1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (c) International Business Machines Corp., 2006 4 * Copyright (c) Nokia Corporation, 2006, 2007 5 * 6 * Author: Artem Bityutskiy (Битюцкий Артём) 7 */ 8 9 /* 10 * UBI input/output sub-system. 11 * 12 * This sub-system provides a uniform way to work with all kinds of the 13 * underlying MTD devices. It also implements handy functions for reading and 14 * writing UBI headers. 15 * 16 * We are trying to have a paranoid mindset and not to trust to what we read 17 * from the flash media in order to be more secure and robust. So this 18 * sub-system validates every single header it reads from the flash media. 19 * 20 * Some words about how the eraseblock headers are stored. 21 * 22 * The erase counter header is always stored at offset zero. By default, the 23 * VID header is stored after the EC header at the closest aligned offset 24 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID 25 * header at the closest aligned offset. But this default layout may be 26 * changed. For example, for different reasons (e.g., optimization) UBI may be 27 * asked to put the VID header at further offset, and even at an unaligned 28 * offset. Of course, if the offset of the VID header is unaligned, UBI adds 29 * proper padding in front of it. Data offset may also be changed but it has to 30 * be aligned. 31 * 32 * About minimal I/O units. In general, UBI assumes flash device model where 33 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1, 34 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the 35 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another 36 * (smaller) minimal I/O unit size for EC and VID headers to make it possible 37 * to do different optimizations. 38 * 39 * This is extremely useful in case of NAND flashes which admit of several 40 * write operations to one NAND page. In this case UBI can fit EC and VID 41 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal 42 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still 43 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI 44 * users. 45 * 46 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so 47 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID 48 * headers. 49 * 50 * Q: why not just to treat sub-page as a minimal I/O unit of this flash 51 * device, e.g., make @ubi->min_io_size = 512 in the example above? 52 * 53 * A: because when writing a sub-page, MTD still writes a full 2K page but the 54 * bytes which are not relevant to the sub-page are 0xFF. So, basically, 55 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page. 56 * Thus, we prefer to use sub-pages only for EC and VID headers. 57 * 58 * As it was noted above, the VID header may start at a non-aligned offset. 59 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page, 60 * the VID header may reside at offset 1984 which is the last 64 bytes of the 61 * last sub-page (EC header is always at offset zero). This causes some 62 * difficulties when reading and writing VID headers. 63 * 64 * Suppose we have a 64-byte buffer and we read a VID header at it. We change 65 * the data and want to write this VID header out. As we can only write in 66 * 512-byte chunks, we have to allocate one more buffer and copy our VID header 67 * to offset 448 of this buffer. 68 * 69 * The I/O sub-system does the following trick in order to avoid this extra 70 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID 71 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer. 72 * When the VID header is being written out, it shifts the VID header pointer 73 * back and writes the whole sub-page. 74 */ 75 76 #ifndef __UBOOT__ 77 #include <linux/crc32.h> 78 #include <linux/err.h> 79 #include <linux/slab.h> 80 #else 81 #include <hexdump.h> 82 #include <ubi_uboot.h> 83 #endif 84 85 #include "ubi.h" 86 87 static int self_check_not_bad(const struct ubi_device *ubi, int pnum); 88 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum); 89 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum, 90 const struct ubi_ec_hdr *ec_hdr); 91 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum); 92 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum, 93 const struct ubi_vid_hdr *vid_hdr); 94 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum, 95 int offset, int len); 96 97 /** 98 * ubi_io_read - read data from a physical eraseblock. 99 * @ubi: UBI device description object 100 * @buf: buffer where to store the read data 101 * @pnum: physical eraseblock number to read from 102 * @offset: offset within the physical eraseblock from where to read 103 * @len: how many bytes to read 104 * 105 * This function reads data from offset @offset of physical eraseblock @pnum 106 * and stores the read data in the @buf buffer. The following return codes are 107 * possible: 108 * 109 * o %0 if all the requested data were successfully read; 110 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but 111 * correctable bit-flips were detected; this is harmless but may indicate 112 * that this eraseblock may become bad soon (but do not have to); 113 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for 114 * example it can be an ECC error in case of NAND; this most probably means 115 * that the data is corrupted; 116 * o %-EIO if some I/O error occurred; 117 * o other negative error codes in case of other errors. 118 */ 119 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset, 120 int len) 121 { 122 int err, retries = 0; 123 size_t read; 124 loff_t addr; 125 126 dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset); 127 128 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 129 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); 130 ubi_assert(len > 0); 131 132 err = self_check_not_bad(ubi, pnum); 133 if (err) 134 return err; 135 136 /* 137 * Deliberately corrupt the buffer to improve robustness. Indeed, if we 138 * do not do this, the following may happen: 139 * 1. The buffer contains data from previous operation, e.g., read from 140 * another PEB previously. The data looks like expected, e.g., if we 141 * just do not read anything and return - the caller would not 142 * notice this. E.g., if we are reading a VID header, the buffer may 143 * contain a valid VID header from another PEB. 144 * 2. The driver is buggy and returns us success or -EBADMSG or 145 * -EUCLEAN, but it does not actually put any data to the buffer. 146 * 147 * This may confuse UBI or upper layers - they may think the buffer 148 * contains valid data while in fact it is just old data. This is 149 * especially possible because UBI (and UBIFS) relies on CRC, and 150 * treats data as correct even in case of ECC errors if the CRC is 151 * correct. 152 * 153 * Try to prevent this situation by changing the first byte of the 154 * buffer. 155 */ 156 *((uint8_t *)buf) ^= 0xFF; 157 158 addr = (loff_t)pnum * ubi->peb_size + offset; 159 retry: 160 err = mtd_read(ubi->mtd, addr, len, &read, buf); 161 if (err) { 162 const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : ""; 163 164 if (mtd_is_bitflip(err)) { 165 /* 166 * -EUCLEAN is reported if there was a bit-flip which 167 * was corrected, so this is harmless. 168 * 169 * We do not report about it here unless debugging is 170 * enabled. A corresponding message will be printed 171 * later, when it is has been scrubbed. 172 */ 173 ubi_msg(ubi, "fixable bit-flip detected at PEB %d", 174 pnum); 175 ubi_assert(len == read); 176 return UBI_IO_BITFLIPS; 177 } 178 179 if (retries++ < UBI_IO_RETRIES) { 180 ubi_warn(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry", 181 err, errstr, len, pnum, offset, read); 182 yield(); 183 goto retry; 184 } 185 186 ubi_err(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes", 187 err, errstr, len, pnum, offset, read); 188 dump_stack(); 189 190 /* 191 * The driver should never return -EBADMSG if it failed to read 192 * all the requested data. But some buggy drivers might do 193 * this, so we change it to -EIO. 194 */ 195 if (read != len && mtd_is_eccerr(err)) { 196 ubi_assert(0); 197 err = -EIO; 198 } 199 } else { 200 ubi_assert(len == read); 201 202 if (ubi_dbg_is_bitflip(ubi)) { 203 dbg_gen("bit-flip (emulated)"); 204 err = UBI_IO_BITFLIPS; 205 } 206 } 207 208 return err; 209 } 210 211 /** 212 * ubi_io_write - write data to a physical eraseblock. 213 * @ubi: UBI device description object 214 * @buf: buffer with the data to write 215 * @pnum: physical eraseblock number to write to 216 * @offset: offset within the physical eraseblock where to write 217 * @len: how many bytes to write 218 * 219 * This function writes @len bytes of data from buffer @buf to offset @offset 220 * of physical eraseblock @pnum. If all the data were successfully written, 221 * zero is returned. If an error occurred, this function returns a negative 222 * error code. If %-EIO is returned, the physical eraseblock most probably went 223 * bad. 224 * 225 * Note, in case of an error, it is possible that something was still written 226 * to the flash media, but may be some garbage. 227 */ 228 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset, 229 int len) 230 { 231 int err; 232 size_t written; 233 loff_t addr; 234 235 dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset); 236 237 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 238 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); 239 ubi_assert(offset % ubi->hdrs_min_io_size == 0); 240 ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0); 241 242 if (ubi->ro_mode) { 243 ubi_err(ubi, "read-only mode"); 244 return -EROFS; 245 } 246 247 err = self_check_not_bad(ubi, pnum); 248 if (err) 249 return err; 250 251 /* The area we are writing to has to contain all 0xFF bytes */ 252 err = ubi_self_check_all_ff(ubi, pnum, offset, len); 253 if (err) 254 return err; 255 256 if (offset >= ubi->leb_start) { 257 /* 258 * We write to the data area of the physical eraseblock. Make 259 * sure it has valid EC and VID headers. 260 */ 261 err = self_check_peb_ec_hdr(ubi, pnum); 262 if (err) 263 return err; 264 err = self_check_peb_vid_hdr(ubi, pnum); 265 if (err) 266 return err; 267 } 268 269 if (ubi_dbg_is_write_failure(ubi)) { 270 ubi_err(ubi, "cannot write %d bytes to PEB %d:%d (emulated)", 271 len, pnum, offset); 272 dump_stack(); 273 return -EIO; 274 } 275 276 addr = (loff_t)pnum * ubi->peb_size + offset; 277 err = mtd_write(ubi->mtd, addr, len, &written, buf); 278 if (err) { 279 ubi_err(ubi, "error %d while writing %d bytes to PEB %d:%d, written %zd bytes", 280 err, len, pnum, offset, written); 281 dump_stack(); 282 ubi_dump_flash(ubi, pnum, offset, len); 283 } else 284 ubi_assert(written == len); 285 286 if (!err) { 287 err = self_check_write(ubi, buf, pnum, offset, len); 288 if (err) 289 return err; 290 291 /* 292 * Since we always write sequentially, the rest of the PEB has 293 * to contain only 0xFF bytes. 294 */ 295 offset += len; 296 len = ubi->peb_size - offset; 297 if (len) 298 err = ubi_self_check_all_ff(ubi, pnum, offset, len); 299 } 300 301 return err; 302 } 303 304 /** 305 * erase_callback - MTD erasure call-back. 306 * @ei: MTD erase information object. 307 * 308 * Note, even though MTD erase interface is asynchronous, all the current 309 * implementations are synchronous anyway. 310 */ 311 static void erase_callback(struct erase_info *ei) 312 { 313 wake_up_interruptible((wait_queue_head_t *)ei->priv); 314 } 315 316 /** 317 * do_sync_erase - synchronously erase a physical eraseblock. 318 * @ubi: UBI device description object 319 * @pnum: the physical eraseblock number to erase 320 * 321 * This function synchronously erases physical eraseblock @pnum and returns 322 * zero in case of success and a negative error code in case of failure. If 323 * %-EIO is returned, the physical eraseblock most probably went bad. 324 */ 325 static int do_sync_erase(struct ubi_device *ubi, int pnum) 326 { 327 int err, retries = 0; 328 struct erase_info ei; 329 wait_queue_head_t wq; 330 331 dbg_io("erase PEB %d", pnum); 332 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 333 334 if (ubi->ro_mode) { 335 ubi_err(ubi, "read-only mode"); 336 return -EROFS; 337 } 338 339 retry: 340 init_waitqueue_head(&wq); 341 memset(&ei, 0, sizeof(struct erase_info)); 342 343 ei.mtd = ubi->mtd; 344 ei.addr = (loff_t)pnum * ubi->peb_size; 345 ei.len = ubi->peb_size; 346 ei.callback = erase_callback; 347 ei.priv = (unsigned long)&wq; 348 349 err = mtd_erase(ubi->mtd, &ei); 350 if (err) { 351 if (retries++ < UBI_IO_RETRIES) { 352 ubi_warn(ubi, "error %d while erasing PEB %d, retry", 353 err, pnum); 354 yield(); 355 goto retry; 356 } 357 ubi_err(ubi, "cannot erase PEB %d, error %d", pnum, err); 358 dump_stack(); 359 return err; 360 } 361 362 err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE || 363 ei.state == MTD_ERASE_FAILED); 364 if (err) { 365 ubi_err(ubi, "interrupted PEB %d erasure", pnum); 366 return -EINTR; 367 } 368 369 if (ei.state == MTD_ERASE_FAILED) { 370 if (retries++ < UBI_IO_RETRIES) { 371 ubi_warn(ubi, "error while erasing PEB %d, retry", 372 pnum); 373 yield(); 374 goto retry; 375 } 376 ubi_err(ubi, "cannot erase PEB %d", pnum); 377 dump_stack(); 378 return -EIO; 379 } 380 381 err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size); 382 if (err) 383 return err; 384 385 if (ubi_dbg_is_erase_failure(ubi)) { 386 ubi_err(ubi, "cannot erase PEB %d (emulated)", pnum); 387 return -EIO; 388 } 389 390 return 0; 391 } 392 393 /* Patterns to write to a physical eraseblock when torturing it */ 394 static uint8_t patterns[] = {0xa5, 0x5a, 0x0}; 395 396 /** 397 * torture_peb - test a supposedly bad physical eraseblock. 398 * @ubi: UBI device description object 399 * @pnum: the physical eraseblock number to test 400 * 401 * This function returns %-EIO if the physical eraseblock did not pass the 402 * test, a positive number of erase operations done if the test was 403 * successfully passed, and other negative error codes in case of other errors. 404 */ 405 static int torture_peb(struct ubi_device *ubi, int pnum) 406 { 407 int err, i, patt_count; 408 409 ubi_msg(ubi, "run torture test for PEB %d", pnum); 410 patt_count = ARRAY_SIZE(patterns); 411 ubi_assert(patt_count > 0); 412 413 mutex_lock(&ubi->buf_mutex); 414 for (i = 0; i < patt_count; i++) { 415 err = do_sync_erase(ubi, pnum); 416 if (err) 417 goto out; 418 419 /* Make sure the PEB contains only 0xFF bytes */ 420 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 421 if (err) 422 goto out; 423 424 err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size); 425 if (err == 0) { 426 ubi_err(ubi, "erased PEB %d, but a non-0xFF byte found", 427 pnum); 428 err = -EIO; 429 goto out; 430 } 431 432 /* Write a pattern and check it */ 433 memset(ubi->peb_buf, patterns[i], ubi->peb_size); 434 err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 435 if (err) 436 goto out; 437 438 memset(ubi->peb_buf, ~patterns[i], ubi->peb_size); 439 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 440 if (err) 441 goto out; 442 443 err = ubi_check_pattern(ubi->peb_buf, patterns[i], 444 ubi->peb_size); 445 if (err == 0) { 446 ubi_err(ubi, "pattern %x checking failed for PEB %d", 447 patterns[i], pnum); 448 err = -EIO; 449 goto out; 450 } 451 } 452 453 err = patt_count; 454 ubi_msg(ubi, "PEB %d passed torture test, do not mark it as bad", pnum); 455 456 out: 457 mutex_unlock(&ubi->buf_mutex); 458 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) { 459 /* 460 * If a bit-flip or data integrity error was detected, the test 461 * has not passed because it happened on a freshly erased 462 * physical eraseblock which means something is wrong with it. 463 */ 464 ubi_err(ubi, "read problems on freshly erased PEB %d, must be bad", 465 pnum); 466 err = -EIO; 467 } 468 return err; 469 } 470 471 /** 472 * nor_erase_prepare - prepare a NOR flash PEB for erasure. 473 * @ubi: UBI device description object 474 * @pnum: physical eraseblock number to prepare 475 * 476 * NOR flash, or at least some of them, have peculiar embedded PEB erasure 477 * algorithm: the PEB is first filled with zeroes, then it is erased. And 478 * filling with zeroes starts from the end of the PEB. This was observed with 479 * Spansion S29GL512N NOR flash. 480 * 481 * This means that in case of a power cut we may end up with intact data at the 482 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the 483 * EC and VID headers are OK, but a large chunk of data at the end of PEB is 484 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it 485 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails). 486 * 487 * This function is called before erasing NOR PEBs and it zeroes out EC and VID 488 * magic numbers in order to invalidate them and prevent the failures. Returns 489 * zero in case of success and a negative error code in case of failure. 490 */ 491 static int nor_erase_prepare(struct ubi_device *ubi, int pnum) 492 { 493 int err; 494 size_t written; 495 loff_t addr; 496 uint32_t data = 0; 497 struct ubi_ec_hdr ec_hdr; 498 499 /* 500 * Note, we cannot generally define VID header buffers on stack, 501 * because of the way we deal with these buffers (see the header 502 * comment in this file). But we know this is a NOR-specific piece of 503 * code, so we can do this. But yes, this is error-prone and we should 504 * (pre-)allocate VID header buffer instead. 505 */ 506 struct ubi_vid_hdr vid_hdr; 507 508 /* 509 * If VID or EC is valid, we have to corrupt them before erasing. 510 * It is important to first invalidate the EC header, and then the VID 511 * header. Otherwise a power cut may lead to valid EC header and 512 * invalid VID header, in which case UBI will treat this PEB as 513 * corrupted and will try to preserve it, and print scary warnings. 514 */ 515 addr = (loff_t)pnum * ubi->peb_size; 516 err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0); 517 if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR && 518 err != UBI_IO_FF){ 519 err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data); 520 if(err) 521 goto error; 522 } 523 524 err = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0); 525 if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR && 526 err != UBI_IO_FF){ 527 addr += ubi->vid_hdr_aloffset; 528 err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data); 529 if (err) 530 goto error; 531 } 532 return 0; 533 534 error: 535 /* 536 * The PEB contains a valid VID or EC header, but we cannot invalidate 537 * it. Supposedly the flash media or the driver is screwed up, so 538 * return an error. 539 */ 540 ubi_err(ubi, "cannot invalidate PEB %d, write returned %d", pnum, err); 541 ubi_dump_flash(ubi, pnum, 0, ubi->peb_size); 542 return -EIO; 543 } 544 545 /** 546 * ubi_io_sync_erase - synchronously erase a physical eraseblock. 547 * @ubi: UBI device description object 548 * @pnum: physical eraseblock number to erase 549 * @torture: if this physical eraseblock has to be tortured 550 * 551 * This function synchronously erases physical eraseblock @pnum. If @torture 552 * flag is not zero, the physical eraseblock is checked by means of writing 553 * different patterns to it and reading them back. If the torturing is enabled, 554 * the physical eraseblock is erased more than once. 555 * 556 * This function returns the number of erasures made in case of success, %-EIO 557 * if the erasure failed or the torturing test failed, and other negative error 558 * codes in case of other errors. Note, %-EIO means that the physical 559 * eraseblock is bad. 560 */ 561 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture) 562 { 563 int err, ret = 0; 564 565 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 566 567 err = self_check_not_bad(ubi, pnum); 568 if (err != 0) 569 return err; 570 571 if (ubi->ro_mode) { 572 ubi_err(ubi, "read-only mode"); 573 return -EROFS; 574 } 575 576 if (ubi->nor_flash) { 577 err = nor_erase_prepare(ubi, pnum); 578 if (err) 579 return err; 580 } 581 582 if (torture) { 583 ret = torture_peb(ubi, pnum); 584 if (ret < 0) 585 return ret; 586 } 587 588 err = do_sync_erase(ubi, pnum); 589 if (err) 590 return err; 591 592 return ret + 1; 593 } 594 595 /** 596 * ubi_io_is_bad - check if a physical eraseblock is bad. 597 * @ubi: UBI device description object 598 * @pnum: the physical eraseblock number to check 599 * 600 * This function returns a positive number if the physical eraseblock is bad, 601 * zero if not, and a negative error code if an error occurred. 602 */ 603 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum) 604 { 605 struct mtd_info *mtd = ubi->mtd; 606 607 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 608 609 if (ubi->bad_allowed) { 610 int ret; 611 612 ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size); 613 if (ret < 0) 614 ubi_err(ubi, "error %d while checking if PEB %d is bad", 615 ret, pnum); 616 else if (ret) 617 dbg_io("PEB %d is bad", pnum); 618 return ret; 619 } 620 621 return 0; 622 } 623 624 /** 625 * ubi_io_mark_bad - mark a physical eraseblock as bad. 626 * @ubi: UBI device description object 627 * @pnum: the physical eraseblock number to mark 628 * 629 * This function returns zero in case of success and a negative error code in 630 * case of failure. 631 */ 632 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum) 633 { 634 int err; 635 struct mtd_info *mtd = ubi->mtd; 636 637 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 638 639 if (ubi->ro_mode) { 640 ubi_err(ubi, "read-only mode"); 641 return -EROFS; 642 } 643 644 if (!ubi->bad_allowed) 645 return 0; 646 647 err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size); 648 if (err) 649 ubi_err(ubi, "cannot mark PEB %d bad, error %d", pnum, err); 650 return err; 651 } 652 653 /** 654 * validate_ec_hdr - validate an erase counter header. 655 * @ubi: UBI device description object 656 * @ec_hdr: the erase counter header to check 657 * 658 * This function returns zero if the erase counter header is OK, and %1 if 659 * not. 660 */ 661 static int validate_ec_hdr(const struct ubi_device *ubi, 662 const struct ubi_ec_hdr *ec_hdr) 663 { 664 long long ec; 665 int vid_hdr_offset, leb_start; 666 667 ec = be64_to_cpu(ec_hdr->ec); 668 vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset); 669 leb_start = be32_to_cpu(ec_hdr->data_offset); 670 671 if (ec_hdr->version != UBI_VERSION) { 672 ubi_err(ubi, "node with incompatible UBI version found: this UBI version is %d, image version is %d", 673 UBI_VERSION, (int)ec_hdr->version); 674 goto bad; 675 } 676 677 if (vid_hdr_offset != ubi->vid_hdr_offset) { 678 ubi_err(ubi, "bad VID header offset %d, expected %d", 679 vid_hdr_offset, ubi->vid_hdr_offset); 680 goto bad; 681 } 682 683 if (leb_start != ubi->leb_start) { 684 ubi_err(ubi, "bad data offset %d, expected %d", 685 leb_start, ubi->leb_start); 686 goto bad; 687 } 688 689 if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) { 690 ubi_err(ubi, "bad erase counter %lld", ec); 691 goto bad; 692 } 693 694 return 0; 695 696 bad: 697 ubi_err(ubi, "bad EC header"); 698 ubi_dump_ec_hdr(ec_hdr); 699 dump_stack(); 700 return 1; 701 } 702 703 /** 704 * ubi_io_read_ec_hdr - read and check an erase counter header. 705 * @ubi: UBI device description object 706 * @pnum: physical eraseblock to read from 707 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter 708 * header 709 * @verbose: be verbose if the header is corrupted or was not found 710 * 711 * This function reads erase counter header from physical eraseblock @pnum and 712 * stores it in @ec_hdr. This function also checks CRC checksum of the read 713 * erase counter header. The following codes may be returned: 714 * 715 * o %0 if the CRC checksum is correct and the header was successfully read; 716 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected 717 * and corrected by the flash driver; this is harmless but may indicate that 718 * this eraseblock may become bad soon (but may be not); 719 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error); 720 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was 721 * a data integrity error (uncorrectable ECC error in case of NAND); 722 * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty) 723 * o a negative error code in case of failure. 724 */ 725 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum, 726 struct ubi_ec_hdr *ec_hdr, int verbose) 727 { 728 int err, read_err; 729 uint32_t crc, magic, hdr_crc; 730 731 dbg_io("read EC header from PEB %d", pnum); 732 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 733 734 read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); 735 if (read_err) { 736 if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err)) 737 return read_err; 738 739 /* 740 * We read all the data, but either a correctable bit-flip 741 * occurred, or MTD reported a data integrity error 742 * (uncorrectable ECC error in case of NAND). The former is 743 * harmless, the later may mean that the read data is 744 * corrupted. But we have a CRC check-sum and we will detect 745 * this. If the EC header is still OK, we just report this as 746 * there was a bit-flip, to force scrubbing. 747 */ 748 } 749 750 magic = be32_to_cpu(ec_hdr->magic); 751 if (magic != UBI_EC_HDR_MAGIC) { 752 if (mtd_is_eccerr(read_err)) 753 return UBI_IO_BAD_HDR_EBADMSG; 754 755 /* 756 * The magic field is wrong. Let's check if we have read all 757 * 0xFF. If yes, this physical eraseblock is assumed to be 758 * empty. 759 */ 760 if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) { 761 /* The physical eraseblock is supposedly empty */ 762 if (verbose) 763 ubi_warn(ubi, "no EC header found at PEB %d, only 0xFF bytes", 764 pnum); 765 dbg_bld("no EC header found at PEB %d, only 0xFF bytes", 766 pnum); 767 if (!read_err) 768 return UBI_IO_FF; 769 else 770 return UBI_IO_FF_BITFLIPS; 771 } 772 773 /* 774 * This is not a valid erase counter header, and these are not 775 * 0xFF bytes. Report that the header is corrupted. 776 */ 777 if (verbose) { 778 ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x", 779 pnum, magic, UBI_EC_HDR_MAGIC); 780 ubi_dump_ec_hdr(ec_hdr); 781 } 782 dbg_bld("bad magic number at PEB %d: %08x instead of %08x", 783 pnum, magic, UBI_EC_HDR_MAGIC); 784 return UBI_IO_BAD_HDR; 785 } 786 787 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 788 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); 789 790 if (hdr_crc != crc) { 791 if (verbose) { 792 ubi_warn(ubi, "bad EC header CRC at PEB %d, calculated %#08x, read %#08x", 793 pnum, crc, hdr_crc); 794 ubi_dump_ec_hdr(ec_hdr); 795 } 796 dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x", 797 pnum, crc, hdr_crc); 798 799 if (!read_err) 800 return UBI_IO_BAD_HDR; 801 else 802 return UBI_IO_BAD_HDR_EBADMSG; 803 } 804 805 /* And of course validate what has just been read from the media */ 806 err = validate_ec_hdr(ubi, ec_hdr); 807 if (err) { 808 ubi_err(ubi, "validation failed for PEB %d", pnum); 809 return -EINVAL; 810 } 811 812 /* 813 * If there was %-EBADMSG, but the header CRC is still OK, report about 814 * a bit-flip to force scrubbing on this PEB. 815 */ 816 return read_err ? UBI_IO_BITFLIPS : 0; 817 } 818 819 /** 820 * ubi_io_write_ec_hdr - write an erase counter header. 821 * @ubi: UBI device description object 822 * @pnum: physical eraseblock to write to 823 * @ec_hdr: the erase counter header to write 824 * 825 * This function writes erase counter header described by @ec_hdr to physical 826 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so 827 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec 828 * field. 829 * 830 * This function returns zero in case of success and a negative error code in 831 * case of failure. If %-EIO is returned, the physical eraseblock most probably 832 * went bad. 833 */ 834 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum, 835 struct ubi_ec_hdr *ec_hdr) 836 { 837 int err; 838 uint32_t crc; 839 840 dbg_io("write EC header to PEB %d", pnum); 841 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 842 843 ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC); 844 ec_hdr->version = UBI_VERSION; 845 ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset); 846 ec_hdr->data_offset = cpu_to_be32(ubi->leb_start); 847 ec_hdr->image_seq = cpu_to_be32(ubi->image_seq); 848 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 849 ec_hdr->hdr_crc = cpu_to_be32(crc); 850 851 err = self_check_ec_hdr(ubi, pnum, ec_hdr); 852 if (err) 853 return err; 854 855 if (ubi_dbg_power_cut(ubi, POWER_CUT_EC_WRITE)) 856 return -EROFS; 857 858 err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize); 859 return err; 860 } 861 862 /** 863 * validate_vid_hdr - validate a volume identifier header. 864 * @ubi: UBI device description object 865 * @vid_hdr: the volume identifier header to check 866 * 867 * This function checks that data stored in the volume identifier header 868 * @vid_hdr. Returns zero if the VID header is OK and %1 if not. 869 */ 870 static int validate_vid_hdr(const struct ubi_device *ubi, 871 const struct ubi_vid_hdr *vid_hdr) 872 { 873 int vol_type = vid_hdr->vol_type; 874 int copy_flag = vid_hdr->copy_flag; 875 int vol_id = be32_to_cpu(vid_hdr->vol_id); 876 int lnum = be32_to_cpu(vid_hdr->lnum); 877 int compat = vid_hdr->compat; 878 int data_size = be32_to_cpu(vid_hdr->data_size); 879 int used_ebs = be32_to_cpu(vid_hdr->used_ebs); 880 int data_pad = be32_to_cpu(vid_hdr->data_pad); 881 int data_crc = be32_to_cpu(vid_hdr->data_crc); 882 int usable_leb_size = ubi->leb_size - data_pad; 883 884 if (copy_flag != 0 && copy_flag != 1) { 885 ubi_err(ubi, "bad copy_flag"); 886 goto bad; 887 } 888 889 if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 || 890 data_pad < 0) { 891 ubi_err(ubi, "negative values"); 892 goto bad; 893 } 894 895 if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) { 896 ubi_err(ubi, "bad vol_id"); 897 goto bad; 898 } 899 900 if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) { 901 ubi_err(ubi, "bad compat"); 902 goto bad; 903 } 904 905 if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE && 906 compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE && 907 compat != UBI_COMPAT_REJECT) { 908 ubi_err(ubi, "bad compat"); 909 goto bad; 910 } 911 912 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) { 913 ubi_err(ubi, "bad vol_type"); 914 goto bad; 915 } 916 917 if (data_pad >= ubi->leb_size / 2) { 918 ubi_err(ubi, "bad data_pad"); 919 goto bad; 920 } 921 922 if (vol_type == UBI_VID_STATIC) { 923 /* 924 * Although from high-level point of view static volumes may 925 * contain zero bytes of data, but no VID headers can contain 926 * zero at these fields, because they empty volumes do not have 927 * mapped logical eraseblocks. 928 */ 929 if (used_ebs == 0) { 930 ubi_err(ubi, "zero used_ebs"); 931 goto bad; 932 } 933 if (data_size == 0) { 934 ubi_err(ubi, "zero data_size"); 935 goto bad; 936 } 937 if (lnum < used_ebs - 1) { 938 if (data_size != usable_leb_size) { 939 ubi_err(ubi, "bad data_size"); 940 goto bad; 941 } 942 } else if (lnum == used_ebs - 1) { 943 if (data_size == 0) { 944 ubi_err(ubi, "bad data_size at last LEB"); 945 goto bad; 946 } 947 } else { 948 ubi_err(ubi, "too high lnum"); 949 goto bad; 950 } 951 } else { 952 if (copy_flag == 0) { 953 if (data_crc != 0) { 954 ubi_err(ubi, "non-zero data CRC"); 955 goto bad; 956 } 957 if (data_size != 0) { 958 ubi_err(ubi, "non-zero data_size"); 959 goto bad; 960 } 961 } else { 962 if (data_size == 0) { 963 ubi_err(ubi, "zero data_size of copy"); 964 goto bad; 965 } 966 } 967 if (used_ebs != 0) { 968 ubi_err(ubi, "bad used_ebs"); 969 goto bad; 970 } 971 } 972 973 return 0; 974 975 bad: 976 ubi_err(ubi, "bad VID header"); 977 ubi_dump_vid_hdr(vid_hdr); 978 dump_stack(); 979 return 1; 980 } 981 982 /** 983 * ubi_io_read_vid_hdr - read and check a volume identifier header. 984 * @ubi: UBI device description object 985 * @pnum: physical eraseblock number to read from 986 * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume 987 * identifier header 988 * @verbose: be verbose if the header is corrupted or wasn't found 989 * 990 * This function reads the volume identifier header from physical eraseblock 991 * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read 992 * volume identifier header. The error codes are the same as in 993 * 'ubi_io_read_ec_hdr()'. 994 * 995 * Note, the implementation of this function is also very similar to 996 * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'. 997 */ 998 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum, 999 struct ubi_vid_hdr *vid_hdr, int verbose) 1000 { 1001 int err, read_err; 1002 uint32_t crc, magic, hdr_crc; 1003 void *p; 1004 1005 dbg_io("read VID header from PEB %d", pnum); 1006 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 1007 1008 p = (char *)vid_hdr - ubi->vid_hdr_shift; 1009 read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, 1010 ubi->vid_hdr_alsize); 1011 if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err)) 1012 return read_err; 1013 1014 magic = be32_to_cpu(vid_hdr->magic); 1015 if (magic != UBI_VID_HDR_MAGIC) { 1016 if (mtd_is_eccerr(read_err)) 1017 return UBI_IO_BAD_HDR_EBADMSG; 1018 1019 if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) { 1020 if (verbose) 1021 ubi_warn(ubi, "no VID header found at PEB %d, only 0xFF bytes", 1022 pnum); 1023 dbg_bld("no VID header found at PEB %d, only 0xFF bytes", 1024 pnum); 1025 if (!read_err) 1026 return UBI_IO_FF; 1027 else 1028 return UBI_IO_FF_BITFLIPS; 1029 } 1030 1031 if (verbose) { 1032 ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x", 1033 pnum, magic, UBI_VID_HDR_MAGIC); 1034 ubi_dump_vid_hdr(vid_hdr); 1035 } 1036 dbg_bld("bad magic number at PEB %d: %08x instead of %08x", 1037 pnum, magic, UBI_VID_HDR_MAGIC); 1038 return UBI_IO_BAD_HDR; 1039 } 1040 1041 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); 1042 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); 1043 1044 if (hdr_crc != crc) { 1045 if (verbose) { 1046 ubi_warn(ubi, "bad CRC at PEB %d, calculated %#08x, read %#08x", 1047 pnum, crc, hdr_crc); 1048 ubi_dump_vid_hdr(vid_hdr); 1049 } 1050 dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x", 1051 pnum, crc, hdr_crc); 1052 if (!read_err) 1053 return UBI_IO_BAD_HDR; 1054 else 1055 return UBI_IO_BAD_HDR_EBADMSG; 1056 } 1057 1058 err = validate_vid_hdr(ubi, vid_hdr); 1059 if (err) { 1060 ubi_err(ubi, "validation failed for PEB %d", pnum); 1061 return -EINVAL; 1062 } 1063 1064 return read_err ? UBI_IO_BITFLIPS : 0; 1065 } 1066 1067 /** 1068 * ubi_io_write_vid_hdr - write a volume identifier header. 1069 * @ubi: UBI device description object 1070 * @pnum: the physical eraseblock number to write to 1071 * @vid_hdr: the volume identifier header to write 1072 * 1073 * This function writes the volume identifier header described by @vid_hdr to 1074 * physical eraseblock @pnum. This function automatically fills the 1075 * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates 1076 * header CRC checksum and stores it at vid_hdr->hdr_crc. 1077 * 1078 * This function returns zero in case of success and a negative error code in 1079 * case of failure. If %-EIO is returned, the physical eraseblock probably went 1080 * bad. 1081 */ 1082 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum, 1083 struct ubi_vid_hdr *vid_hdr) 1084 { 1085 int err; 1086 uint32_t crc; 1087 void *p; 1088 1089 dbg_io("write VID header to PEB %d", pnum); 1090 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 1091 1092 err = self_check_peb_ec_hdr(ubi, pnum); 1093 if (err) 1094 return err; 1095 1096 vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC); 1097 vid_hdr->version = UBI_VERSION; 1098 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); 1099 vid_hdr->hdr_crc = cpu_to_be32(crc); 1100 1101 err = self_check_vid_hdr(ubi, pnum, vid_hdr); 1102 if (err) 1103 return err; 1104 1105 if (ubi_dbg_power_cut(ubi, POWER_CUT_VID_WRITE)) 1106 return -EROFS; 1107 1108 p = (char *)vid_hdr - ubi->vid_hdr_shift; 1109 err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset, 1110 ubi->vid_hdr_alsize); 1111 return err; 1112 } 1113 1114 /** 1115 * self_check_not_bad - ensure that a physical eraseblock is not bad. 1116 * @ubi: UBI device description object 1117 * @pnum: physical eraseblock number to check 1118 * 1119 * This function returns zero if the physical eraseblock is good, %-EINVAL if 1120 * it is bad and a negative error code if an error occurred. 1121 */ 1122 static int self_check_not_bad(const struct ubi_device *ubi, int pnum) 1123 { 1124 int err; 1125 1126 if (!ubi_dbg_chk_io(ubi)) 1127 return 0; 1128 1129 err = ubi_io_is_bad(ubi, pnum); 1130 if (!err) 1131 return err; 1132 1133 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1134 dump_stack(); 1135 return err > 0 ? -EINVAL : err; 1136 } 1137 1138 /** 1139 * self_check_ec_hdr - check if an erase counter header is all right. 1140 * @ubi: UBI device description object 1141 * @pnum: physical eraseblock number the erase counter header belongs to 1142 * @ec_hdr: the erase counter header to check 1143 * 1144 * This function returns zero if the erase counter header contains valid 1145 * values, and %-EINVAL if not. 1146 */ 1147 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum, 1148 const struct ubi_ec_hdr *ec_hdr) 1149 { 1150 int err; 1151 uint32_t magic; 1152 1153 if (!ubi_dbg_chk_io(ubi)) 1154 return 0; 1155 1156 magic = be32_to_cpu(ec_hdr->magic); 1157 if (magic != UBI_EC_HDR_MAGIC) { 1158 ubi_err(ubi, "bad magic %#08x, must be %#08x", 1159 magic, UBI_EC_HDR_MAGIC); 1160 goto fail; 1161 } 1162 1163 err = validate_ec_hdr(ubi, ec_hdr); 1164 if (err) { 1165 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1166 goto fail; 1167 } 1168 1169 return 0; 1170 1171 fail: 1172 ubi_dump_ec_hdr(ec_hdr); 1173 dump_stack(); 1174 return -EINVAL; 1175 } 1176 1177 /** 1178 * self_check_peb_ec_hdr - check erase counter header. 1179 * @ubi: UBI device description object 1180 * @pnum: the physical eraseblock number to check 1181 * 1182 * This function returns zero if the erase counter header is all right and and 1183 * a negative error code if not or if an error occurred. 1184 */ 1185 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum) 1186 { 1187 int err; 1188 uint32_t crc, hdr_crc; 1189 struct ubi_ec_hdr *ec_hdr; 1190 1191 if (!ubi_dbg_chk_io(ubi)) 1192 return 0; 1193 1194 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 1195 if (!ec_hdr) 1196 return -ENOMEM; 1197 1198 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); 1199 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) 1200 goto exit; 1201 1202 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 1203 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); 1204 if (hdr_crc != crc) { 1205 ubi_err(ubi, "bad CRC, calculated %#08x, read %#08x", 1206 crc, hdr_crc); 1207 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1208 ubi_dump_ec_hdr(ec_hdr); 1209 dump_stack(); 1210 err = -EINVAL; 1211 goto exit; 1212 } 1213 1214 err = self_check_ec_hdr(ubi, pnum, ec_hdr); 1215 1216 exit: 1217 kfree(ec_hdr); 1218 return err; 1219 } 1220 1221 /** 1222 * self_check_vid_hdr - check that a volume identifier header is all right. 1223 * @ubi: UBI device description object 1224 * @pnum: physical eraseblock number the volume identifier header belongs to 1225 * @vid_hdr: the volume identifier header to check 1226 * 1227 * This function returns zero if the volume identifier header is all right, and 1228 * %-EINVAL if not. 1229 */ 1230 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum, 1231 const struct ubi_vid_hdr *vid_hdr) 1232 { 1233 int err; 1234 uint32_t magic; 1235 1236 if (!ubi_dbg_chk_io(ubi)) 1237 return 0; 1238 1239 magic = be32_to_cpu(vid_hdr->magic); 1240 if (magic != UBI_VID_HDR_MAGIC) { 1241 ubi_err(ubi, "bad VID header magic %#08x at PEB %d, must be %#08x", 1242 magic, pnum, UBI_VID_HDR_MAGIC); 1243 goto fail; 1244 } 1245 1246 err = validate_vid_hdr(ubi, vid_hdr); 1247 if (err) { 1248 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1249 goto fail; 1250 } 1251 1252 return err; 1253 1254 fail: 1255 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1256 ubi_dump_vid_hdr(vid_hdr); 1257 dump_stack(); 1258 return -EINVAL; 1259 1260 } 1261 1262 /** 1263 * self_check_peb_vid_hdr - check volume identifier header. 1264 * @ubi: UBI device description object 1265 * @pnum: the physical eraseblock number to check 1266 * 1267 * This function returns zero if the volume identifier header is all right, 1268 * and a negative error code if not or if an error occurred. 1269 */ 1270 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum) 1271 { 1272 int err; 1273 uint32_t crc, hdr_crc; 1274 struct ubi_vid_hdr *vid_hdr; 1275 void *p; 1276 1277 if (!ubi_dbg_chk_io(ubi)) 1278 return 0; 1279 1280 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 1281 if (!vid_hdr) 1282 return -ENOMEM; 1283 1284 p = (char *)vid_hdr - ubi->vid_hdr_shift; 1285 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, 1286 ubi->vid_hdr_alsize); 1287 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) 1288 goto exit; 1289 1290 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC); 1291 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); 1292 if (hdr_crc != crc) { 1293 ubi_err(ubi, "bad VID header CRC at PEB %d, calculated %#08x, read %#08x", 1294 pnum, crc, hdr_crc); 1295 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1296 ubi_dump_vid_hdr(vid_hdr); 1297 dump_stack(); 1298 err = -EINVAL; 1299 goto exit; 1300 } 1301 1302 err = self_check_vid_hdr(ubi, pnum, vid_hdr); 1303 1304 exit: 1305 ubi_free_vid_hdr(ubi, vid_hdr); 1306 return err; 1307 } 1308 1309 /** 1310 * self_check_write - make sure write succeeded. 1311 * @ubi: UBI device description object 1312 * @buf: buffer with data which were written 1313 * @pnum: physical eraseblock number the data were written to 1314 * @offset: offset within the physical eraseblock the data were written to 1315 * @len: how many bytes were written 1316 * 1317 * This functions reads data which were recently written and compares it with 1318 * the original data buffer - the data have to match. Returns zero if the data 1319 * match and a negative error code if not or in case of failure. 1320 */ 1321 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum, 1322 int offset, int len) 1323 { 1324 int err, i; 1325 size_t read; 1326 void *buf1; 1327 loff_t addr = (loff_t)pnum * ubi->peb_size + offset; 1328 1329 if (!ubi_dbg_chk_io(ubi)) 1330 return 0; 1331 1332 buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL); 1333 if (!buf1) { 1334 ubi_err(ubi, "cannot allocate memory to check writes"); 1335 return 0; 1336 } 1337 1338 err = mtd_read(ubi->mtd, addr, len, &read, buf1); 1339 if (err && !mtd_is_bitflip(err)) 1340 goto out_free; 1341 1342 for (i = 0; i < len; i++) { 1343 uint8_t c = ((uint8_t *)buf)[i]; 1344 uint8_t c1 = ((uint8_t *)buf1)[i]; 1345 #if !defined(CONFIG_UBI_SILENCE_MSG) 1346 int dump_len = max_t(int, 128, len - i); 1347 #endif 1348 1349 if (c == c1) 1350 continue; 1351 1352 ubi_err(ubi, "self-check failed for PEB %d:%d, len %d", 1353 pnum, offset, len); 1354 ubi_msg(ubi, "data differ at position %d", i); 1355 ubi_msg(ubi, "hex dump of the original buffer from %d to %d", 1356 i, i + dump_len); 1357 print_hex_dump("", DUMP_PREFIX_OFFSET, 32, 1, 1358 buf + i, dump_len, 1); 1359 ubi_msg(ubi, "hex dump of the read buffer from %d to %d", 1360 i, i + dump_len); 1361 print_hex_dump("", DUMP_PREFIX_OFFSET, 32, 1, 1362 buf1 + i, dump_len, 1); 1363 dump_stack(); 1364 err = -EINVAL; 1365 goto out_free; 1366 } 1367 1368 vfree(buf1); 1369 return 0; 1370 1371 out_free: 1372 vfree(buf1); 1373 return err; 1374 } 1375 1376 /** 1377 * ubi_self_check_all_ff - check that a region of flash is empty. 1378 * @ubi: UBI device description object 1379 * @pnum: the physical eraseblock number to check 1380 * @offset: the starting offset within the physical eraseblock to check 1381 * @len: the length of the region to check 1382 * 1383 * This function returns zero if only 0xFF bytes are present at offset 1384 * @offset of the physical eraseblock @pnum, and a negative error code if not 1385 * or if an error occurred. 1386 */ 1387 int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len) 1388 { 1389 size_t read; 1390 int err; 1391 void *buf; 1392 loff_t addr = (loff_t)pnum * ubi->peb_size + offset; 1393 1394 if (!ubi_dbg_chk_io(ubi)) 1395 return 0; 1396 1397 buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL); 1398 if (!buf) { 1399 ubi_err(ubi, "cannot allocate memory to check for 0xFFs"); 1400 return 0; 1401 } 1402 1403 err = mtd_read(ubi->mtd, addr, len, &read, buf); 1404 if (err && !mtd_is_bitflip(err)) { 1405 ubi_err(ubi, "err %d while reading %d bytes from PEB %d:%d, read %zd bytes", 1406 err, len, pnum, offset, read); 1407 goto error; 1408 } 1409 1410 err = ubi_check_pattern(buf, 0xFF, len); 1411 if (err == 0) { 1412 ubi_err(ubi, "flash region at PEB %d:%d, length %d does not contain all 0xFF bytes", 1413 pnum, offset, len); 1414 goto fail; 1415 } 1416 1417 vfree(buf); 1418 return 0; 1419 1420 fail: 1421 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1422 ubi_msg(ubi, "hex dump of the %d-%d region", offset, offset + len); 1423 print_hex_dump("", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1); 1424 err = -EINVAL; 1425 error: 1426 dump_stack(); 1427 vfree(buf); 1428 return err; 1429 } 1430