xref: /openbmc/u-boot/drivers/mtd/ubi/vtbl.c (revision 3cfbcb58)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2006, 2007
4  *
5  * SPDX-License-Identifier:	GPL-2.0+
6  *
7  * Author: Artem Bityutskiy (Битюцкий Артём)
8  */
9 
10 /*
11  * This file includes volume table manipulation code. The volume table is an
12  * on-flash table containing volume meta-data like name, number of reserved
13  * physical eraseblocks, type, etc. The volume table is stored in the so-called
14  * "layout volume".
15  *
16  * The layout volume is an internal volume which is organized as follows. It
17  * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical
18  * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each
19  * other. This redundancy guarantees robustness to unclean reboots. The volume
20  * table is basically an array of volume table records. Each record contains
21  * full information about the volume and protected by a CRC checksum.
22  *
23  * The volume table is changed, it is first changed in RAM. Then LEB 0 is
24  * erased, and the updated volume table is written back to LEB 0. Then same for
25  * LEB 1. This scheme guarantees recoverability from unclean reboots.
26  *
27  * In this UBI implementation the on-flash volume table does not contain any
28  * information about how much data static volumes contain.
29  *
30  * But it would still be beneficial to store this information in the volume
31  * table. For example, suppose we have a static volume X, and all its physical
32  * eraseblocks became bad for some reasons. Suppose we are attaching the
33  * corresponding MTD device, for some reason we find no logical eraseblocks
34  * corresponding to the volume X. According to the volume table volume X does
35  * exist. So we don't know whether it is just empty or all its physical
36  * eraseblocks went bad. So we cannot alarm the user properly.
37  *
38  * The volume table also stores so-called "update marker", which is used for
39  * volume updates. Before updating the volume, the update marker is set, and
40  * after the update operation is finished, the update marker is cleared. So if
41  * the update operation was interrupted (e.g. by an unclean reboot) - the
42  * update marker is still there and we know that the volume's contents is
43  * damaged.
44  */
45 
46 #define __UBOOT__
47 #ifndef __UBOOT__
48 #include <linux/crc32.h>
49 #include <linux/err.h>
50 #include <linux/slab.h>
51 #include <asm/div64.h>
52 #else
53 #include <ubi_uboot.h>
54 #endif
55 
56 #include <linux/err.h>
57 #include "ubi.h"
58 
59 static void self_vtbl_check(const struct ubi_device *ubi);
60 
61 /* Empty volume table record */
62 static struct ubi_vtbl_record empty_vtbl_record;
63 
64 /**
65  * ubi_change_vtbl_record - change volume table record.
66  * @ubi: UBI device description object
67  * @idx: table index to change
68  * @vtbl_rec: new volume table record
69  *
70  * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty
71  * volume table record is written. The caller does not have to calculate CRC of
72  * the record as it is done by this function. Returns zero in case of success
73  * and a negative error code in case of failure.
74  */
75 int ubi_change_vtbl_record(struct ubi_device *ubi, int idx,
76 			   struct ubi_vtbl_record *vtbl_rec)
77 {
78 	int i, err;
79 	uint32_t crc;
80 	struct ubi_volume *layout_vol;
81 
82 	ubi_assert(idx >= 0 && idx < ubi->vtbl_slots);
83 	layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)];
84 
85 	if (!vtbl_rec)
86 		vtbl_rec = &empty_vtbl_record;
87 	else {
88 		crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC);
89 		vtbl_rec->crc = cpu_to_be32(crc);
90 	}
91 
92 	memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record));
93 	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
94 		err = ubi_eba_unmap_leb(ubi, layout_vol, i);
95 		if (err)
96 			return err;
97 
98 		err = ubi_eba_write_leb(ubi, layout_vol, i, ubi->vtbl, 0,
99 					ubi->vtbl_size);
100 		if (err)
101 			return err;
102 	}
103 
104 	self_vtbl_check(ubi);
105 	return 0;
106 }
107 
108 /**
109  * ubi_vtbl_rename_volumes - rename UBI volumes in the volume table.
110  * @ubi: UBI device description object
111  * @rename_list: list of &struct ubi_rename_entry objects
112  *
113  * This function re-names multiple volumes specified in @req in the volume
114  * table. Returns zero in case of success and a negative error code in case of
115  * failure.
116  */
117 int ubi_vtbl_rename_volumes(struct ubi_device *ubi,
118 			    struct list_head *rename_list)
119 {
120 	int i, err;
121 	struct ubi_rename_entry *re;
122 	struct ubi_volume *layout_vol;
123 
124 	list_for_each_entry(re, rename_list, list) {
125 		uint32_t crc;
126 		struct ubi_volume *vol = re->desc->vol;
127 		struct ubi_vtbl_record *vtbl_rec = &ubi->vtbl[vol->vol_id];
128 
129 		if (re->remove) {
130 			memcpy(vtbl_rec, &empty_vtbl_record,
131 			       sizeof(struct ubi_vtbl_record));
132 			continue;
133 		}
134 
135 		vtbl_rec->name_len = cpu_to_be16(re->new_name_len);
136 		memcpy(vtbl_rec->name, re->new_name, re->new_name_len);
137 		memset(vtbl_rec->name + re->new_name_len, 0,
138 		       UBI_VOL_NAME_MAX + 1 - re->new_name_len);
139 		crc = crc32(UBI_CRC32_INIT, vtbl_rec,
140 			    UBI_VTBL_RECORD_SIZE_CRC);
141 		vtbl_rec->crc = cpu_to_be32(crc);
142 	}
143 
144 	layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)];
145 	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
146 		err = ubi_eba_unmap_leb(ubi, layout_vol, i);
147 		if (err)
148 			return err;
149 
150 		err = ubi_eba_write_leb(ubi, layout_vol, i, ubi->vtbl, 0,
151 					ubi->vtbl_size);
152 		if (err)
153 			return err;
154 	}
155 
156 	return 0;
157 }
158 
159 /**
160  * vtbl_check - check if volume table is not corrupted and sensible.
161  * @ubi: UBI device description object
162  * @vtbl: volume table
163  *
164  * This function returns zero if @vtbl is all right, %1 if CRC is incorrect,
165  * and %-EINVAL if it contains inconsistent data.
166  */
167 static int vtbl_check(const struct ubi_device *ubi,
168 		      const struct ubi_vtbl_record *vtbl)
169 {
170 	int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len;
171 	int upd_marker, err;
172 	uint32_t crc;
173 	const char *name;
174 
175 	for (i = 0; i < ubi->vtbl_slots; i++) {
176 		cond_resched();
177 
178 		reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
179 		alignment = be32_to_cpu(vtbl[i].alignment);
180 		data_pad = be32_to_cpu(vtbl[i].data_pad);
181 		upd_marker = vtbl[i].upd_marker;
182 		vol_type = vtbl[i].vol_type;
183 		name_len = be16_to_cpu(vtbl[i].name_len);
184 		name = &vtbl[i].name[0];
185 
186 		crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC);
187 		if (be32_to_cpu(vtbl[i].crc) != crc) {
188 			ubi_err("bad CRC at record %u: %#08x, not %#08x",
189 				 i, crc, be32_to_cpu(vtbl[i].crc));
190 			ubi_dump_vtbl_record(&vtbl[i], i);
191 			return 1;
192 		}
193 
194 		if (reserved_pebs == 0) {
195 			if (memcmp(&vtbl[i], &empty_vtbl_record,
196 						UBI_VTBL_RECORD_SIZE)) {
197 				err = 2;
198 				goto bad;
199 			}
200 			continue;
201 		}
202 
203 		if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 ||
204 		    name_len < 0) {
205 			err = 3;
206 			goto bad;
207 		}
208 
209 		if (alignment > ubi->leb_size || alignment == 0) {
210 			err = 4;
211 			goto bad;
212 		}
213 
214 		n = alignment & (ubi->min_io_size - 1);
215 		if (alignment != 1 && n) {
216 			err = 5;
217 			goto bad;
218 		}
219 
220 		n = ubi->leb_size % alignment;
221 		if (data_pad != n) {
222 			ubi_err("bad data_pad, has to be %d", n);
223 			err = 6;
224 			goto bad;
225 		}
226 
227 		if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
228 			err = 7;
229 			goto bad;
230 		}
231 
232 		if (upd_marker != 0 && upd_marker != 1) {
233 			err = 8;
234 			goto bad;
235 		}
236 
237 		if (reserved_pebs > ubi->good_peb_count) {
238 			ubi_err("too large reserved_pebs %d, good PEBs %d",
239 				reserved_pebs, ubi->good_peb_count);
240 			err = 9;
241 			goto bad;
242 		}
243 
244 		if (name_len > UBI_VOL_NAME_MAX) {
245 			err = 10;
246 			goto bad;
247 		}
248 
249 		if (name[0] == '\0') {
250 			err = 11;
251 			goto bad;
252 		}
253 
254 		if (name_len != strnlen(name, name_len + 1)) {
255 			err = 12;
256 			goto bad;
257 		}
258 	}
259 
260 	/* Checks that all names are unique */
261 	for (i = 0; i < ubi->vtbl_slots - 1; i++) {
262 		for (n = i + 1; n < ubi->vtbl_slots; n++) {
263 			int len1 = be16_to_cpu(vtbl[i].name_len);
264 			int len2 = be16_to_cpu(vtbl[n].name_len);
265 
266 			if (len1 > 0 && len1 == len2 &&
267 #ifndef __UBOOT__
268 			    !strncmp(vtbl[i].name, vtbl[n].name, len1)) {
269 #else
270 			    !strncmp((char *)vtbl[i].name, vtbl[n].name, len1)) {
271 #endif
272 				ubi_err("volumes %d and %d have the same name \"%s\"",
273 					i, n, vtbl[i].name);
274 				ubi_dump_vtbl_record(&vtbl[i], i);
275 				ubi_dump_vtbl_record(&vtbl[n], n);
276 				return -EINVAL;
277 			}
278 		}
279 	}
280 
281 	return 0;
282 
283 bad:
284 	ubi_err("volume table check failed: record %d, error %d", i, err);
285 	ubi_dump_vtbl_record(&vtbl[i], i);
286 	return -EINVAL;
287 }
288 
289 /**
290  * create_vtbl - create a copy of volume table.
291  * @ubi: UBI device description object
292  * @ai: attaching information
293  * @copy: number of the volume table copy
294  * @vtbl: contents of the volume table
295  *
296  * This function returns zero in case of success and a negative error code in
297  * case of failure.
298  */
299 static int create_vtbl(struct ubi_device *ubi, struct ubi_attach_info *ai,
300 		       int copy, void *vtbl)
301 {
302 	int err, tries = 0;
303 	struct ubi_vid_hdr *vid_hdr;
304 	struct ubi_ainf_peb *new_aeb;
305 
306 	dbg_gen("create volume table (copy #%d)", copy + 1);
307 
308 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
309 	if (!vid_hdr)
310 		return -ENOMEM;
311 
312 retry:
313 	new_aeb = ubi_early_get_peb(ubi, ai);
314 	if (IS_ERR(new_aeb)) {
315 		err = PTR_ERR(new_aeb);
316 		goto out_free;
317 	}
318 
319 	vid_hdr->vol_type = UBI_LAYOUT_VOLUME_TYPE;
320 	vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID);
321 	vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT;
322 	vid_hdr->data_size = vid_hdr->used_ebs =
323 			     vid_hdr->data_pad = cpu_to_be32(0);
324 	vid_hdr->lnum = cpu_to_be32(copy);
325 	vid_hdr->sqnum = cpu_to_be64(++ai->max_sqnum);
326 
327 	/* The EC header is already there, write the VID header */
328 	err = ubi_io_write_vid_hdr(ubi, new_aeb->pnum, vid_hdr);
329 	if (err)
330 		goto write_error;
331 
332 	/* Write the layout volume contents */
333 	err = ubi_io_write_data(ubi, vtbl, new_aeb->pnum, 0, ubi->vtbl_size);
334 	if (err)
335 		goto write_error;
336 
337 	/*
338 	 * And add it to the attaching information. Don't delete the old version
339 	 * of this LEB as it will be deleted and freed in 'ubi_add_to_av()'.
340 	 */
341 	err = ubi_add_to_av(ubi, ai, new_aeb->pnum, new_aeb->ec, vid_hdr, 0);
342 	kmem_cache_free(ai->aeb_slab_cache, new_aeb);
343 	ubi_free_vid_hdr(ubi, vid_hdr);
344 	return err;
345 
346 write_error:
347 	if (err == -EIO && ++tries <= 5) {
348 		/*
349 		 * Probably this physical eraseblock went bad, try to pick
350 		 * another one.
351 		 */
352 		list_add(&new_aeb->u.list, &ai->erase);
353 		goto retry;
354 	}
355 	kmem_cache_free(ai->aeb_slab_cache, new_aeb);
356 out_free:
357 	ubi_free_vid_hdr(ubi, vid_hdr);
358 	return err;
359 
360 }
361 
362 /**
363  * process_lvol - process the layout volume.
364  * @ubi: UBI device description object
365  * @ai: attaching information
366  * @av: layout volume attaching information
367  *
368  * This function is responsible for reading the layout volume, ensuring it is
369  * not corrupted, and recovering from corruptions if needed. Returns volume
370  * table in case of success and a negative error code in case of failure.
371  */
372 static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi,
373 					    struct ubi_attach_info *ai,
374 					    struct ubi_ainf_volume *av)
375 {
376 	int err;
377 	struct rb_node *rb;
378 	struct ubi_ainf_peb *aeb;
379 	struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL };
380 	int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1};
381 
382 	/*
383 	 * UBI goes through the following steps when it changes the layout
384 	 * volume:
385 	 * a. erase LEB 0;
386 	 * b. write new data to LEB 0;
387 	 * c. erase LEB 1;
388 	 * d. write new data to LEB 1.
389 	 *
390 	 * Before the change, both LEBs contain the same data.
391 	 *
392 	 * Due to unclean reboots, the contents of LEB 0 may be lost, but there
393 	 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not.
394 	 * Similarly, LEB 1 may be lost, but there should be LEB 0. And
395 	 * finally, unclean reboots may result in a situation when neither LEB
396 	 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB
397 	 * 0 contains more recent information.
398 	 *
399 	 * So the plan is to first check LEB 0. Then
400 	 * a. if LEB 0 is OK, it must be containing the most recent data; then
401 	 *    we compare it with LEB 1, and if they are different, we copy LEB
402 	 *    0 to LEB 1;
403 	 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1
404 	 *    to LEB 0.
405 	 */
406 
407 	dbg_gen("check layout volume");
408 
409 	/* Read both LEB 0 and LEB 1 into memory */
410 	ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
411 		leb[aeb->lnum] = vzalloc(ubi->vtbl_size);
412 		if (!leb[aeb->lnum]) {
413 			err = -ENOMEM;
414 			goto out_free;
415 		}
416 
417 		err = ubi_io_read_data(ubi, leb[aeb->lnum], aeb->pnum, 0,
418 				       ubi->vtbl_size);
419 		if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err))
420 			/*
421 			 * Scrub the PEB later. Note, -EBADMSG indicates an
422 			 * uncorrectable ECC error, but we have our own CRC and
423 			 * the data will be checked later. If the data is OK,
424 			 * the PEB will be scrubbed (because we set
425 			 * aeb->scrub). If the data is not OK, the contents of
426 			 * the PEB will be recovered from the second copy, and
427 			 * aeb->scrub will be cleared in
428 			 * 'ubi_add_to_av()'.
429 			 */
430 			aeb->scrub = 1;
431 		else if (err)
432 			goto out_free;
433 	}
434 
435 	err = -EINVAL;
436 	if (leb[0]) {
437 		leb_corrupted[0] = vtbl_check(ubi, leb[0]);
438 		if (leb_corrupted[0] < 0)
439 			goto out_free;
440 	}
441 
442 	if (!leb_corrupted[0]) {
443 		/* LEB 0 is OK */
444 		if (leb[1])
445 			leb_corrupted[1] = memcmp(leb[0], leb[1],
446 						  ubi->vtbl_size);
447 		if (leb_corrupted[1]) {
448 			ubi_warn("volume table copy #2 is corrupted");
449 			err = create_vtbl(ubi, ai, 1, leb[0]);
450 			if (err)
451 				goto out_free;
452 			ubi_msg("volume table was restored");
453 		}
454 
455 		/* Both LEB 1 and LEB 2 are OK and consistent */
456 		vfree(leb[1]);
457 		return leb[0];
458 	} else {
459 		/* LEB 0 is corrupted or does not exist */
460 		if (leb[1]) {
461 			leb_corrupted[1] = vtbl_check(ubi, leb[1]);
462 			if (leb_corrupted[1] < 0)
463 				goto out_free;
464 		}
465 		if (leb_corrupted[1]) {
466 			/* Both LEB 0 and LEB 1 are corrupted */
467 			ubi_err("both volume tables are corrupted");
468 			goto out_free;
469 		}
470 
471 		ubi_warn("volume table copy #1 is corrupted");
472 		err = create_vtbl(ubi, ai, 0, leb[1]);
473 		if (err)
474 			goto out_free;
475 		ubi_msg("volume table was restored");
476 
477 		vfree(leb[0]);
478 		return leb[1];
479 	}
480 
481 out_free:
482 	vfree(leb[0]);
483 	vfree(leb[1]);
484 	return ERR_PTR(err);
485 }
486 
487 /**
488  * create_empty_lvol - create empty layout volume.
489  * @ubi: UBI device description object
490  * @ai: attaching information
491  *
492  * This function returns volume table contents in case of success and a
493  * negative error code in case of failure.
494  */
495 static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi,
496 						 struct ubi_attach_info *ai)
497 {
498 	int i;
499 	struct ubi_vtbl_record *vtbl;
500 
501 	vtbl = vzalloc(ubi->vtbl_size);
502 	if (!vtbl)
503 		return ERR_PTR(-ENOMEM);
504 
505 	for (i = 0; i < ubi->vtbl_slots; i++)
506 		memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE);
507 
508 	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
509 		int err;
510 
511 		err = create_vtbl(ubi, ai, i, vtbl);
512 		if (err) {
513 			vfree(vtbl);
514 			return ERR_PTR(err);
515 		}
516 	}
517 
518 	return vtbl;
519 }
520 
521 /**
522  * init_volumes - initialize volume information for existing volumes.
523  * @ubi: UBI device description object
524  * @ai: scanning information
525  * @vtbl: volume table
526  *
527  * This function allocates volume description objects for existing volumes.
528  * Returns zero in case of success and a negative error code in case of
529  * failure.
530  */
531 static int init_volumes(struct ubi_device *ubi,
532 			const struct ubi_attach_info *ai,
533 			const struct ubi_vtbl_record *vtbl)
534 {
535 	int i, reserved_pebs = 0;
536 	struct ubi_ainf_volume *av;
537 	struct ubi_volume *vol;
538 
539 	for (i = 0; i < ubi->vtbl_slots; i++) {
540 		cond_resched();
541 
542 		if (be32_to_cpu(vtbl[i].reserved_pebs) == 0)
543 			continue; /* Empty record */
544 
545 		vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
546 		if (!vol)
547 			return -ENOMEM;
548 
549 		vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
550 		vol->alignment = be32_to_cpu(vtbl[i].alignment);
551 		vol->data_pad = be32_to_cpu(vtbl[i].data_pad);
552 		vol->upd_marker = vtbl[i].upd_marker;
553 		vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ?
554 					UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
555 		vol->name_len = be16_to_cpu(vtbl[i].name_len);
556 		vol->usable_leb_size = ubi->leb_size - vol->data_pad;
557 		memcpy(vol->name, vtbl[i].name, vol->name_len);
558 		vol->name[vol->name_len] = '\0';
559 		vol->vol_id = i;
560 
561 		if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) {
562 			/* Auto re-size flag may be set only for one volume */
563 			if (ubi->autoresize_vol_id != -1) {
564 				ubi_err("more than one auto-resize volume (%d and %d)",
565 					ubi->autoresize_vol_id, i);
566 				kfree(vol);
567 				return -EINVAL;
568 			}
569 
570 			ubi->autoresize_vol_id = i;
571 		}
572 
573 		ubi_assert(!ubi->volumes[i]);
574 		ubi->volumes[i] = vol;
575 		ubi->vol_count += 1;
576 		vol->ubi = ubi;
577 		reserved_pebs += vol->reserved_pebs;
578 
579 		/*
580 		 * In case of dynamic volume UBI knows nothing about how many
581 		 * data is stored there. So assume the whole volume is used.
582 		 */
583 		if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
584 			vol->used_ebs = vol->reserved_pebs;
585 			vol->last_eb_bytes = vol->usable_leb_size;
586 			vol->used_bytes =
587 				(long long)vol->used_ebs * vol->usable_leb_size;
588 			continue;
589 		}
590 
591 		/* Static volumes only */
592 		av = ubi_find_av(ai, i);
593 		if (!av) {
594 			/*
595 			 * No eraseblocks belonging to this volume found. We
596 			 * don't actually know whether this static volume is
597 			 * completely corrupted or just contains no data. And
598 			 * we cannot know this as long as data size is not
599 			 * stored on flash. So we just assume the volume is
600 			 * empty. FIXME: this should be handled.
601 			 */
602 			continue;
603 		}
604 
605 		if (av->leb_count != av->used_ebs) {
606 			/*
607 			 * We found a static volume which misses several
608 			 * eraseblocks. Treat it as corrupted.
609 			 */
610 			ubi_warn("static volume %d misses %d LEBs - corrupted",
611 				 av->vol_id, av->used_ebs - av->leb_count);
612 			vol->corrupted = 1;
613 			continue;
614 		}
615 
616 		vol->used_ebs = av->used_ebs;
617 		vol->used_bytes =
618 			(long long)(vol->used_ebs - 1) * vol->usable_leb_size;
619 		vol->used_bytes += av->last_data_size;
620 		vol->last_eb_bytes = av->last_data_size;
621 	}
622 
623 	/* And add the layout volume */
624 	vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
625 	if (!vol)
626 		return -ENOMEM;
627 
628 	vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS;
629 	vol->alignment = UBI_LAYOUT_VOLUME_ALIGN;
630 	vol->vol_type = UBI_DYNAMIC_VOLUME;
631 	vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1;
632 	memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1);
633 	vol->usable_leb_size = ubi->leb_size;
634 	vol->used_ebs = vol->reserved_pebs;
635 	vol->last_eb_bytes = vol->reserved_pebs;
636 	vol->used_bytes =
637 		(long long)vol->used_ebs * (ubi->leb_size - vol->data_pad);
638 	vol->vol_id = UBI_LAYOUT_VOLUME_ID;
639 	vol->ref_count = 1;
640 
641 	ubi_assert(!ubi->volumes[i]);
642 	ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol;
643 	reserved_pebs += vol->reserved_pebs;
644 	ubi->vol_count += 1;
645 	vol->ubi = ubi;
646 
647 	if (reserved_pebs > ubi->avail_pebs) {
648 		ubi_err("not enough PEBs, required %d, available %d",
649 			reserved_pebs, ubi->avail_pebs);
650 		if (ubi->corr_peb_count)
651 			ubi_err("%d PEBs are corrupted and not used",
652 				ubi->corr_peb_count);
653 	}
654 	ubi->rsvd_pebs += reserved_pebs;
655 	ubi->avail_pebs -= reserved_pebs;
656 
657 	return 0;
658 }
659 
660 /**
661  * check_av - check volume attaching information.
662  * @vol: UBI volume description object
663  * @av: volume attaching information
664  *
665  * This function returns zero if the volume attaching information is consistent
666  * to the data read from the volume tabla, and %-EINVAL if not.
667  */
668 static int check_av(const struct ubi_volume *vol,
669 		    const struct ubi_ainf_volume *av)
670 {
671 	int err;
672 
673 	if (av->highest_lnum >= vol->reserved_pebs) {
674 		err = 1;
675 		goto bad;
676 	}
677 	if (av->leb_count > vol->reserved_pebs) {
678 		err = 2;
679 		goto bad;
680 	}
681 	if (av->vol_type != vol->vol_type) {
682 		err = 3;
683 		goto bad;
684 	}
685 	if (av->used_ebs > vol->reserved_pebs) {
686 		err = 4;
687 		goto bad;
688 	}
689 	if (av->data_pad != vol->data_pad) {
690 		err = 5;
691 		goto bad;
692 	}
693 	return 0;
694 
695 bad:
696 	ubi_err("bad attaching information, error %d", err);
697 	ubi_dump_av(av);
698 	ubi_dump_vol_info(vol);
699 	return -EINVAL;
700 }
701 
702 /**
703  * check_attaching_info - check that attaching information.
704  * @ubi: UBI device description object
705  * @ai: attaching information
706  *
707  * Even though we protect on-flash data by CRC checksums, we still don't trust
708  * the media. This function ensures that attaching information is consistent to
709  * the information read from the volume table. Returns zero if the attaching
710  * information is OK and %-EINVAL if it is not.
711  */
712 static int check_attaching_info(const struct ubi_device *ubi,
713 			       struct ubi_attach_info *ai)
714 {
715 	int err, i;
716 	struct ubi_ainf_volume *av;
717 	struct ubi_volume *vol;
718 
719 	if (ai->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) {
720 		ubi_err("found %d volumes while attaching, maximum is %d + %d",
721 			ai->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots);
722 		return -EINVAL;
723 	}
724 
725 	if (ai->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT &&
726 	    ai->highest_vol_id < UBI_INTERNAL_VOL_START) {
727 		ubi_err("too large volume ID %d found", ai->highest_vol_id);
728 		return -EINVAL;
729 	}
730 
731 	for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
732 		cond_resched();
733 
734 		av = ubi_find_av(ai, i);
735 		vol = ubi->volumes[i];
736 		if (!vol) {
737 			if (av)
738 				ubi_remove_av(ai, av);
739 			continue;
740 		}
741 
742 		if (vol->reserved_pebs == 0) {
743 			ubi_assert(i < ubi->vtbl_slots);
744 
745 			if (!av)
746 				continue;
747 
748 			/*
749 			 * During attaching we found a volume which does not
750 			 * exist according to the information in the volume
751 			 * table. This must have happened due to an unclean
752 			 * reboot while the volume was being removed. Discard
753 			 * these eraseblocks.
754 			 */
755 			ubi_msg("finish volume %d removal", av->vol_id);
756 			ubi_remove_av(ai, av);
757 		} else if (av) {
758 			err = check_av(vol, av);
759 			if (err)
760 				return err;
761 		}
762 	}
763 
764 	return 0;
765 }
766 
767 /**
768  * ubi_read_volume_table - read the volume table.
769  * @ubi: UBI device description object
770  * @ai: attaching information
771  *
772  * This function reads volume table, checks it, recover from errors if needed,
773  * or creates it if needed. Returns zero in case of success and a negative
774  * error code in case of failure.
775  */
776 int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_attach_info *ai)
777 {
778 	int i, err;
779 	struct ubi_ainf_volume *av;
780 
781 	empty_vtbl_record.crc = cpu_to_be32(0xf116c36b);
782 
783 	/*
784 	 * The number of supported volumes is limited by the eraseblock size
785 	 * and by the UBI_MAX_VOLUMES constant.
786 	 */
787 	ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE;
788 	if (ubi->vtbl_slots > UBI_MAX_VOLUMES)
789 		ubi->vtbl_slots = UBI_MAX_VOLUMES;
790 
791 	ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE;
792 	ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size);
793 
794 	av = ubi_find_av(ai, UBI_LAYOUT_VOLUME_ID);
795 	if (!av) {
796 		/*
797 		 * No logical eraseblocks belonging to the layout volume were
798 		 * found. This could mean that the flash is just empty. In
799 		 * this case we create empty layout volume.
800 		 *
801 		 * But if flash is not empty this must be a corruption or the
802 		 * MTD device just contains garbage.
803 		 */
804 		if (ai->is_empty) {
805 			ubi->vtbl = create_empty_lvol(ubi, ai);
806 			if (IS_ERR(ubi->vtbl))
807 				return PTR_ERR(ubi->vtbl);
808 		} else {
809 			ubi_err("the layout volume was not found");
810 			return -EINVAL;
811 		}
812 	} else {
813 		if (av->leb_count > UBI_LAYOUT_VOLUME_EBS) {
814 			/* This must not happen with proper UBI images */
815 			ubi_err("too many LEBs (%d) in layout volume",
816 				av->leb_count);
817 			return -EINVAL;
818 		}
819 
820 		ubi->vtbl = process_lvol(ubi, ai, av);
821 		if (IS_ERR(ubi->vtbl))
822 			return PTR_ERR(ubi->vtbl);
823 	}
824 
825 	ubi->avail_pebs = ubi->good_peb_count - ubi->corr_peb_count;
826 
827 	/*
828 	 * The layout volume is OK, initialize the corresponding in-RAM data
829 	 * structures.
830 	 */
831 	err = init_volumes(ubi, ai, ubi->vtbl);
832 	if (err)
833 		goto out_free;
834 
835 	/*
836 	 * Make sure that the attaching information is consistent to the
837 	 * information stored in the volume table.
838 	 */
839 	err = check_attaching_info(ubi, ai);
840 	if (err)
841 		goto out_free;
842 
843 	return 0;
844 
845 out_free:
846 	vfree(ubi->vtbl);
847 	for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
848 		kfree(ubi->volumes[i]);
849 		ubi->volumes[i] = NULL;
850 	}
851 	return err;
852 }
853 
854 /**
855  * self_vtbl_check - check volume table.
856  * @ubi: UBI device description object
857  */
858 static void self_vtbl_check(const struct ubi_device *ubi)
859 {
860 	if (!ubi_dbg_chk_gen(ubi))
861 		return;
862 
863 	if (vtbl_check(ubi, ubi->vtbl)) {
864 		ubi_err("self-check failed");
865 		BUG();
866 	}
867 }
868