xref: /openbmc/u-boot/drivers/mtd/ubi/io.c (revision ea818dbb)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2006, 2007
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13  * the GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  *
19  * Author: Artem Bityutskiy (Битюцкий Артём)
20  */
21 
22 /*
23  * UBI input/output unit.
24  *
25  * This unit provides a uniform way to work with all kinds of the underlying
26  * MTD devices. It also implements handy functions for reading and writing UBI
27  * headers.
28  *
29  * We are trying to have a paranoid mindset and not to trust to what we read
30  * from the flash media in order to be more secure and robust. So this unit
31  * validates every single header it reads from the flash media.
32  *
33  * Some words about how the eraseblock headers are stored.
34  *
35  * The erase counter header is always stored at offset zero. By default, the
36  * VID header is stored after the EC header at the closest aligned offset
37  * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38  * header at the closest aligned offset. But this default layout may be
39  * changed. For example, for different reasons (e.g., optimization) UBI may be
40  * asked to put the VID header at further offset, and even at an unaligned
41  * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42  * proper padding in front of it. Data offset may also be changed but it has to
43  * be aligned.
44  *
45  * About minimal I/O units. In general, UBI assumes flash device model where
46  * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47  * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48  * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49  * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50  * to do different optimizations.
51  *
52  * This is extremely useful in case of NAND flashes which admit of several
53  * write operations to one NAND page. In this case UBI can fit EC and VID
54  * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55  * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56  * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
57  * users.
58  *
59  * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60  * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
61  * headers.
62  *
63  * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64  * device, e.g., make @ubi->min_io_size = 512 in the example above?
65  *
66  * A: because when writing a sub-page, MTD still writes a full 2K page but the
67  * bytes which are no relevant to the sub-page are 0xFF. So, basically, writing
68  * 4x512 sub-pages is 4 times slower then writing one 2KiB NAND page. Thus, we
69  * prefer to use sub-pages only for EV and VID headers.
70  *
71  * As it was noted above, the VID header may start at a non-aligned offset.
72  * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73  * the VID header may reside at offset 1984 which is the last 64 bytes of the
74  * last sub-page (EC header is always at offset zero). This causes some
75  * difficulties when reading and writing VID headers.
76  *
77  * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78  * the data and want to write this VID header out. As we can only write in
79  * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80  * to offset 448 of this buffer.
81  *
82  * The I/O unit does the following trick in order to avoid this extra copy.
83  * It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID header
84  * and returns a pointer to offset @ubi->vid_hdr_shift of this buffer. When the
85  * VID header is being written out, it shifts the VID header pointer back and
86  * writes the whole sub-page.
87  */
88 
89 #ifdef UBI_LINUX
90 #include <linux/crc32.h>
91 #include <linux/err.h>
92 #endif
93 
94 #include <ubi_uboot.h>
95 #include "ubi.h"
96 
97 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
98 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum);
99 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
100 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
101 				 const struct ubi_ec_hdr *ec_hdr);
102 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
103 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
104 				  const struct ubi_vid_hdr *vid_hdr);
105 static int paranoid_check_all_ff(struct ubi_device *ubi, int pnum, int offset,
106 				 int len);
107 #else
108 #define paranoid_check_not_bad(ubi, pnum) 0
109 #define paranoid_check_peb_ec_hdr(ubi, pnum)  0
110 #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr)  0
111 #define paranoid_check_peb_vid_hdr(ubi, pnum) 0
112 #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
113 #define paranoid_check_all_ff(ubi, pnum, offset, len) 0
114 #endif
115 
116 /**
117  * ubi_io_read - read data from a physical eraseblock.
118  * @ubi: UBI device description object
119  * @buf: buffer where to store the read data
120  * @pnum: physical eraseblock number to read from
121  * @offset: offset within the physical eraseblock from where to read
122  * @len: how many bytes to read
123  *
124  * This function reads data from offset @offset of physical eraseblock @pnum
125  * and stores the read data in the @buf buffer. The following return codes are
126  * possible:
127  *
128  * o %0 if all the requested data were successfully read;
129  * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
130  *   correctable bit-flips were detected; this is harmless but may indicate
131  *   that this eraseblock may become bad soon (but do not have to);
132  * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
133  *   example it can be an ECC error in case of NAND; this most probably means
134  *   that the data is corrupted;
135  * o %-EIO if some I/O error occurred;
136  * o other negative error codes in case of other errors.
137  */
138 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
139 		int len)
140 {
141 	int err, retries = 0;
142 	size_t read;
143 	loff_t addr;
144 
145 	dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
146 
147 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
148 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
149 	ubi_assert(len > 0);
150 
151 	err = paranoid_check_not_bad(ubi, pnum);
152 	if (err)
153 		return err > 0 ? -EINVAL : err;
154 
155 	addr = (loff_t)pnum * ubi->peb_size + offset;
156 retry:
157 	err = mtd_read(ubi->mtd, addr, len, &read, buf);
158 	if (err) {
159 		if (err == -EUCLEAN) {
160 			/*
161 			 * -EUCLEAN is reported if there was a bit-flip which
162 			 * was corrected, so this is harmless.
163 			 */
164 			ubi_msg("fixable bit-flip detected at PEB %d", pnum);
165 			ubi_assert(len == read);
166 			return UBI_IO_BITFLIPS;
167 		}
168 
169 		if (read != len && retries++ < UBI_IO_RETRIES) {
170 			dbg_io("error %d while reading %d bytes from PEB %d:%d, "
171 			       "read only %zd bytes, retry",
172 			       err, len, pnum, offset, read);
173 			yield();
174 			goto retry;
175 		}
176 
177 		ubi_err("error %d while reading %d bytes from PEB %d:%d, "
178 			"read %zd bytes", err, len, pnum, offset, read);
179 		ubi_dbg_dump_stack();
180 
181 		/*
182 		 * The driver should never return -EBADMSG if it failed to read
183 		 * all the requested data. But some buggy drivers might do
184 		 * this, so we change it to -EIO.
185 		 */
186 		if (read != len && err == -EBADMSG) {
187 			ubi_assert(0);
188 			printk("%s[%d] not here\n", __func__, __LINE__);
189 /*			err = -EIO; */
190 		}
191 	} else {
192 		ubi_assert(len == read);
193 
194 		if (ubi_dbg_is_bitflip()) {
195 			dbg_msg("bit-flip (emulated)");
196 			err = UBI_IO_BITFLIPS;
197 		}
198 	}
199 
200 	return err;
201 }
202 
203 /**
204  * ubi_io_write - write data to a physical eraseblock.
205  * @ubi: UBI device description object
206  * @buf: buffer with the data to write
207  * @pnum: physical eraseblock number to write to
208  * @offset: offset within the physical eraseblock where to write
209  * @len: how many bytes to write
210  *
211  * This function writes @len bytes of data from buffer @buf to offset @offset
212  * of physical eraseblock @pnum. If all the data were successfully written,
213  * zero is returned. If an error occurred, this function returns a negative
214  * error code. If %-EIO is returned, the physical eraseblock most probably went
215  * bad.
216  *
217  * Note, in case of an error, it is possible that something was still written
218  * to the flash media, but may be some garbage.
219  */
220 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
221 		 int len)
222 {
223 	int err;
224 	size_t written;
225 	loff_t addr;
226 
227 	dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
228 
229 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
230 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
231 	ubi_assert(offset % ubi->hdrs_min_io_size == 0);
232 	ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
233 
234 	if (ubi->ro_mode) {
235 		ubi_err("read-only mode");
236 		return -EROFS;
237 	}
238 
239 	/* The below has to be compiled out if paranoid checks are disabled */
240 
241 	err = paranoid_check_not_bad(ubi, pnum);
242 	if (err)
243 		return err > 0 ? -EINVAL : err;
244 
245 	/* The area we are writing to has to contain all 0xFF bytes */
246 	err = paranoid_check_all_ff(ubi, pnum, offset, len);
247 	if (err)
248 		return err > 0 ? -EINVAL : err;
249 
250 	if (offset >= ubi->leb_start) {
251 		/*
252 		 * We write to the data area of the physical eraseblock. Make
253 		 * sure it has valid EC and VID headers.
254 		 */
255 		err = paranoid_check_peb_ec_hdr(ubi, pnum);
256 		if (err)
257 			return err > 0 ? -EINVAL : err;
258 		err = paranoid_check_peb_vid_hdr(ubi, pnum);
259 		if (err)
260 			return err > 0 ? -EINVAL : err;
261 	}
262 
263 	if (ubi_dbg_is_write_failure()) {
264 		dbg_err("cannot write %d bytes to PEB %d:%d "
265 			"(emulated)", len, pnum, offset);
266 		ubi_dbg_dump_stack();
267 		return -EIO;
268 	}
269 
270 	addr = (loff_t)pnum * ubi->peb_size + offset;
271 	err = mtd_write(ubi->mtd, addr, len, &written, buf);
272 	if (err) {
273 		ubi_err("error %d while writing %d bytes to PEB %d:%d, written"
274 			" %zd bytes", err, len, pnum, offset, written);
275 		ubi_dbg_dump_stack();
276 	} else
277 		ubi_assert(written == len);
278 
279 	return err;
280 }
281 
282 /**
283  * erase_callback - MTD erasure call-back.
284  * @ei: MTD erase information object.
285  *
286  * Note, even though MTD erase interface is asynchronous, all the current
287  * implementations are synchronous anyway.
288  */
289 static void erase_callback(struct erase_info *ei)
290 {
291 	wake_up_interruptible((wait_queue_head_t *)ei->priv);
292 }
293 
294 /**
295  * do_sync_erase - synchronously erase a physical eraseblock.
296  * @ubi: UBI device description object
297  * @pnum: the physical eraseblock number to erase
298  *
299  * This function synchronously erases physical eraseblock @pnum and returns
300  * zero in case of success and a negative error code in case of failure. If
301  * %-EIO is returned, the physical eraseblock most probably went bad.
302  */
303 static int do_sync_erase(struct ubi_device *ubi, int pnum)
304 {
305 	int err, retries = 0;
306 	struct erase_info ei;
307 	wait_queue_head_t wq;
308 
309 	dbg_io("erase PEB %d", pnum);
310 
311 retry:
312 	init_waitqueue_head(&wq);
313 	memset(&ei, 0, sizeof(struct erase_info));
314 
315 	ei.mtd      = ubi->mtd;
316 	ei.addr     = (loff_t)pnum * ubi->peb_size;
317 	ei.len      = ubi->peb_size;
318 	ei.callback = erase_callback;
319 	ei.priv     = (unsigned long)&wq;
320 
321 	err = mtd_erase(ubi->mtd, &ei);
322 	if (err) {
323 		if (retries++ < UBI_IO_RETRIES) {
324 			dbg_io("error %d while erasing PEB %d, retry",
325 			       err, pnum);
326 			yield();
327 			goto retry;
328 		}
329 		ubi_err("cannot erase PEB %d, error %d", pnum, err);
330 		ubi_dbg_dump_stack();
331 		return err;
332 	}
333 
334 	err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
335 					   ei.state == MTD_ERASE_FAILED);
336 	if (err) {
337 		ubi_err("interrupted PEB %d erasure", pnum);
338 		return -EINTR;
339 	}
340 
341 	if (ei.state == MTD_ERASE_FAILED) {
342 		if (retries++ < UBI_IO_RETRIES) {
343 			dbg_io("error while erasing PEB %d, retry", pnum);
344 			yield();
345 			goto retry;
346 		}
347 		ubi_err("cannot erase PEB %d", pnum);
348 		ubi_dbg_dump_stack();
349 		return -EIO;
350 	}
351 
352 	err = paranoid_check_all_ff(ubi, pnum, 0, ubi->peb_size);
353 	if (err)
354 		return err > 0 ? -EINVAL : err;
355 
356 	if (ubi_dbg_is_erase_failure() && !err) {
357 		dbg_err("cannot erase PEB %d (emulated)", pnum);
358 		return -EIO;
359 	}
360 
361 	return 0;
362 }
363 
364 /**
365  * check_pattern - check if buffer contains only a certain byte pattern.
366  * @buf: buffer to check
367  * @patt: the pattern to check
368  * @size: buffer size in bytes
369  *
370  * This function returns %1 in there are only @patt bytes in @buf, and %0 if
371  * something else was also found.
372  */
373 static int check_pattern(const void *buf, uint8_t patt, int size)
374 {
375 	int i;
376 
377 	for (i = 0; i < size; i++)
378 		if (((const uint8_t *)buf)[i] != patt)
379 			return 0;
380 	return 1;
381 }
382 
383 /* Patterns to write to a physical eraseblock when torturing it */
384 static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
385 
386 /**
387  * torture_peb - test a supposedly bad physical eraseblock.
388  * @ubi: UBI device description object
389  * @pnum: the physical eraseblock number to test
390  *
391  * This function returns %-EIO if the physical eraseblock did not pass the
392  * test, a positive number of erase operations done if the test was
393  * successfully passed, and other negative error codes in case of other errors.
394  */
395 static int torture_peb(struct ubi_device *ubi, int pnum)
396 {
397 	int err, i, patt_count;
398 
399 	patt_count = ARRAY_SIZE(patterns);
400 	ubi_assert(patt_count > 0);
401 
402 	mutex_lock(&ubi->buf_mutex);
403 	for (i = 0; i < patt_count; i++) {
404 		err = do_sync_erase(ubi, pnum);
405 		if (err)
406 			goto out;
407 
408 		/* Make sure the PEB contains only 0xFF bytes */
409 		err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
410 		if (err)
411 			goto out;
412 
413 		err = check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size);
414 		if (err == 0) {
415 			ubi_err("erased PEB %d, but a non-0xFF byte found",
416 				pnum);
417 			err = -EIO;
418 			goto out;
419 		}
420 
421 		/* Write a pattern and check it */
422 		memset(ubi->peb_buf1, patterns[i], ubi->peb_size);
423 		err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
424 		if (err)
425 			goto out;
426 
427 		memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size);
428 		err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
429 		if (err)
430 			goto out;
431 
432 		err = check_pattern(ubi->peb_buf1, patterns[i], ubi->peb_size);
433 		if (err == 0) {
434 			ubi_err("pattern %x checking failed for PEB %d",
435 				patterns[i], pnum);
436 			err = -EIO;
437 			goto out;
438 		}
439 	}
440 
441 	err = patt_count;
442 
443 out:
444 	mutex_unlock(&ubi->buf_mutex);
445 	if (err == UBI_IO_BITFLIPS || err == -EBADMSG) {
446 		/*
447 		 * If a bit-flip or data integrity error was detected, the test
448 		 * has not passed because it happened on a freshly erased
449 		 * physical eraseblock which means something is wrong with it.
450 		 */
451 		ubi_err("read problems on freshly erased PEB %d, must be bad",
452 			pnum);
453 		err = -EIO;
454 	}
455 	return err;
456 }
457 
458 /**
459  * ubi_io_sync_erase - synchronously erase a physical eraseblock.
460  * @ubi: UBI device description object
461  * @pnum: physical eraseblock number to erase
462  * @torture: if this physical eraseblock has to be tortured
463  *
464  * This function synchronously erases physical eraseblock @pnum. If @torture
465  * flag is not zero, the physical eraseblock is checked by means of writing
466  * different patterns to it and reading them back. If the torturing is enabled,
467  * the physical eraseblock is erased more then once.
468  *
469  * This function returns the number of erasures made in case of success, %-EIO
470  * if the erasure failed or the torturing test failed, and other negative error
471  * codes in case of other errors. Note, %-EIO means that the physical
472  * eraseblock is bad.
473  */
474 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
475 {
476 	int err, ret = 0;
477 
478 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
479 
480 	err = paranoid_check_not_bad(ubi, pnum);
481 	if (err != 0)
482 		return err > 0 ? -EINVAL : err;
483 
484 	if (ubi->ro_mode) {
485 		ubi_err("read-only mode");
486 		return -EROFS;
487 	}
488 
489 	if (torture) {
490 		ret = torture_peb(ubi, pnum);
491 		if (ret < 0)
492 			return ret;
493 	}
494 
495 	err = do_sync_erase(ubi, pnum);
496 	if (err)
497 		return err;
498 
499 	return ret + 1;
500 }
501 
502 /**
503  * ubi_io_is_bad - check if a physical eraseblock is bad.
504  * @ubi: UBI device description object
505  * @pnum: the physical eraseblock number to check
506  *
507  * This function returns a positive number if the physical eraseblock is bad,
508  * zero if not, and a negative error code if an error occurred.
509  */
510 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
511 {
512 	struct mtd_info *mtd = ubi->mtd;
513 
514 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
515 
516 	if (ubi->bad_allowed) {
517 		int ret;
518 
519 		ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
520 		if (ret < 0)
521 			ubi_err("error %d while checking if PEB %d is bad",
522 				ret, pnum);
523 		else if (ret)
524 			dbg_io("PEB %d is bad", pnum);
525 		return ret;
526 	}
527 
528 	return 0;
529 }
530 
531 /**
532  * ubi_io_mark_bad - mark a physical eraseblock as bad.
533  * @ubi: UBI device description object
534  * @pnum: the physical eraseblock number to mark
535  *
536  * This function returns zero in case of success and a negative error code in
537  * case of failure.
538  */
539 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
540 {
541 	int err;
542 	struct mtd_info *mtd = ubi->mtd;
543 
544 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
545 
546 	if (ubi->ro_mode) {
547 		ubi_err("read-only mode");
548 		return -EROFS;
549 	}
550 
551 	if (!ubi->bad_allowed)
552 		return 0;
553 
554 	err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
555 	if (err)
556 		ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
557 	return err;
558 }
559 
560 /**
561  * validate_ec_hdr - validate an erase counter header.
562  * @ubi: UBI device description object
563  * @ec_hdr: the erase counter header to check
564  *
565  * This function returns zero if the erase counter header is OK, and %1 if
566  * not.
567  */
568 static int validate_ec_hdr(const struct ubi_device *ubi,
569 			   const struct ubi_ec_hdr *ec_hdr)
570 {
571 	long long ec;
572 	int vid_hdr_offset, leb_start;
573 
574 	ec = be64_to_cpu(ec_hdr->ec);
575 	vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
576 	leb_start = be32_to_cpu(ec_hdr->data_offset);
577 
578 	if (ec_hdr->version != UBI_VERSION) {
579 		ubi_err("node with incompatible UBI version found: "
580 			"this UBI version is %d, image version is %d",
581 			UBI_VERSION, (int)ec_hdr->version);
582 		goto bad;
583 	}
584 
585 	if (vid_hdr_offset != ubi->vid_hdr_offset) {
586 		ubi_err("bad VID header offset %d, expected %d",
587 			vid_hdr_offset, ubi->vid_hdr_offset);
588 		goto bad;
589 	}
590 
591 	if (leb_start != ubi->leb_start) {
592 		ubi_err("bad data offset %d, expected %d",
593 			leb_start, ubi->leb_start);
594 		goto bad;
595 	}
596 
597 	if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
598 		ubi_err("bad erase counter %lld", ec);
599 		goto bad;
600 	}
601 
602 	return 0;
603 
604 bad:
605 	ubi_err("bad EC header");
606 	ubi_dbg_dump_ec_hdr(ec_hdr);
607 	ubi_dbg_dump_stack();
608 	return 1;
609 }
610 
611 /**
612  * ubi_io_read_ec_hdr - read and check an erase counter header.
613  * @ubi: UBI device description object
614  * @pnum: physical eraseblock to read from
615  * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
616  * header
617  * @verbose: be verbose if the header is corrupted or was not found
618  *
619  * This function reads erase counter header from physical eraseblock @pnum and
620  * stores it in @ec_hdr. This function also checks CRC checksum of the read
621  * erase counter header. The following codes may be returned:
622  *
623  * o %0 if the CRC checksum is correct and the header was successfully read;
624  * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
625  *   and corrected by the flash driver; this is harmless but may indicate that
626  *   this eraseblock may become bad soon (but may be not);
627  * o %UBI_IO_BAD_EC_HDR if the erase counter header is corrupted (a CRC error);
628  * o %UBI_IO_PEB_EMPTY if the physical eraseblock is empty;
629  * o a negative error code in case of failure.
630  */
631 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
632 		       struct ubi_ec_hdr *ec_hdr, int verbose)
633 {
634 	int err, read_err = 0;
635 	uint32_t crc, magic, hdr_crc;
636 
637 	dbg_io("read EC header from PEB %d", pnum);
638 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
639 	if (UBI_IO_DEBUG)
640 		verbose = 1;
641 
642 	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
643 	if (err) {
644 		if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
645 			return err;
646 
647 		/*
648 		 * We read all the data, but either a correctable bit-flip
649 		 * occurred, or MTD reported about some data integrity error,
650 		 * like an ECC error in case of NAND. The former is harmless,
651 		 * the later may mean that the read data is corrupted. But we
652 		 * have a CRC check-sum and we will detect this. If the EC
653 		 * header is still OK, we just report this as there was a
654 		 * bit-flip.
655 		 */
656 		read_err = err;
657 	}
658 
659 	magic = be32_to_cpu(ec_hdr->magic);
660 	if (magic != UBI_EC_HDR_MAGIC) {
661 		/*
662 		 * The magic field is wrong. Let's check if we have read all
663 		 * 0xFF. If yes, this physical eraseblock is assumed to be
664 		 * empty.
665 		 *
666 		 * But if there was a read error, we do not test it for all
667 		 * 0xFFs. Even if it does contain all 0xFFs, this error
668 		 * indicates that something is still wrong with this physical
669 		 * eraseblock and we anyway cannot treat it as empty.
670 		 */
671 		if (read_err != -EBADMSG &&
672 		    check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
673 			/* The physical eraseblock is supposedly empty */
674 
675 			/*
676 			 * The below is just a paranoid check, it has to be
677 			 * compiled out if paranoid checks are disabled.
678 			 */
679 			err = paranoid_check_all_ff(ubi, pnum, 0,
680 						    ubi->peb_size);
681 			if (err)
682 				return err > 0 ? UBI_IO_BAD_EC_HDR : err;
683 
684 			if (verbose)
685 				ubi_warn("no EC header found at PEB %d, "
686 					 "only 0xFF bytes", pnum);
687 			return UBI_IO_PEB_EMPTY;
688 		}
689 
690 		/*
691 		 * This is not a valid erase counter header, and these are not
692 		 * 0xFF bytes. Report that the header is corrupted.
693 		 */
694 		if (verbose) {
695 			ubi_warn("bad magic number at PEB %d: %08x instead of "
696 				 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
697 			ubi_dbg_dump_ec_hdr(ec_hdr);
698 		}
699 		return UBI_IO_BAD_EC_HDR;
700 	}
701 
702 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
703 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
704 
705 	if (hdr_crc != crc) {
706 		if (verbose) {
707 			ubi_warn("bad EC header CRC at PEB %d, calculated %#08x,"
708 				 " read %#08x", pnum, crc, hdr_crc);
709 			ubi_dbg_dump_ec_hdr(ec_hdr);
710 		}
711 		return UBI_IO_BAD_EC_HDR;
712 	}
713 
714 	/* And of course validate what has just been read from the media */
715 	err = validate_ec_hdr(ubi, ec_hdr);
716 	if (err) {
717 		ubi_err("validation failed for PEB %d", pnum);
718 		return -EINVAL;
719 	}
720 
721 	return read_err ? UBI_IO_BITFLIPS : 0;
722 }
723 
724 /**
725  * ubi_io_write_ec_hdr - write an erase counter header.
726  * @ubi: UBI device description object
727  * @pnum: physical eraseblock to write to
728  * @ec_hdr: the erase counter header to write
729  *
730  * This function writes erase counter header described by @ec_hdr to physical
731  * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
732  * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
733  * field.
734  *
735  * This function returns zero in case of success and a negative error code in
736  * case of failure. If %-EIO is returned, the physical eraseblock most probably
737  * went bad.
738  */
739 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
740 			struct ubi_ec_hdr *ec_hdr)
741 {
742 	int err;
743 	uint32_t crc;
744 
745 	dbg_io("write EC header to PEB %d", pnum);
746 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
747 
748 	ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
749 	ec_hdr->version = UBI_VERSION;
750 	ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
751 	ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
752 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
753 	ec_hdr->hdr_crc = cpu_to_be32(crc);
754 
755 	err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
756 	if (err)
757 		return -EINVAL;
758 
759 	err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
760 	return err;
761 }
762 
763 /**
764  * validate_vid_hdr - validate a volume identifier header.
765  * @ubi: UBI device description object
766  * @vid_hdr: the volume identifier header to check
767  *
768  * This function checks that data stored in the volume identifier header
769  * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
770  */
771 static int validate_vid_hdr(const struct ubi_device *ubi,
772 			    const struct ubi_vid_hdr *vid_hdr)
773 {
774 	int vol_type = vid_hdr->vol_type;
775 	int copy_flag = vid_hdr->copy_flag;
776 	int vol_id = be32_to_cpu(vid_hdr->vol_id);
777 	int lnum = be32_to_cpu(vid_hdr->lnum);
778 	int compat = vid_hdr->compat;
779 	int data_size = be32_to_cpu(vid_hdr->data_size);
780 	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
781 	int data_pad = be32_to_cpu(vid_hdr->data_pad);
782 	int data_crc = be32_to_cpu(vid_hdr->data_crc);
783 	int usable_leb_size = ubi->leb_size - data_pad;
784 
785 	if (copy_flag != 0 && copy_flag != 1) {
786 		dbg_err("bad copy_flag");
787 		goto bad;
788 	}
789 
790 	if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
791 	    data_pad < 0) {
792 		dbg_err("negative values");
793 		goto bad;
794 	}
795 
796 	if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
797 		dbg_err("bad vol_id");
798 		goto bad;
799 	}
800 
801 	if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
802 		dbg_err("bad compat");
803 		goto bad;
804 	}
805 
806 	if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
807 	    compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
808 	    compat != UBI_COMPAT_REJECT) {
809 		dbg_err("bad compat");
810 		goto bad;
811 	}
812 
813 	if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
814 		dbg_err("bad vol_type");
815 		goto bad;
816 	}
817 
818 	if (data_pad >= ubi->leb_size / 2) {
819 		dbg_err("bad data_pad");
820 		goto bad;
821 	}
822 
823 	if (vol_type == UBI_VID_STATIC) {
824 		/*
825 		 * Although from high-level point of view static volumes may
826 		 * contain zero bytes of data, but no VID headers can contain
827 		 * zero at these fields, because they empty volumes do not have
828 		 * mapped logical eraseblocks.
829 		 */
830 		if (used_ebs == 0) {
831 			dbg_err("zero used_ebs");
832 			goto bad;
833 		}
834 		if (data_size == 0) {
835 			dbg_err("zero data_size");
836 			goto bad;
837 		}
838 		if (lnum < used_ebs - 1) {
839 			if (data_size != usable_leb_size) {
840 				dbg_err("bad data_size");
841 				goto bad;
842 			}
843 		} else if (lnum == used_ebs - 1) {
844 			if (data_size == 0) {
845 				dbg_err("bad data_size at last LEB");
846 				goto bad;
847 			}
848 		} else {
849 			dbg_err("too high lnum");
850 			goto bad;
851 		}
852 	} else {
853 		if (copy_flag == 0) {
854 			if (data_crc != 0) {
855 				dbg_err("non-zero data CRC");
856 				goto bad;
857 			}
858 			if (data_size != 0) {
859 				dbg_err("non-zero data_size");
860 				goto bad;
861 			}
862 		} else {
863 			if (data_size == 0) {
864 				dbg_err("zero data_size of copy");
865 				goto bad;
866 			}
867 		}
868 		if (used_ebs != 0) {
869 			dbg_err("bad used_ebs");
870 			goto bad;
871 		}
872 	}
873 
874 	return 0;
875 
876 bad:
877 	ubi_err("bad VID header");
878 	ubi_dbg_dump_vid_hdr(vid_hdr);
879 	ubi_dbg_dump_stack();
880 	return 1;
881 }
882 
883 /**
884  * ubi_io_read_vid_hdr - read and check a volume identifier header.
885  * @ubi: UBI device description object
886  * @pnum: physical eraseblock number to read from
887  * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
888  * identifier header
889  * @verbose: be verbose if the header is corrupted or wasn't found
890  *
891  * This function reads the volume identifier header from physical eraseblock
892  * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
893  * volume identifier header. The following codes may be returned:
894  *
895  * o %0 if the CRC checksum is correct and the header was successfully read;
896  * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
897  *   and corrected by the flash driver; this is harmless but may indicate that
898  *   this eraseblock may become bad soon;
899  * o %UBI_IO_BAD_VID_HRD if the volume identifier header is corrupted (a CRC
900  *   error detected);
901  * o %UBI_IO_PEB_FREE if the physical eraseblock is free (i.e., there is no VID
902  *   header there);
903  * o a negative error code in case of failure.
904  */
905 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
906 			struct ubi_vid_hdr *vid_hdr, int verbose)
907 {
908 	int err, read_err = 0;
909 	uint32_t crc, magic, hdr_crc;
910 	void *p;
911 
912 	dbg_io("read VID header from PEB %d", pnum);
913 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
914 	if (UBI_IO_DEBUG)
915 		verbose = 1;
916 
917 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
918 	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
919 			  ubi->vid_hdr_alsize);
920 	if (err) {
921 		if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
922 			return err;
923 
924 		/*
925 		 * We read all the data, but either a correctable bit-flip
926 		 * occurred, or MTD reported about some data integrity error,
927 		 * like an ECC error in case of NAND. The former is harmless,
928 		 * the later may mean the read data is corrupted. But we have a
929 		 * CRC check-sum and we will identify this. If the VID header is
930 		 * still OK, we just report this as there was a bit-flip.
931 		 */
932 		read_err = err;
933 	}
934 
935 	magic = be32_to_cpu(vid_hdr->magic);
936 	if (magic != UBI_VID_HDR_MAGIC) {
937 		/*
938 		 * If we have read all 0xFF bytes, the VID header probably does
939 		 * not exist and the physical eraseblock is assumed to be free.
940 		 *
941 		 * But if there was a read error, we do not test the data for
942 		 * 0xFFs. Even if it does contain all 0xFFs, this error
943 		 * indicates that something is still wrong with this physical
944 		 * eraseblock and it cannot be regarded as free.
945 		 */
946 		if (read_err != -EBADMSG &&
947 		    check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
948 			/* The physical eraseblock is supposedly free */
949 
950 			/*
951 			 * The below is just a paranoid check, it has to be
952 			 * compiled out if paranoid checks are disabled.
953 			 */
954 			err = paranoid_check_all_ff(ubi, pnum, ubi->leb_start,
955 						    ubi->leb_size);
956 			if (err)
957 				return err > 0 ? UBI_IO_BAD_VID_HDR : err;
958 
959 			if (verbose)
960 				ubi_warn("no VID header found at PEB %d, "
961 					 "only 0xFF bytes", pnum);
962 			return UBI_IO_PEB_FREE;
963 		}
964 
965 		/*
966 		 * This is not a valid VID header, and these are not 0xFF
967 		 * bytes. Report that the header is corrupted.
968 		 */
969 		if (verbose) {
970 			ubi_warn("bad magic number at PEB %d: %08x instead of "
971 				 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
972 			ubi_dbg_dump_vid_hdr(vid_hdr);
973 		}
974 		return UBI_IO_BAD_VID_HDR;
975 	}
976 
977 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
978 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
979 
980 	if (hdr_crc != crc) {
981 		if (verbose) {
982 			ubi_warn("bad CRC at PEB %d, calculated %#08x, "
983 				 "read %#08x", pnum, crc, hdr_crc);
984 			ubi_dbg_dump_vid_hdr(vid_hdr);
985 		}
986 		return UBI_IO_BAD_VID_HDR;
987 	}
988 
989 	/* Validate the VID header that we have just read */
990 	err = validate_vid_hdr(ubi, vid_hdr);
991 	if (err) {
992 		ubi_err("validation failed for PEB %d", pnum);
993 		return -EINVAL;
994 	}
995 
996 	return read_err ? UBI_IO_BITFLIPS : 0;
997 }
998 
999 /**
1000  * ubi_io_write_vid_hdr - write a volume identifier header.
1001  * @ubi: UBI device description object
1002  * @pnum: the physical eraseblock number to write to
1003  * @vid_hdr: the volume identifier header to write
1004  *
1005  * This function writes the volume identifier header described by @vid_hdr to
1006  * physical eraseblock @pnum. This function automatically fills the
1007  * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1008  * header CRC checksum and stores it at vid_hdr->hdr_crc.
1009  *
1010  * This function returns zero in case of success and a negative error code in
1011  * case of failure. If %-EIO is returned, the physical eraseblock probably went
1012  * bad.
1013  */
1014 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1015 			 struct ubi_vid_hdr *vid_hdr)
1016 {
1017 	int err;
1018 	uint32_t crc;
1019 	void *p;
1020 
1021 	dbg_io("write VID header to PEB %d", pnum);
1022 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1023 
1024 	err = paranoid_check_peb_ec_hdr(ubi, pnum);
1025 	if (err)
1026 		return err > 0 ? -EINVAL: err;
1027 
1028 	vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1029 	vid_hdr->version = UBI_VERSION;
1030 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1031 	vid_hdr->hdr_crc = cpu_to_be32(crc);
1032 
1033 	err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1034 	if (err)
1035 		return -EINVAL;
1036 
1037 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1038 	err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1039 			   ubi->vid_hdr_alsize);
1040 	return err;
1041 }
1042 
1043 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1044 
1045 /**
1046  * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
1047  * @ubi: UBI device description object
1048  * @pnum: physical eraseblock number to check
1049  *
1050  * This function returns zero if the physical eraseblock is good, a positive
1051  * number if it is bad and a negative error code if an error occurred.
1052  */
1053 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum)
1054 {
1055 	int err;
1056 
1057 	err = ubi_io_is_bad(ubi, pnum);
1058 	if (!err)
1059 		return err;
1060 
1061 	ubi_err("paranoid check failed for PEB %d", pnum);
1062 	ubi_dbg_dump_stack();
1063 	return err;
1064 }
1065 
1066 /**
1067  * paranoid_check_ec_hdr - check if an erase counter header is all right.
1068  * @ubi: UBI device description object
1069  * @pnum: physical eraseblock number the erase counter header belongs to
1070  * @ec_hdr: the erase counter header to check
1071  *
1072  * This function returns zero if the erase counter header contains valid
1073  * values, and %1 if not.
1074  */
1075 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1076 				 const struct ubi_ec_hdr *ec_hdr)
1077 {
1078 	int err;
1079 	uint32_t magic;
1080 
1081 	magic = be32_to_cpu(ec_hdr->magic);
1082 	if (magic != UBI_EC_HDR_MAGIC) {
1083 		ubi_err("bad magic %#08x, must be %#08x",
1084 			magic, UBI_EC_HDR_MAGIC);
1085 		goto fail;
1086 	}
1087 
1088 	err = validate_ec_hdr(ubi, ec_hdr);
1089 	if (err) {
1090 		ubi_err("paranoid check failed for PEB %d", pnum);
1091 		goto fail;
1092 	}
1093 
1094 	return 0;
1095 
1096 fail:
1097 	ubi_dbg_dump_ec_hdr(ec_hdr);
1098 	ubi_dbg_dump_stack();
1099 	return 1;
1100 }
1101 
1102 /**
1103  * paranoid_check_peb_ec_hdr - check that the erase counter header of a
1104  * physical eraseblock is in-place and is all right.
1105  * @ubi: UBI device description object
1106  * @pnum: the physical eraseblock number to check
1107  *
1108  * This function returns zero if the erase counter header is all right, %1 if
1109  * not, and a negative error code if an error occurred.
1110  */
1111 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1112 {
1113 	int err;
1114 	uint32_t crc, hdr_crc;
1115 	struct ubi_ec_hdr *ec_hdr;
1116 
1117 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1118 	if (!ec_hdr)
1119 		return -ENOMEM;
1120 
1121 	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1122 	if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1123 		goto exit;
1124 
1125 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1126 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1127 	if (hdr_crc != crc) {
1128 		ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
1129 		ubi_err("paranoid check failed for PEB %d", pnum);
1130 		ubi_dbg_dump_ec_hdr(ec_hdr);
1131 		ubi_dbg_dump_stack();
1132 		err = 1;
1133 		goto exit;
1134 	}
1135 
1136 	err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
1137 
1138 exit:
1139 	kfree(ec_hdr);
1140 	return err;
1141 }
1142 
1143 /**
1144  * paranoid_check_vid_hdr - check that a volume identifier header is all right.
1145  * @ubi: UBI device description object
1146  * @pnum: physical eraseblock number the volume identifier header belongs to
1147  * @vid_hdr: the volume identifier header to check
1148  *
1149  * This function returns zero if the volume identifier header is all right, and
1150  * %1 if not.
1151  */
1152 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1153 				  const struct ubi_vid_hdr *vid_hdr)
1154 {
1155 	int err;
1156 	uint32_t magic;
1157 
1158 	magic = be32_to_cpu(vid_hdr->magic);
1159 	if (magic != UBI_VID_HDR_MAGIC) {
1160 		ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1161 			magic, pnum, UBI_VID_HDR_MAGIC);
1162 		goto fail;
1163 	}
1164 
1165 	err = validate_vid_hdr(ubi, vid_hdr);
1166 	if (err) {
1167 		ubi_err("paranoid check failed for PEB %d", pnum);
1168 		goto fail;
1169 	}
1170 
1171 	return err;
1172 
1173 fail:
1174 	ubi_err("paranoid check failed for PEB %d", pnum);
1175 	ubi_dbg_dump_vid_hdr(vid_hdr);
1176 	ubi_dbg_dump_stack();
1177 	return 1;
1178 
1179 }
1180 
1181 /**
1182  * paranoid_check_peb_vid_hdr - check that the volume identifier header of a
1183  * physical eraseblock is in-place and is all right.
1184  * @ubi: UBI device description object
1185  * @pnum: the physical eraseblock number to check
1186  *
1187  * This function returns zero if the volume identifier header is all right,
1188  * %1 if not, and a negative error code if an error occurred.
1189  */
1190 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1191 {
1192 	int err;
1193 	uint32_t crc, hdr_crc;
1194 	struct ubi_vid_hdr *vid_hdr;
1195 	void *p;
1196 
1197 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1198 	if (!vid_hdr)
1199 		return -ENOMEM;
1200 
1201 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1202 	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1203 			  ubi->vid_hdr_alsize);
1204 	if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1205 		goto exit;
1206 
1207 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
1208 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1209 	if (hdr_crc != crc) {
1210 		ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
1211 			"read %#08x", pnum, crc, hdr_crc);
1212 		ubi_err("paranoid check failed for PEB %d", pnum);
1213 		ubi_dbg_dump_vid_hdr(vid_hdr);
1214 		ubi_dbg_dump_stack();
1215 		err = 1;
1216 		goto exit;
1217 	}
1218 
1219 	err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1220 
1221 exit:
1222 	ubi_free_vid_hdr(ubi, vid_hdr);
1223 	return err;
1224 }
1225 
1226 /**
1227  * paranoid_check_all_ff - check that a region of flash is empty.
1228  * @ubi: UBI device description object
1229  * @pnum: the physical eraseblock number to check
1230  * @offset: the starting offset within the physical eraseblock to check
1231  * @len: the length of the region to check
1232  *
1233  * This function returns zero if only 0xFF bytes are present at offset
1234  * @offset of the physical eraseblock @pnum, %1 if not, and a negative error
1235  * code if an error occurred.
1236  */
1237 static int paranoid_check_all_ff(struct ubi_device *ubi, int pnum, int offset,
1238 				 int len)
1239 {
1240 	size_t read;
1241 	int err;
1242 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1243 
1244 	mutex_lock(&ubi->dbg_buf_mutex);
1245 	err = mtd_read(ubi->mtd, addr, len, &read, ubi->dbg_peb_buf);
1246 	if (err && err != -EUCLEAN) {
1247 		ubi_err("error %d while reading %d bytes from PEB %d:%d, "
1248 			"read %zd bytes", err, len, pnum, offset, read);
1249 		goto error;
1250 	}
1251 
1252 	err = check_pattern(ubi->dbg_peb_buf, 0xFF, len);
1253 	if (err == 0) {
1254 		ubi_err("flash region at PEB %d:%d, length %d does not "
1255 			"contain all 0xFF bytes", pnum, offset, len);
1256 		goto fail;
1257 	}
1258 	mutex_unlock(&ubi->dbg_buf_mutex);
1259 
1260 	return 0;
1261 
1262 fail:
1263 	ubi_err("paranoid check failed for PEB %d", pnum);
1264 	dbg_msg("hex dump of the %d-%d region", offset, offset + len);
1265 	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1266 		       ubi->dbg_peb_buf, len, 1);
1267 	err = 1;
1268 error:
1269 	ubi_dbg_dump_stack();
1270 	mutex_unlock(&ubi->dbg_buf_mutex);
1271 	return err;
1272 }
1273 
1274 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */
1275