xref: /openbmc/u-boot/drivers/mtd/ubi/io.c (revision 3765b3e7)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2006, 2007
4  *
5  * SPDX-License-Identifier:	GPL-2.0+
6  *
7  * Author: Artem Bityutskiy (Битюцкий Артём)
8  */
9 
10 /*
11  * UBI input/output unit.
12  *
13  * This unit provides a uniform way to work with all kinds of the underlying
14  * MTD devices. It also implements handy functions for reading and writing UBI
15  * headers.
16  *
17  * We are trying to have a paranoid mindset and not to trust to what we read
18  * from the flash media in order to be more secure and robust. So this unit
19  * validates every single header it reads from the flash media.
20  *
21  * Some words about how the eraseblock headers are stored.
22  *
23  * The erase counter header is always stored at offset zero. By default, the
24  * VID header is stored after the EC header at the closest aligned offset
25  * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
26  * header at the closest aligned offset. But this default layout may be
27  * changed. For example, for different reasons (e.g., optimization) UBI may be
28  * asked to put the VID header at further offset, and even at an unaligned
29  * offset. Of course, if the offset of the VID header is unaligned, UBI adds
30  * proper padding in front of it. Data offset may also be changed but it has to
31  * be aligned.
32  *
33  * About minimal I/O units. In general, UBI assumes flash device model where
34  * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
35  * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
36  * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
37  * (smaller) minimal I/O unit size for EC and VID headers to make it possible
38  * to do different optimizations.
39  *
40  * This is extremely useful in case of NAND flashes which admit of several
41  * write operations to one NAND page. In this case UBI can fit EC and VID
42  * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
43  * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
44  * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
45  * users.
46  *
47  * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
48  * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
49  * headers.
50  *
51  * Q: why not just to treat sub-page as a minimal I/O unit of this flash
52  * device, e.g., make @ubi->min_io_size = 512 in the example above?
53  *
54  * A: because when writing a sub-page, MTD still writes a full 2K page but the
55  * bytes which are no relevant to the sub-page are 0xFF. So, basically, writing
56  * 4x512 sub-pages is 4 times slower then writing one 2KiB NAND page. Thus, we
57  * prefer to use sub-pages only for EV and VID headers.
58  *
59  * As it was noted above, the VID header may start at a non-aligned offset.
60  * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
61  * the VID header may reside at offset 1984 which is the last 64 bytes of the
62  * last sub-page (EC header is always at offset zero). This causes some
63  * difficulties when reading and writing VID headers.
64  *
65  * Suppose we have a 64-byte buffer and we read a VID header at it. We change
66  * the data and want to write this VID header out. As we can only write in
67  * 512-byte chunks, we have to allocate one more buffer and copy our VID header
68  * to offset 448 of this buffer.
69  *
70  * The I/O unit does the following trick in order to avoid this extra copy.
71  * It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID header
72  * and returns a pointer to offset @ubi->vid_hdr_shift of this buffer. When the
73  * VID header is being written out, it shifts the VID header pointer back and
74  * writes the whole sub-page.
75  */
76 
77 #ifdef UBI_LINUX
78 #include <linux/crc32.h>
79 #include <linux/err.h>
80 #endif
81 
82 #include <ubi_uboot.h>
83 #include "ubi.h"
84 
85 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
86 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum);
87 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
88 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
89 				 const struct ubi_ec_hdr *ec_hdr);
90 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
91 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
92 				  const struct ubi_vid_hdr *vid_hdr);
93 static int paranoid_check_all_ff(struct ubi_device *ubi, int pnum, int offset,
94 				 int len);
95 #else
96 #define paranoid_check_not_bad(ubi, pnum) 0
97 #define paranoid_check_peb_ec_hdr(ubi, pnum)  0
98 #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr)  0
99 #define paranoid_check_peb_vid_hdr(ubi, pnum) 0
100 #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
101 #define paranoid_check_all_ff(ubi, pnum, offset, len) 0
102 #endif
103 
104 /**
105  * ubi_io_read - read data from a physical eraseblock.
106  * @ubi: UBI device description object
107  * @buf: buffer where to store the read data
108  * @pnum: physical eraseblock number to read from
109  * @offset: offset within the physical eraseblock from where to read
110  * @len: how many bytes to read
111  *
112  * This function reads data from offset @offset of physical eraseblock @pnum
113  * and stores the read data in the @buf buffer. The following return codes are
114  * possible:
115  *
116  * o %0 if all the requested data were successfully read;
117  * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
118  *   correctable bit-flips were detected; this is harmless but may indicate
119  *   that this eraseblock may become bad soon (but do not have to);
120  * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
121  *   example it can be an ECC error in case of NAND; this most probably means
122  *   that the data is corrupted;
123  * o %-EIO if some I/O error occurred;
124  * o other negative error codes in case of other errors.
125  */
126 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
127 		int len)
128 {
129 	int err, retries = 0;
130 	size_t read;
131 	loff_t addr;
132 
133 	dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
134 
135 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
136 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
137 	ubi_assert(len > 0);
138 
139 	err = paranoid_check_not_bad(ubi, pnum);
140 	if (err)
141 		return err > 0 ? -EINVAL : err;
142 
143 	addr = (loff_t)pnum * ubi->peb_size + offset;
144 retry:
145 	err = mtd_read(ubi->mtd, addr, len, &read, buf);
146 	if (err) {
147 		if (err == -EUCLEAN) {
148 			/*
149 			 * -EUCLEAN is reported if there was a bit-flip which
150 			 * was corrected, so this is harmless.
151 			 */
152 			ubi_msg("fixable bit-flip detected at PEB %d", pnum);
153 			ubi_assert(len == read);
154 			return UBI_IO_BITFLIPS;
155 		}
156 
157 		if (read != len && retries++ < UBI_IO_RETRIES) {
158 			dbg_io("error %d while reading %d bytes from PEB %d:%d, "
159 			       "read only %zd bytes, retry",
160 			       err, len, pnum, offset, read);
161 			yield();
162 			goto retry;
163 		}
164 
165 		ubi_err("error %d while reading %d bytes from PEB %d:%d, "
166 			"read %zd bytes", err, len, pnum, offset, read);
167 		ubi_dbg_dump_stack();
168 
169 		/*
170 		 * The driver should never return -EBADMSG if it failed to read
171 		 * all the requested data. But some buggy drivers might do
172 		 * this, so we change it to -EIO.
173 		 */
174 		if (read != len && err == -EBADMSG) {
175 			ubi_assert(0);
176 			printk("%s[%d] not here\n", __func__, __LINE__);
177 /*			err = -EIO; */
178 		}
179 	} else {
180 		ubi_assert(len == read);
181 
182 		if (ubi_dbg_is_bitflip()) {
183 			dbg_msg("bit-flip (emulated)");
184 			err = UBI_IO_BITFLIPS;
185 		}
186 	}
187 
188 	return err;
189 }
190 
191 /**
192  * ubi_io_write - write data to a physical eraseblock.
193  * @ubi: UBI device description object
194  * @buf: buffer with the data to write
195  * @pnum: physical eraseblock number to write to
196  * @offset: offset within the physical eraseblock where to write
197  * @len: how many bytes to write
198  *
199  * This function writes @len bytes of data from buffer @buf to offset @offset
200  * of physical eraseblock @pnum. If all the data were successfully written,
201  * zero is returned. If an error occurred, this function returns a negative
202  * error code. If %-EIO is returned, the physical eraseblock most probably went
203  * bad.
204  *
205  * Note, in case of an error, it is possible that something was still written
206  * to the flash media, but may be some garbage.
207  */
208 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
209 		 int len)
210 {
211 	int err;
212 	size_t written;
213 	loff_t addr;
214 
215 	dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
216 
217 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
218 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
219 	ubi_assert(offset % ubi->hdrs_min_io_size == 0);
220 	ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
221 
222 	if (ubi->ro_mode) {
223 		ubi_err("read-only mode");
224 		return -EROFS;
225 	}
226 
227 	/* The below has to be compiled out if paranoid checks are disabled */
228 
229 	err = paranoid_check_not_bad(ubi, pnum);
230 	if (err)
231 		return err > 0 ? -EINVAL : err;
232 
233 	/* The area we are writing to has to contain all 0xFF bytes */
234 	err = paranoid_check_all_ff(ubi, pnum, offset, len);
235 	if (err)
236 		return err > 0 ? -EINVAL : err;
237 
238 	if (offset >= ubi->leb_start) {
239 		/*
240 		 * We write to the data area of the physical eraseblock. Make
241 		 * sure it has valid EC and VID headers.
242 		 */
243 		err = paranoid_check_peb_ec_hdr(ubi, pnum);
244 		if (err)
245 			return err > 0 ? -EINVAL : err;
246 		err = paranoid_check_peb_vid_hdr(ubi, pnum);
247 		if (err)
248 			return err > 0 ? -EINVAL : err;
249 	}
250 
251 	if (ubi_dbg_is_write_failure()) {
252 		dbg_err("cannot write %d bytes to PEB %d:%d "
253 			"(emulated)", len, pnum, offset);
254 		ubi_dbg_dump_stack();
255 		return -EIO;
256 	}
257 
258 	addr = (loff_t)pnum * ubi->peb_size + offset;
259 	err = mtd_write(ubi->mtd, addr, len, &written, buf);
260 	if (err) {
261 		ubi_err("error %d while writing %d bytes to PEB %d:%d, written"
262 			" %zd bytes", err, len, pnum, offset, written);
263 		ubi_dbg_dump_stack();
264 	} else
265 		ubi_assert(written == len);
266 
267 	return err;
268 }
269 
270 /**
271  * erase_callback - MTD erasure call-back.
272  * @ei: MTD erase information object.
273  *
274  * Note, even though MTD erase interface is asynchronous, all the current
275  * implementations are synchronous anyway.
276  */
277 static void erase_callback(struct erase_info *ei)
278 {
279 	wake_up_interruptible((wait_queue_head_t *)ei->priv);
280 }
281 
282 /**
283  * do_sync_erase - synchronously erase a physical eraseblock.
284  * @ubi: UBI device description object
285  * @pnum: the physical eraseblock number to erase
286  *
287  * This function synchronously erases physical eraseblock @pnum and returns
288  * zero in case of success and a negative error code in case of failure. If
289  * %-EIO is returned, the physical eraseblock most probably went bad.
290  */
291 static int do_sync_erase(struct ubi_device *ubi, int pnum)
292 {
293 	int err, retries = 0;
294 	struct erase_info ei;
295 	wait_queue_head_t wq;
296 
297 	dbg_io("erase PEB %d", pnum);
298 
299 retry:
300 	init_waitqueue_head(&wq);
301 	memset(&ei, 0, sizeof(struct erase_info));
302 
303 	ei.mtd      = ubi->mtd;
304 	ei.addr     = (loff_t)pnum * ubi->peb_size;
305 	ei.len      = ubi->peb_size;
306 	ei.callback = erase_callback;
307 	ei.priv     = (unsigned long)&wq;
308 
309 	err = mtd_erase(ubi->mtd, &ei);
310 	if (err) {
311 		if (retries++ < UBI_IO_RETRIES) {
312 			dbg_io("error %d while erasing PEB %d, retry",
313 			       err, pnum);
314 			yield();
315 			goto retry;
316 		}
317 		ubi_err("cannot erase PEB %d, error %d", pnum, err);
318 		ubi_dbg_dump_stack();
319 		return err;
320 	}
321 
322 	err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
323 					   ei.state == MTD_ERASE_FAILED);
324 	if (err) {
325 		ubi_err("interrupted PEB %d erasure", pnum);
326 		return -EINTR;
327 	}
328 
329 	if (ei.state == MTD_ERASE_FAILED) {
330 		if (retries++ < UBI_IO_RETRIES) {
331 			dbg_io("error while erasing PEB %d, retry", pnum);
332 			yield();
333 			goto retry;
334 		}
335 		ubi_err("cannot erase PEB %d", pnum);
336 		ubi_dbg_dump_stack();
337 		return -EIO;
338 	}
339 
340 	err = paranoid_check_all_ff(ubi, pnum, 0, ubi->peb_size);
341 	if (err)
342 		return err > 0 ? -EINVAL : err;
343 
344 	if (ubi_dbg_is_erase_failure() && !err) {
345 		dbg_err("cannot erase PEB %d (emulated)", pnum);
346 		return -EIO;
347 	}
348 
349 	return 0;
350 }
351 
352 /**
353  * check_pattern - check if buffer contains only a certain byte pattern.
354  * @buf: buffer to check
355  * @patt: the pattern to check
356  * @size: buffer size in bytes
357  *
358  * This function returns %1 in there are only @patt bytes in @buf, and %0 if
359  * something else was also found.
360  */
361 static int check_pattern(const void *buf, uint8_t patt, int size)
362 {
363 	int i;
364 
365 	for (i = 0; i < size; i++)
366 		if (((const uint8_t *)buf)[i] != patt)
367 			return 0;
368 	return 1;
369 }
370 
371 /* Patterns to write to a physical eraseblock when torturing it */
372 static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
373 
374 /**
375  * torture_peb - test a supposedly bad physical eraseblock.
376  * @ubi: UBI device description object
377  * @pnum: the physical eraseblock number to test
378  *
379  * This function returns %-EIO if the physical eraseblock did not pass the
380  * test, a positive number of erase operations done if the test was
381  * successfully passed, and other negative error codes in case of other errors.
382  */
383 static int torture_peb(struct ubi_device *ubi, int pnum)
384 {
385 	int err, i, patt_count;
386 
387 	patt_count = ARRAY_SIZE(patterns);
388 	ubi_assert(patt_count > 0);
389 
390 	mutex_lock(&ubi->buf_mutex);
391 	for (i = 0; i < patt_count; i++) {
392 		err = do_sync_erase(ubi, pnum);
393 		if (err)
394 			goto out;
395 
396 		/* Make sure the PEB contains only 0xFF bytes */
397 		err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
398 		if (err)
399 			goto out;
400 
401 		err = check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size);
402 		if (err == 0) {
403 			ubi_err("erased PEB %d, but a non-0xFF byte found",
404 				pnum);
405 			err = -EIO;
406 			goto out;
407 		}
408 
409 		/* Write a pattern and check it */
410 		memset(ubi->peb_buf1, patterns[i], ubi->peb_size);
411 		err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
412 		if (err)
413 			goto out;
414 
415 		memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size);
416 		err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
417 		if (err)
418 			goto out;
419 
420 		err = check_pattern(ubi->peb_buf1, patterns[i], ubi->peb_size);
421 		if (err == 0) {
422 			ubi_err("pattern %x checking failed for PEB %d",
423 				patterns[i], pnum);
424 			err = -EIO;
425 			goto out;
426 		}
427 	}
428 
429 	err = patt_count;
430 
431 out:
432 	mutex_unlock(&ubi->buf_mutex);
433 	if (err == UBI_IO_BITFLIPS || err == -EBADMSG) {
434 		/*
435 		 * If a bit-flip or data integrity error was detected, the test
436 		 * has not passed because it happened on a freshly erased
437 		 * physical eraseblock which means something is wrong with it.
438 		 */
439 		ubi_err("read problems on freshly erased PEB %d, must be bad",
440 			pnum);
441 		err = -EIO;
442 	}
443 	return err;
444 }
445 
446 /**
447  * ubi_io_sync_erase - synchronously erase a physical eraseblock.
448  * @ubi: UBI device description object
449  * @pnum: physical eraseblock number to erase
450  * @torture: if this physical eraseblock has to be tortured
451  *
452  * This function synchronously erases physical eraseblock @pnum. If @torture
453  * flag is not zero, the physical eraseblock is checked by means of writing
454  * different patterns to it and reading them back. If the torturing is enabled,
455  * the physical eraseblock is erased more then once.
456  *
457  * This function returns the number of erasures made in case of success, %-EIO
458  * if the erasure failed or the torturing test failed, and other negative error
459  * codes in case of other errors. Note, %-EIO means that the physical
460  * eraseblock is bad.
461  */
462 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
463 {
464 	int err, ret = 0;
465 
466 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
467 
468 	err = paranoid_check_not_bad(ubi, pnum);
469 	if (err != 0)
470 		return err > 0 ? -EINVAL : err;
471 
472 	if (ubi->ro_mode) {
473 		ubi_err("read-only mode");
474 		return -EROFS;
475 	}
476 
477 	if (torture) {
478 		ret = torture_peb(ubi, pnum);
479 		if (ret < 0)
480 			return ret;
481 	}
482 
483 	err = do_sync_erase(ubi, pnum);
484 	if (err)
485 		return err;
486 
487 	return ret + 1;
488 }
489 
490 /**
491  * ubi_io_is_bad - check if a physical eraseblock is bad.
492  * @ubi: UBI device description object
493  * @pnum: the physical eraseblock number to check
494  *
495  * This function returns a positive number if the physical eraseblock is bad,
496  * zero if not, and a negative error code if an error occurred.
497  */
498 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
499 {
500 	struct mtd_info *mtd = ubi->mtd;
501 
502 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
503 
504 	if (ubi->bad_allowed) {
505 		int ret;
506 
507 		ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
508 		if (ret < 0)
509 			ubi_err("error %d while checking if PEB %d is bad",
510 				ret, pnum);
511 		else if (ret)
512 			dbg_io("PEB %d is bad", pnum);
513 		return ret;
514 	}
515 
516 	return 0;
517 }
518 
519 /**
520  * ubi_io_mark_bad - mark a physical eraseblock as bad.
521  * @ubi: UBI device description object
522  * @pnum: the physical eraseblock number to mark
523  *
524  * This function returns zero in case of success and a negative error code in
525  * case of failure.
526  */
527 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
528 {
529 	int err;
530 	struct mtd_info *mtd = ubi->mtd;
531 
532 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
533 
534 	if (ubi->ro_mode) {
535 		ubi_err("read-only mode");
536 		return -EROFS;
537 	}
538 
539 	if (!ubi->bad_allowed)
540 		return 0;
541 
542 	err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
543 	if (err)
544 		ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
545 	return err;
546 }
547 
548 /**
549  * validate_ec_hdr - validate an erase counter header.
550  * @ubi: UBI device description object
551  * @ec_hdr: the erase counter header to check
552  *
553  * This function returns zero if the erase counter header is OK, and %1 if
554  * not.
555  */
556 static int validate_ec_hdr(const struct ubi_device *ubi,
557 			   const struct ubi_ec_hdr *ec_hdr)
558 {
559 	long long ec;
560 	int vid_hdr_offset, leb_start;
561 
562 	ec = be64_to_cpu(ec_hdr->ec);
563 	vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
564 	leb_start = be32_to_cpu(ec_hdr->data_offset);
565 
566 	if (ec_hdr->version != UBI_VERSION) {
567 		ubi_err("node with incompatible UBI version found: "
568 			"this UBI version is %d, image version is %d",
569 			UBI_VERSION, (int)ec_hdr->version);
570 		goto bad;
571 	}
572 
573 	if (vid_hdr_offset != ubi->vid_hdr_offset) {
574 		ubi_err("bad VID header offset %d, expected %d",
575 			vid_hdr_offset, ubi->vid_hdr_offset);
576 		goto bad;
577 	}
578 
579 	if (leb_start != ubi->leb_start) {
580 		ubi_err("bad data offset %d, expected %d",
581 			leb_start, ubi->leb_start);
582 		goto bad;
583 	}
584 
585 	if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
586 		ubi_err("bad erase counter %lld", ec);
587 		goto bad;
588 	}
589 
590 	return 0;
591 
592 bad:
593 	ubi_err("bad EC header");
594 	ubi_dbg_dump_ec_hdr(ec_hdr);
595 	ubi_dbg_dump_stack();
596 	return 1;
597 }
598 
599 /**
600  * ubi_io_read_ec_hdr - read and check an erase counter header.
601  * @ubi: UBI device description object
602  * @pnum: physical eraseblock to read from
603  * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
604  * header
605  * @verbose: be verbose if the header is corrupted or was not found
606  *
607  * This function reads erase counter header from physical eraseblock @pnum and
608  * stores it in @ec_hdr. This function also checks CRC checksum of the read
609  * erase counter header. The following codes may be returned:
610  *
611  * o %0 if the CRC checksum is correct and the header was successfully read;
612  * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
613  *   and corrected by the flash driver; this is harmless but may indicate that
614  *   this eraseblock may become bad soon (but may be not);
615  * o %UBI_IO_BAD_EC_HDR if the erase counter header is corrupted (a CRC error);
616  * o %UBI_IO_PEB_EMPTY if the physical eraseblock is empty;
617  * o a negative error code in case of failure.
618  */
619 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
620 		       struct ubi_ec_hdr *ec_hdr, int verbose)
621 {
622 	int err, read_err = 0;
623 	uint32_t crc, magic, hdr_crc;
624 
625 	dbg_io("read EC header from PEB %d", pnum);
626 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
627 	if (UBI_IO_DEBUG)
628 		verbose = 1;
629 
630 	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
631 	if (err) {
632 		if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
633 			return err;
634 
635 		/*
636 		 * We read all the data, but either a correctable bit-flip
637 		 * occurred, or MTD reported about some data integrity error,
638 		 * like an ECC error in case of NAND. The former is harmless,
639 		 * the later may mean that the read data is corrupted. But we
640 		 * have a CRC check-sum and we will detect this. If the EC
641 		 * header is still OK, we just report this as there was a
642 		 * bit-flip.
643 		 */
644 		read_err = err;
645 	}
646 
647 	magic = be32_to_cpu(ec_hdr->magic);
648 	if (magic != UBI_EC_HDR_MAGIC) {
649 		/*
650 		 * The magic field is wrong. Let's check if we have read all
651 		 * 0xFF. If yes, this physical eraseblock is assumed to be
652 		 * empty.
653 		 *
654 		 * But if there was a read error, we do not test it for all
655 		 * 0xFFs. Even if it does contain all 0xFFs, this error
656 		 * indicates that something is still wrong with this physical
657 		 * eraseblock and we anyway cannot treat it as empty.
658 		 */
659 		if (read_err != -EBADMSG &&
660 		    check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
661 			/* The physical eraseblock is supposedly empty */
662 
663 			/*
664 			 * The below is just a paranoid check, it has to be
665 			 * compiled out if paranoid checks are disabled.
666 			 */
667 			err = paranoid_check_all_ff(ubi, pnum, 0,
668 						    ubi->peb_size);
669 			if (err)
670 				return err > 0 ? UBI_IO_BAD_EC_HDR : err;
671 
672 			if (verbose)
673 				ubi_warn("no EC header found at PEB %d, "
674 					 "only 0xFF bytes", pnum);
675 			return UBI_IO_PEB_EMPTY;
676 		}
677 
678 		/*
679 		 * This is not a valid erase counter header, and these are not
680 		 * 0xFF bytes. Report that the header is corrupted.
681 		 */
682 		if (verbose) {
683 			ubi_warn("bad magic number at PEB %d: %08x instead of "
684 				 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
685 			ubi_dbg_dump_ec_hdr(ec_hdr);
686 		}
687 		return UBI_IO_BAD_EC_HDR;
688 	}
689 
690 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
691 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
692 
693 	if (hdr_crc != crc) {
694 		if (verbose) {
695 			ubi_warn("bad EC header CRC at PEB %d, calculated %#08x,"
696 				 " read %#08x", pnum, crc, hdr_crc);
697 			ubi_dbg_dump_ec_hdr(ec_hdr);
698 		}
699 		return UBI_IO_BAD_EC_HDR;
700 	}
701 
702 	/* And of course validate what has just been read from the media */
703 	err = validate_ec_hdr(ubi, ec_hdr);
704 	if (err) {
705 		ubi_err("validation failed for PEB %d", pnum);
706 		return -EINVAL;
707 	}
708 
709 	return read_err ? UBI_IO_BITFLIPS : 0;
710 }
711 
712 /**
713  * ubi_io_write_ec_hdr - write an erase counter header.
714  * @ubi: UBI device description object
715  * @pnum: physical eraseblock to write to
716  * @ec_hdr: the erase counter header to write
717  *
718  * This function writes erase counter header described by @ec_hdr to physical
719  * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
720  * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
721  * field.
722  *
723  * This function returns zero in case of success and a negative error code in
724  * case of failure. If %-EIO is returned, the physical eraseblock most probably
725  * went bad.
726  */
727 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
728 			struct ubi_ec_hdr *ec_hdr)
729 {
730 	int err;
731 	uint32_t crc;
732 
733 	dbg_io("write EC header to PEB %d", pnum);
734 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
735 
736 	ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
737 	ec_hdr->version = UBI_VERSION;
738 	ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
739 	ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
740 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
741 	ec_hdr->hdr_crc = cpu_to_be32(crc);
742 
743 	err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
744 	if (err)
745 		return -EINVAL;
746 
747 	err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
748 	return err;
749 }
750 
751 /**
752  * validate_vid_hdr - validate a volume identifier header.
753  * @ubi: UBI device description object
754  * @vid_hdr: the volume identifier header to check
755  *
756  * This function checks that data stored in the volume identifier header
757  * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
758  */
759 static int validate_vid_hdr(const struct ubi_device *ubi,
760 			    const struct ubi_vid_hdr *vid_hdr)
761 {
762 	int vol_type = vid_hdr->vol_type;
763 	int copy_flag = vid_hdr->copy_flag;
764 	int vol_id = be32_to_cpu(vid_hdr->vol_id);
765 	int lnum = be32_to_cpu(vid_hdr->lnum);
766 	int compat = vid_hdr->compat;
767 	int data_size = be32_to_cpu(vid_hdr->data_size);
768 	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
769 	int data_pad = be32_to_cpu(vid_hdr->data_pad);
770 	int data_crc = be32_to_cpu(vid_hdr->data_crc);
771 	int usable_leb_size = ubi->leb_size - data_pad;
772 
773 	if (copy_flag != 0 && copy_flag != 1) {
774 		dbg_err("bad copy_flag");
775 		goto bad;
776 	}
777 
778 	if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
779 	    data_pad < 0) {
780 		dbg_err("negative values");
781 		goto bad;
782 	}
783 
784 	if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
785 		dbg_err("bad vol_id");
786 		goto bad;
787 	}
788 
789 	if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
790 		dbg_err("bad compat");
791 		goto bad;
792 	}
793 
794 	if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
795 	    compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
796 	    compat != UBI_COMPAT_REJECT) {
797 		dbg_err("bad compat");
798 		goto bad;
799 	}
800 
801 	if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
802 		dbg_err("bad vol_type");
803 		goto bad;
804 	}
805 
806 	if (data_pad >= ubi->leb_size / 2) {
807 		dbg_err("bad data_pad");
808 		goto bad;
809 	}
810 
811 	if (vol_type == UBI_VID_STATIC) {
812 		/*
813 		 * Although from high-level point of view static volumes may
814 		 * contain zero bytes of data, but no VID headers can contain
815 		 * zero at these fields, because they empty volumes do not have
816 		 * mapped logical eraseblocks.
817 		 */
818 		if (used_ebs == 0) {
819 			dbg_err("zero used_ebs");
820 			goto bad;
821 		}
822 		if (data_size == 0) {
823 			dbg_err("zero data_size");
824 			goto bad;
825 		}
826 		if (lnum < used_ebs - 1) {
827 			if (data_size != usable_leb_size) {
828 				dbg_err("bad data_size");
829 				goto bad;
830 			}
831 		} else if (lnum == used_ebs - 1) {
832 			if (data_size == 0) {
833 				dbg_err("bad data_size at last LEB");
834 				goto bad;
835 			}
836 		} else {
837 			dbg_err("too high lnum");
838 			goto bad;
839 		}
840 	} else {
841 		if (copy_flag == 0) {
842 			if (data_crc != 0) {
843 				dbg_err("non-zero data CRC");
844 				goto bad;
845 			}
846 			if (data_size != 0) {
847 				dbg_err("non-zero data_size");
848 				goto bad;
849 			}
850 		} else {
851 			if (data_size == 0) {
852 				dbg_err("zero data_size of copy");
853 				goto bad;
854 			}
855 		}
856 		if (used_ebs != 0) {
857 			dbg_err("bad used_ebs");
858 			goto bad;
859 		}
860 	}
861 
862 	return 0;
863 
864 bad:
865 	ubi_err("bad VID header");
866 	ubi_dbg_dump_vid_hdr(vid_hdr);
867 	ubi_dbg_dump_stack();
868 	return 1;
869 }
870 
871 /**
872  * ubi_io_read_vid_hdr - read and check a volume identifier header.
873  * @ubi: UBI device description object
874  * @pnum: physical eraseblock number to read from
875  * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
876  * identifier header
877  * @verbose: be verbose if the header is corrupted or wasn't found
878  *
879  * This function reads the volume identifier header from physical eraseblock
880  * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
881  * volume identifier header. The following codes may be returned:
882  *
883  * o %0 if the CRC checksum is correct and the header was successfully read;
884  * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
885  *   and corrected by the flash driver; this is harmless but may indicate that
886  *   this eraseblock may become bad soon;
887  * o %UBI_IO_BAD_VID_HRD if the volume identifier header is corrupted (a CRC
888  *   error detected);
889  * o %UBI_IO_PEB_FREE if the physical eraseblock is free (i.e., there is no VID
890  *   header there);
891  * o a negative error code in case of failure.
892  */
893 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
894 			struct ubi_vid_hdr *vid_hdr, int verbose)
895 {
896 	int err, read_err = 0;
897 	uint32_t crc, magic, hdr_crc;
898 	void *p;
899 
900 	dbg_io("read VID header from PEB %d", pnum);
901 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
902 	if (UBI_IO_DEBUG)
903 		verbose = 1;
904 
905 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
906 	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
907 			  ubi->vid_hdr_alsize);
908 	if (err) {
909 		if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
910 			return err;
911 
912 		/*
913 		 * We read all the data, but either a correctable bit-flip
914 		 * occurred, or MTD reported about some data integrity error,
915 		 * like an ECC error in case of NAND. The former is harmless,
916 		 * the later may mean the read data is corrupted. But we have a
917 		 * CRC check-sum and we will identify this. If the VID header is
918 		 * still OK, we just report this as there was a bit-flip.
919 		 */
920 		read_err = err;
921 	}
922 
923 	magic = be32_to_cpu(vid_hdr->magic);
924 	if (magic != UBI_VID_HDR_MAGIC) {
925 		/*
926 		 * If we have read all 0xFF bytes, the VID header probably does
927 		 * not exist and the physical eraseblock is assumed to be free.
928 		 *
929 		 * But if there was a read error, we do not test the data for
930 		 * 0xFFs. Even if it does contain all 0xFFs, this error
931 		 * indicates that something is still wrong with this physical
932 		 * eraseblock and it cannot be regarded as free.
933 		 */
934 		if (read_err != -EBADMSG &&
935 		    check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
936 			/* The physical eraseblock is supposedly free */
937 
938 			/*
939 			 * The below is just a paranoid check, it has to be
940 			 * compiled out if paranoid checks are disabled.
941 			 */
942 			err = paranoid_check_all_ff(ubi, pnum, ubi->leb_start,
943 						    ubi->leb_size);
944 			if (err)
945 				return err > 0 ? UBI_IO_BAD_VID_HDR : err;
946 
947 			if (verbose)
948 				ubi_warn("no VID header found at PEB %d, "
949 					 "only 0xFF bytes", pnum);
950 			return UBI_IO_PEB_FREE;
951 		}
952 
953 		/*
954 		 * This is not a valid VID header, and these are not 0xFF
955 		 * bytes. Report that the header is corrupted.
956 		 */
957 		if (verbose) {
958 			ubi_warn("bad magic number at PEB %d: %08x instead of "
959 				 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
960 			ubi_dbg_dump_vid_hdr(vid_hdr);
961 		}
962 		return UBI_IO_BAD_VID_HDR;
963 	}
964 
965 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
966 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
967 
968 	if (hdr_crc != crc) {
969 		if (verbose) {
970 			ubi_warn("bad CRC at PEB %d, calculated %#08x, "
971 				 "read %#08x", pnum, crc, hdr_crc);
972 			ubi_dbg_dump_vid_hdr(vid_hdr);
973 		}
974 		return UBI_IO_BAD_VID_HDR;
975 	}
976 
977 	/* Validate the VID header that we have just read */
978 	err = validate_vid_hdr(ubi, vid_hdr);
979 	if (err) {
980 		ubi_err("validation failed for PEB %d", pnum);
981 		return -EINVAL;
982 	}
983 
984 	return read_err ? UBI_IO_BITFLIPS : 0;
985 }
986 
987 /**
988  * ubi_io_write_vid_hdr - write a volume identifier header.
989  * @ubi: UBI device description object
990  * @pnum: the physical eraseblock number to write to
991  * @vid_hdr: the volume identifier header to write
992  *
993  * This function writes the volume identifier header described by @vid_hdr to
994  * physical eraseblock @pnum. This function automatically fills the
995  * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
996  * header CRC checksum and stores it at vid_hdr->hdr_crc.
997  *
998  * This function returns zero in case of success and a negative error code in
999  * case of failure. If %-EIO is returned, the physical eraseblock probably went
1000  * bad.
1001  */
1002 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1003 			 struct ubi_vid_hdr *vid_hdr)
1004 {
1005 	int err;
1006 	uint32_t crc;
1007 	void *p;
1008 
1009 	dbg_io("write VID header to PEB %d", pnum);
1010 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1011 
1012 	err = paranoid_check_peb_ec_hdr(ubi, pnum);
1013 	if (err)
1014 		return err > 0 ? -EINVAL: err;
1015 
1016 	vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1017 	vid_hdr->version = UBI_VERSION;
1018 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1019 	vid_hdr->hdr_crc = cpu_to_be32(crc);
1020 
1021 	err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1022 	if (err)
1023 		return -EINVAL;
1024 
1025 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1026 	err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1027 			   ubi->vid_hdr_alsize);
1028 	return err;
1029 }
1030 
1031 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1032 
1033 /**
1034  * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
1035  * @ubi: UBI device description object
1036  * @pnum: physical eraseblock number to check
1037  *
1038  * This function returns zero if the physical eraseblock is good, a positive
1039  * number if it is bad and a negative error code if an error occurred.
1040  */
1041 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum)
1042 {
1043 	int err;
1044 
1045 	err = ubi_io_is_bad(ubi, pnum);
1046 	if (!err)
1047 		return err;
1048 
1049 	ubi_err("paranoid check failed for PEB %d", pnum);
1050 	ubi_dbg_dump_stack();
1051 	return err;
1052 }
1053 
1054 /**
1055  * paranoid_check_ec_hdr - check if an erase counter header is all right.
1056  * @ubi: UBI device description object
1057  * @pnum: physical eraseblock number the erase counter header belongs to
1058  * @ec_hdr: the erase counter header to check
1059  *
1060  * This function returns zero if the erase counter header contains valid
1061  * values, and %1 if not.
1062  */
1063 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1064 				 const struct ubi_ec_hdr *ec_hdr)
1065 {
1066 	int err;
1067 	uint32_t magic;
1068 
1069 	magic = be32_to_cpu(ec_hdr->magic);
1070 	if (magic != UBI_EC_HDR_MAGIC) {
1071 		ubi_err("bad magic %#08x, must be %#08x",
1072 			magic, UBI_EC_HDR_MAGIC);
1073 		goto fail;
1074 	}
1075 
1076 	err = validate_ec_hdr(ubi, ec_hdr);
1077 	if (err) {
1078 		ubi_err("paranoid check failed for PEB %d", pnum);
1079 		goto fail;
1080 	}
1081 
1082 	return 0;
1083 
1084 fail:
1085 	ubi_dbg_dump_ec_hdr(ec_hdr);
1086 	ubi_dbg_dump_stack();
1087 	return 1;
1088 }
1089 
1090 /**
1091  * paranoid_check_peb_ec_hdr - check that the erase counter header of a
1092  * physical eraseblock is in-place and is all right.
1093  * @ubi: UBI device description object
1094  * @pnum: the physical eraseblock number to check
1095  *
1096  * This function returns zero if the erase counter header is all right, %1 if
1097  * not, and a negative error code if an error occurred.
1098  */
1099 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1100 {
1101 	int err;
1102 	uint32_t crc, hdr_crc;
1103 	struct ubi_ec_hdr *ec_hdr;
1104 
1105 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1106 	if (!ec_hdr)
1107 		return -ENOMEM;
1108 
1109 	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1110 	if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1111 		goto exit;
1112 
1113 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1114 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1115 	if (hdr_crc != crc) {
1116 		ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
1117 		ubi_err("paranoid check failed for PEB %d", pnum);
1118 		ubi_dbg_dump_ec_hdr(ec_hdr);
1119 		ubi_dbg_dump_stack();
1120 		err = 1;
1121 		goto exit;
1122 	}
1123 
1124 	err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
1125 
1126 exit:
1127 	kfree(ec_hdr);
1128 	return err;
1129 }
1130 
1131 /**
1132  * paranoid_check_vid_hdr - check that a volume identifier header is all right.
1133  * @ubi: UBI device description object
1134  * @pnum: physical eraseblock number the volume identifier header belongs to
1135  * @vid_hdr: the volume identifier header to check
1136  *
1137  * This function returns zero if the volume identifier header is all right, and
1138  * %1 if not.
1139  */
1140 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1141 				  const struct ubi_vid_hdr *vid_hdr)
1142 {
1143 	int err;
1144 	uint32_t magic;
1145 
1146 	magic = be32_to_cpu(vid_hdr->magic);
1147 	if (magic != UBI_VID_HDR_MAGIC) {
1148 		ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1149 			magic, pnum, UBI_VID_HDR_MAGIC);
1150 		goto fail;
1151 	}
1152 
1153 	err = validate_vid_hdr(ubi, vid_hdr);
1154 	if (err) {
1155 		ubi_err("paranoid check failed for PEB %d", pnum);
1156 		goto fail;
1157 	}
1158 
1159 	return err;
1160 
1161 fail:
1162 	ubi_err("paranoid check failed for PEB %d", pnum);
1163 	ubi_dbg_dump_vid_hdr(vid_hdr);
1164 	ubi_dbg_dump_stack();
1165 	return 1;
1166 
1167 }
1168 
1169 /**
1170  * paranoid_check_peb_vid_hdr - check that the volume identifier header of a
1171  * physical eraseblock is in-place and is all right.
1172  * @ubi: UBI device description object
1173  * @pnum: the physical eraseblock number to check
1174  *
1175  * This function returns zero if the volume identifier header is all right,
1176  * %1 if not, and a negative error code if an error occurred.
1177  */
1178 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1179 {
1180 	int err;
1181 	uint32_t crc, hdr_crc;
1182 	struct ubi_vid_hdr *vid_hdr;
1183 	void *p;
1184 
1185 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1186 	if (!vid_hdr)
1187 		return -ENOMEM;
1188 
1189 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1190 	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1191 			  ubi->vid_hdr_alsize);
1192 	if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1193 		goto exit;
1194 
1195 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
1196 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1197 	if (hdr_crc != crc) {
1198 		ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
1199 			"read %#08x", pnum, crc, hdr_crc);
1200 		ubi_err("paranoid check failed for PEB %d", pnum);
1201 		ubi_dbg_dump_vid_hdr(vid_hdr);
1202 		ubi_dbg_dump_stack();
1203 		err = 1;
1204 		goto exit;
1205 	}
1206 
1207 	err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1208 
1209 exit:
1210 	ubi_free_vid_hdr(ubi, vid_hdr);
1211 	return err;
1212 }
1213 
1214 /**
1215  * paranoid_check_all_ff - check that a region of flash is empty.
1216  * @ubi: UBI device description object
1217  * @pnum: the physical eraseblock number to check
1218  * @offset: the starting offset within the physical eraseblock to check
1219  * @len: the length of the region to check
1220  *
1221  * This function returns zero if only 0xFF bytes are present at offset
1222  * @offset of the physical eraseblock @pnum, %1 if not, and a negative error
1223  * code if an error occurred.
1224  */
1225 static int paranoid_check_all_ff(struct ubi_device *ubi, int pnum, int offset,
1226 				 int len)
1227 {
1228 	size_t read;
1229 	int err;
1230 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1231 
1232 	mutex_lock(&ubi->dbg_buf_mutex);
1233 	err = mtd_read(ubi->mtd, addr, len, &read, ubi->dbg_peb_buf);
1234 	if (err && err != -EUCLEAN) {
1235 		ubi_err("error %d while reading %d bytes from PEB %d:%d, "
1236 			"read %zd bytes", err, len, pnum, offset, read);
1237 		goto error;
1238 	}
1239 
1240 	err = check_pattern(ubi->dbg_peb_buf, 0xFF, len);
1241 	if (err == 0) {
1242 		ubi_err("flash region at PEB %d:%d, length %d does not "
1243 			"contain all 0xFF bytes", pnum, offset, len);
1244 		goto fail;
1245 	}
1246 	mutex_unlock(&ubi->dbg_buf_mutex);
1247 
1248 	return 0;
1249 
1250 fail:
1251 	ubi_err("paranoid check failed for PEB %d", pnum);
1252 	dbg_msg("hex dump of the %d-%d region", offset, offset + len);
1253 	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1254 		       ubi->dbg_peb_buf, len, 1);
1255 	err = 1;
1256 error:
1257 	ubi_dbg_dump_stack();
1258 	mutex_unlock(&ubi->dbg_buf_mutex);
1259 	return err;
1260 }
1261 
1262 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */
1263