xref: /openbmc/u-boot/drivers/mtd/ubi/io.c (revision fd697ecf5d1797180c29328b013d48ee3a788e03)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2006, 2007
4  * SPDX-License-Identifier:	GPL-2.0+
5  *
6  * Author: Artem Bityutskiy (Битюцкий Артём)
7  */
8 
9 /*
10  * UBI input/output sub-system.
11  *
12  * This sub-system provides a uniform way to work with all kinds of the
13  * underlying MTD devices. It also implements handy functions for reading and
14  * writing UBI headers.
15  *
16  * We are trying to have a paranoid mindset and not to trust to what we read
17  * from the flash media in order to be more secure and robust. So this
18  * sub-system validates every single header it reads from the flash media.
19  *
20  * Some words about how the eraseblock headers are stored.
21  *
22  * The erase counter header is always stored at offset zero. By default, the
23  * VID header is stored after the EC header at the closest aligned offset
24  * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
25  * header at the closest aligned offset. But this default layout may be
26  * changed. For example, for different reasons (e.g., optimization) UBI may be
27  * asked to put the VID header at further offset, and even at an unaligned
28  * offset. Of course, if the offset of the VID header is unaligned, UBI adds
29  * proper padding in front of it. Data offset may also be changed but it has to
30  * be aligned.
31  *
32  * About minimal I/O units. In general, UBI assumes flash device model where
33  * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
34  * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
35  * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
36  * (smaller) minimal I/O unit size for EC and VID headers to make it possible
37  * to do different optimizations.
38  *
39  * This is extremely useful in case of NAND flashes which admit of several
40  * write operations to one NAND page. In this case UBI can fit EC and VID
41  * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
42  * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
43  * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
44  * users.
45  *
46  * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
47  * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
48  * headers.
49  *
50  * Q: why not just to treat sub-page as a minimal I/O unit of this flash
51  * device, e.g., make @ubi->min_io_size = 512 in the example above?
52  *
53  * A: because when writing a sub-page, MTD still writes a full 2K page but the
54  * bytes which are not relevant to the sub-page are 0xFF. So, basically,
55  * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
56  * Thus, we prefer to use sub-pages only for EC and VID headers.
57  *
58  * As it was noted above, the VID header may start at a non-aligned offset.
59  * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
60  * the VID header may reside at offset 1984 which is the last 64 bytes of the
61  * last sub-page (EC header is always at offset zero). This causes some
62  * difficulties when reading and writing VID headers.
63  *
64  * Suppose we have a 64-byte buffer and we read a VID header at it. We change
65  * the data and want to write this VID header out. As we can only write in
66  * 512-byte chunks, we have to allocate one more buffer and copy our VID header
67  * to offset 448 of this buffer.
68  *
69  * The I/O sub-system does the following trick in order to avoid this extra
70  * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
71  * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
72  * When the VID header is being written out, it shifts the VID header pointer
73  * back and writes the whole sub-page.
74  */
75 
76 #ifndef __UBOOT__
77 #include <linux/crc32.h>
78 #include <linux/err.h>
79 #include <linux/slab.h>
80 #else
81 #include <ubi_uboot.h>
82 #endif
83 
84 #include "ubi.h"
85 
86 static int self_check_not_bad(const struct ubi_device *ubi, int pnum);
87 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
88 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
89 			     const struct ubi_ec_hdr *ec_hdr);
90 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
91 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
92 			      const struct ubi_vid_hdr *vid_hdr);
93 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
94 			    int offset, int len);
95 
96 /**
97  * ubi_io_read - read data from a physical eraseblock.
98  * @ubi: UBI device description object
99  * @buf: buffer where to store the read data
100  * @pnum: physical eraseblock number to read from
101  * @offset: offset within the physical eraseblock from where to read
102  * @len: how many bytes to read
103  *
104  * This function reads data from offset @offset of physical eraseblock @pnum
105  * and stores the read data in the @buf buffer. The following return codes are
106  * possible:
107  *
108  * o %0 if all the requested data were successfully read;
109  * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
110  *   correctable bit-flips were detected; this is harmless but may indicate
111  *   that this eraseblock may become bad soon (but do not have to);
112  * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
113  *   example it can be an ECC error in case of NAND; this most probably means
114  *   that the data is corrupted;
115  * o %-EIO if some I/O error occurred;
116  * o other negative error codes in case of other errors.
117  */
118 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
119 		int len)
120 {
121 	int err, retries = 0;
122 	size_t read;
123 	loff_t addr;
124 
125 	dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
126 
127 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
128 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
129 	ubi_assert(len > 0);
130 
131 	err = self_check_not_bad(ubi, pnum);
132 	if (err)
133 		return err;
134 
135 	/*
136 	 * Deliberately corrupt the buffer to improve robustness. Indeed, if we
137 	 * do not do this, the following may happen:
138 	 * 1. The buffer contains data from previous operation, e.g., read from
139 	 *    another PEB previously. The data looks like expected, e.g., if we
140 	 *    just do not read anything and return - the caller would not
141 	 *    notice this. E.g., if we are reading a VID header, the buffer may
142 	 *    contain a valid VID header from another PEB.
143 	 * 2. The driver is buggy and returns us success or -EBADMSG or
144 	 *    -EUCLEAN, but it does not actually put any data to the buffer.
145 	 *
146 	 * This may confuse UBI or upper layers - they may think the buffer
147 	 * contains valid data while in fact it is just old data. This is
148 	 * especially possible because UBI (and UBIFS) relies on CRC, and
149 	 * treats data as correct even in case of ECC errors if the CRC is
150 	 * correct.
151 	 *
152 	 * Try to prevent this situation by changing the first byte of the
153 	 * buffer.
154 	 */
155 	*((uint8_t *)buf) ^= 0xFF;
156 
157 	addr = (loff_t)pnum * ubi->peb_size + offset;
158 retry:
159 	err = mtd_read(ubi->mtd, addr, len, &read, buf);
160 	if (err) {
161 		const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : "";
162 
163 		if (mtd_is_bitflip(err)) {
164 			/*
165 			 * -EUCLEAN is reported if there was a bit-flip which
166 			 * was corrected, so this is harmless.
167 			 *
168 			 * We do not report about it here unless debugging is
169 			 * enabled. A corresponding message will be printed
170 			 * later, when it is has been scrubbed.
171 			 */
172 			ubi_msg("fixable bit-flip detected at PEB %d", pnum);
173 			ubi_assert(len == read);
174 			return UBI_IO_BITFLIPS;
175 		}
176 
177 		if (retries++ < UBI_IO_RETRIES) {
178 			ubi_warn("error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry",
179 				 err, errstr, len, pnum, offset, read);
180 			yield();
181 			goto retry;
182 		}
183 
184 		ubi_err("error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes",
185 			err, errstr, len, pnum, offset, read);
186 		dump_stack();
187 
188 		/*
189 		 * The driver should never return -EBADMSG if it failed to read
190 		 * all the requested data. But some buggy drivers might do
191 		 * this, so we change it to -EIO.
192 		 */
193 		if (read != len && mtd_is_eccerr(err)) {
194 			ubi_assert(0);
195 			err = -EIO;
196 		}
197 	} else {
198 		ubi_assert(len == read);
199 
200 		if (ubi_dbg_is_bitflip(ubi)) {
201 			dbg_gen("bit-flip (emulated)");
202 			err = UBI_IO_BITFLIPS;
203 		}
204 	}
205 
206 	return err;
207 }
208 
209 /**
210  * ubi_io_write - write data to a physical eraseblock.
211  * @ubi: UBI device description object
212  * @buf: buffer with the data to write
213  * @pnum: physical eraseblock number to write to
214  * @offset: offset within the physical eraseblock where to write
215  * @len: how many bytes to write
216  *
217  * This function writes @len bytes of data from buffer @buf to offset @offset
218  * of physical eraseblock @pnum. If all the data were successfully written,
219  * zero is returned. If an error occurred, this function returns a negative
220  * error code. If %-EIO is returned, the physical eraseblock most probably went
221  * bad.
222  *
223  * Note, in case of an error, it is possible that something was still written
224  * to the flash media, but may be some garbage.
225  */
226 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
227 		 int len)
228 {
229 	int err;
230 	size_t written;
231 	loff_t addr;
232 
233 	dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
234 
235 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
236 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
237 	ubi_assert(offset % ubi->hdrs_min_io_size == 0);
238 	ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
239 
240 	if (ubi->ro_mode) {
241 		ubi_err("read-only mode");
242 		return -EROFS;
243 	}
244 
245 	err = self_check_not_bad(ubi, pnum);
246 	if (err)
247 		return err;
248 
249 	/* The area we are writing to has to contain all 0xFF bytes */
250 	err = ubi_self_check_all_ff(ubi, pnum, offset, len);
251 	if (err)
252 		return err;
253 
254 	if (offset >= ubi->leb_start) {
255 		/*
256 		 * We write to the data area of the physical eraseblock. Make
257 		 * sure it has valid EC and VID headers.
258 		 */
259 		err = self_check_peb_ec_hdr(ubi, pnum);
260 		if (err)
261 			return err;
262 		err = self_check_peb_vid_hdr(ubi, pnum);
263 		if (err)
264 			return err;
265 	}
266 
267 	if (ubi_dbg_is_write_failure(ubi)) {
268 		ubi_err("cannot write %d bytes to PEB %d:%d (emulated)",
269 			len, pnum, offset);
270 		dump_stack();
271 		return -EIO;
272 	}
273 
274 	addr = (loff_t)pnum * ubi->peb_size + offset;
275 	err = mtd_write(ubi->mtd, addr, len, &written, buf);
276 	if (err) {
277 		ubi_err("error %d while writing %d bytes to PEB %d:%d, written %zd bytes",
278 			err, len, pnum, offset, written);
279 		dump_stack();
280 		ubi_dump_flash(ubi, pnum, offset, len);
281 	} else
282 		ubi_assert(written == len);
283 
284 	if (!err) {
285 		err = self_check_write(ubi, buf, pnum, offset, len);
286 		if (err)
287 			return err;
288 
289 		/*
290 		 * Since we always write sequentially, the rest of the PEB has
291 		 * to contain only 0xFF bytes.
292 		 */
293 		offset += len;
294 		len = ubi->peb_size - offset;
295 		if (len)
296 			err = ubi_self_check_all_ff(ubi, pnum, offset, len);
297 	}
298 
299 	return err;
300 }
301 
302 /**
303  * erase_callback - MTD erasure call-back.
304  * @ei: MTD erase information object.
305  *
306  * Note, even though MTD erase interface is asynchronous, all the current
307  * implementations are synchronous anyway.
308  */
309 static void erase_callback(struct erase_info *ei)
310 {
311 	wake_up_interruptible((wait_queue_head_t *)ei->priv);
312 }
313 
314 /**
315  * do_sync_erase - synchronously erase a physical eraseblock.
316  * @ubi: UBI device description object
317  * @pnum: the physical eraseblock number to erase
318  *
319  * This function synchronously erases physical eraseblock @pnum and returns
320  * zero in case of success and a negative error code in case of failure. If
321  * %-EIO is returned, the physical eraseblock most probably went bad.
322  */
323 static int do_sync_erase(struct ubi_device *ubi, int pnum)
324 {
325 	int err, retries = 0;
326 	struct erase_info ei;
327 	wait_queue_head_t wq;
328 
329 	dbg_io("erase PEB %d", pnum);
330 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
331 
332 	if (ubi->ro_mode) {
333 		ubi_err("read-only mode");
334 		return -EROFS;
335 	}
336 
337 retry:
338 	init_waitqueue_head(&wq);
339 	memset(&ei, 0, sizeof(struct erase_info));
340 
341 	ei.mtd      = ubi->mtd;
342 	ei.addr     = (loff_t)pnum * ubi->peb_size;
343 	ei.len      = ubi->peb_size;
344 	ei.callback = erase_callback;
345 	ei.priv     = (unsigned long)&wq;
346 
347 	err = mtd_erase(ubi->mtd, &ei);
348 	if (err) {
349 		if (retries++ < UBI_IO_RETRIES) {
350 			ubi_warn("error %d while erasing PEB %d, retry",
351 				 err, pnum);
352 			yield();
353 			goto retry;
354 		}
355 		ubi_err("cannot erase PEB %d, error %d", pnum, err);
356 		dump_stack();
357 		return err;
358 	}
359 
360 	err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
361 					   ei.state == MTD_ERASE_FAILED);
362 	if (err) {
363 		ubi_err("interrupted PEB %d erasure", pnum);
364 		return -EINTR;
365 	}
366 
367 	if (ei.state == MTD_ERASE_FAILED) {
368 		if (retries++ < UBI_IO_RETRIES) {
369 			ubi_warn("error while erasing PEB %d, retry", pnum);
370 			yield();
371 			goto retry;
372 		}
373 		ubi_err("cannot erase PEB %d", pnum);
374 		dump_stack();
375 		return -EIO;
376 	}
377 
378 	err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size);
379 	if (err)
380 		return err;
381 
382 	if (ubi_dbg_is_erase_failure(ubi)) {
383 		ubi_err("cannot erase PEB %d (emulated)", pnum);
384 		return -EIO;
385 	}
386 
387 	return 0;
388 }
389 
390 /* Patterns to write to a physical eraseblock when torturing it */
391 static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
392 
393 /**
394  * torture_peb - test a supposedly bad physical eraseblock.
395  * @ubi: UBI device description object
396  * @pnum: the physical eraseblock number to test
397  *
398  * This function returns %-EIO if the physical eraseblock did not pass the
399  * test, a positive number of erase operations done if the test was
400  * successfully passed, and other negative error codes in case of other errors.
401  */
402 static int torture_peb(struct ubi_device *ubi, int pnum)
403 {
404 	int err, i, patt_count;
405 
406 	ubi_msg("run torture test for PEB %d", pnum);
407 	patt_count = ARRAY_SIZE(patterns);
408 	ubi_assert(patt_count > 0);
409 
410 	mutex_lock(&ubi->buf_mutex);
411 	for (i = 0; i < patt_count; i++) {
412 		err = do_sync_erase(ubi, pnum);
413 		if (err)
414 			goto out;
415 
416 		/* Make sure the PEB contains only 0xFF bytes */
417 		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
418 		if (err)
419 			goto out;
420 
421 		err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size);
422 		if (err == 0) {
423 			ubi_err("erased PEB %d, but a non-0xFF byte found",
424 				pnum);
425 			err = -EIO;
426 			goto out;
427 		}
428 
429 		/* Write a pattern and check it */
430 		memset(ubi->peb_buf, patterns[i], ubi->peb_size);
431 		err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
432 		if (err)
433 			goto out;
434 
435 		memset(ubi->peb_buf, ~patterns[i], ubi->peb_size);
436 		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
437 		if (err)
438 			goto out;
439 
440 		err = ubi_check_pattern(ubi->peb_buf, patterns[i],
441 					ubi->peb_size);
442 		if (err == 0) {
443 			ubi_err("pattern %x checking failed for PEB %d",
444 				patterns[i], pnum);
445 			err = -EIO;
446 			goto out;
447 		}
448 	}
449 
450 	err = patt_count;
451 	ubi_msg("PEB %d passed torture test, do not mark it as bad", pnum);
452 
453 out:
454 	mutex_unlock(&ubi->buf_mutex);
455 	if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
456 		/*
457 		 * If a bit-flip or data integrity error was detected, the test
458 		 * has not passed because it happened on a freshly erased
459 		 * physical eraseblock which means something is wrong with it.
460 		 */
461 		ubi_err("read problems on freshly erased PEB %d, must be bad",
462 			pnum);
463 		err = -EIO;
464 	}
465 	return err;
466 }
467 
468 /**
469  * nor_erase_prepare - prepare a NOR flash PEB for erasure.
470  * @ubi: UBI device description object
471  * @pnum: physical eraseblock number to prepare
472  *
473  * NOR flash, or at least some of them, have peculiar embedded PEB erasure
474  * algorithm: the PEB is first filled with zeroes, then it is erased. And
475  * filling with zeroes starts from the end of the PEB. This was observed with
476  * Spansion S29GL512N NOR flash.
477  *
478  * This means that in case of a power cut we may end up with intact data at the
479  * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
480  * EC and VID headers are OK, but a large chunk of data at the end of PEB is
481  * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
482  * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
483  *
484  * This function is called before erasing NOR PEBs and it zeroes out EC and VID
485  * magic numbers in order to invalidate them and prevent the failures. Returns
486  * zero in case of success and a negative error code in case of failure.
487  */
488 static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
489 {
490 	int err;
491 	size_t written;
492 	loff_t addr;
493 	uint32_t data = 0;
494 	struct ubi_ec_hdr ec_hdr;
495 
496 	/*
497 	 * Note, we cannot generally define VID header buffers on stack,
498 	 * because of the way we deal with these buffers (see the header
499 	 * comment in this file). But we know this is a NOR-specific piece of
500 	 * code, so we can do this. But yes, this is error-prone and we should
501 	 * (pre-)allocate VID header buffer instead.
502 	 */
503 	struct ubi_vid_hdr vid_hdr;
504 
505 	/*
506 	 * If VID or EC is valid, we have to corrupt them before erasing.
507 	 * It is important to first invalidate the EC header, and then the VID
508 	 * header. Otherwise a power cut may lead to valid EC header and
509 	 * invalid VID header, in which case UBI will treat this PEB as
510 	 * corrupted and will try to preserve it, and print scary warnings.
511 	 */
512 	addr = (loff_t)pnum * ubi->peb_size;
513 	err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
514 	if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
515 	    err != UBI_IO_FF){
516 		err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
517 		if(err)
518 			goto error;
519 	}
520 
521 	err = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
522 	if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
523 	    err != UBI_IO_FF){
524 		addr += ubi->vid_hdr_aloffset;
525 		err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
526 		if (err)
527 			goto error;
528 	}
529 	return 0;
530 
531 error:
532 	/*
533 	 * The PEB contains a valid VID or EC header, but we cannot invalidate
534 	 * it. Supposedly the flash media or the driver is screwed up, so
535 	 * return an error.
536 	 */
537 	ubi_err("cannot invalidate PEB %d, write returned %d", pnum, err);
538 	ubi_dump_flash(ubi, pnum, 0, ubi->peb_size);
539 	return -EIO;
540 }
541 
542 /**
543  * ubi_io_sync_erase - synchronously erase a physical eraseblock.
544  * @ubi: UBI device description object
545  * @pnum: physical eraseblock number to erase
546  * @torture: if this physical eraseblock has to be tortured
547  *
548  * This function synchronously erases physical eraseblock @pnum. If @torture
549  * flag is not zero, the physical eraseblock is checked by means of writing
550  * different patterns to it and reading them back. If the torturing is enabled,
551  * the physical eraseblock is erased more than once.
552  *
553  * This function returns the number of erasures made in case of success, %-EIO
554  * if the erasure failed or the torturing test failed, and other negative error
555  * codes in case of other errors. Note, %-EIO means that the physical
556  * eraseblock is bad.
557  */
558 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
559 {
560 	int err, ret = 0;
561 
562 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
563 
564 	err = self_check_not_bad(ubi, pnum);
565 	if (err != 0)
566 		return err;
567 
568 	if (ubi->ro_mode) {
569 		ubi_err("read-only mode");
570 		return -EROFS;
571 	}
572 
573 	if (ubi->nor_flash) {
574 		err = nor_erase_prepare(ubi, pnum);
575 		if (err)
576 			return err;
577 	}
578 
579 	if (torture) {
580 		ret = torture_peb(ubi, pnum);
581 		if (ret < 0)
582 			return ret;
583 	}
584 
585 	err = do_sync_erase(ubi, pnum);
586 	if (err)
587 		return err;
588 
589 	return ret + 1;
590 }
591 
592 /**
593  * ubi_io_is_bad - check if a physical eraseblock is bad.
594  * @ubi: UBI device description object
595  * @pnum: the physical eraseblock number to check
596  *
597  * This function returns a positive number if the physical eraseblock is bad,
598  * zero if not, and a negative error code if an error occurred.
599  */
600 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
601 {
602 	struct mtd_info *mtd = ubi->mtd;
603 
604 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
605 
606 	if (ubi->bad_allowed) {
607 		int ret;
608 
609 		ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
610 		if (ret < 0)
611 			ubi_err("error %d while checking if PEB %d is bad",
612 				ret, pnum);
613 		else if (ret)
614 			dbg_io("PEB %d is bad", pnum);
615 		return ret;
616 	}
617 
618 	return 0;
619 }
620 
621 /**
622  * ubi_io_mark_bad - mark a physical eraseblock as bad.
623  * @ubi: UBI device description object
624  * @pnum: the physical eraseblock number to mark
625  *
626  * This function returns zero in case of success and a negative error code in
627  * case of failure.
628  */
629 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
630 {
631 	int err;
632 	struct mtd_info *mtd = ubi->mtd;
633 
634 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
635 
636 	if (ubi->ro_mode) {
637 		ubi_err("read-only mode");
638 		return -EROFS;
639 	}
640 
641 	if (!ubi->bad_allowed)
642 		return 0;
643 
644 	err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
645 	if (err)
646 		ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
647 	return err;
648 }
649 
650 /**
651  * validate_ec_hdr - validate an erase counter header.
652  * @ubi: UBI device description object
653  * @ec_hdr: the erase counter header to check
654  *
655  * This function returns zero if the erase counter header is OK, and %1 if
656  * not.
657  */
658 static int validate_ec_hdr(const struct ubi_device *ubi,
659 			   const struct ubi_ec_hdr *ec_hdr)
660 {
661 	long long ec;
662 	int vid_hdr_offset, leb_start;
663 
664 	ec = be64_to_cpu(ec_hdr->ec);
665 	vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
666 	leb_start = be32_to_cpu(ec_hdr->data_offset);
667 
668 	if (ec_hdr->version != UBI_VERSION) {
669 		ubi_err("node with incompatible UBI version found: this UBI version is %d, image version is %d",
670 			UBI_VERSION, (int)ec_hdr->version);
671 		goto bad;
672 	}
673 
674 	if (vid_hdr_offset != ubi->vid_hdr_offset) {
675 		ubi_err("bad VID header offset %d, expected %d",
676 			vid_hdr_offset, ubi->vid_hdr_offset);
677 		goto bad;
678 	}
679 
680 	if (leb_start != ubi->leb_start) {
681 		ubi_err("bad data offset %d, expected %d",
682 			leb_start, ubi->leb_start);
683 		goto bad;
684 	}
685 
686 	if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
687 		ubi_err("bad erase counter %lld", ec);
688 		goto bad;
689 	}
690 
691 	return 0;
692 
693 bad:
694 	ubi_err("bad EC header");
695 	ubi_dump_ec_hdr(ec_hdr);
696 	dump_stack();
697 	return 1;
698 }
699 
700 /**
701  * ubi_io_read_ec_hdr - read and check an erase counter header.
702  * @ubi: UBI device description object
703  * @pnum: physical eraseblock to read from
704  * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
705  * header
706  * @verbose: be verbose if the header is corrupted or was not found
707  *
708  * This function reads erase counter header from physical eraseblock @pnum and
709  * stores it in @ec_hdr. This function also checks CRC checksum of the read
710  * erase counter header. The following codes may be returned:
711  *
712  * o %0 if the CRC checksum is correct and the header was successfully read;
713  * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
714  *   and corrected by the flash driver; this is harmless but may indicate that
715  *   this eraseblock may become bad soon (but may be not);
716  * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
717  * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
718  *   a data integrity error (uncorrectable ECC error in case of NAND);
719  * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
720  * o a negative error code in case of failure.
721  */
722 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
723 		       struct ubi_ec_hdr *ec_hdr, int verbose)
724 {
725 	int err, read_err;
726 	uint32_t crc, magic, hdr_crc;
727 
728 	dbg_io("read EC header from PEB %d", pnum);
729 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
730 
731 	read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
732 	if (read_err) {
733 		if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
734 			return read_err;
735 
736 		/*
737 		 * We read all the data, but either a correctable bit-flip
738 		 * occurred, or MTD reported a data integrity error
739 		 * (uncorrectable ECC error in case of NAND). The former is
740 		 * harmless, the later may mean that the read data is
741 		 * corrupted. But we have a CRC check-sum and we will detect
742 		 * this. If the EC header is still OK, we just report this as
743 		 * there was a bit-flip, to force scrubbing.
744 		 */
745 	}
746 
747 	magic = be32_to_cpu(ec_hdr->magic);
748 	if (magic != UBI_EC_HDR_MAGIC) {
749 		if (mtd_is_eccerr(read_err))
750 			return UBI_IO_BAD_HDR_EBADMSG;
751 
752 		/*
753 		 * The magic field is wrong. Let's check if we have read all
754 		 * 0xFF. If yes, this physical eraseblock is assumed to be
755 		 * empty.
756 		 */
757 		if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
758 			/* The physical eraseblock is supposedly empty */
759 			if (verbose)
760 				ubi_warn("no EC header found at PEB %d, only 0xFF bytes",
761 					 pnum);
762 			dbg_bld("no EC header found at PEB %d, only 0xFF bytes",
763 				pnum);
764 			if (!read_err)
765 				return UBI_IO_FF;
766 			else
767 				return UBI_IO_FF_BITFLIPS;
768 		}
769 
770 		/*
771 		 * This is not a valid erase counter header, and these are not
772 		 * 0xFF bytes. Report that the header is corrupted.
773 		 */
774 		if (verbose) {
775 			ubi_warn("bad magic number at PEB %d: %08x instead of %08x",
776 				 pnum, magic, UBI_EC_HDR_MAGIC);
777 			ubi_dump_ec_hdr(ec_hdr);
778 		}
779 		dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
780 			pnum, magic, UBI_EC_HDR_MAGIC);
781 		return UBI_IO_BAD_HDR;
782 	}
783 
784 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
785 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
786 
787 	if (hdr_crc != crc) {
788 		if (verbose) {
789 			ubi_warn("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
790 				 pnum, crc, hdr_crc);
791 			ubi_dump_ec_hdr(ec_hdr);
792 		}
793 		dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
794 			pnum, crc, hdr_crc);
795 
796 		if (!read_err)
797 			return UBI_IO_BAD_HDR;
798 		else
799 			return UBI_IO_BAD_HDR_EBADMSG;
800 	}
801 
802 	/* And of course validate what has just been read from the media */
803 	err = validate_ec_hdr(ubi, ec_hdr);
804 	if (err) {
805 		ubi_err("validation failed for PEB %d", pnum);
806 		return -EINVAL;
807 	}
808 
809 	/*
810 	 * If there was %-EBADMSG, but the header CRC is still OK, report about
811 	 * a bit-flip to force scrubbing on this PEB.
812 	 */
813 	return read_err ? UBI_IO_BITFLIPS : 0;
814 }
815 
816 /**
817  * ubi_io_write_ec_hdr - write an erase counter header.
818  * @ubi: UBI device description object
819  * @pnum: physical eraseblock to write to
820  * @ec_hdr: the erase counter header to write
821  *
822  * This function writes erase counter header described by @ec_hdr to physical
823  * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
824  * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
825  * field.
826  *
827  * This function returns zero in case of success and a negative error code in
828  * case of failure. If %-EIO is returned, the physical eraseblock most probably
829  * went bad.
830  */
831 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
832 			struct ubi_ec_hdr *ec_hdr)
833 {
834 	int err;
835 	uint32_t crc;
836 
837 	dbg_io("write EC header to PEB %d", pnum);
838 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
839 
840 	ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
841 	ec_hdr->version = UBI_VERSION;
842 	ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
843 	ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
844 	ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
845 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
846 	ec_hdr->hdr_crc = cpu_to_be32(crc);
847 
848 	err = self_check_ec_hdr(ubi, pnum, ec_hdr);
849 	if (err)
850 		return err;
851 
852 	err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
853 	return err;
854 }
855 
856 /**
857  * validate_vid_hdr - validate a volume identifier header.
858  * @ubi: UBI device description object
859  * @vid_hdr: the volume identifier header to check
860  *
861  * This function checks that data stored in the volume identifier header
862  * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
863  */
864 static int validate_vid_hdr(const struct ubi_device *ubi,
865 			    const struct ubi_vid_hdr *vid_hdr)
866 {
867 	int vol_type = vid_hdr->vol_type;
868 	int copy_flag = vid_hdr->copy_flag;
869 	int vol_id = be32_to_cpu(vid_hdr->vol_id);
870 	int lnum = be32_to_cpu(vid_hdr->lnum);
871 	int compat = vid_hdr->compat;
872 	int data_size = be32_to_cpu(vid_hdr->data_size);
873 	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
874 	int data_pad = be32_to_cpu(vid_hdr->data_pad);
875 	int data_crc = be32_to_cpu(vid_hdr->data_crc);
876 	int usable_leb_size = ubi->leb_size - data_pad;
877 
878 	if (copy_flag != 0 && copy_flag != 1) {
879 		ubi_err("bad copy_flag");
880 		goto bad;
881 	}
882 
883 	if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
884 	    data_pad < 0) {
885 		ubi_err("negative values");
886 		goto bad;
887 	}
888 
889 	if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
890 		ubi_err("bad vol_id");
891 		goto bad;
892 	}
893 
894 	if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
895 		ubi_err("bad compat");
896 		goto bad;
897 	}
898 
899 	if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
900 	    compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
901 	    compat != UBI_COMPAT_REJECT) {
902 		ubi_err("bad compat");
903 		goto bad;
904 	}
905 
906 	if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
907 		ubi_err("bad vol_type");
908 		goto bad;
909 	}
910 
911 	if (data_pad >= ubi->leb_size / 2) {
912 		ubi_err("bad data_pad");
913 		goto bad;
914 	}
915 
916 	if (vol_type == UBI_VID_STATIC) {
917 		/*
918 		 * Although from high-level point of view static volumes may
919 		 * contain zero bytes of data, but no VID headers can contain
920 		 * zero at these fields, because they empty volumes do not have
921 		 * mapped logical eraseblocks.
922 		 */
923 		if (used_ebs == 0) {
924 			ubi_err("zero used_ebs");
925 			goto bad;
926 		}
927 		if (data_size == 0) {
928 			ubi_err("zero data_size");
929 			goto bad;
930 		}
931 		if (lnum < used_ebs - 1) {
932 			if (data_size != usable_leb_size) {
933 				ubi_err("bad data_size");
934 				goto bad;
935 			}
936 		} else if (lnum == used_ebs - 1) {
937 			if (data_size == 0) {
938 				ubi_err("bad data_size at last LEB");
939 				goto bad;
940 			}
941 		} else {
942 			ubi_err("too high lnum");
943 			goto bad;
944 		}
945 	} else {
946 		if (copy_flag == 0) {
947 			if (data_crc != 0) {
948 				ubi_err("non-zero data CRC");
949 				goto bad;
950 			}
951 			if (data_size != 0) {
952 				ubi_err("non-zero data_size");
953 				goto bad;
954 			}
955 		} else {
956 			if (data_size == 0) {
957 				ubi_err("zero data_size of copy");
958 				goto bad;
959 			}
960 		}
961 		if (used_ebs != 0) {
962 			ubi_err("bad used_ebs");
963 			goto bad;
964 		}
965 	}
966 
967 	return 0;
968 
969 bad:
970 	ubi_err("bad VID header");
971 	ubi_dump_vid_hdr(vid_hdr);
972 	dump_stack();
973 	return 1;
974 }
975 
976 /**
977  * ubi_io_read_vid_hdr - read and check a volume identifier header.
978  * @ubi: UBI device description object
979  * @pnum: physical eraseblock number to read from
980  * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
981  * identifier header
982  * @verbose: be verbose if the header is corrupted or wasn't found
983  *
984  * This function reads the volume identifier header from physical eraseblock
985  * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
986  * volume identifier header. The error codes are the same as in
987  * 'ubi_io_read_ec_hdr()'.
988  *
989  * Note, the implementation of this function is also very similar to
990  * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
991  */
992 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
993 			struct ubi_vid_hdr *vid_hdr, int verbose)
994 {
995 	int err, read_err;
996 	uint32_t crc, magic, hdr_crc;
997 	void *p;
998 
999 	dbg_io("read VID header from PEB %d", pnum);
1000 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1001 
1002 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1003 	read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1004 			  ubi->vid_hdr_alsize);
1005 	if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
1006 		return read_err;
1007 
1008 	magic = be32_to_cpu(vid_hdr->magic);
1009 	if (magic != UBI_VID_HDR_MAGIC) {
1010 		if (mtd_is_eccerr(read_err))
1011 			return UBI_IO_BAD_HDR_EBADMSG;
1012 
1013 		if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
1014 			if (verbose)
1015 				ubi_warn("no VID header found at PEB %d, only 0xFF bytes",
1016 					 pnum);
1017 			dbg_bld("no VID header found at PEB %d, only 0xFF bytes",
1018 				pnum);
1019 			if (!read_err)
1020 				return UBI_IO_FF;
1021 			else
1022 				return UBI_IO_FF_BITFLIPS;
1023 		}
1024 
1025 		if (verbose) {
1026 			ubi_warn("bad magic number at PEB %d: %08x instead of %08x",
1027 				 pnum, magic, UBI_VID_HDR_MAGIC);
1028 			ubi_dump_vid_hdr(vid_hdr);
1029 		}
1030 		dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
1031 			pnum, magic, UBI_VID_HDR_MAGIC);
1032 		return UBI_IO_BAD_HDR;
1033 	}
1034 
1035 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1036 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1037 
1038 	if (hdr_crc != crc) {
1039 		if (verbose) {
1040 			ubi_warn("bad CRC at PEB %d, calculated %#08x, read %#08x",
1041 				 pnum, crc, hdr_crc);
1042 			ubi_dump_vid_hdr(vid_hdr);
1043 		}
1044 		dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x",
1045 			pnum, crc, hdr_crc);
1046 		if (!read_err)
1047 			return UBI_IO_BAD_HDR;
1048 		else
1049 			return UBI_IO_BAD_HDR_EBADMSG;
1050 	}
1051 
1052 	err = validate_vid_hdr(ubi, vid_hdr);
1053 	if (err) {
1054 		ubi_err("validation failed for PEB %d", pnum);
1055 		return -EINVAL;
1056 	}
1057 
1058 	return read_err ? UBI_IO_BITFLIPS : 0;
1059 }
1060 
1061 /**
1062  * ubi_io_write_vid_hdr - write a volume identifier header.
1063  * @ubi: UBI device description object
1064  * @pnum: the physical eraseblock number to write to
1065  * @vid_hdr: the volume identifier header to write
1066  *
1067  * This function writes the volume identifier header described by @vid_hdr to
1068  * physical eraseblock @pnum. This function automatically fills the
1069  * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1070  * header CRC checksum and stores it at vid_hdr->hdr_crc.
1071  *
1072  * This function returns zero in case of success and a negative error code in
1073  * case of failure. If %-EIO is returned, the physical eraseblock probably went
1074  * bad.
1075  */
1076 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1077 			 struct ubi_vid_hdr *vid_hdr)
1078 {
1079 	int err;
1080 	uint32_t crc;
1081 	void *p;
1082 
1083 	dbg_io("write VID header to PEB %d", pnum);
1084 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1085 
1086 	err = self_check_peb_ec_hdr(ubi, pnum);
1087 	if (err)
1088 		return err;
1089 
1090 	vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1091 	vid_hdr->version = UBI_VERSION;
1092 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1093 	vid_hdr->hdr_crc = cpu_to_be32(crc);
1094 
1095 	err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1096 	if (err)
1097 		return err;
1098 
1099 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1100 	err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1101 			   ubi->vid_hdr_alsize);
1102 	return err;
1103 }
1104 
1105 /**
1106  * self_check_not_bad - ensure that a physical eraseblock is not bad.
1107  * @ubi: UBI device description object
1108  * @pnum: physical eraseblock number to check
1109  *
1110  * This function returns zero if the physical eraseblock is good, %-EINVAL if
1111  * it is bad and a negative error code if an error occurred.
1112  */
1113 static int self_check_not_bad(const struct ubi_device *ubi, int pnum)
1114 {
1115 	int err;
1116 
1117 	if (!ubi_dbg_chk_io(ubi))
1118 		return 0;
1119 
1120 	err = ubi_io_is_bad(ubi, pnum);
1121 	if (!err)
1122 		return err;
1123 
1124 	ubi_err("self-check failed for PEB %d", pnum);
1125 	dump_stack();
1126 	return err > 0 ? -EINVAL : err;
1127 }
1128 
1129 /**
1130  * self_check_ec_hdr - check if an erase counter header is all right.
1131  * @ubi: UBI device description object
1132  * @pnum: physical eraseblock number the erase counter header belongs to
1133  * @ec_hdr: the erase counter header to check
1134  *
1135  * This function returns zero if the erase counter header contains valid
1136  * values, and %-EINVAL if not.
1137  */
1138 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1139 			     const struct ubi_ec_hdr *ec_hdr)
1140 {
1141 	int err;
1142 	uint32_t magic;
1143 
1144 	if (!ubi_dbg_chk_io(ubi))
1145 		return 0;
1146 
1147 	magic = be32_to_cpu(ec_hdr->magic);
1148 	if (magic != UBI_EC_HDR_MAGIC) {
1149 		ubi_err("bad magic %#08x, must be %#08x",
1150 			magic, UBI_EC_HDR_MAGIC);
1151 		goto fail;
1152 	}
1153 
1154 	err = validate_ec_hdr(ubi, ec_hdr);
1155 	if (err) {
1156 		ubi_err("self-check failed for PEB %d", pnum);
1157 		goto fail;
1158 	}
1159 
1160 	return 0;
1161 
1162 fail:
1163 	ubi_dump_ec_hdr(ec_hdr);
1164 	dump_stack();
1165 	return -EINVAL;
1166 }
1167 
1168 /**
1169  * self_check_peb_ec_hdr - check erase counter header.
1170  * @ubi: UBI device description object
1171  * @pnum: the physical eraseblock number to check
1172  *
1173  * This function returns zero if the erase counter header is all right and and
1174  * a negative error code if not or if an error occurred.
1175  */
1176 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1177 {
1178 	int err;
1179 	uint32_t crc, hdr_crc;
1180 	struct ubi_ec_hdr *ec_hdr;
1181 
1182 	if (!ubi_dbg_chk_io(ubi))
1183 		return 0;
1184 
1185 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1186 	if (!ec_hdr)
1187 		return -ENOMEM;
1188 
1189 	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1190 	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1191 		goto exit;
1192 
1193 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1194 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1195 	if (hdr_crc != crc) {
1196 		ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
1197 		ubi_err("self-check failed for PEB %d", pnum);
1198 		ubi_dump_ec_hdr(ec_hdr);
1199 		dump_stack();
1200 		err = -EINVAL;
1201 		goto exit;
1202 	}
1203 
1204 	err = self_check_ec_hdr(ubi, pnum, ec_hdr);
1205 
1206 exit:
1207 	kfree(ec_hdr);
1208 	return err;
1209 }
1210 
1211 /**
1212  * self_check_vid_hdr - check that a volume identifier header is all right.
1213  * @ubi: UBI device description object
1214  * @pnum: physical eraseblock number the volume identifier header belongs to
1215  * @vid_hdr: the volume identifier header to check
1216  *
1217  * This function returns zero if the volume identifier header is all right, and
1218  * %-EINVAL if not.
1219  */
1220 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1221 			      const struct ubi_vid_hdr *vid_hdr)
1222 {
1223 	int err;
1224 	uint32_t magic;
1225 
1226 	if (!ubi_dbg_chk_io(ubi))
1227 		return 0;
1228 
1229 	magic = be32_to_cpu(vid_hdr->magic);
1230 	if (magic != UBI_VID_HDR_MAGIC) {
1231 		ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1232 			magic, pnum, UBI_VID_HDR_MAGIC);
1233 		goto fail;
1234 	}
1235 
1236 	err = validate_vid_hdr(ubi, vid_hdr);
1237 	if (err) {
1238 		ubi_err("self-check failed for PEB %d", pnum);
1239 		goto fail;
1240 	}
1241 
1242 	return err;
1243 
1244 fail:
1245 	ubi_err("self-check failed for PEB %d", pnum);
1246 	ubi_dump_vid_hdr(vid_hdr);
1247 	dump_stack();
1248 	return -EINVAL;
1249 
1250 }
1251 
1252 /**
1253  * self_check_peb_vid_hdr - check volume identifier header.
1254  * @ubi: UBI device description object
1255  * @pnum: the physical eraseblock number to check
1256  *
1257  * This function returns zero if the volume identifier header is all right,
1258  * and a negative error code if not or if an error occurred.
1259  */
1260 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1261 {
1262 	int err;
1263 	uint32_t crc, hdr_crc;
1264 	struct ubi_vid_hdr *vid_hdr;
1265 	void *p;
1266 
1267 	if (!ubi_dbg_chk_io(ubi))
1268 		return 0;
1269 
1270 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1271 	if (!vid_hdr)
1272 		return -ENOMEM;
1273 
1274 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1275 	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1276 			  ubi->vid_hdr_alsize);
1277 	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1278 		goto exit;
1279 
1280 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
1281 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1282 	if (hdr_crc != crc) {
1283 		ubi_err("bad VID header CRC at PEB %d, calculated %#08x, read %#08x",
1284 			pnum, crc, hdr_crc);
1285 		ubi_err("self-check failed for PEB %d", pnum);
1286 		ubi_dump_vid_hdr(vid_hdr);
1287 		dump_stack();
1288 		err = -EINVAL;
1289 		goto exit;
1290 	}
1291 
1292 	err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1293 
1294 exit:
1295 	ubi_free_vid_hdr(ubi, vid_hdr);
1296 	return err;
1297 }
1298 
1299 /**
1300  * self_check_write - make sure write succeeded.
1301  * @ubi: UBI device description object
1302  * @buf: buffer with data which were written
1303  * @pnum: physical eraseblock number the data were written to
1304  * @offset: offset within the physical eraseblock the data were written to
1305  * @len: how many bytes were written
1306  *
1307  * This functions reads data which were recently written and compares it with
1308  * the original data buffer - the data have to match. Returns zero if the data
1309  * match and a negative error code if not or in case of failure.
1310  */
1311 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1312 			    int offset, int len)
1313 {
1314 	int err, i;
1315 	size_t read;
1316 	void *buf1;
1317 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1318 
1319 	if (!ubi_dbg_chk_io(ubi))
1320 		return 0;
1321 
1322 	buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1323 	if (!buf1) {
1324 		ubi_err("cannot allocate memory to check writes");
1325 		return 0;
1326 	}
1327 
1328 	err = mtd_read(ubi->mtd, addr, len, &read, buf1);
1329 	if (err && !mtd_is_bitflip(err))
1330 		goto out_free;
1331 
1332 	for (i = 0; i < len; i++) {
1333 		uint8_t c = ((uint8_t *)buf)[i];
1334 		uint8_t c1 = ((uint8_t *)buf1)[i];
1335 #if !defined(CONFIG_UBI_SILENCE_MSG)
1336 		int dump_len = max_t(int, 128, len - i);
1337 #endif
1338 
1339 		if (c == c1)
1340 			continue;
1341 
1342 		ubi_err("self-check failed for PEB %d:%d, len %d",
1343 			pnum, offset, len);
1344 		ubi_msg("data differ at position %d", i);
1345 		ubi_msg("hex dump of the original buffer from %d to %d",
1346 			i, i + dump_len);
1347 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1348 			       buf + i, dump_len, 1);
1349 		ubi_msg("hex dump of the read buffer from %d to %d",
1350 			i, i + dump_len);
1351 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1352 			       buf1 + i, dump_len, 1);
1353 		dump_stack();
1354 		err = -EINVAL;
1355 		goto out_free;
1356 	}
1357 
1358 	vfree(buf1);
1359 	return 0;
1360 
1361 out_free:
1362 	vfree(buf1);
1363 	return err;
1364 }
1365 
1366 /**
1367  * ubi_self_check_all_ff - check that a region of flash is empty.
1368  * @ubi: UBI device description object
1369  * @pnum: the physical eraseblock number to check
1370  * @offset: the starting offset within the physical eraseblock to check
1371  * @len: the length of the region to check
1372  *
1373  * This function returns zero if only 0xFF bytes are present at offset
1374  * @offset of the physical eraseblock @pnum, and a negative error code if not
1375  * or if an error occurred.
1376  */
1377 int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
1378 {
1379 	size_t read;
1380 	int err;
1381 	void *buf;
1382 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1383 
1384 	if (!ubi_dbg_chk_io(ubi))
1385 		return 0;
1386 
1387 	buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1388 	if (!buf) {
1389 		ubi_err("cannot allocate memory to check for 0xFFs");
1390 		return 0;
1391 	}
1392 
1393 	err = mtd_read(ubi->mtd, addr, len, &read, buf);
1394 	if (err && !mtd_is_bitflip(err)) {
1395 		ubi_err("error %d while reading %d bytes from PEB %d:%d, read %zd bytes",
1396 			err, len, pnum, offset, read);
1397 		goto error;
1398 	}
1399 
1400 	err = ubi_check_pattern(buf, 0xFF, len);
1401 	if (err == 0) {
1402 		ubi_err("flash region at PEB %d:%d, length %d does not contain all 0xFF bytes",
1403 			pnum, offset, len);
1404 		goto fail;
1405 	}
1406 
1407 	vfree(buf);
1408 	return 0;
1409 
1410 fail:
1411 	ubi_err("self-check failed for PEB %d", pnum);
1412 	ubi_msg("hex dump of the %d-%d region", offset, offset + len);
1413 	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
1414 	err = -EINVAL;
1415 error:
1416 	dump_stack();
1417 	vfree(buf);
1418 	return err;
1419 }
1420