1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * Copyright (c) Nokia Corporation, 2006 4 * 5 * SPDX-License-Identifier: GPL-2.0+ 6 * 7 * Author: Artem Bityutskiy (Битюцкий Артём) 8 * 9 * Jan 2007: Alexander Schmidt, hacked per-volume update. 10 */ 11 12 /* 13 * This file contains implementation of the volume update and atomic LEB change 14 * functionality. 15 * 16 * The update operation is based on the per-volume update marker which is 17 * stored in the volume table. The update marker is set before the update 18 * starts, and removed after the update has been finished. So if the update was 19 * interrupted by an unclean re-boot or due to some other reasons, the update 20 * marker stays on the flash media and UBI finds it when it attaches the MTD 21 * device next time. If the update marker is set for a volume, the volume is 22 * treated as damaged and most I/O operations are prohibited. Only a new update 23 * operation is allowed. 24 * 25 * Note, in general it is possible to implement the update operation as a 26 * transaction with a roll-back capability. 27 */ 28 29 #ifdef UBI_LINUX 30 #include <linux/err.h> 31 #include <asm/uaccess.h> 32 #include <asm/div64.h> 33 #endif 34 35 #include <ubi_uboot.h> 36 #include "ubi.h" 37 38 /** 39 * set_update_marker - set update marker. 40 * @ubi: UBI device description object 41 * @vol: volume description object 42 * 43 * This function sets the update marker flag for volume @vol. Returns zero 44 * in case of success and a negative error code in case of failure. 45 */ 46 static int set_update_marker(struct ubi_device *ubi, struct ubi_volume *vol) 47 { 48 int err; 49 struct ubi_vtbl_record vtbl_rec; 50 51 dbg_msg("set update marker for volume %d", vol->vol_id); 52 53 if (vol->upd_marker) { 54 ubi_assert(ubi->vtbl[vol->vol_id].upd_marker); 55 dbg_msg("already set"); 56 return 0; 57 } 58 59 memcpy(&vtbl_rec, &ubi->vtbl[vol->vol_id], 60 sizeof(struct ubi_vtbl_record)); 61 vtbl_rec.upd_marker = 1; 62 63 mutex_lock(&ubi->volumes_mutex); 64 err = ubi_change_vtbl_record(ubi, vol->vol_id, &vtbl_rec); 65 mutex_unlock(&ubi->volumes_mutex); 66 vol->upd_marker = 1; 67 return err; 68 } 69 70 /** 71 * clear_update_marker - clear update marker. 72 * @ubi: UBI device description object 73 * @vol: volume description object 74 * @bytes: new data size in bytes 75 * 76 * This function clears the update marker for volume @vol, sets new volume 77 * data size and clears the "corrupted" flag (static volumes only). Returns 78 * zero in case of success and a negative error code in case of failure. 79 */ 80 static int clear_update_marker(struct ubi_device *ubi, struct ubi_volume *vol, 81 long long bytes) 82 { 83 int err; 84 uint64_t tmp; 85 struct ubi_vtbl_record vtbl_rec; 86 87 dbg_msg("clear update marker for volume %d", vol->vol_id); 88 89 memcpy(&vtbl_rec, &ubi->vtbl[vol->vol_id], 90 sizeof(struct ubi_vtbl_record)); 91 ubi_assert(vol->upd_marker && vtbl_rec.upd_marker); 92 vtbl_rec.upd_marker = 0; 93 94 if (vol->vol_type == UBI_STATIC_VOLUME) { 95 vol->corrupted = 0; 96 vol->used_bytes = tmp = bytes; 97 vol->last_eb_bytes = do_div(tmp, vol->usable_leb_size); 98 vol->used_ebs = tmp; 99 if (vol->last_eb_bytes) 100 vol->used_ebs += 1; 101 else 102 vol->last_eb_bytes = vol->usable_leb_size; 103 } 104 105 mutex_lock(&ubi->volumes_mutex); 106 err = ubi_change_vtbl_record(ubi, vol->vol_id, &vtbl_rec); 107 mutex_unlock(&ubi->volumes_mutex); 108 vol->upd_marker = 0; 109 return err; 110 } 111 112 /** 113 * ubi_start_update - start volume update. 114 * @ubi: UBI device description object 115 * @vol: volume description object 116 * @bytes: update bytes 117 * 118 * This function starts volume update operation. If @bytes is zero, the volume 119 * is just wiped out. Returns zero in case of success and a negative error code 120 * in case of failure. 121 */ 122 int ubi_start_update(struct ubi_device *ubi, struct ubi_volume *vol, 123 long long bytes) 124 { 125 int i, err; 126 uint64_t tmp; 127 128 dbg_msg("start update of volume %d, %llu bytes", vol->vol_id, bytes); 129 ubi_assert(!vol->updating && !vol->changing_leb); 130 vol->updating = 1; 131 132 err = set_update_marker(ubi, vol); 133 if (err) 134 return err; 135 136 /* Before updating - wipe out the volume */ 137 for (i = 0; i < vol->reserved_pebs; i++) { 138 err = ubi_eba_unmap_leb(ubi, vol, i); 139 if (err) 140 return err; 141 } 142 143 if (bytes == 0) { 144 err = clear_update_marker(ubi, vol, 0); 145 if (err) 146 return err; 147 err = ubi_wl_flush(ubi); 148 if (!err) 149 vol->updating = 0; 150 } 151 152 vol->upd_buf = vmalloc(ubi->leb_size); 153 if (!vol->upd_buf) 154 return -ENOMEM; 155 156 tmp = bytes; 157 vol->upd_ebs = !!do_div(tmp, vol->usable_leb_size); 158 vol->upd_ebs += tmp; 159 vol->upd_bytes = bytes; 160 vol->upd_received = 0; 161 return 0; 162 } 163 164 /** 165 * ubi_start_leb_change - start atomic LEB change. 166 * @ubi: UBI device description object 167 * @vol: volume description object 168 * @req: operation request 169 * 170 * This function starts atomic LEB change operation. Returns zero in case of 171 * success and a negative error code in case of failure. 172 */ 173 int ubi_start_leb_change(struct ubi_device *ubi, struct ubi_volume *vol, 174 const struct ubi_leb_change_req *req) 175 { 176 ubi_assert(!vol->updating && !vol->changing_leb); 177 178 dbg_msg("start changing LEB %d:%d, %u bytes", 179 vol->vol_id, req->lnum, req->bytes); 180 if (req->bytes == 0) 181 return ubi_eba_atomic_leb_change(ubi, vol, req->lnum, NULL, 0, 182 req->dtype); 183 184 vol->upd_bytes = req->bytes; 185 vol->upd_received = 0; 186 vol->changing_leb = 1; 187 vol->ch_lnum = req->lnum; 188 vol->ch_dtype = req->dtype; 189 190 vol->upd_buf = vmalloc(req->bytes); 191 if (!vol->upd_buf) 192 return -ENOMEM; 193 194 return 0; 195 } 196 197 /** 198 * write_leb - write update data. 199 * @ubi: UBI device description object 200 * @vol: volume description object 201 * @lnum: logical eraseblock number 202 * @buf: data to write 203 * @len: data size 204 * @used_ebs: how many logical eraseblocks will this volume contain (static 205 * volumes only) 206 * 207 * This function writes update data to corresponding logical eraseblock. In 208 * case of dynamic volume, this function checks if the data contains 0xFF bytes 209 * at the end. If yes, the 0xFF bytes are cut and not written. So if the whole 210 * buffer contains only 0xFF bytes, the LEB is left unmapped. 211 * 212 * The reason why we skip the trailing 0xFF bytes in case of dynamic volume is 213 * that we want to make sure that more data may be appended to the logical 214 * eraseblock in future. Indeed, writing 0xFF bytes may have side effects and 215 * this PEB won't be writable anymore. So if one writes the file-system image 216 * to the UBI volume where 0xFFs mean free space - UBI makes sure this free 217 * space is writable after the update. 218 * 219 * We do not do this for static volumes because they are read-only. But this 220 * also cannot be done because we have to store per-LEB CRC and the correct 221 * data length. 222 * 223 * This function returns zero in case of success and a negative error code in 224 * case of failure. 225 */ 226 static int write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, 227 void *buf, int len, int used_ebs) 228 { 229 int err; 230 231 if (vol->vol_type == UBI_DYNAMIC_VOLUME) { 232 int l = ALIGN(len, ubi->min_io_size); 233 234 memset(buf + len, 0xFF, l - len); 235 len = ubi_calc_data_len(ubi, buf, l); 236 if (len == 0) { 237 dbg_msg("all %d bytes contain 0xFF - skip", len); 238 return 0; 239 } 240 241 err = ubi_eba_write_leb(ubi, vol, lnum, buf, 0, len, UBI_UNKNOWN); 242 } else { 243 /* 244 * When writing static volume, and this is the last logical 245 * eraseblock, the length (@len) does not have to be aligned to 246 * the minimal flash I/O unit. The 'ubi_eba_write_leb_st()' 247 * function accepts exact (unaligned) length and stores it in 248 * the VID header. And it takes care of proper alignment by 249 * padding the buffer. Here we just make sure the padding will 250 * contain zeros, not random trash. 251 */ 252 memset(buf + len, 0, vol->usable_leb_size - len); 253 err = ubi_eba_write_leb_st(ubi, vol, lnum, buf, len, 254 UBI_UNKNOWN, used_ebs); 255 } 256 257 return err; 258 } 259 260 /** 261 * ubi_more_update_data - write more update data. 262 * @vol: volume description object 263 * @buf: write data (user-space memory buffer) 264 * @count: how much bytes to write 265 * 266 * This function writes more data to the volume which is being updated. It may 267 * be called arbitrary number of times until all the update data arriveis. This 268 * function returns %0 in case of success, number of bytes written during the 269 * last call if the whole volume update has been successfully finished, and a 270 * negative error code in case of failure. 271 */ 272 int ubi_more_update_data(struct ubi_device *ubi, struct ubi_volume *vol, 273 const void __user *buf, int count) 274 { 275 uint64_t tmp; 276 int lnum, offs, err = 0, len, to_write = count; 277 278 dbg_msg("write %d of %lld bytes, %lld already passed", 279 count, vol->upd_bytes, vol->upd_received); 280 281 if (ubi->ro_mode) 282 return -EROFS; 283 284 tmp = vol->upd_received; 285 offs = do_div(tmp, vol->usable_leb_size); 286 lnum = tmp; 287 288 if (vol->upd_received + count > vol->upd_bytes) 289 to_write = count = vol->upd_bytes - vol->upd_received; 290 291 /* 292 * When updating volumes, we accumulate whole logical eraseblock of 293 * data and write it at once. 294 */ 295 if (offs != 0) { 296 /* 297 * This is a write to the middle of the logical eraseblock. We 298 * copy the data to our update buffer and wait for more data or 299 * flush it if the whole eraseblock is written or the update 300 * is finished. 301 */ 302 303 len = vol->usable_leb_size - offs; 304 if (len > count) 305 len = count; 306 307 err = copy_from_user(vol->upd_buf + offs, buf, len); 308 if (err) 309 return -EFAULT; 310 311 if (offs + len == vol->usable_leb_size || 312 vol->upd_received + len == vol->upd_bytes) { 313 int flush_len = offs + len; 314 315 /* 316 * OK, we gathered either the whole eraseblock or this 317 * is the last chunk, it's time to flush the buffer. 318 */ 319 ubi_assert(flush_len <= vol->usable_leb_size); 320 err = write_leb(ubi, vol, lnum, vol->upd_buf, flush_len, 321 vol->upd_ebs); 322 if (err) 323 return err; 324 } 325 326 vol->upd_received += len; 327 count -= len; 328 buf += len; 329 lnum += 1; 330 } 331 332 /* 333 * If we've got more to write, let's continue. At this point we know we 334 * are starting from the beginning of an eraseblock. 335 */ 336 while (count) { 337 if (count > vol->usable_leb_size) 338 len = vol->usable_leb_size; 339 else 340 len = count; 341 342 err = copy_from_user(vol->upd_buf, buf, len); 343 if (err) 344 return -EFAULT; 345 346 if (len == vol->usable_leb_size || 347 vol->upd_received + len == vol->upd_bytes) { 348 err = write_leb(ubi, vol, lnum, vol->upd_buf, 349 len, vol->upd_ebs); 350 if (err) 351 break; 352 } 353 354 vol->upd_received += len; 355 count -= len; 356 lnum += 1; 357 buf += len; 358 } 359 360 ubi_assert(vol->upd_received <= vol->upd_bytes); 361 if (vol->upd_received == vol->upd_bytes) { 362 /* The update is finished, clear the update marker */ 363 err = clear_update_marker(ubi, vol, vol->upd_bytes); 364 if (err) 365 return err; 366 err = ubi_wl_flush(ubi); 367 if (err == 0) { 368 vol->updating = 0; 369 err = to_write; 370 vfree(vol->upd_buf); 371 } 372 } 373 374 return err; 375 } 376 377 /** 378 * ubi_more_leb_change_data - accept more data for atomic LEB change. 379 * @vol: volume description object 380 * @buf: write data (user-space memory buffer) 381 * @count: how much bytes to write 382 * 383 * This function accepts more data to the volume which is being under the 384 * "atomic LEB change" operation. It may be called arbitrary number of times 385 * until all data arrives. This function returns %0 in case of success, number 386 * of bytes written during the last call if the whole "atomic LEB change" 387 * operation has been successfully finished, and a negative error code in case 388 * of failure. 389 */ 390 int ubi_more_leb_change_data(struct ubi_device *ubi, struct ubi_volume *vol, 391 const void __user *buf, int count) 392 { 393 int err; 394 395 dbg_msg("write %d of %lld bytes, %lld already passed", 396 count, vol->upd_bytes, vol->upd_received); 397 398 if (ubi->ro_mode) 399 return -EROFS; 400 401 if (vol->upd_received + count > vol->upd_bytes) 402 count = vol->upd_bytes - vol->upd_received; 403 404 err = copy_from_user(vol->upd_buf + vol->upd_received, buf, count); 405 if (err) 406 return -EFAULT; 407 408 vol->upd_received += count; 409 410 if (vol->upd_received == vol->upd_bytes) { 411 int len = ALIGN((int)vol->upd_bytes, ubi->min_io_size); 412 413 memset(vol->upd_buf + vol->upd_bytes, 0xFF, len - vol->upd_bytes); 414 len = ubi_calc_data_len(ubi, vol->upd_buf, len); 415 err = ubi_eba_atomic_leb_change(ubi, vol, vol->ch_lnum, 416 vol->upd_buf, len, UBI_UNKNOWN); 417 if (err) 418 return err; 419 } 420 421 ubi_assert(vol->upd_received <= vol->upd_bytes); 422 if (vol->upd_received == vol->upd_bytes) { 423 vol->changing_leb = 0; 424 err = count; 425 vfree(vol->upd_buf); 426 } 427 428 return err; 429 } 430