xref: /openbmc/u-boot/drivers/mtd/ubi/io.c (revision afaea1f5)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) International Business Machines Corp., 2006
4  * Copyright (c) Nokia Corporation, 2006, 2007
5  *
6  * Author: Artem Bityutskiy (Битюцкий Артём)
7  */
8 
9 /*
10  * UBI input/output sub-system.
11  *
12  * This sub-system provides a uniform way to work with all kinds of the
13  * underlying MTD devices. It also implements handy functions for reading and
14  * writing UBI headers.
15  *
16  * We are trying to have a paranoid mindset and not to trust to what we read
17  * from the flash media in order to be more secure and robust. So this
18  * sub-system validates every single header it reads from the flash media.
19  *
20  * Some words about how the eraseblock headers are stored.
21  *
22  * The erase counter header is always stored at offset zero. By default, the
23  * VID header is stored after the EC header at the closest aligned offset
24  * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
25  * header at the closest aligned offset. But this default layout may be
26  * changed. For example, for different reasons (e.g., optimization) UBI may be
27  * asked to put the VID header at further offset, and even at an unaligned
28  * offset. Of course, if the offset of the VID header is unaligned, UBI adds
29  * proper padding in front of it. Data offset may also be changed but it has to
30  * be aligned.
31  *
32  * About minimal I/O units. In general, UBI assumes flash device model where
33  * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
34  * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
35  * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
36  * (smaller) minimal I/O unit size for EC and VID headers to make it possible
37  * to do different optimizations.
38  *
39  * This is extremely useful in case of NAND flashes which admit of several
40  * write operations to one NAND page. In this case UBI can fit EC and VID
41  * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
42  * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
43  * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
44  * users.
45  *
46  * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
47  * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
48  * headers.
49  *
50  * Q: why not just to treat sub-page as a minimal I/O unit of this flash
51  * device, e.g., make @ubi->min_io_size = 512 in the example above?
52  *
53  * A: because when writing a sub-page, MTD still writes a full 2K page but the
54  * bytes which are not relevant to the sub-page are 0xFF. So, basically,
55  * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
56  * Thus, we prefer to use sub-pages only for EC and VID headers.
57  *
58  * As it was noted above, the VID header may start at a non-aligned offset.
59  * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
60  * the VID header may reside at offset 1984 which is the last 64 bytes of the
61  * last sub-page (EC header is always at offset zero). This causes some
62  * difficulties when reading and writing VID headers.
63  *
64  * Suppose we have a 64-byte buffer and we read a VID header at it. We change
65  * the data and want to write this VID header out. As we can only write in
66  * 512-byte chunks, we have to allocate one more buffer and copy our VID header
67  * to offset 448 of this buffer.
68  *
69  * The I/O sub-system does the following trick in order to avoid this extra
70  * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
71  * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
72  * When the VID header is being written out, it shifts the VID header pointer
73  * back and writes the whole sub-page.
74  */
75 
76 #ifndef __UBOOT__
77 #include <linux/crc32.h>
78 #include <linux/err.h>
79 #include <linux/slab.h>
80 #else
81 #include <hexdump.h>
82 #include <ubi_uboot.h>
83 #endif
84 
85 #include "ubi.h"
86 
87 static int self_check_not_bad(const struct ubi_device *ubi, int pnum);
88 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
89 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
90 			     const struct ubi_ec_hdr *ec_hdr);
91 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
92 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
93 			      const struct ubi_vid_hdr *vid_hdr);
94 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
95 			    int offset, int len);
96 
97 /**
98  * ubi_io_read - read data from a physical eraseblock.
99  * @ubi: UBI device description object
100  * @buf: buffer where to store the read data
101  * @pnum: physical eraseblock number to read from
102  * @offset: offset within the physical eraseblock from where to read
103  * @len: how many bytes to read
104  *
105  * This function reads data from offset @offset of physical eraseblock @pnum
106  * and stores the read data in the @buf buffer. The following return codes are
107  * possible:
108  *
109  * o %0 if all the requested data were successfully read;
110  * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
111  *   correctable bit-flips were detected; this is harmless but may indicate
112  *   that this eraseblock may become bad soon (but do not have to);
113  * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
114  *   example it can be an ECC error in case of NAND; this most probably means
115  *   that the data is corrupted;
116  * o %-EIO if some I/O error occurred;
117  * o other negative error codes in case of other errors.
118  */
119 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
120 		int len)
121 {
122 	int err, retries = 0;
123 	size_t read;
124 	loff_t addr;
125 
126 	dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
127 
128 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
129 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
130 	ubi_assert(len > 0);
131 
132 	err = self_check_not_bad(ubi, pnum);
133 	if (err)
134 		return err;
135 
136 	/*
137 	 * Deliberately corrupt the buffer to improve robustness. Indeed, if we
138 	 * do not do this, the following may happen:
139 	 * 1. The buffer contains data from previous operation, e.g., read from
140 	 *    another PEB previously. The data looks like expected, e.g., if we
141 	 *    just do not read anything and return - the caller would not
142 	 *    notice this. E.g., if we are reading a VID header, the buffer may
143 	 *    contain a valid VID header from another PEB.
144 	 * 2. The driver is buggy and returns us success or -EBADMSG or
145 	 *    -EUCLEAN, but it does not actually put any data to the buffer.
146 	 *
147 	 * This may confuse UBI or upper layers - they may think the buffer
148 	 * contains valid data while in fact it is just old data. This is
149 	 * especially possible because UBI (and UBIFS) relies on CRC, and
150 	 * treats data as correct even in case of ECC errors if the CRC is
151 	 * correct.
152 	 *
153 	 * Try to prevent this situation by changing the first byte of the
154 	 * buffer.
155 	 */
156 	*((uint8_t *)buf) ^= 0xFF;
157 
158 	addr = (loff_t)pnum * ubi->peb_size + offset;
159 retry:
160 	err = mtd_read(ubi->mtd, addr, len, &read, buf);
161 	if (err) {
162 		const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : "";
163 
164 		if (mtd_is_bitflip(err)) {
165 			/*
166 			 * -EUCLEAN is reported if there was a bit-flip which
167 			 * was corrected, so this is harmless.
168 			 *
169 			 * We do not report about it here unless debugging is
170 			 * enabled. A corresponding message will be printed
171 			 * later, when it is has been scrubbed.
172 			 */
173 			ubi_msg(ubi, "fixable bit-flip detected at PEB %d",
174 				pnum);
175 			ubi_assert(len == read);
176 			return UBI_IO_BITFLIPS;
177 		}
178 
179 		if (retries++ < UBI_IO_RETRIES) {
180 			ubi_warn(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry",
181 				 err, errstr, len, pnum, offset, read);
182 			yield();
183 			goto retry;
184 		}
185 
186 		ubi_err(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes",
187 			err, errstr, len, pnum, offset, read);
188 		dump_stack();
189 
190 		/*
191 		 * The driver should never return -EBADMSG if it failed to read
192 		 * all the requested data. But some buggy drivers might do
193 		 * this, so we change it to -EIO.
194 		 */
195 		if (read != len && mtd_is_eccerr(err)) {
196 			ubi_assert(0);
197 			err = -EIO;
198 		}
199 	} else {
200 		ubi_assert(len == read);
201 
202 		if (ubi_dbg_is_bitflip(ubi)) {
203 			dbg_gen("bit-flip (emulated)");
204 			err = UBI_IO_BITFLIPS;
205 		}
206 	}
207 
208 	return err;
209 }
210 
211 /**
212  * ubi_io_write - write data to a physical eraseblock.
213  * @ubi: UBI device description object
214  * @buf: buffer with the data to write
215  * @pnum: physical eraseblock number to write to
216  * @offset: offset within the physical eraseblock where to write
217  * @len: how many bytes to write
218  *
219  * This function writes @len bytes of data from buffer @buf to offset @offset
220  * of physical eraseblock @pnum. If all the data were successfully written,
221  * zero is returned. If an error occurred, this function returns a negative
222  * error code. If %-EIO is returned, the physical eraseblock most probably went
223  * bad.
224  *
225  * Note, in case of an error, it is possible that something was still written
226  * to the flash media, but may be some garbage.
227  */
228 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
229 		 int len)
230 {
231 	int err;
232 	size_t written;
233 	loff_t addr;
234 
235 	dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
236 
237 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
238 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
239 	ubi_assert(offset % ubi->hdrs_min_io_size == 0);
240 	ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
241 
242 	if (ubi->ro_mode) {
243 		ubi_err(ubi, "read-only mode");
244 		return -EROFS;
245 	}
246 
247 	err = self_check_not_bad(ubi, pnum);
248 	if (err)
249 		return err;
250 
251 	/* The area we are writing to has to contain all 0xFF bytes */
252 	err = ubi_self_check_all_ff(ubi, pnum, offset, len);
253 	if (err)
254 		return err;
255 
256 	if (offset >= ubi->leb_start) {
257 		/*
258 		 * We write to the data area of the physical eraseblock. Make
259 		 * sure it has valid EC and VID headers.
260 		 */
261 		err = self_check_peb_ec_hdr(ubi, pnum);
262 		if (err)
263 			return err;
264 		err = self_check_peb_vid_hdr(ubi, pnum);
265 		if (err)
266 			return err;
267 	}
268 
269 	if (ubi_dbg_is_write_failure(ubi)) {
270 		ubi_err(ubi, "cannot write %d bytes to PEB %d:%d (emulated)",
271 			len, pnum, offset);
272 		dump_stack();
273 		return -EIO;
274 	}
275 
276 	addr = (loff_t)pnum * ubi->peb_size + offset;
277 	err = mtd_write(ubi->mtd, addr, len, &written, buf);
278 	if (err) {
279 		ubi_err(ubi, "error %d while writing %d bytes to PEB %d:%d, written %zd bytes",
280 			err, len, pnum, offset, written);
281 		dump_stack();
282 		ubi_dump_flash(ubi, pnum, offset, len);
283 	} else
284 		ubi_assert(written == len);
285 
286 	if (!err) {
287 		err = self_check_write(ubi, buf, pnum, offset, len);
288 		if (err)
289 			return err;
290 
291 		/*
292 		 * Since we always write sequentially, the rest of the PEB has
293 		 * to contain only 0xFF bytes.
294 		 */
295 		offset += len;
296 		len = ubi->peb_size - offset;
297 		if (len)
298 			err = ubi_self_check_all_ff(ubi, pnum, offset, len);
299 	}
300 
301 	return err;
302 }
303 
304 /**
305  * erase_callback - MTD erasure call-back.
306  * @ei: MTD erase information object.
307  *
308  * Note, even though MTD erase interface is asynchronous, all the current
309  * implementations are synchronous anyway.
310  */
311 static void erase_callback(struct erase_info *ei)
312 {
313 	wake_up_interruptible((wait_queue_head_t *)ei->priv);
314 }
315 
316 /**
317  * do_sync_erase - synchronously erase a physical eraseblock.
318  * @ubi: UBI device description object
319  * @pnum: the physical eraseblock number to erase
320  *
321  * This function synchronously erases physical eraseblock @pnum and returns
322  * zero in case of success and a negative error code in case of failure. If
323  * %-EIO is returned, the physical eraseblock most probably went bad.
324  */
325 static int do_sync_erase(struct ubi_device *ubi, int pnum)
326 {
327 	int err, retries = 0;
328 	struct erase_info ei;
329 	wait_queue_head_t wq;
330 
331 	dbg_io("erase PEB %d", pnum);
332 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
333 
334 	if (ubi->ro_mode) {
335 		ubi_err(ubi, "read-only mode");
336 		return -EROFS;
337 	}
338 
339 retry:
340 	init_waitqueue_head(&wq);
341 	memset(&ei, 0, sizeof(struct erase_info));
342 
343 	ei.mtd      = ubi->mtd;
344 	ei.addr     = (loff_t)pnum * ubi->peb_size;
345 	ei.len      = ubi->peb_size;
346 	ei.callback = erase_callback;
347 	ei.priv     = (unsigned long)&wq;
348 
349 	err = mtd_erase(ubi->mtd, &ei);
350 	if (err) {
351 		if (retries++ < UBI_IO_RETRIES) {
352 			ubi_warn(ubi, "error %d while erasing PEB %d, retry",
353 				 err, pnum);
354 			yield();
355 			goto retry;
356 		}
357 		ubi_err(ubi, "cannot erase PEB %d, error %d", pnum, err);
358 		dump_stack();
359 		return err;
360 	}
361 
362 	err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
363 					   ei.state == MTD_ERASE_FAILED);
364 	if (err) {
365 		ubi_err(ubi, "interrupted PEB %d erasure", pnum);
366 		return -EINTR;
367 	}
368 
369 	if (ei.state == MTD_ERASE_FAILED) {
370 		if (retries++ < UBI_IO_RETRIES) {
371 			ubi_warn(ubi, "error while erasing PEB %d, retry",
372 				 pnum);
373 			yield();
374 			goto retry;
375 		}
376 		ubi_err(ubi, "cannot erase PEB %d", pnum);
377 		dump_stack();
378 		return -EIO;
379 	}
380 
381 	err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size);
382 	if (err)
383 		return err;
384 
385 	if (ubi_dbg_is_erase_failure(ubi)) {
386 		ubi_err(ubi, "cannot erase PEB %d (emulated)", pnum);
387 		return -EIO;
388 	}
389 
390 	return 0;
391 }
392 
393 /* Patterns to write to a physical eraseblock when torturing it */
394 static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
395 
396 /**
397  * torture_peb - test a supposedly bad physical eraseblock.
398  * @ubi: UBI device description object
399  * @pnum: the physical eraseblock number to test
400  *
401  * This function returns %-EIO if the physical eraseblock did not pass the
402  * test, a positive number of erase operations done if the test was
403  * successfully passed, and other negative error codes in case of other errors.
404  */
405 static int torture_peb(struct ubi_device *ubi, int pnum)
406 {
407 	int err, i, patt_count;
408 
409 	ubi_msg(ubi, "run torture test for PEB %d", pnum);
410 	patt_count = ARRAY_SIZE(patterns);
411 	ubi_assert(patt_count > 0);
412 
413 	mutex_lock(&ubi->buf_mutex);
414 	for (i = 0; i < patt_count; i++) {
415 		err = do_sync_erase(ubi, pnum);
416 		if (err)
417 			goto out;
418 
419 		/* Make sure the PEB contains only 0xFF bytes */
420 		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
421 		if (err)
422 			goto out;
423 
424 		err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size);
425 		if (err == 0) {
426 			ubi_err(ubi, "erased PEB %d, but a non-0xFF byte found",
427 				pnum);
428 			err = -EIO;
429 			goto out;
430 		}
431 
432 		/* Write a pattern and check it */
433 		memset(ubi->peb_buf, patterns[i], ubi->peb_size);
434 		err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
435 		if (err)
436 			goto out;
437 
438 		memset(ubi->peb_buf, ~patterns[i], ubi->peb_size);
439 		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
440 		if (err)
441 			goto out;
442 
443 		err = ubi_check_pattern(ubi->peb_buf, patterns[i],
444 					ubi->peb_size);
445 		if (err == 0) {
446 			ubi_err(ubi, "pattern %x checking failed for PEB %d",
447 				patterns[i], pnum);
448 			err = -EIO;
449 			goto out;
450 		}
451 	}
452 
453 	err = patt_count;
454 	ubi_msg(ubi, "PEB %d passed torture test, do not mark it as bad", pnum);
455 
456 out:
457 	mutex_unlock(&ubi->buf_mutex);
458 	if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
459 		/*
460 		 * If a bit-flip or data integrity error was detected, the test
461 		 * has not passed because it happened on a freshly erased
462 		 * physical eraseblock which means something is wrong with it.
463 		 */
464 		ubi_err(ubi, "read problems on freshly erased PEB %d, must be bad",
465 			pnum);
466 		err = -EIO;
467 	}
468 	return err;
469 }
470 
471 /**
472  * nor_erase_prepare - prepare a NOR flash PEB for erasure.
473  * @ubi: UBI device description object
474  * @pnum: physical eraseblock number to prepare
475  *
476  * NOR flash, or at least some of them, have peculiar embedded PEB erasure
477  * algorithm: the PEB is first filled with zeroes, then it is erased. And
478  * filling with zeroes starts from the end of the PEB. This was observed with
479  * Spansion S29GL512N NOR flash.
480  *
481  * This means that in case of a power cut we may end up with intact data at the
482  * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
483  * EC and VID headers are OK, but a large chunk of data at the end of PEB is
484  * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
485  * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
486  *
487  * This function is called before erasing NOR PEBs and it zeroes out EC and VID
488  * magic numbers in order to invalidate them and prevent the failures. Returns
489  * zero in case of success and a negative error code in case of failure.
490  */
491 static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
492 {
493 	int err;
494 	size_t written;
495 	loff_t addr;
496 	uint32_t data = 0;
497 	struct ubi_ec_hdr ec_hdr;
498 
499 	/*
500 	 * Note, we cannot generally define VID header buffers on stack,
501 	 * because of the way we deal with these buffers (see the header
502 	 * comment in this file). But we know this is a NOR-specific piece of
503 	 * code, so we can do this. But yes, this is error-prone and we should
504 	 * (pre-)allocate VID header buffer instead.
505 	 */
506 	struct ubi_vid_hdr vid_hdr;
507 
508 	/*
509 	 * If VID or EC is valid, we have to corrupt them before erasing.
510 	 * It is important to first invalidate the EC header, and then the VID
511 	 * header. Otherwise a power cut may lead to valid EC header and
512 	 * invalid VID header, in which case UBI will treat this PEB as
513 	 * corrupted and will try to preserve it, and print scary warnings.
514 	 */
515 	addr = (loff_t)pnum * ubi->peb_size;
516 	err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
517 	if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
518 	    err != UBI_IO_FF){
519 		err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
520 		if(err)
521 			goto error;
522 	}
523 
524 	err = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
525 	if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
526 	    err != UBI_IO_FF){
527 		addr += ubi->vid_hdr_aloffset;
528 		err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
529 		if (err)
530 			goto error;
531 	}
532 	return 0;
533 
534 error:
535 	/*
536 	 * The PEB contains a valid VID or EC header, but we cannot invalidate
537 	 * it. Supposedly the flash media or the driver is screwed up, so
538 	 * return an error.
539 	 */
540 	ubi_err(ubi, "cannot invalidate PEB %d, write returned %d", pnum, err);
541 	ubi_dump_flash(ubi, pnum, 0, ubi->peb_size);
542 	return -EIO;
543 }
544 
545 /**
546  * ubi_io_sync_erase - synchronously erase a physical eraseblock.
547  * @ubi: UBI device description object
548  * @pnum: physical eraseblock number to erase
549  * @torture: if this physical eraseblock has to be tortured
550  *
551  * This function synchronously erases physical eraseblock @pnum. If @torture
552  * flag is not zero, the physical eraseblock is checked by means of writing
553  * different patterns to it and reading them back. If the torturing is enabled,
554  * the physical eraseblock is erased more than once.
555  *
556  * This function returns the number of erasures made in case of success, %-EIO
557  * if the erasure failed or the torturing test failed, and other negative error
558  * codes in case of other errors. Note, %-EIO means that the physical
559  * eraseblock is bad.
560  */
561 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
562 {
563 	int err, ret = 0;
564 
565 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
566 
567 	err = self_check_not_bad(ubi, pnum);
568 	if (err != 0)
569 		return err;
570 
571 	if (ubi->ro_mode) {
572 		ubi_err(ubi, "read-only mode");
573 		return -EROFS;
574 	}
575 
576 	if (ubi->nor_flash) {
577 		err = nor_erase_prepare(ubi, pnum);
578 		if (err)
579 			return err;
580 	}
581 
582 	if (torture) {
583 		ret = torture_peb(ubi, pnum);
584 		if (ret < 0)
585 			return ret;
586 	}
587 
588 	err = do_sync_erase(ubi, pnum);
589 	if (err)
590 		return err;
591 
592 	return ret + 1;
593 }
594 
595 /**
596  * ubi_io_is_bad - check if a physical eraseblock is bad.
597  * @ubi: UBI device description object
598  * @pnum: the physical eraseblock number to check
599  *
600  * This function returns a positive number if the physical eraseblock is bad,
601  * zero if not, and a negative error code if an error occurred.
602  */
603 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
604 {
605 	struct mtd_info *mtd = ubi->mtd;
606 
607 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
608 
609 	if (ubi->bad_allowed) {
610 		int ret;
611 
612 		ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
613 		if (ret < 0)
614 			ubi_err(ubi, "error %d while checking if PEB %d is bad",
615 				ret, pnum);
616 		else if (ret)
617 			dbg_io("PEB %d is bad", pnum);
618 		return ret;
619 	}
620 
621 	return 0;
622 }
623 
624 /**
625  * ubi_io_mark_bad - mark a physical eraseblock as bad.
626  * @ubi: UBI device description object
627  * @pnum: the physical eraseblock number to mark
628  *
629  * This function returns zero in case of success and a negative error code in
630  * case of failure.
631  */
632 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
633 {
634 	int err;
635 	struct mtd_info *mtd = ubi->mtd;
636 
637 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
638 
639 	if (ubi->ro_mode) {
640 		ubi_err(ubi, "read-only mode");
641 		return -EROFS;
642 	}
643 
644 	if (!ubi->bad_allowed)
645 		return 0;
646 
647 	err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
648 	if (err)
649 		ubi_err(ubi, "cannot mark PEB %d bad, error %d", pnum, err);
650 	return err;
651 }
652 
653 /**
654  * validate_ec_hdr - validate an erase counter header.
655  * @ubi: UBI device description object
656  * @ec_hdr: the erase counter header to check
657  *
658  * This function returns zero if the erase counter header is OK, and %1 if
659  * not.
660  */
661 static int validate_ec_hdr(const struct ubi_device *ubi,
662 			   const struct ubi_ec_hdr *ec_hdr)
663 {
664 	long long ec;
665 	int vid_hdr_offset, leb_start;
666 
667 	ec = be64_to_cpu(ec_hdr->ec);
668 	vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
669 	leb_start = be32_to_cpu(ec_hdr->data_offset);
670 
671 	if (ec_hdr->version != UBI_VERSION) {
672 		ubi_err(ubi, "node with incompatible UBI version found: this UBI version is %d, image version is %d",
673 			UBI_VERSION, (int)ec_hdr->version);
674 		goto bad;
675 	}
676 
677 	if (vid_hdr_offset != ubi->vid_hdr_offset) {
678 		ubi_err(ubi, "bad VID header offset %d, expected %d",
679 			vid_hdr_offset, ubi->vid_hdr_offset);
680 		goto bad;
681 	}
682 
683 	if (leb_start != ubi->leb_start) {
684 		ubi_err(ubi, "bad data offset %d, expected %d",
685 			leb_start, ubi->leb_start);
686 		goto bad;
687 	}
688 
689 	if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
690 		ubi_err(ubi, "bad erase counter %lld", ec);
691 		goto bad;
692 	}
693 
694 	return 0;
695 
696 bad:
697 	ubi_err(ubi, "bad EC header");
698 	ubi_dump_ec_hdr(ec_hdr);
699 	dump_stack();
700 	return 1;
701 }
702 
703 /**
704  * ubi_io_read_ec_hdr - read and check an erase counter header.
705  * @ubi: UBI device description object
706  * @pnum: physical eraseblock to read from
707  * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
708  * header
709  * @verbose: be verbose if the header is corrupted or was not found
710  *
711  * This function reads erase counter header from physical eraseblock @pnum and
712  * stores it in @ec_hdr. This function also checks CRC checksum of the read
713  * erase counter header. The following codes may be returned:
714  *
715  * o %0 if the CRC checksum is correct and the header was successfully read;
716  * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
717  *   and corrected by the flash driver; this is harmless but may indicate that
718  *   this eraseblock may become bad soon (but may be not);
719  * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
720  * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
721  *   a data integrity error (uncorrectable ECC error in case of NAND);
722  * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
723  * o a negative error code in case of failure.
724  */
725 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
726 		       struct ubi_ec_hdr *ec_hdr, int verbose)
727 {
728 	int err, read_err;
729 	uint32_t crc, magic, hdr_crc;
730 
731 	dbg_io("read EC header from PEB %d", pnum);
732 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
733 
734 	read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
735 	if (read_err) {
736 		if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
737 			return read_err;
738 
739 		/*
740 		 * We read all the data, but either a correctable bit-flip
741 		 * occurred, or MTD reported a data integrity error
742 		 * (uncorrectable ECC error in case of NAND). The former is
743 		 * harmless, the later may mean that the read data is
744 		 * corrupted. But we have a CRC check-sum and we will detect
745 		 * this. If the EC header is still OK, we just report this as
746 		 * there was a bit-flip, to force scrubbing.
747 		 */
748 	}
749 
750 	magic = be32_to_cpu(ec_hdr->magic);
751 	if (magic != UBI_EC_HDR_MAGIC) {
752 		if (mtd_is_eccerr(read_err))
753 			return UBI_IO_BAD_HDR_EBADMSG;
754 
755 		/*
756 		 * The magic field is wrong. Let's check if we have read all
757 		 * 0xFF. If yes, this physical eraseblock is assumed to be
758 		 * empty.
759 		 */
760 		if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
761 			/* The physical eraseblock is supposedly empty */
762 			if (verbose)
763 				ubi_warn(ubi, "no EC header found at PEB %d, only 0xFF bytes",
764 					 pnum);
765 			dbg_bld("no EC header found at PEB %d, only 0xFF bytes",
766 				pnum);
767 			if (!read_err)
768 				return UBI_IO_FF;
769 			else
770 				return UBI_IO_FF_BITFLIPS;
771 		}
772 
773 		/*
774 		 * This is not a valid erase counter header, and these are not
775 		 * 0xFF bytes. Report that the header is corrupted.
776 		 */
777 		if (verbose) {
778 			ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
779 				 pnum, magic, UBI_EC_HDR_MAGIC);
780 			ubi_dump_ec_hdr(ec_hdr);
781 		}
782 		dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
783 			pnum, magic, UBI_EC_HDR_MAGIC);
784 		return UBI_IO_BAD_HDR;
785 	}
786 
787 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
788 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
789 
790 	if (hdr_crc != crc) {
791 		if (verbose) {
792 			ubi_warn(ubi, "bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
793 				 pnum, crc, hdr_crc);
794 			ubi_dump_ec_hdr(ec_hdr);
795 		}
796 		dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
797 			pnum, crc, hdr_crc);
798 
799 		if (!read_err)
800 			return UBI_IO_BAD_HDR;
801 		else
802 			return UBI_IO_BAD_HDR_EBADMSG;
803 	}
804 
805 	/* And of course validate what has just been read from the media */
806 	err = validate_ec_hdr(ubi, ec_hdr);
807 	if (err) {
808 		ubi_err(ubi, "validation failed for PEB %d", pnum);
809 		return -EINVAL;
810 	}
811 
812 	/*
813 	 * If there was %-EBADMSG, but the header CRC is still OK, report about
814 	 * a bit-flip to force scrubbing on this PEB.
815 	 */
816 	return read_err ? UBI_IO_BITFLIPS : 0;
817 }
818 
819 /**
820  * ubi_io_write_ec_hdr - write an erase counter header.
821  * @ubi: UBI device description object
822  * @pnum: physical eraseblock to write to
823  * @ec_hdr: the erase counter header to write
824  *
825  * This function writes erase counter header described by @ec_hdr to physical
826  * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
827  * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
828  * field.
829  *
830  * This function returns zero in case of success and a negative error code in
831  * case of failure. If %-EIO is returned, the physical eraseblock most probably
832  * went bad.
833  */
834 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
835 			struct ubi_ec_hdr *ec_hdr)
836 {
837 	int err;
838 	uint32_t crc;
839 
840 	dbg_io("write EC header to PEB %d", pnum);
841 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
842 
843 	ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
844 	ec_hdr->version = UBI_VERSION;
845 	ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
846 	ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
847 	ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
848 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
849 	ec_hdr->hdr_crc = cpu_to_be32(crc);
850 
851 	err = self_check_ec_hdr(ubi, pnum, ec_hdr);
852 	if (err)
853 		return err;
854 
855 	if (ubi_dbg_power_cut(ubi, POWER_CUT_EC_WRITE))
856 		return -EROFS;
857 
858 	err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
859 	return err;
860 }
861 
862 /**
863  * validate_vid_hdr - validate a volume identifier header.
864  * @ubi: UBI device description object
865  * @vid_hdr: the volume identifier header to check
866  *
867  * This function checks that data stored in the volume identifier header
868  * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
869  */
870 static int validate_vid_hdr(const struct ubi_device *ubi,
871 			    const struct ubi_vid_hdr *vid_hdr)
872 {
873 	int vol_type = vid_hdr->vol_type;
874 	int copy_flag = vid_hdr->copy_flag;
875 	int vol_id = be32_to_cpu(vid_hdr->vol_id);
876 	int lnum = be32_to_cpu(vid_hdr->lnum);
877 	int compat = vid_hdr->compat;
878 	int data_size = be32_to_cpu(vid_hdr->data_size);
879 	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
880 	int data_pad = be32_to_cpu(vid_hdr->data_pad);
881 	int data_crc = be32_to_cpu(vid_hdr->data_crc);
882 	int usable_leb_size = ubi->leb_size - data_pad;
883 
884 	if (copy_flag != 0 && copy_flag != 1) {
885 		ubi_err(ubi, "bad copy_flag");
886 		goto bad;
887 	}
888 
889 	if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
890 	    data_pad < 0) {
891 		ubi_err(ubi, "negative values");
892 		goto bad;
893 	}
894 
895 	if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
896 		ubi_err(ubi, "bad vol_id");
897 		goto bad;
898 	}
899 
900 	if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
901 		ubi_err(ubi, "bad compat");
902 		goto bad;
903 	}
904 
905 	if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
906 	    compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
907 	    compat != UBI_COMPAT_REJECT) {
908 		ubi_err(ubi, "bad compat");
909 		goto bad;
910 	}
911 
912 	if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
913 		ubi_err(ubi, "bad vol_type");
914 		goto bad;
915 	}
916 
917 	if (data_pad >= ubi->leb_size / 2) {
918 		ubi_err(ubi, "bad data_pad");
919 		goto bad;
920 	}
921 
922 	if (vol_type == UBI_VID_STATIC) {
923 		/*
924 		 * Although from high-level point of view static volumes may
925 		 * contain zero bytes of data, but no VID headers can contain
926 		 * zero at these fields, because they empty volumes do not have
927 		 * mapped logical eraseblocks.
928 		 */
929 		if (used_ebs == 0) {
930 			ubi_err(ubi, "zero used_ebs");
931 			goto bad;
932 		}
933 		if (data_size == 0) {
934 			ubi_err(ubi, "zero data_size");
935 			goto bad;
936 		}
937 		if (lnum < used_ebs - 1) {
938 			if (data_size != usable_leb_size) {
939 				ubi_err(ubi, "bad data_size");
940 				goto bad;
941 			}
942 		} else if (lnum == used_ebs - 1) {
943 			if (data_size == 0) {
944 				ubi_err(ubi, "bad data_size at last LEB");
945 				goto bad;
946 			}
947 		} else {
948 			ubi_err(ubi, "too high lnum");
949 			goto bad;
950 		}
951 	} else {
952 		if (copy_flag == 0) {
953 			if (data_crc != 0) {
954 				ubi_err(ubi, "non-zero data CRC");
955 				goto bad;
956 			}
957 			if (data_size != 0) {
958 				ubi_err(ubi, "non-zero data_size");
959 				goto bad;
960 			}
961 		} else {
962 			if (data_size == 0) {
963 				ubi_err(ubi, "zero data_size of copy");
964 				goto bad;
965 			}
966 		}
967 		if (used_ebs != 0) {
968 			ubi_err(ubi, "bad used_ebs");
969 			goto bad;
970 		}
971 	}
972 
973 	return 0;
974 
975 bad:
976 	ubi_err(ubi, "bad VID header");
977 	ubi_dump_vid_hdr(vid_hdr);
978 	dump_stack();
979 	return 1;
980 }
981 
982 /**
983  * ubi_io_read_vid_hdr - read and check a volume identifier header.
984  * @ubi: UBI device description object
985  * @pnum: physical eraseblock number to read from
986  * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
987  * identifier header
988  * @verbose: be verbose if the header is corrupted or wasn't found
989  *
990  * This function reads the volume identifier header from physical eraseblock
991  * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
992  * volume identifier header. The error codes are the same as in
993  * 'ubi_io_read_ec_hdr()'.
994  *
995  * Note, the implementation of this function is also very similar to
996  * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
997  */
998 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
999 			struct ubi_vid_hdr *vid_hdr, int verbose)
1000 {
1001 	int err, read_err;
1002 	uint32_t crc, magic, hdr_crc;
1003 	void *p;
1004 
1005 	dbg_io("read VID header from PEB %d", pnum);
1006 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1007 
1008 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1009 	read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1010 			  ubi->vid_hdr_alsize);
1011 	if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
1012 		return read_err;
1013 
1014 	magic = be32_to_cpu(vid_hdr->magic);
1015 	if (magic != UBI_VID_HDR_MAGIC) {
1016 		if (mtd_is_eccerr(read_err))
1017 			return UBI_IO_BAD_HDR_EBADMSG;
1018 
1019 		if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
1020 			if (verbose)
1021 				ubi_warn(ubi, "no VID header found at PEB %d, only 0xFF bytes",
1022 					 pnum);
1023 			dbg_bld("no VID header found at PEB %d, only 0xFF bytes",
1024 				pnum);
1025 			if (!read_err)
1026 				return UBI_IO_FF;
1027 			else
1028 				return UBI_IO_FF_BITFLIPS;
1029 		}
1030 
1031 		if (verbose) {
1032 			ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
1033 				 pnum, magic, UBI_VID_HDR_MAGIC);
1034 			ubi_dump_vid_hdr(vid_hdr);
1035 		}
1036 		dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
1037 			pnum, magic, UBI_VID_HDR_MAGIC);
1038 		return UBI_IO_BAD_HDR;
1039 	}
1040 
1041 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1042 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1043 
1044 	if (hdr_crc != crc) {
1045 		if (verbose) {
1046 			ubi_warn(ubi, "bad CRC at PEB %d, calculated %#08x, read %#08x",
1047 				 pnum, crc, hdr_crc);
1048 			ubi_dump_vid_hdr(vid_hdr);
1049 		}
1050 		dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x",
1051 			pnum, crc, hdr_crc);
1052 		if (!read_err)
1053 			return UBI_IO_BAD_HDR;
1054 		else
1055 			return UBI_IO_BAD_HDR_EBADMSG;
1056 	}
1057 
1058 	err = validate_vid_hdr(ubi, vid_hdr);
1059 	if (err) {
1060 		ubi_err(ubi, "validation failed for PEB %d", pnum);
1061 		return -EINVAL;
1062 	}
1063 
1064 	return read_err ? UBI_IO_BITFLIPS : 0;
1065 }
1066 
1067 /**
1068  * ubi_io_write_vid_hdr - write a volume identifier header.
1069  * @ubi: UBI device description object
1070  * @pnum: the physical eraseblock number to write to
1071  * @vid_hdr: the volume identifier header to write
1072  *
1073  * This function writes the volume identifier header described by @vid_hdr to
1074  * physical eraseblock @pnum. This function automatically fills the
1075  * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1076  * header CRC checksum and stores it at vid_hdr->hdr_crc.
1077  *
1078  * This function returns zero in case of success and a negative error code in
1079  * case of failure. If %-EIO is returned, the physical eraseblock probably went
1080  * bad.
1081  */
1082 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1083 			 struct ubi_vid_hdr *vid_hdr)
1084 {
1085 	int err;
1086 	uint32_t crc;
1087 	void *p;
1088 
1089 	dbg_io("write VID header to PEB %d", pnum);
1090 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1091 
1092 	err = self_check_peb_ec_hdr(ubi, pnum);
1093 	if (err)
1094 		return err;
1095 
1096 	vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1097 	vid_hdr->version = UBI_VERSION;
1098 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1099 	vid_hdr->hdr_crc = cpu_to_be32(crc);
1100 
1101 	err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1102 	if (err)
1103 		return err;
1104 
1105 	if (ubi_dbg_power_cut(ubi, POWER_CUT_VID_WRITE))
1106 		return -EROFS;
1107 
1108 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1109 	err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1110 			   ubi->vid_hdr_alsize);
1111 	return err;
1112 }
1113 
1114 /**
1115  * self_check_not_bad - ensure that a physical eraseblock is not bad.
1116  * @ubi: UBI device description object
1117  * @pnum: physical eraseblock number to check
1118  *
1119  * This function returns zero if the physical eraseblock is good, %-EINVAL if
1120  * it is bad and a negative error code if an error occurred.
1121  */
1122 static int self_check_not_bad(const struct ubi_device *ubi, int pnum)
1123 {
1124 	int err;
1125 
1126 	if (!ubi_dbg_chk_io(ubi))
1127 		return 0;
1128 
1129 	err = ubi_io_is_bad(ubi, pnum);
1130 	if (!err)
1131 		return err;
1132 
1133 	ubi_err(ubi, "self-check failed for PEB %d", pnum);
1134 	dump_stack();
1135 	return err > 0 ? -EINVAL : err;
1136 }
1137 
1138 /**
1139  * self_check_ec_hdr - check if an erase counter header is all right.
1140  * @ubi: UBI device description object
1141  * @pnum: physical eraseblock number the erase counter header belongs to
1142  * @ec_hdr: the erase counter header to check
1143  *
1144  * This function returns zero if the erase counter header contains valid
1145  * values, and %-EINVAL if not.
1146  */
1147 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1148 			     const struct ubi_ec_hdr *ec_hdr)
1149 {
1150 	int err;
1151 	uint32_t magic;
1152 
1153 	if (!ubi_dbg_chk_io(ubi))
1154 		return 0;
1155 
1156 	magic = be32_to_cpu(ec_hdr->magic);
1157 	if (magic != UBI_EC_HDR_MAGIC) {
1158 		ubi_err(ubi, "bad magic %#08x, must be %#08x",
1159 			magic, UBI_EC_HDR_MAGIC);
1160 		goto fail;
1161 	}
1162 
1163 	err = validate_ec_hdr(ubi, ec_hdr);
1164 	if (err) {
1165 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1166 		goto fail;
1167 	}
1168 
1169 	return 0;
1170 
1171 fail:
1172 	ubi_dump_ec_hdr(ec_hdr);
1173 	dump_stack();
1174 	return -EINVAL;
1175 }
1176 
1177 /**
1178  * self_check_peb_ec_hdr - check erase counter header.
1179  * @ubi: UBI device description object
1180  * @pnum: the physical eraseblock number to check
1181  *
1182  * This function returns zero if the erase counter header is all right and and
1183  * a negative error code if not or if an error occurred.
1184  */
1185 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1186 {
1187 	int err;
1188 	uint32_t crc, hdr_crc;
1189 	struct ubi_ec_hdr *ec_hdr;
1190 
1191 	if (!ubi_dbg_chk_io(ubi))
1192 		return 0;
1193 
1194 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1195 	if (!ec_hdr)
1196 		return -ENOMEM;
1197 
1198 	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1199 	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1200 		goto exit;
1201 
1202 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1203 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1204 	if (hdr_crc != crc) {
1205 		ubi_err(ubi, "bad CRC, calculated %#08x, read %#08x",
1206 			crc, hdr_crc);
1207 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1208 		ubi_dump_ec_hdr(ec_hdr);
1209 		dump_stack();
1210 		err = -EINVAL;
1211 		goto exit;
1212 	}
1213 
1214 	err = self_check_ec_hdr(ubi, pnum, ec_hdr);
1215 
1216 exit:
1217 	kfree(ec_hdr);
1218 	return err;
1219 }
1220 
1221 /**
1222  * self_check_vid_hdr - check that a volume identifier header is all right.
1223  * @ubi: UBI device description object
1224  * @pnum: physical eraseblock number the volume identifier header belongs to
1225  * @vid_hdr: the volume identifier header to check
1226  *
1227  * This function returns zero if the volume identifier header is all right, and
1228  * %-EINVAL if not.
1229  */
1230 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1231 			      const struct ubi_vid_hdr *vid_hdr)
1232 {
1233 	int err;
1234 	uint32_t magic;
1235 
1236 	if (!ubi_dbg_chk_io(ubi))
1237 		return 0;
1238 
1239 	magic = be32_to_cpu(vid_hdr->magic);
1240 	if (magic != UBI_VID_HDR_MAGIC) {
1241 		ubi_err(ubi, "bad VID header magic %#08x at PEB %d, must be %#08x",
1242 			magic, pnum, UBI_VID_HDR_MAGIC);
1243 		goto fail;
1244 	}
1245 
1246 	err = validate_vid_hdr(ubi, vid_hdr);
1247 	if (err) {
1248 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1249 		goto fail;
1250 	}
1251 
1252 	return err;
1253 
1254 fail:
1255 	ubi_err(ubi, "self-check failed for PEB %d", pnum);
1256 	ubi_dump_vid_hdr(vid_hdr);
1257 	dump_stack();
1258 	return -EINVAL;
1259 
1260 }
1261 
1262 /**
1263  * self_check_peb_vid_hdr - check volume identifier header.
1264  * @ubi: UBI device description object
1265  * @pnum: the physical eraseblock number to check
1266  *
1267  * This function returns zero if the volume identifier header is all right,
1268  * and a negative error code if not or if an error occurred.
1269  */
1270 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1271 {
1272 	int err;
1273 	uint32_t crc, hdr_crc;
1274 	struct ubi_vid_hdr *vid_hdr;
1275 	void *p;
1276 
1277 	if (!ubi_dbg_chk_io(ubi))
1278 		return 0;
1279 
1280 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1281 	if (!vid_hdr)
1282 		return -ENOMEM;
1283 
1284 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1285 	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1286 			  ubi->vid_hdr_alsize);
1287 	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1288 		goto exit;
1289 
1290 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
1291 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1292 	if (hdr_crc != crc) {
1293 		ubi_err(ubi, "bad VID header CRC at PEB %d, calculated %#08x, read %#08x",
1294 			pnum, crc, hdr_crc);
1295 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1296 		ubi_dump_vid_hdr(vid_hdr);
1297 		dump_stack();
1298 		err = -EINVAL;
1299 		goto exit;
1300 	}
1301 
1302 	err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1303 
1304 exit:
1305 	ubi_free_vid_hdr(ubi, vid_hdr);
1306 	return err;
1307 }
1308 
1309 /**
1310  * self_check_write - make sure write succeeded.
1311  * @ubi: UBI device description object
1312  * @buf: buffer with data which were written
1313  * @pnum: physical eraseblock number the data were written to
1314  * @offset: offset within the physical eraseblock the data were written to
1315  * @len: how many bytes were written
1316  *
1317  * This functions reads data which were recently written and compares it with
1318  * the original data buffer - the data have to match. Returns zero if the data
1319  * match and a negative error code if not or in case of failure.
1320  */
1321 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1322 			    int offset, int len)
1323 {
1324 	int err, i;
1325 	size_t read;
1326 	void *buf1;
1327 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1328 
1329 	if (!ubi_dbg_chk_io(ubi))
1330 		return 0;
1331 
1332 	buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1333 	if (!buf1) {
1334 		ubi_err(ubi, "cannot allocate memory to check writes");
1335 		return 0;
1336 	}
1337 
1338 	err = mtd_read(ubi->mtd, addr, len, &read, buf1);
1339 	if (err && !mtd_is_bitflip(err))
1340 		goto out_free;
1341 
1342 	for (i = 0; i < len; i++) {
1343 		uint8_t c = ((uint8_t *)buf)[i];
1344 		uint8_t c1 = ((uint8_t *)buf1)[i];
1345 #if !defined(CONFIG_UBI_SILENCE_MSG)
1346 		int dump_len = max_t(int, 128, len - i);
1347 #endif
1348 
1349 		if (c == c1)
1350 			continue;
1351 
1352 		ubi_err(ubi, "self-check failed for PEB %d:%d, len %d",
1353 			pnum, offset, len);
1354 		ubi_msg(ubi, "data differ at position %d", i);
1355 		ubi_msg(ubi, "hex dump of the original buffer from %d to %d",
1356 			i, i + dump_len);
1357 		print_hex_dump("", DUMP_PREFIX_OFFSET, 32, 1,
1358 			       buf + i, dump_len, 1);
1359 		ubi_msg(ubi, "hex dump of the read buffer from %d to %d",
1360 			i, i + dump_len);
1361 		print_hex_dump("", DUMP_PREFIX_OFFSET, 32, 1,
1362 			       buf1 + i, dump_len, 1);
1363 		dump_stack();
1364 		err = -EINVAL;
1365 		goto out_free;
1366 	}
1367 
1368 	vfree(buf1);
1369 	return 0;
1370 
1371 out_free:
1372 	vfree(buf1);
1373 	return err;
1374 }
1375 
1376 /**
1377  * ubi_self_check_all_ff - check that a region of flash is empty.
1378  * @ubi: UBI device description object
1379  * @pnum: the physical eraseblock number to check
1380  * @offset: the starting offset within the physical eraseblock to check
1381  * @len: the length of the region to check
1382  *
1383  * This function returns zero if only 0xFF bytes are present at offset
1384  * @offset of the physical eraseblock @pnum, and a negative error code if not
1385  * or if an error occurred.
1386  */
1387 int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
1388 {
1389 	size_t read;
1390 	int err;
1391 	void *buf;
1392 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1393 
1394 	if (!ubi_dbg_chk_io(ubi))
1395 		return 0;
1396 
1397 	buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1398 	if (!buf) {
1399 		ubi_err(ubi, "cannot allocate memory to check for 0xFFs");
1400 		return 0;
1401 	}
1402 
1403 	err = mtd_read(ubi->mtd, addr, len, &read, buf);
1404 	if (err && !mtd_is_bitflip(err)) {
1405 		ubi_err(ubi, "err %d while reading %d bytes from PEB %d:%d, read %zd bytes",
1406 			err, len, pnum, offset, read);
1407 		goto error;
1408 	}
1409 
1410 	err = ubi_check_pattern(buf, 0xFF, len);
1411 	if (err == 0) {
1412 		ubi_err(ubi, "flash region at PEB %d:%d, length %d does not contain all 0xFF bytes",
1413 			pnum, offset, len);
1414 		goto fail;
1415 	}
1416 
1417 	vfree(buf);
1418 	return 0;
1419 
1420 fail:
1421 	ubi_err(ubi, "self-check failed for PEB %d", pnum);
1422 	ubi_msg(ubi, "hex dump of the %d-%d region", offset, offset + len);
1423 	print_hex_dump("", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
1424 	err = -EINVAL;
1425 error:
1426 	dump_stack();
1427 	vfree(buf);
1428 	return err;
1429 }
1430