xref: /openbmc/u-boot/drivers/mtd/ubi/vtbl.c (revision 23ff8633)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2006, 2007
4  *
5  * SPDX-License-Identifier:	GPL-2.0+
6  *
7  * Author: Artem Bityutskiy (Битюцкий Артём)
8  */
9 
10 /*
11  * This file includes volume table manipulation code. The volume table is an
12  * on-flash table containing volume meta-data like name, number of reserved
13  * physical eraseblocks, type, etc. The volume table is stored in the so-called
14  * "layout volume".
15  *
16  * The layout volume is an internal volume which is organized as follows. It
17  * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical
18  * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each
19  * other. This redundancy guarantees robustness to unclean reboots. The volume
20  * table is basically an array of volume table records. Each record contains
21  * full information about the volume and protected by a CRC checksum. Note,
22  * nowadays we use the atomic LEB change operation when updating the volume
23  * table, so we do not really need 2 LEBs anymore, but we preserve the older
24  * design for the backward compatibility reasons.
25  *
26  * When the volume table is changed, it is first changed in RAM. Then LEB 0 is
27  * erased, and the updated volume table is written back to LEB 0. Then same for
28  * LEB 1. This scheme guarantees recoverability from unclean reboots.
29  *
30  * In this UBI implementation the on-flash volume table does not contain any
31  * information about how much data static volumes contain.
32  *
33  * But it would still be beneficial to store this information in the volume
34  * table. For example, suppose we have a static volume X, and all its physical
35  * eraseblocks became bad for some reasons. Suppose we are attaching the
36  * corresponding MTD device, for some reason we find no logical eraseblocks
37  * corresponding to the volume X. According to the volume table volume X does
38  * exist. So we don't know whether it is just empty or all its physical
39  * eraseblocks went bad. So we cannot alarm the user properly.
40  *
41  * The volume table also stores so-called "update marker", which is used for
42  * volume updates. Before updating the volume, the update marker is set, and
43  * after the update operation is finished, the update marker is cleared. So if
44  * the update operation was interrupted (e.g. by an unclean reboot) - the
45  * update marker is still there and we know that the volume's contents is
46  * damaged.
47  */
48 
49 #ifndef __UBOOT__
50 #include <linux/crc32.h>
51 #include <linux/err.h>
52 #include <linux/slab.h>
53 #include <asm/div64.h>
54 #else
55 #include <ubi_uboot.h>
56 #endif
57 
58 #include <linux/err.h>
59 #include "ubi.h"
60 
61 static void self_vtbl_check(const struct ubi_device *ubi);
62 
63 /* Empty volume table record */
64 static struct ubi_vtbl_record empty_vtbl_record;
65 
66 /**
67  * ubi_update_layout_vol - helper for updatting layout volumes on flash
68  * @ubi: UBI device description object
69  */
70 static int ubi_update_layout_vol(struct ubi_device *ubi)
71 {
72 	struct ubi_volume *layout_vol;
73 	int i, err;
74 
75 	layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)];
76 	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
77 		err = ubi_eba_atomic_leb_change(ubi, layout_vol, i, ubi->vtbl,
78 						ubi->vtbl_size);
79 		if (err)
80 			return err;
81 	}
82 
83 	return 0;
84 }
85 
86 /**
87  * ubi_change_vtbl_record - change volume table record.
88  * @ubi: UBI device description object
89  * @idx: table index to change
90  * @vtbl_rec: new volume table record
91  *
92  * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty
93  * volume table record is written. The caller does not have to calculate CRC of
94  * the record as it is done by this function. Returns zero in case of success
95  * and a negative error code in case of failure.
96  */
97 int ubi_change_vtbl_record(struct ubi_device *ubi, int idx,
98 			   struct ubi_vtbl_record *vtbl_rec)
99 {
100 	int err;
101 	uint32_t crc;
102 
103 	ubi_assert(idx >= 0 && idx < ubi->vtbl_slots);
104 
105 	if (!vtbl_rec)
106 		vtbl_rec = &empty_vtbl_record;
107 	else {
108 		crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC);
109 		vtbl_rec->crc = cpu_to_be32(crc);
110 	}
111 
112 	memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record));
113 	err = ubi_update_layout_vol(ubi);
114 
115 	self_vtbl_check(ubi);
116 	return err ? err : 0;
117 }
118 
119 /**
120  * ubi_vtbl_rename_volumes - rename UBI volumes in the volume table.
121  * @ubi: UBI device description object
122  * @rename_list: list of &struct ubi_rename_entry objects
123  *
124  * This function re-names multiple volumes specified in @req in the volume
125  * table. Returns zero in case of success and a negative error code in case of
126  * failure.
127  */
128 int ubi_vtbl_rename_volumes(struct ubi_device *ubi,
129 			    struct list_head *rename_list)
130 {
131 	struct ubi_rename_entry *re;
132 
133 	list_for_each_entry(re, rename_list, list) {
134 		uint32_t crc;
135 		struct ubi_volume *vol = re->desc->vol;
136 		struct ubi_vtbl_record *vtbl_rec = &ubi->vtbl[vol->vol_id];
137 
138 		if (re->remove) {
139 			memcpy(vtbl_rec, &empty_vtbl_record,
140 			       sizeof(struct ubi_vtbl_record));
141 			continue;
142 		}
143 
144 		vtbl_rec->name_len = cpu_to_be16(re->new_name_len);
145 		memcpy(vtbl_rec->name, re->new_name, re->new_name_len);
146 		memset(vtbl_rec->name + re->new_name_len, 0,
147 		       UBI_VOL_NAME_MAX + 1 - re->new_name_len);
148 		crc = crc32(UBI_CRC32_INIT, vtbl_rec,
149 			    UBI_VTBL_RECORD_SIZE_CRC);
150 		vtbl_rec->crc = cpu_to_be32(crc);
151 	}
152 
153 	return ubi_update_layout_vol(ubi);
154 }
155 
156 /**
157  * vtbl_check - check if volume table is not corrupted and sensible.
158  * @ubi: UBI device description object
159  * @vtbl: volume table
160  *
161  * This function returns zero if @vtbl is all right, %1 if CRC is incorrect,
162  * and %-EINVAL if it contains inconsistent data.
163  */
164 static int vtbl_check(const struct ubi_device *ubi,
165 		      const struct ubi_vtbl_record *vtbl)
166 {
167 	int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len;
168 	int upd_marker, err;
169 	uint32_t crc;
170 	const char *name;
171 
172 	for (i = 0; i < ubi->vtbl_slots; i++) {
173 		cond_resched();
174 
175 		reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
176 		alignment = be32_to_cpu(vtbl[i].alignment);
177 		data_pad = be32_to_cpu(vtbl[i].data_pad);
178 		upd_marker = vtbl[i].upd_marker;
179 		vol_type = vtbl[i].vol_type;
180 		name_len = be16_to_cpu(vtbl[i].name_len);
181 		name = &vtbl[i].name[0];
182 
183 		crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC);
184 		if (be32_to_cpu(vtbl[i].crc) != crc) {
185 			ubi_err(ubi, "bad CRC at record %u: %#08x, not %#08x",
186 				 i, crc, be32_to_cpu(vtbl[i].crc));
187 			ubi_dump_vtbl_record(&vtbl[i], i);
188 			return 1;
189 		}
190 
191 		if (reserved_pebs == 0) {
192 			if (memcmp(&vtbl[i], &empty_vtbl_record,
193 						UBI_VTBL_RECORD_SIZE)) {
194 				err = 2;
195 				goto bad;
196 			}
197 			continue;
198 		}
199 
200 		if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 ||
201 		    name_len < 0) {
202 			err = 3;
203 			goto bad;
204 		}
205 
206 		if (alignment > ubi->leb_size || alignment == 0) {
207 			err = 4;
208 			goto bad;
209 		}
210 
211 		n = alignment & (ubi->min_io_size - 1);
212 		if (alignment != 1 && n) {
213 			err = 5;
214 			goto bad;
215 		}
216 
217 		n = ubi->leb_size % alignment;
218 		if (data_pad != n) {
219 			ubi_err(ubi, "bad data_pad, has to be %d", n);
220 			err = 6;
221 			goto bad;
222 		}
223 
224 		if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
225 			err = 7;
226 			goto bad;
227 		}
228 
229 		if (upd_marker != 0 && upd_marker != 1) {
230 			err = 8;
231 			goto bad;
232 		}
233 
234 		if (reserved_pebs > ubi->good_peb_count) {
235 			ubi_err(ubi, "too large reserved_pebs %d, good PEBs %d",
236 				reserved_pebs, ubi->good_peb_count);
237 			err = 9;
238 			goto bad;
239 		}
240 
241 		if (name_len > UBI_VOL_NAME_MAX) {
242 			err = 10;
243 			goto bad;
244 		}
245 
246 		if (name[0] == '\0') {
247 			err = 11;
248 			goto bad;
249 		}
250 
251 		if (name_len != strnlen(name, name_len + 1)) {
252 			err = 12;
253 			goto bad;
254 		}
255 	}
256 
257 	/* Checks that all names are unique */
258 	for (i = 0; i < ubi->vtbl_slots - 1; i++) {
259 		for (n = i + 1; n < ubi->vtbl_slots; n++) {
260 			int len1 = be16_to_cpu(vtbl[i].name_len);
261 			int len2 = be16_to_cpu(vtbl[n].name_len);
262 
263 			if (len1 > 0 && len1 == len2 &&
264 #ifndef __UBOOT__
265 			    !strncmp(vtbl[i].name, vtbl[n].name, len1)) {
266 #else
267 			    !strncmp((char *)vtbl[i].name, vtbl[n].name, len1)) {
268 #endif
269 				ubi_err(ubi, "volumes %d and %d have the same name \"%s\"",
270 					i, n, vtbl[i].name);
271 				ubi_dump_vtbl_record(&vtbl[i], i);
272 				ubi_dump_vtbl_record(&vtbl[n], n);
273 				return -EINVAL;
274 			}
275 		}
276 	}
277 
278 	return 0;
279 
280 bad:
281 	ubi_err(ubi, "volume table check failed: record %d, error %d", i, err);
282 	ubi_dump_vtbl_record(&vtbl[i], i);
283 	return -EINVAL;
284 }
285 
286 /**
287  * create_vtbl - create a copy of volume table.
288  * @ubi: UBI device description object
289  * @ai: attaching information
290  * @copy: number of the volume table copy
291  * @vtbl: contents of the volume table
292  *
293  * This function returns zero in case of success and a negative error code in
294  * case of failure.
295  */
296 static int create_vtbl(struct ubi_device *ubi, struct ubi_attach_info *ai,
297 		       int copy, void *vtbl)
298 {
299 	int err, tries = 0;
300 	struct ubi_vid_hdr *vid_hdr;
301 	struct ubi_ainf_peb *new_aeb;
302 
303 	dbg_gen("create volume table (copy #%d)", copy + 1);
304 
305 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
306 	if (!vid_hdr)
307 		return -ENOMEM;
308 
309 retry:
310 	new_aeb = ubi_early_get_peb(ubi, ai);
311 	if (IS_ERR(new_aeb)) {
312 		err = PTR_ERR(new_aeb);
313 		goto out_free;
314 	}
315 
316 	vid_hdr->vol_type = UBI_LAYOUT_VOLUME_TYPE;
317 	vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID);
318 	vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT;
319 	vid_hdr->data_size = vid_hdr->used_ebs =
320 			     vid_hdr->data_pad = cpu_to_be32(0);
321 	vid_hdr->lnum = cpu_to_be32(copy);
322 	vid_hdr->sqnum = cpu_to_be64(++ai->max_sqnum);
323 
324 	/* The EC header is already there, write the VID header */
325 	err = ubi_io_write_vid_hdr(ubi, new_aeb->pnum, vid_hdr);
326 	if (err)
327 		goto write_error;
328 
329 	/* Write the layout volume contents */
330 	err = ubi_io_write_data(ubi, vtbl, new_aeb->pnum, 0, ubi->vtbl_size);
331 	if (err)
332 		goto write_error;
333 
334 	/*
335 	 * And add it to the attaching information. Don't delete the old version
336 	 * of this LEB as it will be deleted and freed in 'ubi_add_to_av()'.
337 	 */
338 	err = ubi_add_to_av(ubi, ai, new_aeb->pnum, new_aeb->ec, vid_hdr, 0);
339 	kmem_cache_free(ai->aeb_slab_cache, new_aeb);
340 	ubi_free_vid_hdr(ubi, vid_hdr);
341 	return err;
342 
343 write_error:
344 	if (err == -EIO && ++tries <= 5) {
345 		/*
346 		 * Probably this physical eraseblock went bad, try to pick
347 		 * another one.
348 		 */
349 		list_add(&new_aeb->u.list, &ai->erase);
350 		goto retry;
351 	}
352 	kmem_cache_free(ai->aeb_slab_cache, new_aeb);
353 out_free:
354 	ubi_free_vid_hdr(ubi, vid_hdr);
355 	return err;
356 
357 }
358 
359 /**
360  * process_lvol - process the layout volume.
361  * @ubi: UBI device description object
362  * @ai: attaching information
363  * @av: layout volume attaching information
364  *
365  * This function is responsible for reading the layout volume, ensuring it is
366  * not corrupted, and recovering from corruptions if needed. Returns volume
367  * table in case of success and a negative error code in case of failure.
368  */
369 static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi,
370 					    struct ubi_attach_info *ai,
371 					    struct ubi_ainf_volume *av)
372 {
373 	int err;
374 	struct rb_node *rb;
375 	struct ubi_ainf_peb *aeb;
376 	struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL };
377 	int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1};
378 
379 	/*
380 	 * UBI goes through the following steps when it changes the layout
381 	 * volume:
382 	 * a. erase LEB 0;
383 	 * b. write new data to LEB 0;
384 	 * c. erase LEB 1;
385 	 * d. write new data to LEB 1.
386 	 *
387 	 * Before the change, both LEBs contain the same data.
388 	 *
389 	 * Due to unclean reboots, the contents of LEB 0 may be lost, but there
390 	 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not.
391 	 * Similarly, LEB 1 may be lost, but there should be LEB 0. And
392 	 * finally, unclean reboots may result in a situation when neither LEB
393 	 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB
394 	 * 0 contains more recent information.
395 	 *
396 	 * So the plan is to first check LEB 0. Then
397 	 * a. if LEB 0 is OK, it must be containing the most recent data; then
398 	 *    we compare it with LEB 1, and if they are different, we copy LEB
399 	 *    0 to LEB 1;
400 	 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1
401 	 *    to LEB 0.
402 	 */
403 
404 	dbg_gen("check layout volume");
405 
406 	/* Read both LEB 0 and LEB 1 into memory */
407 	ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
408 		leb[aeb->lnum] = vzalloc(ubi->vtbl_size);
409 		if (!leb[aeb->lnum]) {
410 			err = -ENOMEM;
411 			goto out_free;
412 		}
413 
414 		err = ubi_io_read_data(ubi, leb[aeb->lnum], aeb->pnum, 0,
415 				       ubi->vtbl_size);
416 		if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err))
417 			/*
418 			 * Scrub the PEB later. Note, -EBADMSG indicates an
419 			 * uncorrectable ECC error, but we have our own CRC and
420 			 * the data will be checked later. If the data is OK,
421 			 * the PEB will be scrubbed (because we set
422 			 * aeb->scrub). If the data is not OK, the contents of
423 			 * the PEB will be recovered from the second copy, and
424 			 * aeb->scrub will be cleared in
425 			 * 'ubi_add_to_av()'.
426 			 */
427 			aeb->scrub = 1;
428 		else if (err)
429 			goto out_free;
430 	}
431 
432 	err = -EINVAL;
433 	if (leb[0]) {
434 		leb_corrupted[0] = vtbl_check(ubi, leb[0]);
435 		if (leb_corrupted[0] < 0)
436 			goto out_free;
437 	}
438 
439 	if (!leb_corrupted[0]) {
440 		/* LEB 0 is OK */
441 		if (leb[1])
442 			leb_corrupted[1] = memcmp(leb[0], leb[1],
443 						  ubi->vtbl_size);
444 		if (leb_corrupted[1]) {
445 			ubi_warn(ubi, "volume table copy #2 is corrupted");
446 			err = create_vtbl(ubi, ai, 1, leb[0]);
447 			if (err)
448 				goto out_free;
449 			ubi_msg(ubi, "volume table was restored");
450 		}
451 
452 		/* Both LEB 1 and LEB 2 are OK and consistent */
453 		vfree(leb[1]);
454 		return leb[0];
455 	} else {
456 		/* LEB 0 is corrupted or does not exist */
457 		if (leb[1]) {
458 			leb_corrupted[1] = vtbl_check(ubi, leb[1]);
459 			if (leb_corrupted[1] < 0)
460 				goto out_free;
461 		}
462 		if (leb_corrupted[1]) {
463 			/* Both LEB 0 and LEB 1 are corrupted */
464 			ubi_err(ubi, "both volume tables are corrupted");
465 			goto out_free;
466 		}
467 
468 		ubi_warn(ubi, "volume table copy #1 is corrupted");
469 		err = create_vtbl(ubi, ai, 0, leb[1]);
470 		if (err)
471 			goto out_free;
472 		ubi_msg(ubi, "volume table was restored");
473 
474 		vfree(leb[0]);
475 		return leb[1];
476 	}
477 
478 out_free:
479 	vfree(leb[0]);
480 	vfree(leb[1]);
481 	return ERR_PTR(err);
482 }
483 
484 /**
485  * create_empty_lvol - create empty layout volume.
486  * @ubi: UBI device description object
487  * @ai: attaching information
488  *
489  * This function returns volume table contents in case of success and a
490  * negative error code in case of failure.
491  */
492 static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi,
493 						 struct ubi_attach_info *ai)
494 {
495 	int i;
496 	struct ubi_vtbl_record *vtbl;
497 
498 	vtbl = vzalloc(ubi->vtbl_size);
499 	if (!vtbl)
500 		return ERR_PTR(-ENOMEM);
501 
502 	for (i = 0; i < ubi->vtbl_slots; i++)
503 		memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE);
504 
505 	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
506 		int err;
507 
508 		err = create_vtbl(ubi, ai, i, vtbl);
509 		if (err) {
510 			vfree(vtbl);
511 			return ERR_PTR(err);
512 		}
513 	}
514 
515 	return vtbl;
516 }
517 
518 /**
519  * init_volumes - initialize volume information for existing volumes.
520  * @ubi: UBI device description object
521  * @ai: scanning information
522  * @vtbl: volume table
523  *
524  * This function allocates volume description objects for existing volumes.
525  * Returns zero in case of success and a negative error code in case of
526  * failure.
527  */
528 static int init_volumes(struct ubi_device *ubi,
529 			const struct ubi_attach_info *ai,
530 			const struct ubi_vtbl_record *vtbl)
531 {
532 	int i, reserved_pebs = 0;
533 	struct ubi_ainf_volume *av;
534 	struct ubi_volume *vol;
535 
536 	for (i = 0; i < ubi->vtbl_slots; i++) {
537 		cond_resched();
538 
539 		if (be32_to_cpu(vtbl[i].reserved_pebs) == 0)
540 			continue; /* Empty record */
541 
542 		vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
543 		if (!vol)
544 			return -ENOMEM;
545 
546 		vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
547 		vol->alignment = be32_to_cpu(vtbl[i].alignment);
548 		vol->data_pad = be32_to_cpu(vtbl[i].data_pad);
549 		vol->upd_marker = vtbl[i].upd_marker;
550 		vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ?
551 					UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
552 		vol->name_len = be16_to_cpu(vtbl[i].name_len);
553 		vol->usable_leb_size = ubi->leb_size - vol->data_pad;
554 		memcpy(vol->name, vtbl[i].name, vol->name_len);
555 		vol->name[vol->name_len] = '\0';
556 		vol->vol_id = i;
557 
558 		if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) {
559 			/* Auto re-size flag may be set only for one volume */
560 			if (ubi->autoresize_vol_id != -1) {
561 				ubi_err(ubi, "more than one auto-resize volume (%d and %d)",
562 					ubi->autoresize_vol_id, i);
563 				kfree(vol);
564 				return -EINVAL;
565 			}
566 
567 			ubi->autoresize_vol_id = i;
568 		}
569 
570 		ubi_assert(!ubi->volumes[i]);
571 		ubi->volumes[i] = vol;
572 		ubi->vol_count += 1;
573 		vol->ubi = ubi;
574 		reserved_pebs += vol->reserved_pebs;
575 
576 		/*
577 		 * In case of dynamic volume UBI knows nothing about how many
578 		 * data is stored there. So assume the whole volume is used.
579 		 */
580 		if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
581 			vol->used_ebs = vol->reserved_pebs;
582 			vol->last_eb_bytes = vol->usable_leb_size;
583 			vol->used_bytes =
584 				(long long)vol->used_ebs * vol->usable_leb_size;
585 			continue;
586 		}
587 
588 		/* Static volumes only */
589 		av = ubi_find_av(ai, i);
590 		if (!av || !av->leb_count) {
591 			/*
592 			 * No eraseblocks belonging to this volume found. We
593 			 * don't actually know whether this static volume is
594 			 * completely corrupted or just contains no data. And
595 			 * we cannot know this as long as data size is not
596 			 * stored on flash. So we just assume the volume is
597 			 * empty. FIXME: this should be handled.
598 			 */
599 			continue;
600 		}
601 
602 		if (av->leb_count != av->used_ebs) {
603 			/*
604 			 * We found a static volume which misses several
605 			 * eraseblocks. Treat it as corrupted.
606 			 */
607 			ubi_warn(ubi, "static volume %d misses %d LEBs - corrupted",
608 				 av->vol_id, av->used_ebs - av->leb_count);
609 			vol->corrupted = 1;
610 			continue;
611 		}
612 
613 		vol->used_ebs = av->used_ebs;
614 		vol->used_bytes =
615 			(long long)(vol->used_ebs - 1) * vol->usable_leb_size;
616 		vol->used_bytes += av->last_data_size;
617 		vol->last_eb_bytes = av->last_data_size;
618 	}
619 
620 	/* And add the layout volume */
621 	vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
622 	if (!vol)
623 		return -ENOMEM;
624 
625 	vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS;
626 	vol->alignment = UBI_LAYOUT_VOLUME_ALIGN;
627 	vol->vol_type = UBI_DYNAMIC_VOLUME;
628 	vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1;
629 	memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1);
630 	vol->usable_leb_size = ubi->leb_size;
631 	vol->used_ebs = vol->reserved_pebs;
632 	vol->last_eb_bytes = vol->reserved_pebs;
633 	vol->used_bytes =
634 		(long long)vol->used_ebs * (ubi->leb_size - vol->data_pad);
635 	vol->vol_id = UBI_LAYOUT_VOLUME_ID;
636 	vol->ref_count = 1;
637 
638 	ubi_assert(!ubi->volumes[i]);
639 	ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol;
640 	reserved_pebs += vol->reserved_pebs;
641 	ubi->vol_count += 1;
642 	vol->ubi = ubi;
643 
644 	if (reserved_pebs > ubi->avail_pebs) {
645 		ubi_err(ubi, "not enough PEBs, required %d, available %d",
646 			reserved_pebs, ubi->avail_pebs);
647 		if (ubi->corr_peb_count)
648 			ubi_err(ubi, "%d PEBs are corrupted and not used",
649 				ubi->corr_peb_count);
650 	}
651 	ubi->rsvd_pebs += reserved_pebs;
652 	ubi->avail_pebs -= reserved_pebs;
653 
654 	return 0;
655 }
656 
657 /**
658  * check_av - check volume attaching information.
659  * @vol: UBI volume description object
660  * @av: volume attaching information
661  *
662  * This function returns zero if the volume attaching information is consistent
663  * to the data read from the volume tabla, and %-EINVAL if not.
664  */
665 static int check_av(const struct ubi_volume *vol,
666 		    const struct ubi_ainf_volume *av)
667 {
668 	int err;
669 
670 	if (av->highest_lnum >= vol->reserved_pebs) {
671 		err = 1;
672 		goto bad;
673 	}
674 	if (av->leb_count > vol->reserved_pebs) {
675 		err = 2;
676 		goto bad;
677 	}
678 	if (av->vol_type != vol->vol_type) {
679 		err = 3;
680 		goto bad;
681 	}
682 	if (av->used_ebs > vol->reserved_pebs) {
683 		err = 4;
684 		goto bad;
685 	}
686 	if (av->data_pad != vol->data_pad) {
687 		err = 5;
688 		goto bad;
689 	}
690 	return 0;
691 
692 bad:
693 	ubi_err(vol->ubi, "bad attaching information, error %d", err);
694 	ubi_dump_av(av);
695 	ubi_dump_vol_info(vol);
696 	return -EINVAL;
697 }
698 
699 /**
700  * check_attaching_info - check that attaching information.
701  * @ubi: UBI device description object
702  * @ai: attaching information
703  *
704  * Even though we protect on-flash data by CRC checksums, we still don't trust
705  * the media. This function ensures that attaching information is consistent to
706  * the information read from the volume table. Returns zero if the attaching
707  * information is OK and %-EINVAL if it is not.
708  */
709 static int check_attaching_info(const struct ubi_device *ubi,
710 			       struct ubi_attach_info *ai)
711 {
712 	int err, i;
713 	struct ubi_ainf_volume *av;
714 	struct ubi_volume *vol;
715 
716 	if (ai->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) {
717 		ubi_err(ubi, "found %d volumes while attaching, maximum is %d + %d",
718 			ai->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots);
719 		return -EINVAL;
720 	}
721 
722 	if (ai->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT &&
723 	    ai->highest_vol_id < UBI_INTERNAL_VOL_START) {
724 		ubi_err(ubi, "too large volume ID %d found",
725 			ai->highest_vol_id);
726 		return -EINVAL;
727 	}
728 
729 	for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
730 		cond_resched();
731 
732 		av = ubi_find_av(ai, i);
733 		vol = ubi->volumes[i];
734 		if (!vol) {
735 			if (av)
736 				ubi_remove_av(ai, av);
737 			continue;
738 		}
739 
740 		if (vol->reserved_pebs == 0) {
741 			ubi_assert(i < ubi->vtbl_slots);
742 
743 			if (!av)
744 				continue;
745 
746 			/*
747 			 * During attaching we found a volume which does not
748 			 * exist according to the information in the volume
749 			 * table. This must have happened due to an unclean
750 			 * reboot while the volume was being removed. Discard
751 			 * these eraseblocks.
752 			 */
753 			ubi_msg(ubi, "finish volume %d removal", av->vol_id);
754 			ubi_remove_av(ai, av);
755 		} else if (av) {
756 			err = check_av(vol, av);
757 			if (err)
758 				return err;
759 		}
760 	}
761 
762 	return 0;
763 }
764 
765 /**
766  * ubi_read_volume_table - read the volume table.
767  * @ubi: UBI device description object
768  * @ai: attaching information
769  *
770  * This function reads volume table, checks it, recover from errors if needed,
771  * or creates it if needed. Returns zero in case of success and a negative
772  * error code in case of failure.
773  */
774 int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_attach_info *ai)
775 {
776 	int i, err;
777 	struct ubi_ainf_volume *av;
778 
779 	empty_vtbl_record.crc = cpu_to_be32(0xf116c36b);
780 
781 	/*
782 	 * The number of supported volumes is limited by the eraseblock size
783 	 * and by the UBI_MAX_VOLUMES constant.
784 	 */
785 	ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE;
786 	if (ubi->vtbl_slots > UBI_MAX_VOLUMES)
787 		ubi->vtbl_slots = UBI_MAX_VOLUMES;
788 
789 	ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE;
790 	ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size);
791 
792 	av = ubi_find_av(ai, UBI_LAYOUT_VOLUME_ID);
793 	if (!av) {
794 		/*
795 		 * No logical eraseblocks belonging to the layout volume were
796 		 * found. This could mean that the flash is just empty. In
797 		 * this case we create empty layout volume.
798 		 *
799 		 * But if flash is not empty this must be a corruption or the
800 		 * MTD device just contains garbage.
801 		 */
802 		if (ai->is_empty) {
803 			ubi->vtbl = create_empty_lvol(ubi, ai);
804 			if (IS_ERR(ubi->vtbl))
805 				return PTR_ERR(ubi->vtbl);
806 		} else {
807 			ubi_err(ubi, "the layout volume was not found");
808 			return -EINVAL;
809 		}
810 	} else {
811 		if (av->leb_count > UBI_LAYOUT_VOLUME_EBS) {
812 			/* This must not happen with proper UBI images */
813 			ubi_err(ubi, "too many LEBs (%d) in layout volume",
814 				av->leb_count);
815 			return -EINVAL;
816 		}
817 
818 		ubi->vtbl = process_lvol(ubi, ai, av);
819 		if (IS_ERR(ubi->vtbl))
820 			return PTR_ERR(ubi->vtbl);
821 	}
822 
823 	ubi->avail_pebs = ubi->good_peb_count - ubi->corr_peb_count;
824 
825 	/*
826 	 * The layout volume is OK, initialize the corresponding in-RAM data
827 	 * structures.
828 	 */
829 	err = init_volumes(ubi, ai, ubi->vtbl);
830 	if (err)
831 		goto out_free;
832 
833 	/*
834 	 * Make sure that the attaching information is consistent to the
835 	 * information stored in the volume table.
836 	 */
837 	err = check_attaching_info(ubi, ai);
838 	if (err)
839 		goto out_free;
840 
841 	return 0;
842 
843 out_free:
844 	vfree(ubi->vtbl);
845 	for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
846 		kfree(ubi->volumes[i]);
847 		ubi->volumes[i] = NULL;
848 	}
849 	return err;
850 }
851 
852 /**
853  * self_vtbl_check - check volume table.
854  * @ubi: UBI device description object
855  */
856 static void self_vtbl_check(const struct ubi_device *ubi)
857 {
858 	if (!ubi_dbg_chk_gen(ubi))
859 		return;
860 
861 	if (vtbl_check(ubi, ubi->vtbl)) {
862 		ubi_err(ubi, "self-check failed");
863 		BUG();
864 	}
865 }
866