in case of 489 * failure. 490 */ 491 static int init_volumes(struct ubi_device *ubi, const struct ubi_scan_info *si, 492 const struct ubi_vtbl_record *vtbl) 493 { 494 int i, reserved_pebs = 0; 495 struct ubi_scan_volume *sv; 496 struct ubi_volume *vol; 497 498 for (i = 0; i < ubi->vtbl_slots; i++) { 499 cond_resched(); 500 501 if (be32_to_cpu(vtbl[i].reserved_pebs) == 0) 502 continue; /* Empty record */ 503 504 vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL); 505 if (!vol) 506 return -ENOMEM; 507 508 vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs); 509 vol->alignment = be32_to_cpu(vtbl[i].alignment); 510 vol->data_pad = be32_to_cpu(vtbl[i].data_pad); 511 vol->upd_marker = vtbl[i].upd_marker; 512 vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ? 513 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME; 514 vol->name_len = be16_to_cpu(vtbl[i].name_len); 515 vol->usable_leb_size = ubi->leb_size - vol->data_pad; 516 memcpy(vol->name, vtbl[i].name, vol->name_len); 517 vol->name[vol->name_len] = '\0'; 518 vol->vol_id = i; 519 520 if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) { 521 /* Auto re-size flag may be set only for one volume */ 522 if (ubi->autoresize_vol_id != -1) { 523 ubi_err("more then one auto-resize volume (%d " 524 "and %d)", ubi->autoresize_vol_id, i); 525 kfree(vol); 526 return -EINVAL; 527 } 528 529 ubi->autoresize_vol_id = i; 530 } 531 532 ubi_assert(!ubi->volumes[i]); 533 ubi->volumes[i] = vol; 534 ubi->vol_count += 1; 535 vol->ubi = ubi; 536 reserved_pebs += vol->reserved_pebs; 537 538 /* 539 * In case of dynamic volume UBI knows nothing about how many 540 * data is stored there. So assume the whole volume is used. 541 */ 542 if (vol->vol_type == UBI_DYNAMIC_VOLUME) { 543 vol->used_ebs = vol->reserved_pebs; 544 vol->last_eb_bytes = vol->usable_leb_size; 545 vol->used_bytes = 546 (long long)vol->used_ebs * vol->usable_leb_size; 547 continue; 548 } 549 550 /* Static volumes only */ 551 sv = ubi_scan_find_sv(si, i); 552 if (!sv) { 553 /* 554 * No eraseblocks belonging to this volume found. We 555 * don't actually know whether this static volume is 556 * completely corrupted or just contains no data. And 557 * we cannot know this as long as data size is not 558 * stored on flash. So we just assume the volume is 559 * empty. FIXME: this should be handled. 560 */ 561 continue; 562 } 563 564 if (sv->leb_count != sv->used_ebs) { 565 /* 566 * We found a static volume which misses several 567 * eraseblocks. Treat it as corrupted. 568 */ 569 ubi_warn("static volume %d misses %d LEBs - corrupted", 570 sv->vol_id, sv->used_ebs - sv->leb_count); 571 vol->corrupted = 1; 572 continue; 573 } 574 575 vol->used_ebs = sv->used_ebs; 576 vol->used_bytes = 577 (long long)(vol->used_ebs - 1) * vol->usable_leb_size; 578 vol->used_bytes += sv->last_data_size; 579 vol->last_eb_bytes = sv->last_data_size; 580 } 581 582 /* And add the layout volume */ 583 vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL); 584 if (!vol) 585 return -ENOMEM; 586 587 vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS; 588 vol->alignment = 1; 589 vol->vol_type = UBI_DYNAMIC_VOLUME; 590 vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1; 591 memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1); 592 vol->usable_leb_size = ubi->leb_size; 593 vol->used_ebs = vol->reserved_pebs; 594 vol->last_eb_bytes = vol->reserved_pebs; 595 vol->used_bytes = 596 (long long)vol->used_ebs * (ubi->leb_size - vol->data_pad); 597 vol->vol_id = UBI_LAYOUT_VOLUME_ID; 598 vol->ref_count = 1; 599 600 ubi_assert(!ubi->volumes[i]); 601 ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol; 602 reserved_pebs += vol->reserved_pebs; 603 ubi->vol_count += 1; 604 vol->ubi = ubi; 605 606 if (reserved_pebs > ubi->avail_pebs) 607 ubi_err("not enough PEBs, required %d, available %d", 608 reserved_pebs, ubi->avail_pebs); 609 ubi->rsvd_pebs += reserved_pebs; 610 ubi->avail_pebs -= reserved_pebs; 611 612 return 0; 613 } 614 615 /** 616 * check_sv - check volume scanning information. 617 * @vol: UBI volume description object 618 * @sv: volume scanning information 619 * 620 * This function returns zero if the volume scanning information is consistent 621 * to the data read from the volume tabla, and %-EINVAL if not. 622 */ 623 static int check_sv(const struct ubi_volume *vol, 624 const struct ubi_scan_volume *sv) 625 { 626 int err; 627 628 if (sv->highest_lnum >= vol->reserved_pebs) { 629 err = 1; 630 goto bad; 631 } 632 if (sv->leb_count > vol->reserved_pebs) { 633 err = 2; 634 goto bad; 635 } 636 if (sv->vol_type != vol->vol_type) { 637 err = 3; 638 goto bad; 639 } 640 if (sv->used_ebs > vol->reserved_pebs) { 641 err = 4; 642 goto bad; 643 } 644 if (sv->data_pad != vol->data_pad) { 645 err = 5; 646 goto bad; 647 } 648 return 0; 649 650 bad: 651 ubi_err("bad scanning information, error %d", err); 652 ubi_dbg_dump_sv(sv); 653 ubi_dbg_dump_vol_info(vol); 654 return -EINVAL; 655 } 656 657 /** 658 * check_scanning_info - check that scanning information. 659 * @ubi: UBI device description object 660 * @si: scanning information 661 * 662 * Even though we protect on-flash data by CRC checksums, we still don't trust 663 * the media. This function ensures that scanning information is consistent to 664 * the information read from the volume table. Returns zero if the scanning 665 * information is OK and %-EINVAL if it is not. 666 */ 667 static int check_scanning_info(const struct ubi_device *ubi, 668 struct ubi_scan_info *si) 669 { 670 int err, i; 671 struct ubi_scan_volume *sv; 672 struct ubi_volume *vol; 673 674 if (si->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) { 675 ubi_err("scanning found %d volumes, maximum is %d + %d", 676 si->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots); 677 return -EINVAL; 678 } 679 680 if (si->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT && 681 si->highest_vol_id < UBI_INTERNAL_VOL_START) { 682 ubi_err("too large volume ID %d found by scanning", 683 si->highest_vol_id); 684 return -EINVAL; 685 } 686 687 for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { 688 cond_resched(); 689 690 sv = ubi_scan_find_sv(si, i); 691 vol = ubi->volumes[i]; 692 if (!vol) { 693 if (sv) 694 ubi_scan_rm_volume(si, sv); 695 continue; 696 } 697 698 if (vol->reserved_pebs == 0) { 699 ubi_assert(i < ubi->vtbl_slots); 700 701 if (!sv) 702 continue; 703 704 /* 705 * During scanning we found a volume which does not 706 * exist according to the information in the volume 707 * table. This must have happened due to an unclean 708 * reboot while the volume was being removed. Discard 709 * these eraseblocks. 710 */ 711 ubi_msg("finish volume %d removal", sv->vol_id); 712 ubi_scan_rm_volume(si, sv); 713 } else if (sv) { 714 err = check_sv(vol, sv); 715 if (err) 716 return err; 717 } 718 } 719 720 return 0; 721 } 722 723 /** 724 * ubi_read_volume_table - read volume table. 725 * information. 726 * @ubi: UBI device description object 727 * @si: scanning information 728 * 729 * This function reads volume table, checks it, recover from errors if needed, 730 * or creates it if needed. Returns zero in case of success and a negative 731 * error code in case of failure. 732 */ 733 int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_scan_info *si) 734 { 735 int i, err; 736 struct ubi_scan_volume *sv; 737 738 empty_vtbl_record.crc = cpu_to_be32(0xf116c36b); 739 740 /* 741 * The number of supported volumes is limited by the eraseblock size 742 * and by the UBI_MAX_VOLUMES constant. 743 */ 744 ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE; 745 if (ubi->vtbl_slots > UBI_MAX_VOLUMES) 746 ubi->vtbl_slots = UBI_MAX_VOLUMES; 747 748 ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE; 749 ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size); 750 751 sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOLUME_ID); 752 if (!sv) { 753 /* 754 * No logical eraseblocks belonging to the layout volume were 755 * found. This could mean that the flash is just empty. In 756 * this case we create empty layout volume. 757 * 758 * But if flash is not empty this must be a corruption or the 759 * MTD device just contains garbage. 760 */ 761 if (si->is_empty) { 762 ubi->vtbl = create_empty_lvol(ubi, si); 763 if (IS_ERR(ubi->vtbl)) 764 return PTR_ERR(ubi->vtbl); 765 } else { 766 ubi_err("the layout volume was not found"); 767 return -EINVAL; 768 } 769 } else { 770 if (sv->leb_count > UBI_LAYOUT_VOLUME_EBS) { 771 /* This must not happen with proper UBI images */ 772 dbg_err("too many LEBs (%d) in layout volume", 773 sv->leb_count); 774 return -EINVAL; 775 } 776 777 ubi->vtbl = process_lvol(ubi, si, sv); 778 if (IS_ERR(ubi->vtbl)) 779 return PTR_ERR(ubi->vtbl); 780 } 781 782 ubi->avail_pebs = ubi->good_peb_count; 783 784 /* 785 * The layout volume is OK, initialize the corresponding in-RAM data 786 * structures. 787 */ 788 err = init_volumes(ubi, si, ubi->vtbl); 789 if (err) 790 goto out_free; 791 792 /* 793 * Get sure that the scanning information is consistent to the 794 * information stored in the volume table. 795 */ 796 err = check_scanning_info(ubi, si); 797 if (err) 798 goto out_free; 799 800 return 0; 801 802 out_free: 803 vfree(ubi->vtbl); 804 for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) 805 if (ubi->volumes[i]) { 806 kfree(ubi->volumes[i]); 807 ubi->volumes[i] = NULL; 808 } 809 return err; 810 } 811 812 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 813 814 /** 815 * paranoid_vtbl_check - check volume table. 816 * @ubi: UBI device description object 817 */ 818 static void paranoid_vtbl_check(const struct ubi_device *ubi) 819 { 820 if (vtbl_check(ubi, ubi->vtbl)) { 821 ubi_err("paranoid check failed"); 822 BUG(); 823 } 824 } 825 826 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */ 827