xref: /openbmc/u-boot/drivers/mtd/ubi/io.c (revision d08215a5)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2006, 2007
4  * SPDX-License-Identifier:	GPL-2.0+
5  *
6  * Author: Artem Bityutskiy (Битюцкий Артём)
7  */
8 
9 /*
10  * UBI input/output sub-system.
11  *
12  * This sub-system provides a uniform way to work with all kinds of the
13  * underlying MTD devices. It also implements handy functions for reading and
14  * writing UBI headers.
15  *
16  * We are trying to have a paranoid mindset and not to trust to what we read
17  * from the flash media in order to be more secure and robust. So this
18  * sub-system validates every single header it reads from the flash media.
19  *
20  * Some words about how the eraseblock headers are stored.
21  *
22  * The erase counter header is always stored at offset zero. By default, the
23  * VID header is stored after the EC header at the closest aligned offset
24  * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
25  * header at the closest aligned offset. But this default layout may be
26  * changed. For example, for different reasons (e.g., optimization) UBI may be
27  * asked to put the VID header at further offset, and even at an unaligned
28  * offset. Of course, if the offset of the VID header is unaligned, UBI adds
29  * proper padding in front of it. Data offset may also be changed but it has to
30  * be aligned.
31  *
32  * About minimal I/O units. In general, UBI assumes flash device model where
33  * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
34  * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
35  * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
36  * (smaller) minimal I/O unit size for EC and VID headers to make it possible
37  * to do different optimizations.
38  *
39  * This is extremely useful in case of NAND flashes which admit of several
40  * write operations to one NAND page. In this case UBI can fit EC and VID
41  * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
42  * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
43  * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
44  * users.
45  *
46  * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
47  * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
48  * headers.
49  *
50  * Q: why not just to treat sub-page as a minimal I/O unit of this flash
51  * device, e.g., make @ubi->min_io_size = 512 in the example above?
52  *
53  * A: because when writing a sub-page, MTD still writes a full 2K page but the
54  * bytes which are not relevant to the sub-page are 0xFF. So, basically,
55  * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
56  * Thus, we prefer to use sub-pages only for EC and VID headers.
57  *
58  * As it was noted above, the VID header may start at a non-aligned offset.
59  * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
60  * the VID header may reside at offset 1984 which is the last 64 bytes of the
61  * last sub-page (EC header is always at offset zero). This causes some
62  * difficulties when reading and writing VID headers.
63  *
64  * Suppose we have a 64-byte buffer and we read a VID header at it. We change
65  * the data and want to write this VID header out. As we can only write in
66  * 512-byte chunks, we have to allocate one more buffer and copy our VID header
67  * to offset 448 of this buffer.
68  *
69  * The I/O sub-system does the following trick in order to avoid this extra
70  * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
71  * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
72  * When the VID header is being written out, it shifts the VID header pointer
73  * back and writes the whole sub-page.
74  */
75 
76 #define __UBOOT__
77 #ifndef __UBOOT__
78 #include <linux/crc32.h>
79 #include <linux/err.h>
80 #include <linux/slab.h>
81 #else
82 #include <ubi_uboot.h>
83 #endif
84 
85 #include "ubi.h"
86 
87 static int self_check_not_bad(const struct ubi_device *ubi, int pnum);
88 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
89 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
90 			     const struct ubi_ec_hdr *ec_hdr);
91 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
92 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
93 			      const struct ubi_vid_hdr *vid_hdr);
94 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
95 			    int offset, int len);
96 
97 /**
98  * ubi_io_read - read data from a physical eraseblock.
99  * @ubi: UBI device description object
100  * @buf: buffer where to store the read data
101  * @pnum: physical eraseblock number to read from
102  * @offset: offset within the physical eraseblock from where to read
103  * @len: how many bytes to read
104  *
105  * This function reads data from offset @offset of physical eraseblock @pnum
106  * and stores the read data in the @buf buffer. The following return codes are
107  * possible:
108  *
109  * o %0 if all the requested data were successfully read;
110  * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
111  *   correctable bit-flips were detected; this is harmless but may indicate
112  *   that this eraseblock may become bad soon (but do not have to);
113  * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
114  *   example it can be an ECC error in case of NAND; this most probably means
115  *   that the data is corrupted;
116  * o %-EIO if some I/O error occurred;
117  * o other negative error codes in case of other errors.
118  */
119 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
120 		int len)
121 {
122 	int err, retries = 0;
123 	size_t read;
124 	loff_t addr;
125 
126 	dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
127 
128 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
129 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
130 	ubi_assert(len > 0);
131 
132 	err = self_check_not_bad(ubi, pnum);
133 	if (err)
134 		return err;
135 
136 	/*
137 	 * Deliberately corrupt the buffer to improve robustness. Indeed, if we
138 	 * do not do this, the following may happen:
139 	 * 1. The buffer contains data from previous operation, e.g., read from
140 	 *    another PEB previously. The data looks like expected, e.g., if we
141 	 *    just do not read anything and return - the caller would not
142 	 *    notice this. E.g., if we are reading a VID header, the buffer may
143 	 *    contain a valid VID header from another PEB.
144 	 * 2. The driver is buggy and returns us success or -EBADMSG or
145 	 *    -EUCLEAN, but it does not actually put any data to the buffer.
146 	 *
147 	 * This may confuse UBI or upper layers - they may think the buffer
148 	 * contains valid data while in fact it is just old data. This is
149 	 * especially possible because UBI (and UBIFS) relies on CRC, and
150 	 * treats data as correct even in case of ECC errors if the CRC is
151 	 * correct.
152 	 *
153 	 * Try to prevent this situation by changing the first byte of the
154 	 * buffer.
155 	 */
156 	*((uint8_t *)buf) ^= 0xFF;
157 
158 	addr = (loff_t)pnum * ubi->peb_size + offset;
159 retry:
160 	err = mtd_read(ubi->mtd, addr, len, &read, buf);
161 	if (err) {
162 		const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : "";
163 
164 		if (mtd_is_bitflip(err)) {
165 			/*
166 			 * -EUCLEAN is reported if there was a bit-flip which
167 			 * was corrected, so this is harmless.
168 			 *
169 			 * We do not report about it here unless debugging is
170 			 * enabled. A corresponding message will be printed
171 			 * later, when it is has been scrubbed.
172 			 */
173 			ubi_msg("fixable bit-flip detected at PEB %d", pnum);
174 			ubi_assert(len == read);
175 			return UBI_IO_BITFLIPS;
176 		}
177 
178 		if (retries++ < UBI_IO_RETRIES) {
179 			ubi_warn("error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry",
180 				 err, errstr, len, pnum, offset, read);
181 			yield();
182 			goto retry;
183 		}
184 
185 		ubi_err("error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes",
186 			err, errstr, len, pnum, offset, read);
187 		dump_stack();
188 
189 		/*
190 		 * The driver should never return -EBADMSG if it failed to read
191 		 * all the requested data. But some buggy drivers might do
192 		 * this, so we change it to -EIO.
193 		 */
194 		if (read != len && mtd_is_eccerr(err)) {
195 			ubi_assert(0);
196 			err = -EIO;
197 		}
198 	} else {
199 		ubi_assert(len == read);
200 
201 		if (ubi_dbg_is_bitflip(ubi)) {
202 			dbg_gen("bit-flip (emulated)");
203 			err = UBI_IO_BITFLIPS;
204 		}
205 	}
206 
207 	return err;
208 }
209 
210 /**
211  * ubi_io_write - write data to a physical eraseblock.
212  * @ubi: UBI device description object
213  * @buf: buffer with the data to write
214  * @pnum: physical eraseblock number to write to
215  * @offset: offset within the physical eraseblock where to write
216  * @len: how many bytes to write
217  *
218  * This function writes @len bytes of data from buffer @buf to offset @offset
219  * of physical eraseblock @pnum. If all the data were successfully written,
220  * zero is returned. If an error occurred, this function returns a negative
221  * error code. If %-EIO is returned, the physical eraseblock most probably went
222  * bad.
223  *
224  * Note, in case of an error, it is possible that something was still written
225  * to the flash media, but may be some garbage.
226  */
227 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
228 		 int len)
229 {
230 	int err;
231 	size_t written;
232 	loff_t addr;
233 
234 	dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
235 
236 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
237 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
238 	ubi_assert(offset % ubi->hdrs_min_io_size == 0);
239 	ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
240 
241 	if (ubi->ro_mode) {
242 		ubi_err("read-only mode");
243 		return -EROFS;
244 	}
245 
246 	err = self_check_not_bad(ubi, pnum);
247 	if (err)
248 		return err;
249 
250 	/* The area we are writing to has to contain all 0xFF bytes */
251 	err = ubi_self_check_all_ff(ubi, pnum, offset, len);
252 	if (err)
253 		return err;
254 
255 	if (offset >= ubi->leb_start) {
256 		/*
257 		 * We write to the data area of the physical eraseblock. Make
258 		 * sure it has valid EC and VID headers.
259 		 */
260 		err = self_check_peb_ec_hdr(ubi, pnum);
261 		if (err)
262 			return err;
263 		err = self_check_peb_vid_hdr(ubi, pnum);
264 		if (err)
265 			return err;
266 	}
267 
268 	if (ubi_dbg_is_write_failure(ubi)) {
269 		ubi_err("cannot write %d bytes to PEB %d:%d (emulated)",
270 			len, pnum, offset);
271 		dump_stack();
272 		return -EIO;
273 	}
274 
275 	addr = (loff_t)pnum * ubi->peb_size + offset;
276 	err = mtd_write(ubi->mtd, addr, len, &written, buf);
277 	if (err) {
278 		ubi_err("error %d while writing %d bytes to PEB %d:%d, written %zd bytes",
279 			err, len, pnum, offset, written);
280 		dump_stack();
281 		ubi_dump_flash(ubi, pnum, offset, len);
282 	} else
283 		ubi_assert(written == len);
284 
285 	if (!err) {
286 		err = self_check_write(ubi, buf, pnum, offset, len);
287 		if (err)
288 			return err;
289 
290 		/*
291 		 * Since we always write sequentially, the rest of the PEB has
292 		 * to contain only 0xFF bytes.
293 		 */
294 		offset += len;
295 		len = ubi->peb_size - offset;
296 		if (len)
297 			err = ubi_self_check_all_ff(ubi, pnum, offset, len);
298 	}
299 
300 	return err;
301 }
302 
303 /**
304  * erase_callback - MTD erasure call-back.
305  * @ei: MTD erase information object.
306  *
307  * Note, even though MTD erase interface is asynchronous, all the current
308  * implementations are synchronous anyway.
309  */
310 static void erase_callback(struct erase_info *ei)
311 {
312 	wake_up_interruptible((wait_queue_head_t *)ei->priv);
313 }
314 
315 /**
316  * do_sync_erase - synchronously erase a physical eraseblock.
317  * @ubi: UBI device description object
318  * @pnum: the physical eraseblock number to erase
319  *
320  * This function synchronously erases physical eraseblock @pnum and returns
321  * zero in case of success and a negative error code in case of failure. If
322  * %-EIO is returned, the physical eraseblock most probably went bad.
323  */
324 static int do_sync_erase(struct ubi_device *ubi, int pnum)
325 {
326 	int err, retries = 0;
327 	struct erase_info ei;
328 	wait_queue_head_t wq;
329 
330 	dbg_io("erase PEB %d", pnum);
331 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
332 
333 	if (ubi->ro_mode) {
334 		ubi_err("read-only mode");
335 		return -EROFS;
336 	}
337 
338 retry:
339 	init_waitqueue_head(&wq);
340 	memset(&ei, 0, sizeof(struct erase_info));
341 
342 	ei.mtd      = ubi->mtd;
343 	ei.addr     = (loff_t)pnum * ubi->peb_size;
344 	ei.len      = ubi->peb_size;
345 	ei.callback = erase_callback;
346 	ei.priv     = (unsigned long)&wq;
347 
348 	err = mtd_erase(ubi->mtd, &ei);
349 	if (err) {
350 		if (retries++ < UBI_IO_RETRIES) {
351 			ubi_warn("error %d while erasing PEB %d, retry",
352 				 err, pnum);
353 			yield();
354 			goto retry;
355 		}
356 		ubi_err("cannot erase PEB %d, error %d", pnum, err);
357 		dump_stack();
358 		return err;
359 	}
360 
361 	err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
362 					   ei.state == MTD_ERASE_FAILED);
363 	if (err) {
364 		ubi_err("interrupted PEB %d erasure", pnum);
365 		return -EINTR;
366 	}
367 
368 	if (ei.state == MTD_ERASE_FAILED) {
369 		if (retries++ < UBI_IO_RETRIES) {
370 			ubi_warn("error while erasing PEB %d, retry", pnum);
371 			yield();
372 			goto retry;
373 		}
374 		ubi_err("cannot erase PEB %d", pnum);
375 		dump_stack();
376 		return -EIO;
377 	}
378 
379 	err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size);
380 	if (err)
381 		return err;
382 
383 	if (ubi_dbg_is_erase_failure(ubi)) {
384 		ubi_err("cannot erase PEB %d (emulated)", pnum);
385 		return -EIO;
386 	}
387 
388 	return 0;
389 }
390 
391 /* Patterns to write to a physical eraseblock when torturing it */
392 static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
393 
394 /**
395  * torture_peb - test a supposedly bad physical eraseblock.
396  * @ubi: UBI device description object
397  * @pnum: the physical eraseblock number to test
398  *
399  * This function returns %-EIO if the physical eraseblock did not pass the
400  * test, a positive number of erase operations done if the test was
401  * successfully passed, and other negative error codes in case of other errors.
402  */
403 static int torture_peb(struct ubi_device *ubi, int pnum)
404 {
405 	int err, i, patt_count;
406 
407 	ubi_msg("run torture test for PEB %d", pnum);
408 	patt_count = ARRAY_SIZE(patterns);
409 	ubi_assert(patt_count > 0);
410 
411 	mutex_lock(&ubi->buf_mutex);
412 	for (i = 0; i < patt_count; i++) {
413 		err = do_sync_erase(ubi, pnum);
414 		if (err)
415 			goto out;
416 
417 		/* Make sure the PEB contains only 0xFF bytes */
418 		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
419 		if (err)
420 			goto out;
421 
422 		err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size);
423 		if (err == 0) {
424 			ubi_err("erased PEB %d, but a non-0xFF byte found",
425 				pnum);
426 			err = -EIO;
427 			goto out;
428 		}
429 
430 		/* Write a pattern and check it */
431 		memset(ubi->peb_buf, patterns[i], ubi->peb_size);
432 		err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
433 		if (err)
434 			goto out;
435 
436 		memset(ubi->peb_buf, ~patterns[i], ubi->peb_size);
437 		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
438 		if (err)
439 			goto out;
440 
441 		err = ubi_check_pattern(ubi->peb_buf, patterns[i],
442 					ubi->peb_size);
443 		if (err == 0) {
444 			ubi_err("pattern %x checking failed for PEB %d",
445 				patterns[i], pnum);
446 			err = -EIO;
447 			goto out;
448 		}
449 	}
450 
451 	err = patt_count;
452 	ubi_msg("PEB %d passed torture test, do not mark it as bad", pnum);
453 
454 out:
455 	mutex_unlock(&ubi->buf_mutex);
456 	if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
457 		/*
458 		 * If a bit-flip or data integrity error was detected, the test
459 		 * has not passed because it happened on a freshly erased
460 		 * physical eraseblock which means something is wrong with it.
461 		 */
462 		ubi_err("read problems on freshly erased PEB %d, must be bad",
463 			pnum);
464 		err = -EIO;
465 	}
466 	return err;
467 }
468 
469 /**
470  * nor_erase_prepare - prepare a NOR flash PEB for erasure.
471  * @ubi: UBI device description object
472  * @pnum: physical eraseblock number to prepare
473  *
474  * NOR flash, or at least some of them, have peculiar embedded PEB erasure
475  * algorithm: the PEB is first filled with zeroes, then it is erased. And
476  * filling with zeroes starts from the end of the PEB. This was observed with
477  * Spansion S29GL512N NOR flash.
478  *
479  * This means that in case of a power cut we may end up with intact data at the
480  * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
481  * EC and VID headers are OK, but a large chunk of data at the end of PEB is
482  * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
483  * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
484  *
485  * This function is called before erasing NOR PEBs and it zeroes out EC and VID
486  * magic numbers in order to invalidate them and prevent the failures. Returns
487  * zero in case of success and a negative error code in case of failure.
488  */
489 static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
490 {
491 	int err;
492 	size_t written;
493 	loff_t addr;
494 	uint32_t data = 0;
495 	struct ubi_ec_hdr ec_hdr;
496 
497 	/*
498 	 * Note, we cannot generally define VID header buffers on stack,
499 	 * because of the way we deal with these buffers (see the header
500 	 * comment in this file). But we know this is a NOR-specific piece of
501 	 * code, so we can do this. But yes, this is error-prone and we should
502 	 * (pre-)allocate VID header buffer instead.
503 	 */
504 	struct ubi_vid_hdr vid_hdr;
505 
506 	/*
507 	 * If VID or EC is valid, we have to corrupt them before erasing.
508 	 * It is important to first invalidate the EC header, and then the VID
509 	 * header. Otherwise a power cut may lead to valid EC header and
510 	 * invalid VID header, in which case UBI will treat this PEB as
511 	 * corrupted and will try to preserve it, and print scary warnings.
512 	 */
513 	addr = (loff_t)pnum * ubi->peb_size;
514 	err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
515 	if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
516 	    err != UBI_IO_FF){
517 		err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
518 		if(err)
519 			goto error;
520 	}
521 
522 	err = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
523 	if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
524 	    err != UBI_IO_FF){
525 		addr += ubi->vid_hdr_aloffset;
526 		err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
527 		if (err)
528 			goto error;
529 	}
530 	return 0;
531 
532 error:
533 	/*
534 	 * The PEB contains a valid VID or EC header, but we cannot invalidate
535 	 * it. Supposedly the flash media or the driver is screwed up, so
536 	 * return an error.
537 	 */
538 	ubi_err("cannot invalidate PEB %d, write returned %d", pnum, err);
539 	ubi_dump_flash(ubi, pnum, 0, ubi->peb_size);
540 	return -EIO;
541 }
542 
543 /**
544  * ubi_io_sync_erase - synchronously erase a physical eraseblock.
545  * @ubi: UBI device description object
546  * @pnum: physical eraseblock number to erase
547  * @torture: if this physical eraseblock has to be tortured
548  *
549  * This function synchronously erases physical eraseblock @pnum. If @torture
550  * flag is not zero, the physical eraseblock is checked by means of writing
551  * different patterns to it and reading them back. If the torturing is enabled,
552  * the physical eraseblock is erased more than once.
553  *
554  * This function returns the number of erasures made in case of success, %-EIO
555  * if the erasure failed or the torturing test failed, and other negative error
556  * codes in case of other errors. Note, %-EIO means that the physical
557  * eraseblock is bad.
558  */
559 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
560 {
561 	int err, ret = 0;
562 
563 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
564 
565 	err = self_check_not_bad(ubi, pnum);
566 	if (err != 0)
567 		return err;
568 
569 	if (ubi->ro_mode) {
570 		ubi_err("read-only mode");
571 		return -EROFS;
572 	}
573 
574 	if (ubi->nor_flash) {
575 		err = nor_erase_prepare(ubi, pnum);
576 		if (err)
577 			return err;
578 	}
579 
580 	if (torture) {
581 		ret = torture_peb(ubi, pnum);
582 		if (ret < 0)
583 			return ret;
584 	}
585 
586 	err = do_sync_erase(ubi, pnum);
587 	if (err)
588 		return err;
589 
590 	return ret + 1;
591 }
592 
593 /**
594  * ubi_io_is_bad - check if a physical eraseblock is bad.
595  * @ubi: UBI device description object
596  * @pnum: the physical eraseblock number to check
597  *
598  * This function returns a positive number if the physical eraseblock is bad,
599  * zero if not, and a negative error code if an error occurred.
600  */
601 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
602 {
603 	struct mtd_info *mtd = ubi->mtd;
604 
605 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
606 
607 	if (ubi->bad_allowed) {
608 		int ret;
609 
610 		ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
611 		if (ret < 0)
612 			ubi_err("error %d while checking if PEB %d is bad",
613 				ret, pnum);
614 		else if (ret)
615 			dbg_io("PEB %d is bad", pnum);
616 		return ret;
617 	}
618 
619 	return 0;
620 }
621 
622 /**
623  * ubi_io_mark_bad - mark a physical eraseblock as bad.
624  * @ubi: UBI device description object
625  * @pnum: the physical eraseblock number to mark
626  *
627  * This function returns zero in case of success and a negative error code in
628  * case of failure.
629  */
630 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
631 {
632 	int err;
633 	struct mtd_info *mtd = ubi->mtd;
634 
635 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
636 
637 	if (ubi->ro_mode) {
638 		ubi_err("read-only mode");
639 		return -EROFS;
640 	}
641 
642 	if (!ubi->bad_allowed)
643 		return 0;
644 
645 	err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
646 	if (err)
647 		ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
648 	return err;
649 }
650 
651 /**
652  * validate_ec_hdr - validate an erase counter header.
653  * @ubi: UBI device description object
654  * @ec_hdr: the erase counter header to check
655  *
656  * This function returns zero if the erase counter header is OK, and %1 if
657  * not.
658  */
659 static int validate_ec_hdr(const struct ubi_device *ubi,
660 			   const struct ubi_ec_hdr *ec_hdr)
661 {
662 	long long ec;
663 	int vid_hdr_offset, leb_start;
664 
665 	ec = be64_to_cpu(ec_hdr->ec);
666 	vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
667 	leb_start = be32_to_cpu(ec_hdr->data_offset);
668 
669 	if (ec_hdr->version != UBI_VERSION) {
670 		ubi_err("node with incompatible UBI version found: this UBI version is %d, image version is %d",
671 			UBI_VERSION, (int)ec_hdr->version);
672 		goto bad;
673 	}
674 
675 	if (vid_hdr_offset != ubi->vid_hdr_offset) {
676 		ubi_err("bad VID header offset %d, expected %d",
677 			vid_hdr_offset, ubi->vid_hdr_offset);
678 		goto bad;
679 	}
680 
681 	if (leb_start != ubi->leb_start) {
682 		ubi_err("bad data offset %d, expected %d",
683 			leb_start, ubi->leb_start);
684 		goto bad;
685 	}
686 
687 	if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
688 		ubi_err("bad erase counter %lld", ec);
689 		goto bad;
690 	}
691 
692 	return 0;
693 
694 bad:
695 	ubi_err("bad EC header");
696 	ubi_dump_ec_hdr(ec_hdr);
697 	dump_stack();
698 	return 1;
699 }
700 
701 /**
702  * ubi_io_read_ec_hdr - read and check an erase counter header.
703  * @ubi: UBI device description object
704  * @pnum: physical eraseblock to read from
705  * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
706  * header
707  * @verbose: be verbose if the header is corrupted or was not found
708  *
709  * This function reads erase counter header from physical eraseblock @pnum and
710  * stores it in @ec_hdr. This function also checks CRC checksum of the read
711  * erase counter header. The following codes may be returned:
712  *
713  * o %0 if the CRC checksum is correct and the header was successfully read;
714  * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
715  *   and corrected by the flash driver; this is harmless but may indicate that
716  *   this eraseblock may become bad soon (but may be not);
717  * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
718  * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
719  *   a data integrity error (uncorrectable ECC error in case of NAND);
720  * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
721  * o a negative error code in case of failure.
722  */
723 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
724 		       struct ubi_ec_hdr *ec_hdr, int verbose)
725 {
726 	int err, read_err;
727 	uint32_t crc, magic, hdr_crc;
728 
729 	dbg_io("read EC header from PEB %d", pnum);
730 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
731 
732 	read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
733 	if (read_err) {
734 		if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
735 			return read_err;
736 
737 		/*
738 		 * We read all the data, but either a correctable bit-flip
739 		 * occurred, or MTD reported a data integrity error
740 		 * (uncorrectable ECC error in case of NAND). The former is
741 		 * harmless, the later may mean that the read data is
742 		 * corrupted. But we have a CRC check-sum and we will detect
743 		 * this. If the EC header is still OK, we just report this as
744 		 * there was a bit-flip, to force scrubbing.
745 		 */
746 	}
747 
748 	magic = be32_to_cpu(ec_hdr->magic);
749 	if (magic != UBI_EC_HDR_MAGIC) {
750 		if (mtd_is_eccerr(read_err))
751 			return UBI_IO_BAD_HDR_EBADMSG;
752 
753 		/*
754 		 * The magic field is wrong. Let's check if we have read all
755 		 * 0xFF. If yes, this physical eraseblock is assumed to be
756 		 * empty.
757 		 */
758 		if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
759 			/* The physical eraseblock is supposedly empty */
760 			if (verbose)
761 				ubi_warn("no EC header found at PEB %d, only 0xFF bytes",
762 					 pnum);
763 			dbg_bld("no EC header found at PEB %d, only 0xFF bytes",
764 				pnum);
765 			if (!read_err)
766 				return UBI_IO_FF;
767 			else
768 				return UBI_IO_FF_BITFLIPS;
769 		}
770 
771 		/*
772 		 * This is not a valid erase counter header, and these are not
773 		 * 0xFF bytes. Report that the header is corrupted.
774 		 */
775 		if (verbose) {
776 			ubi_warn("bad magic number at PEB %d: %08x instead of %08x",
777 				 pnum, magic, UBI_EC_HDR_MAGIC);
778 			ubi_dump_ec_hdr(ec_hdr);
779 		}
780 		dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
781 			pnum, magic, UBI_EC_HDR_MAGIC);
782 		return UBI_IO_BAD_HDR;
783 	}
784 
785 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
786 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
787 
788 	if (hdr_crc != crc) {
789 		if (verbose) {
790 			ubi_warn("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
791 				 pnum, crc, hdr_crc);
792 			ubi_dump_ec_hdr(ec_hdr);
793 		}
794 		dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
795 			pnum, crc, hdr_crc);
796 
797 		if (!read_err)
798 			return UBI_IO_BAD_HDR;
799 		else
800 			return UBI_IO_BAD_HDR_EBADMSG;
801 	}
802 
803 	/* And of course validate what has just been read from the media */
804 	err = validate_ec_hdr(ubi, ec_hdr);
805 	if (err) {
806 		ubi_err("validation failed for PEB %d", pnum);
807 		return -EINVAL;
808 	}
809 
810 	/*
811 	 * If there was %-EBADMSG, but the header CRC is still OK, report about
812 	 * a bit-flip to force scrubbing on this PEB.
813 	 */
814 	return read_err ? UBI_IO_BITFLIPS : 0;
815 }
816 
817 /**
818  * ubi_io_write_ec_hdr - write an erase counter header.
819  * @ubi: UBI device description object
820  * @pnum: physical eraseblock to write to
821  * @ec_hdr: the erase counter header to write
822  *
823  * This function writes erase counter header described by @ec_hdr to physical
824  * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
825  * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
826  * field.
827  *
828  * This function returns zero in case of success and a negative error code in
829  * case of failure. If %-EIO is returned, the physical eraseblock most probably
830  * went bad.
831  */
832 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
833 			struct ubi_ec_hdr *ec_hdr)
834 {
835 	int err;
836 	uint32_t crc;
837 
838 	dbg_io("write EC header to PEB %d", pnum);
839 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
840 
841 	ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
842 	ec_hdr->version = UBI_VERSION;
843 	ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
844 	ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
845 	ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
846 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
847 	ec_hdr->hdr_crc = cpu_to_be32(crc);
848 
849 	err = self_check_ec_hdr(ubi, pnum, ec_hdr);
850 	if (err)
851 		return err;
852 
853 	err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
854 	return err;
855 }
856 
857 /**
858  * validate_vid_hdr - validate a volume identifier header.
859  * @ubi: UBI device description object
860  * @vid_hdr: the volume identifier header to check
861  *
862  * This function checks that data stored in the volume identifier header
863  * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
864  */
865 static int validate_vid_hdr(const struct ubi_device *ubi,
866 			    const struct ubi_vid_hdr *vid_hdr)
867 {
868 	int vol_type = vid_hdr->vol_type;
869 	int copy_flag = vid_hdr->copy_flag;
870 	int vol_id = be32_to_cpu(vid_hdr->vol_id);
871 	int lnum = be32_to_cpu(vid_hdr->lnum);
872 	int compat = vid_hdr->compat;
873 	int data_size = be32_to_cpu(vid_hdr->data_size);
874 	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
875 	int data_pad = be32_to_cpu(vid_hdr->data_pad);
876 	int data_crc = be32_to_cpu(vid_hdr->data_crc);
877 	int usable_leb_size = ubi->leb_size - data_pad;
878 
879 	if (copy_flag != 0 && copy_flag != 1) {
880 		ubi_err("bad copy_flag");
881 		goto bad;
882 	}
883 
884 	if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
885 	    data_pad < 0) {
886 		ubi_err("negative values");
887 		goto bad;
888 	}
889 
890 	if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
891 		ubi_err("bad vol_id");
892 		goto bad;
893 	}
894 
895 	if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
896 		ubi_err("bad compat");
897 		goto bad;
898 	}
899 
900 	if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
901 	    compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
902 	    compat != UBI_COMPAT_REJECT) {
903 		ubi_err("bad compat");
904 		goto bad;
905 	}
906 
907 	if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
908 		ubi_err("bad vol_type");
909 		goto bad;
910 	}
911 
912 	if (data_pad >= ubi->leb_size / 2) {
913 		ubi_err("bad data_pad");
914 		goto bad;
915 	}
916 
917 	if (vol_type == UBI_VID_STATIC) {
918 		/*
919 		 * Although from high-level point of view static volumes may
920 		 * contain zero bytes of data, but no VID headers can contain
921 		 * zero at these fields, because they empty volumes do not have
922 		 * mapped logical eraseblocks.
923 		 */
924 		if (used_ebs == 0) {
925 			ubi_err("zero used_ebs");
926 			goto bad;
927 		}
928 		if (data_size == 0) {
929 			ubi_err("zero data_size");
930 			goto bad;
931 		}
932 		if (lnum < used_ebs - 1) {
933 			if (data_size != usable_leb_size) {
934 				ubi_err("bad data_size");
935 				goto bad;
936 			}
937 		} else if (lnum == used_ebs - 1) {
938 			if (data_size == 0) {
939 				ubi_err("bad data_size at last LEB");
940 				goto bad;
941 			}
942 		} else {
943 			ubi_err("too high lnum");
944 			goto bad;
945 		}
946 	} else {
947 		if (copy_flag == 0) {
948 			if (data_crc != 0) {
949 				ubi_err("non-zero data CRC");
950 				goto bad;
951 			}
952 			if (data_size != 0) {
953 				ubi_err("non-zero data_size");
954 				goto bad;
955 			}
956 		} else {
957 			if (data_size == 0) {
958 				ubi_err("zero data_size of copy");
959 				goto bad;
960 			}
961 		}
962 		if (used_ebs != 0) {
963 			ubi_err("bad used_ebs");
964 			goto bad;
965 		}
966 	}
967 
968 	return 0;
969 
970 bad:
971 	ubi_err("bad VID header");
972 	ubi_dump_vid_hdr(vid_hdr);
973 	dump_stack();
974 	return 1;
975 }
976 
977 /**
978  * ubi_io_read_vid_hdr - read and check a volume identifier header.
979  * @ubi: UBI device description object
980  * @pnum: physical eraseblock number to read from
981  * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
982  * identifier header
983  * @verbose: be verbose if the header is corrupted or wasn't found
984  *
985  * This function reads the volume identifier header from physical eraseblock
986  * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
987  * volume identifier header. The error codes are the same as in
988  * 'ubi_io_read_ec_hdr()'.
989  *
990  * Note, the implementation of this function is also very similar to
991  * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
992  */
993 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
994 			struct ubi_vid_hdr *vid_hdr, int verbose)
995 {
996 	int err, read_err;
997 	uint32_t crc, magic, hdr_crc;
998 	void *p;
999 
1000 	dbg_io("read VID header from PEB %d", pnum);
1001 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1002 
1003 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1004 	read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1005 			  ubi->vid_hdr_alsize);
1006 	if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
1007 		return read_err;
1008 
1009 	magic = be32_to_cpu(vid_hdr->magic);
1010 	if (magic != UBI_VID_HDR_MAGIC) {
1011 		if (mtd_is_eccerr(read_err))
1012 			return UBI_IO_BAD_HDR_EBADMSG;
1013 
1014 		if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
1015 			if (verbose)
1016 				ubi_warn("no VID header found at PEB %d, only 0xFF bytes",
1017 					 pnum);
1018 			dbg_bld("no VID header found at PEB %d, only 0xFF bytes",
1019 				pnum);
1020 			if (!read_err)
1021 				return UBI_IO_FF;
1022 			else
1023 				return UBI_IO_FF_BITFLIPS;
1024 		}
1025 
1026 		if (verbose) {
1027 			ubi_warn("bad magic number at PEB %d: %08x instead of %08x",
1028 				 pnum, magic, UBI_VID_HDR_MAGIC);
1029 			ubi_dump_vid_hdr(vid_hdr);
1030 		}
1031 		dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
1032 			pnum, magic, UBI_VID_HDR_MAGIC);
1033 		return UBI_IO_BAD_HDR;
1034 	}
1035 
1036 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1037 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1038 
1039 	if (hdr_crc != crc) {
1040 		if (verbose) {
1041 			ubi_warn("bad CRC at PEB %d, calculated %#08x, read %#08x",
1042 				 pnum, crc, hdr_crc);
1043 			ubi_dump_vid_hdr(vid_hdr);
1044 		}
1045 		dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x",
1046 			pnum, crc, hdr_crc);
1047 		if (!read_err)
1048 			return UBI_IO_BAD_HDR;
1049 		else
1050 			return UBI_IO_BAD_HDR_EBADMSG;
1051 	}
1052 
1053 	err = validate_vid_hdr(ubi, vid_hdr);
1054 	if (err) {
1055 		ubi_err("validation failed for PEB %d", pnum);
1056 		return -EINVAL;
1057 	}
1058 
1059 	return read_err ? UBI_IO_BITFLIPS : 0;
1060 }
1061 
1062 /**
1063  * ubi_io_write_vid_hdr - write a volume identifier header.
1064  * @ubi: UBI device description object
1065  * @pnum: the physical eraseblock number to write to
1066  * @vid_hdr: the volume identifier header to write
1067  *
1068  * This function writes the volume identifier header described by @vid_hdr to
1069  * physical eraseblock @pnum. This function automatically fills the
1070  * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1071  * header CRC checksum and stores it at vid_hdr->hdr_crc.
1072  *
1073  * This function returns zero in case of success and a negative error code in
1074  * case of failure. If %-EIO is returned, the physical eraseblock probably went
1075  * bad.
1076  */
1077 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1078 			 struct ubi_vid_hdr *vid_hdr)
1079 {
1080 	int err;
1081 	uint32_t crc;
1082 	void *p;
1083 
1084 	dbg_io("write VID header to PEB %d", pnum);
1085 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1086 
1087 	err = self_check_peb_ec_hdr(ubi, pnum);
1088 	if (err)
1089 		return err;
1090 
1091 	vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1092 	vid_hdr->version = UBI_VERSION;
1093 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1094 	vid_hdr->hdr_crc = cpu_to_be32(crc);
1095 
1096 	err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1097 	if (err)
1098 		return err;
1099 
1100 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1101 	err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1102 			   ubi->vid_hdr_alsize);
1103 	return err;
1104 }
1105 
1106 /**
1107  * self_check_not_bad - ensure that a physical eraseblock is not bad.
1108  * @ubi: UBI device description object
1109  * @pnum: physical eraseblock number to check
1110  *
1111  * This function returns zero if the physical eraseblock is good, %-EINVAL if
1112  * it is bad and a negative error code if an error occurred.
1113  */
1114 static int self_check_not_bad(const struct ubi_device *ubi, int pnum)
1115 {
1116 	int err;
1117 
1118 	if (!ubi_dbg_chk_io(ubi))
1119 		return 0;
1120 
1121 	err = ubi_io_is_bad(ubi, pnum);
1122 	if (!err)
1123 		return err;
1124 
1125 	ubi_err("self-check failed for PEB %d", pnum);
1126 	dump_stack();
1127 	return err > 0 ? -EINVAL : err;
1128 }
1129 
1130 /**
1131  * self_check_ec_hdr - check if an erase counter header is all right.
1132  * @ubi: UBI device description object
1133  * @pnum: physical eraseblock number the erase counter header belongs to
1134  * @ec_hdr: the erase counter header to check
1135  *
1136  * This function returns zero if the erase counter header contains valid
1137  * values, and %-EINVAL if not.
1138  */
1139 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1140 			     const struct ubi_ec_hdr *ec_hdr)
1141 {
1142 	int err;
1143 	uint32_t magic;
1144 
1145 	if (!ubi_dbg_chk_io(ubi))
1146 		return 0;
1147 
1148 	magic = be32_to_cpu(ec_hdr->magic);
1149 	if (magic != UBI_EC_HDR_MAGIC) {
1150 		ubi_err("bad magic %#08x, must be %#08x",
1151 			magic, UBI_EC_HDR_MAGIC);
1152 		goto fail;
1153 	}
1154 
1155 	err = validate_ec_hdr(ubi, ec_hdr);
1156 	if (err) {
1157 		ubi_err("self-check failed for PEB %d", pnum);
1158 		goto fail;
1159 	}
1160 
1161 	return 0;
1162 
1163 fail:
1164 	ubi_dump_ec_hdr(ec_hdr);
1165 	dump_stack();
1166 	return -EINVAL;
1167 }
1168 
1169 /**
1170  * self_check_peb_ec_hdr - check erase counter header.
1171  * @ubi: UBI device description object
1172  * @pnum: the physical eraseblock number to check
1173  *
1174  * This function returns zero if the erase counter header is all right and and
1175  * a negative error code if not or if an error occurred.
1176  */
1177 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1178 {
1179 	int err;
1180 	uint32_t crc, hdr_crc;
1181 	struct ubi_ec_hdr *ec_hdr;
1182 
1183 	if (!ubi_dbg_chk_io(ubi))
1184 		return 0;
1185 
1186 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1187 	if (!ec_hdr)
1188 		return -ENOMEM;
1189 
1190 	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1191 	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1192 		goto exit;
1193 
1194 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1195 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1196 	if (hdr_crc != crc) {
1197 		ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
1198 		ubi_err("self-check failed for PEB %d", pnum);
1199 		ubi_dump_ec_hdr(ec_hdr);
1200 		dump_stack();
1201 		err = -EINVAL;
1202 		goto exit;
1203 	}
1204 
1205 	err = self_check_ec_hdr(ubi, pnum, ec_hdr);
1206 
1207 exit:
1208 	kfree(ec_hdr);
1209 	return err;
1210 }
1211 
1212 /**
1213  * self_check_vid_hdr - check that a volume identifier header is all right.
1214  * @ubi: UBI device description object
1215  * @pnum: physical eraseblock number the volume identifier header belongs to
1216  * @vid_hdr: the volume identifier header to check
1217  *
1218  * This function returns zero if the volume identifier header is all right, and
1219  * %-EINVAL if not.
1220  */
1221 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1222 			      const struct ubi_vid_hdr *vid_hdr)
1223 {
1224 	int err;
1225 	uint32_t magic;
1226 
1227 	if (!ubi_dbg_chk_io(ubi))
1228 		return 0;
1229 
1230 	magic = be32_to_cpu(vid_hdr->magic);
1231 	if (magic != UBI_VID_HDR_MAGIC) {
1232 		ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1233 			magic, pnum, UBI_VID_HDR_MAGIC);
1234 		goto fail;
1235 	}
1236 
1237 	err = validate_vid_hdr(ubi, vid_hdr);
1238 	if (err) {
1239 		ubi_err("self-check failed for PEB %d", pnum);
1240 		goto fail;
1241 	}
1242 
1243 	return err;
1244 
1245 fail:
1246 	ubi_err("self-check failed for PEB %d", pnum);
1247 	ubi_dump_vid_hdr(vid_hdr);
1248 	dump_stack();
1249 	return -EINVAL;
1250 
1251 }
1252 
1253 /**
1254  * self_check_peb_vid_hdr - check volume identifier header.
1255  * @ubi: UBI device description object
1256  * @pnum: the physical eraseblock number to check
1257  *
1258  * This function returns zero if the volume identifier header is all right,
1259  * and a negative error code if not or if an error occurred.
1260  */
1261 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1262 {
1263 	int err;
1264 	uint32_t crc, hdr_crc;
1265 	struct ubi_vid_hdr *vid_hdr;
1266 	void *p;
1267 
1268 	if (!ubi_dbg_chk_io(ubi))
1269 		return 0;
1270 
1271 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1272 	if (!vid_hdr)
1273 		return -ENOMEM;
1274 
1275 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1276 	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1277 			  ubi->vid_hdr_alsize);
1278 	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1279 		goto exit;
1280 
1281 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
1282 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1283 	if (hdr_crc != crc) {
1284 		ubi_err("bad VID header CRC at PEB %d, calculated %#08x, read %#08x",
1285 			pnum, crc, hdr_crc);
1286 		ubi_err("self-check failed for PEB %d", pnum);
1287 		ubi_dump_vid_hdr(vid_hdr);
1288 		dump_stack();
1289 		err = -EINVAL;
1290 		goto exit;
1291 	}
1292 
1293 	err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1294 
1295 exit:
1296 	ubi_free_vid_hdr(ubi, vid_hdr);
1297 	return err;
1298 }
1299 
1300 /**
1301  * self_check_write - make sure write succeeded.
1302  * @ubi: UBI device description object
1303  * @buf: buffer with data which were written
1304  * @pnum: physical eraseblock number the data were written to
1305  * @offset: offset within the physical eraseblock the data were written to
1306  * @len: how many bytes were written
1307  *
1308  * This functions reads data which were recently written and compares it with
1309  * the original data buffer - the data have to match. Returns zero if the data
1310  * match and a negative error code if not or in case of failure.
1311  */
1312 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1313 			    int offset, int len)
1314 {
1315 	int err, i;
1316 	size_t read;
1317 	void *buf1;
1318 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1319 
1320 	if (!ubi_dbg_chk_io(ubi))
1321 		return 0;
1322 
1323 	buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1324 	if (!buf1) {
1325 		ubi_err("cannot allocate memory to check writes");
1326 		return 0;
1327 	}
1328 
1329 	err = mtd_read(ubi->mtd, addr, len, &read, buf1);
1330 	if (err && !mtd_is_bitflip(err))
1331 		goto out_free;
1332 
1333 	for (i = 0; i < len; i++) {
1334 		uint8_t c = ((uint8_t *)buf)[i];
1335 		uint8_t c1 = ((uint8_t *)buf1)[i];
1336 #if !defined(CONFIG_UBI_SILENCE_MSG)
1337 		int dump_len = max_t(int, 128, len - i);
1338 #endif
1339 
1340 		if (c == c1)
1341 			continue;
1342 
1343 		ubi_err("self-check failed for PEB %d:%d, len %d",
1344 			pnum, offset, len);
1345 		ubi_msg("data differ at position %d", i);
1346 		ubi_msg("hex dump of the original buffer from %d to %d",
1347 			i, i + dump_len);
1348 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1349 			       buf + i, dump_len, 1);
1350 		ubi_msg("hex dump of the read buffer from %d to %d",
1351 			i, i + dump_len);
1352 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1353 			       buf1 + i, dump_len, 1);
1354 		dump_stack();
1355 		err = -EINVAL;
1356 		goto out_free;
1357 	}
1358 
1359 	vfree(buf1);
1360 	return 0;
1361 
1362 out_free:
1363 	vfree(buf1);
1364 	return err;
1365 }
1366 
1367 /**
1368  * ubi_self_check_all_ff - check that a region of flash is empty.
1369  * @ubi: UBI device description object
1370  * @pnum: the physical eraseblock number to check
1371  * @offset: the starting offset within the physical eraseblock to check
1372  * @len: the length of the region to check
1373  *
1374  * This function returns zero if only 0xFF bytes are present at offset
1375  * @offset of the physical eraseblock @pnum, and a negative error code if not
1376  * or if an error occurred.
1377  */
1378 int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
1379 {
1380 	size_t read;
1381 	int err;
1382 	void *buf;
1383 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1384 
1385 	if (!ubi_dbg_chk_io(ubi))
1386 		return 0;
1387 
1388 	buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1389 	if (!buf) {
1390 		ubi_err("cannot allocate memory to check for 0xFFs");
1391 		return 0;
1392 	}
1393 
1394 	err = mtd_read(ubi->mtd, addr, len, &read, buf);
1395 	if (err && !mtd_is_bitflip(err)) {
1396 		ubi_err("error %d while reading %d bytes from PEB %d:%d, read %zd bytes",
1397 			err, len, pnum, offset, read);
1398 		goto error;
1399 	}
1400 
1401 	err = ubi_check_pattern(buf, 0xFF, len);
1402 	if (err == 0) {
1403 		ubi_err("flash region at PEB %d:%d, length %d does not contain all 0xFF bytes",
1404 			pnum, offset, len);
1405 		goto fail;
1406 	}
1407 
1408 	vfree(buf);
1409 	return 0;
1410 
1411 fail:
1412 	ubi_err("self-check failed for PEB %d", pnum);
1413 	ubi_msg("hex dump of the %d-%d region", offset, offset + len);
1414 	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
1415 	err = -EINVAL;
1416 error:
1417 	dump_stack();
1418 	vfree(buf);
1419 	return err;
1420 }
1421