1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * Copyright (c) Nokia Corporation, 2006, 2007 4 * SPDX-License-Identifier: GPL-2.0+ 5 * 6 * Author: Artem Bityutskiy (Битюцкий Артём) 7 */ 8 9 /* 10 * UBI input/output sub-system. 11 * 12 * This sub-system provides a uniform way to work with all kinds of the 13 * underlying MTD devices. It also implements handy functions for reading and 14 * writing UBI headers. 15 * 16 * We are trying to have a paranoid mindset and not to trust to what we read 17 * from the flash media in order to be more secure and robust. So this 18 * sub-system validates every single header it reads from the flash media. 19 * 20 * Some words about how the eraseblock headers are stored. 21 * 22 * The erase counter header is always stored at offset zero. By default, the 23 * VID header is stored after the EC header at the closest aligned offset 24 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID 25 * header at the closest aligned offset. But this default layout may be 26 * changed. For example, for different reasons (e.g., optimization) UBI may be 27 * asked to put the VID header at further offset, and even at an unaligned 28 * offset. Of course, if the offset of the VID header is unaligned, UBI adds 29 * proper padding in front of it. Data offset may also be changed but it has to 30 * be aligned. 31 * 32 * About minimal I/O units. In general, UBI assumes flash device model where 33 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1, 34 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the 35 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another 36 * (smaller) minimal I/O unit size for EC and VID headers to make it possible 37 * to do different optimizations. 38 * 39 * This is extremely useful in case of NAND flashes which admit of several 40 * write operations to one NAND page. In this case UBI can fit EC and VID 41 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal 42 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still 43 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI 44 * users. 45 * 46 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so 47 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID 48 * headers. 49 * 50 * Q: why not just to treat sub-page as a minimal I/O unit of this flash 51 * device, e.g., make @ubi->min_io_size = 512 in the example above? 52 * 53 * A: because when writing a sub-page, MTD still writes a full 2K page but the 54 * bytes which are not relevant to the sub-page are 0xFF. So, basically, 55 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page. 56 * Thus, we prefer to use sub-pages only for EC and VID headers. 57 * 58 * As it was noted above, the VID header may start at a non-aligned offset. 59 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page, 60 * the VID header may reside at offset 1984 which is the last 64 bytes of the 61 * last sub-page (EC header is always at offset zero). This causes some 62 * difficulties when reading and writing VID headers. 63 * 64 * Suppose we have a 64-byte buffer and we read a VID header at it. We change 65 * the data and want to write this VID header out. As we can only write in 66 * 512-byte chunks, we have to allocate one more buffer and copy our VID header 67 * to offset 448 of this buffer. 68 * 69 * The I/O sub-system does the following trick in order to avoid this extra 70 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID 71 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer. 72 * When the VID header is being written out, it shifts the VID header pointer 73 * back and writes the whole sub-page. 74 */ 75 76 #ifndef __UBOOT__ 77 #include <linux/crc32.h> 78 #include <linux/err.h> 79 #include <linux/slab.h> 80 #else 81 #include <ubi_uboot.h> 82 #endif 83 84 #include "ubi.h" 85 86 static int self_check_not_bad(const struct ubi_device *ubi, int pnum); 87 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum); 88 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum, 89 const struct ubi_ec_hdr *ec_hdr); 90 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum); 91 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum, 92 const struct ubi_vid_hdr *vid_hdr); 93 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum, 94 int offset, int len); 95 96 /** 97 * ubi_io_read - read data from a physical eraseblock. 98 * @ubi: UBI device description object 99 * @buf: buffer where to store the read data 100 * @pnum: physical eraseblock number to read from 101 * @offset: offset within the physical eraseblock from where to read 102 * @len: how many bytes to read 103 * 104 * This function reads data from offset @offset of physical eraseblock @pnum 105 * and stores the read data in the @buf buffer. The following return codes are 106 * possible: 107 * 108 * o %0 if all the requested data were successfully read; 109 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but 110 * correctable bit-flips were detected; this is harmless but may indicate 111 * that this eraseblock may become bad soon (but do not have to); 112 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for 113 * example it can be an ECC error in case of NAND; this most probably means 114 * that the data is corrupted; 115 * o %-EIO if some I/O error occurred; 116 * o other negative error codes in case of other errors. 117 */ 118 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset, 119 int len) 120 { 121 int err, retries = 0; 122 size_t read; 123 loff_t addr; 124 125 dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset); 126 127 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 128 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); 129 ubi_assert(len > 0); 130 131 err = self_check_not_bad(ubi, pnum); 132 if (err) 133 return err; 134 135 /* 136 * Deliberately corrupt the buffer to improve robustness. Indeed, if we 137 * do not do this, the following may happen: 138 * 1. The buffer contains data from previous operation, e.g., read from 139 * another PEB previously. The data looks like expected, e.g., if we 140 * just do not read anything and return - the caller would not 141 * notice this. E.g., if we are reading a VID header, the buffer may 142 * contain a valid VID header from another PEB. 143 * 2. The driver is buggy and returns us success or -EBADMSG or 144 * -EUCLEAN, but it does not actually put any data to the buffer. 145 * 146 * This may confuse UBI or upper layers - they may think the buffer 147 * contains valid data while in fact it is just old data. This is 148 * especially possible because UBI (and UBIFS) relies on CRC, and 149 * treats data as correct even in case of ECC errors if the CRC is 150 * correct. 151 * 152 * Try to prevent this situation by changing the first byte of the 153 * buffer. 154 */ 155 *((uint8_t *)buf) ^= 0xFF; 156 157 addr = (loff_t)pnum * ubi->peb_size + offset; 158 retry: 159 err = mtd_read(ubi->mtd, addr, len, &read, buf); 160 if (err) { 161 const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : ""; 162 163 if (mtd_is_bitflip(err)) { 164 /* 165 * -EUCLEAN is reported if there was a bit-flip which 166 * was corrected, so this is harmless. 167 * 168 * We do not report about it here unless debugging is 169 * enabled. A corresponding message will be printed 170 * later, when it is has been scrubbed. 171 */ 172 ubi_msg("fixable bit-flip detected at PEB %d", pnum); 173 ubi_assert(len == read); 174 return UBI_IO_BITFLIPS; 175 } 176 177 if (retries++ < UBI_IO_RETRIES) { 178 ubi_warn("error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry", 179 err, errstr, len, pnum, offset, read); 180 yield(); 181 goto retry; 182 } 183 184 ubi_err("error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes", 185 err, errstr, len, pnum, offset, read); 186 dump_stack(); 187 188 /* 189 * The driver should never return -EBADMSG if it failed to read 190 * all the requested data. But some buggy drivers might do 191 * this, so we change it to -EIO. 192 */ 193 if (read != len && mtd_is_eccerr(err)) { 194 ubi_assert(0); 195 err = -EIO; 196 } 197 } else { 198 ubi_assert(len == read); 199 200 if (ubi_dbg_is_bitflip(ubi)) { 201 dbg_gen("bit-flip (emulated)"); 202 err = UBI_IO_BITFLIPS; 203 } 204 } 205 206 return err; 207 } 208 209 /** 210 * ubi_io_write - write data to a physical eraseblock. 211 * @ubi: UBI device description object 212 * @buf: buffer with the data to write 213 * @pnum: physical eraseblock number to write to 214 * @offset: offset within the physical eraseblock where to write 215 * @len: how many bytes to write 216 * 217 * This function writes @len bytes of data from buffer @buf to offset @offset 218 * of physical eraseblock @pnum. If all the data were successfully written, 219 * zero is returned. If an error occurred, this function returns a negative 220 * error code. If %-EIO is returned, the physical eraseblock most probably went 221 * bad. 222 * 223 * Note, in case of an error, it is possible that something was still written 224 * to the flash media, but may be some garbage. 225 */ 226 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset, 227 int len) 228 { 229 int err; 230 size_t written; 231 loff_t addr; 232 233 dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset); 234 235 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 236 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); 237 ubi_assert(offset % ubi->hdrs_min_io_size == 0); 238 ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0); 239 240 if (ubi->ro_mode) { 241 ubi_err("read-only mode"); 242 return -EROFS; 243 } 244 245 err = self_check_not_bad(ubi, pnum); 246 if (err) 247 return err; 248 249 /* The area we are writing to has to contain all 0xFF bytes */ 250 err = ubi_self_check_all_ff(ubi, pnum, offset, len); 251 if (err) 252 return err; 253 254 if (offset >= ubi->leb_start) { 255 /* 256 * We write to the data area of the physical eraseblock. Make 257 * sure it has valid EC and VID headers. 258 */ 259 err = self_check_peb_ec_hdr(ubi, pnum); 260 if (err) 261 return err; 262 err = self_check_peb_vid_hdr(ubi, pnum); 263 if (err) 264 return err; 265 } 266 267 if (ubi_dbg_is_write_failure(ubi)) { 268 ubi_err("cannot write %d bytes to PEB %d:%d (emulated)", 269 len, pnum, offset); 270 dump_stack(); 271 return -EIO; 272 } 273 274 addr = (loff_t)pnum * ubi->peb_size + offset; 275 err = mtd_write(ubi->mtd, addr, len, &written, buf); 276 if (err) { 277 ubi_err("error %d while writing %d bytes to PEB %d:%d, written %zd bytes", 278 err, len, pnum, offset, written); 279 dump_stack(); 280 ubi_dump_flash(ubi, pnum, offset, len); 281 } else 282 ubi_assert(written == len); 283 284 if (!err) { 285 err = self_check_write(ubi, buf, pnum, offset, len); 286 if (err) 287 return err; 288 289 /* 290 * Since we always write sequentially, the rest of the PEB has 291 * to contain only 0xFF bytes. 292 */ 293 offset += len; 294 len = ubi->peb_size - offset; 295 if (len) 296 err = ubi_self_check_all_ff(ubi, pnum, offset, len); 297 } 298 299 return err; 300 } 301 302 /** 303 * erase_callback - MTD erasure call-back. 304 * @ei: MTD erase information object. 305 * 306 * Note, even though MTD erase interface is asynchronous, all the current 307 * implementations are synchronous anyway. 308 */ 309 static void erase_callback(struct erase_info *ei) 310 { 311 wake_up_interruptible((wait_queue_head_t *)ei->priv); 312 } 313 314 /** 315 * do_sync_erase - synchronously erase a physical eraseblock. 316 * @ubi: UBI device description object 317 * @pnum: the physical eraseblock number to erase 318 * 319 * This function synchronously erases physical eraseblock @pnum and returns 320 * zero in case of success and a negative error code in case of failure. If 321 * %-EIO is returned, the physical eraseblock most probably went bad. 322 */ 323 static int do_sync_erase(struct ubi_device *ubi, int pnum) 324 { 325 int err, retries = 0; 326 struct erase_info ei; 327 wait_queue_head_t wq; 328 329 dbg_io("erase PEB %d", pnum); 330 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 331 332 if (ubi->ro_mode) { 333 ubi_err("read-only mode"); 334 return -EROFS; 335 } 336 337 retry: 338 init_waitqueue_head(&wq); 339 memset(&ei, 0, sizeof(struct erase_info)); 340 341 ei.mtd = ubi->mtd; 342 ei.addr = (loff_t)pnum * ubi->peb_size; 343 ei.len = ubi->peb_size; 344 ei.callback = erase_callback; 345 ei.priv = (unsigned long)&wq; 346 347 err = mtd_erase(ubi->mtd, &ei); 348 if (err) { 349 if (retries++ < UBI_IO_RETRIES) { 350 ubi_warn("error %d while erasing PEB %d, retry", 351 err, pnum); 352 yield(); 353 goto retry; 354 } 355 ubi_err("cannot erase PEB %d, error %d", pnum, err); 356 dump_stack(); 357 return err; 358 } 359 360 err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE || 361 ei.state == MTD_ERASE_FAILED); 362 if (err) { 363 ubi_err("interrupted PEB %d erasure", pnum); 364 return -EINTR; 365 } 366 367 if (ei.state == MTD_ERASE_FAILED) { 368 if (retries++ < UBI_IO_RETRIES) { 369 ubi_warn("error while erasing PEB %d, retry", pnum); 370 yield(); 371 goto retry; 372 } 373 ubi_err("cannot erase PEB %d", pnum); 374 dump_stack(); 375 return -EIO; 376 } 377 378 err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size); 379 if (err) 380 return err; 381 382 if (ubi_dbg_is_erase_failure(ubi)) { 383 ubi_err("cannot erase PEB %d (emulated)", pnum); 384 return -EIO; 385 } 386 387 return 0; 388 } 389 390 /* Patterns to write to a physical eraseblock when torturing it */ 391 static uint8_t patterns[] = {0xa5, 0x5a, 0x0}; 392 393 /** 394 * torture_peb - test a supposedly bad physical eraseblock. 395 * @ubi: UBI device description object 396 * @pnum: the physical eraseblock number to test 397 * 398 * This function returns %-EIO if the physical eraseblock did not pass the 399 * test, a positive number of erase operations done if the test was 400 * successfully passed, and other negative error codes in case of other errors. 401 */ 402 static int torture_peb(struct ubi_device *ubi, int pnum) 403 { 404 int err, i, patt_count; 405 406 ubi_msg("run torture test for PEB %d", pnum); 407 patt_count = ARRAY_SIZE(patterns); 408 ubi_assert(patt_count > 0); 409 410 mutex_lock(&ubi->buf_mutex); 411 for (i = 0; i < patt_count; i++) { 412 err = do_sync_erase(ubi, pnum); 413 if (err) 414 goto out; 415 416 /* Make sure the PEB contains only 0xFF bytes */ 417 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 418 if (err) 419 goto out; 420 421 err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size); 422 if (err == 0) { 423 ubi_err("erased PEB %d, but a non-0xFF byte found", 424 pnum); 425 err = -EIO; 426 goto out; 427 } 428 429 /* Write a pattern and check it */ 430 memset(ubi->peb_buf, patterns[i], ubi->peb_size); 431 err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 432 if (err) 433 goto out; 434 435 memset(ubi->peb_buf, ~patterns[i], ubi->peb_size); 436 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 437 if (err) 438 goto out; 439 440 err = ubi_check_pattern(ubi->peb_buf, patterns[i], 441 ubi->peb_size); 442 if (err == 0) { 443 ubi_err("pattern %x checking failed for PEB %d", 444 patterns[i], pnum); 445 err = -EIO; 446 goto out; 447 } 448 } 449 450 err = patt_count; 451 ubi_msg("PEB %d passed torture test, do not mark it as bad", pnum); 452 453 out: 454 mutex_unlock(&ubi->buf_mutex); 455 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) { 456 /* 457 * If a bit-flip or data integrity error was detected, the test 458 * has not passed because it happened on a freshly erased 459 * physical eraseblock which means something is wrong with it. 460 */ 461 ubi_err("read problems on freshly erased PEB %d, must be bad", 462 pnum); 463 err = -EIO; 464 } 465 return err; 466 } 467 468 /** 469 * nor_erase_prepare - prepare a NOR flash PEB for erasure. 470 * @ubi: UBI device description object 471 * @pnum: physical eraseblock number to prepare 472 * 473 * NOR flash, or at least some of them, have peculiar embedded PEB erasure 474 * algorithm: the PEB is first filled with zeroes, then it is erased. And 475 * filling with zeroes starts from the end of the PEB. This was observed with 476 * Spansion S29GL512N NOR flash. 477 * 478 * This means that in case of a power cut we may end up with intact data at the 479 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the 480 * EC and VID headers are OK, but a large chunk of data at the end of PEB is 481 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it 482 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails). 483 * 484 * This function is called before erasing NOR PEBs and it zeroes out EC and VID 485 * magic numbers in order to invalidate them and prevent the failures. Returns 486 * zero in case of success and a negative error code in case of failure. 487 */ 488 static int nor_erase_prepare(struct ubi_device *ubi, int pnum) 489 { 490 int err; 491 size_t written; 492 loff_t addr; 493 uint32_t data = 0; 494 struct ubi_ec_hdr ec_hdr; 495 496 /* 497 * Note, we cannot generally define VID header buffers on stack, 498 * because of the way we deal with these buffers (see the header 499 * comment in this file). But we know this is a NOR-specific piece of 500 * code, so we can do this. But yes, this is error-prone and we should 501 * (pre-)allocate VID header buffer instead. 502 */ 503 struct ubi_vid_hdr vid_hdr; 504 505 /* 506 * If VID or EC is valid, we have to corrupt them before erasing. 507 * It is important to first invalidate the EC header, and then the VID 508 * header. Otherwise a power cut may lead to valid EC header and 509 * invalid VID header, in which case UBI will treat this PEB as 510 * corrupted and will try to preserve it, and print scary warnings. 511 */ 512 addr = (loff_t)pnum * ubi->peb_size; 513 err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0); 514 if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR && 515 err != UBI_IO_FF){ 516 err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data); 517 if(err) 518 goto error; 519 } 520 521 err = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0); 522 if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR && 523 err != UBI_IO_FF){ 524 addr += ubi->vid_hdr_aloffset; 525 err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data); 526 if (err) 527 goto error; 528 } 529 return 0; 530 531 error: 532 /* 533 * The PEB contains a valid VID or EC header, but we cannot invalidate 534 * it. Supposedly the flash media or the driver is screwed up, so 535 * return an error. 536 */ 537 ubi_err("cannot invalidate PEB %d, write returned %d", pnum, err); 538 ubi_dump_flash(ubi, pnum, 0, ubi->peb_size); 539 return -EIO; 540 } 541 542 /** 543 * ubi_io_sync_erase - synchronously erase a physical eraseblock. 544 * @ubi: UBI device description object 545 * @pnum: physical eraseblock number to erase 546 * @torture: if this physical eraseblock has to be tortured 547 * 548 * This function synchronously erases physical eraseblock @pnum. If @torture 549 * flag is not zero, the physical eraseblock is checked by means of writing 550 * different patterns to it and reading them back. If the torturing is enabled, 551 * the physical eraseblock is erased more than once. 552 * 553 * This function returns the number of erasures made in case of success, %-EIO 554 * if the erasure failed or the torturing test failed, and other negative error 555 * codes in case of other errors. Note, %-EIO means that the physical 556 * eraseblock is bad. 557 */ 558 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture) 559 { 560 int err, ret = 0; 561 562 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 563 564 err = self_check_not_bad(ubi, pnum); 565 if (err != 0) 566 return err; 567 568 if (ubi->ro_mode) { 569 ubi_err("read-only mode"); 570 return -EROFS; 571 } 572 573 if (ubi->nor_flash) { 574 err = nor_erase_prepare(ubi, pnum); 575 if (err) 576 return err; 577 } 578 579 if (torture) { 580 ret = torture_peb(ubi, pnum); 581 if (ret < 0) 582 return ret; 583 } 584 585 err = do_sync_erase(ubi, pnum); 586 if (err) 587 return err; 588 589 return ret + 1; 590 } 591 592 /** 593 * ubi_io_is_bad - check if a physical eraseblock is bad. 594 * @ubi: UBI device description object 595 * @pnum: the physical eraseblock number to check 596 * 597 * This function returns a positive number if the physical eraseblock is bad, 598 * zero if not, and a negative error code if an error occurred. 599 */ 600 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum) 601 { 602 struct mtd_info *mtd = ubi->mtd; 603 604 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 605 606 if (ubi->bad_allowed) { 607 int ret; 608 609 ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size); 610 if (ret < 0) 611 ubi_err("error %d while checking if PEB %d is bad", 612 ret, pnum); 613 else if (ret) 614 dbg_io("PEB %d is bad", pnum); 615 return ret; 616 } 617 618 return 0; 619 } 620 621 /** 622 * ubi_io_mark_bad - mark a physical eraseblock as bad. 623 * @ubi: UBI device description object 624 * @pnum: the physical eraseblock number to mark 625 * 626 * This function returns zero in case of success and a negative error code in 627 * case of failure. 628 */ 629 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum) 630 { 631 int err; 632 struct mtd_info *mtd = ubi->mtd; 633 634 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 635 636 if (ubi->ro_mode) { 637 ubi_err("read-only mode"); 638 return -EROFS; 639 } 640 641 if (!ubi->bad_allowed) 642 return 0; 643 644 err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size); 645 if (err) 646 ubi_err("cannot mark PEB %d bad, error %d", pnum, err); 647 return err; 648 } 649 650 /** 651 * validate_ec_hdr - validate an erase counter header. 652 * @ubi: UBI device description object 653 * @ec_hdr: the erase counter header to check 654 * 655 * This function returns zero if the erase counter header is OK, and %1 if 656 * not. 657 */ 658 static int validate_ec_hdr(const struct ubi_device *ubi, 659 const struct ubi_ec_hdr *ec_hdr) 660 { 661 long long ec; 662 int vid_hdr_offset, leb_start; 663 664 ec = be64_to_cpu(ec_hdr->ec); 665 vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset); 666 leb_start = be32_to_cpu(ec_hdr->data_offset); 667 668 if (ec_hdr->version != UBI_VERSION) { 669 ubi_err("node with incompatible UBI version found: this UBI version is %d, image version is %d", 670 UBI_VERSION, (int)ec_hdr->version); 671 goto bad; 672 } 673 674 if (vid_hdr_offset != ubi->vid_hdr_offset) { 675 ubi_err("bad VID header offset %d, expected %d", 676 vid_hdr_offset, ubi->vid_hdr_offset); 677 goto bad; 678 } 679 680 if (leb_start != ubi->leb_start) { 681 ubi_err("bad data offset %d, expected %d", 682 leb_start, ubi->leb_start); 683 goto bad; 684 } 685 686 if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) { 687 ubi_err("bad erase counter %lld", ec); 688 goto bad; 689 } 690 691 return 0; 692 693 bad: 694 ubi_err("bad EC header"); 695 ubi_dump_ec_hdr(ec_hdr); 696 dump_stack(); 697 return 1; 698 } 699 700 /** 701 * ubi_io_read_ec_hdr - read and check an erase counter header. 702 * @ubi: UBI device description object 703 * @pnum: physical eraseblock to read from 704 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter 705 * header 706 * @verbose: be verbose if the header is corrupted or was not found 707 * 708 * This function reads erase counter header from physical eraseblock @pnum and 709 * stores it in @ec_hdr. This function also checks CRC checksum of the read 710 * erase counter header. The following codes may be returned: 711 * 712 * o %0 if the CRC checksum is correct and the header was successfully read; 713 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected 714 * and corrected by the flash driver; this is harmless but may indicate that 715 * this eraseblock may become bad soon (but may be not); 716 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error); 717 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was 718 * a data integrity error (uncorrectable ECC error in case of NAND); 719 * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty) 720 * o a negative error code in case of failure. 721 */ 722 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum, 723 struct ubi_ec_hdr *ec_hdr, int verbose) 724 { 725 int err, read_err; 726 uint32_t crc, magic, hdr_crc; 727 728 dbg_io("read EC header from PEB %d", pnum); 729 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 730 731 read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); 732 if (read_err) { 733 if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err)) 734 return read_err; 735 736 /* 737 * We read all the data, but either a correctable bit-flip 738 * occurred, or MTD reported a data integrity error 739 * (uncorrectable ECC error in case of NAND). The former is 740 * harmless, the later may mean that the read data is 741 * corrupted. But we have a CRC check-sum and we will detect 742 * this. If the EC header is still OK, we just report this as 743 * there was a bit-flip, to force scrubbing. 744 */ 745 } 746 747 magic = be32_to_cpu(ec_hdr->magic); 748 if (magic != UBI_EC_HDR_MAGIC) { 749 if (mtd_is_eccerr(read_err)) 750 return UBI_IO_BAD_HDR_EBADMSG; 751 752 /* 753 * The magic field is wrong. Let's check if we have read all 754 * 0xFF. If yes, this physical eraseblock is assumed to be 755 * empty. 756 */ 757 if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) { 758 /* The physical eraseblock is supposedly empty */ 759 if (verbose) 760 ubi_warn("no EC header found at PEB %d, only 0xFF bytes", 761 pnum); 762 dbg_bld("no EC header found at PEB %d, only 0xFF bytes", 763 pnum); 764 if (!read_err) 765 return UBI_IO_FF; 766 else 767 return UBI_IO_FF_BITFLIPS; 768 } 769 770 /* 771 * This is not a valid erase counter header, and these are not 772 * 0xFF bytes. Report that the header is corrupted. 773 */ 774 if (verbose) { 775 ubi_warn("bad magic number at PEB %d: %08x instead of %08x", 776 pnum, magic, UBI_EC_HDR_MAGIC); 777 ubi_dump_ec_hdr(ec_hdr); 778 } 779 dbg_bld("bad magic number at PEB %d: %08x instead of %08x", 780 pnum, magic, UBI_EC_HDR_MAGIC); 781 return UBI_IO_BAD_HDR; 782 } 783 784 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 785 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); 786 787 if (hdr_crc != crc) { 788 if (verbose) { 789 ubi_warn("bad EC header CRC at PEB %d, calculated %#08x, read %#08x", 790 pnum, crc, hdr_crc); 791 ubi_dump_ec_hdr(ec_hdr); 792 } 793 dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x", 794 pnum, crc, hdr_crc); 795 796 if (!read_err) 797 return UBI_IO_BAD_HDR; 798 else 799 return UBI_IO_BAD_HDR_EBADMSG; 800 } 801 802 /* And of course validate what has just been read from the media */ 803 err = validate_ec_hdr(ubi, ec_hdr); 804 if (err) { 805 ubi_err("validation failed for PEB %d", pnum); 806 return -EINVAL; 807 } 808 809 /* 810 * If there was %-EBADMSG, but the header CRC is still OK, report about 811 * a bit-flip to force scrubbing on this PEB. 812 */ 813 return read_err ? UBI_IO_BITFLIPS : 0; 814 } 815 816 /** 817 * ubi_io_write_ec_hdr - write an erase counter header. 818 * @ubi: UBI device description object 819 * @pnum: physical eraseblock to write to 820 * @ec_hdr: the erase counter header to write 821 * 822 * This function writes erase counter header described by @ec_hdr to physical 823 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so 824 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec 825 * field. 826 * 827 * This function returns zero in case of success and a negative error code in 828 * case of failure. If %-EIO is returned, the physical eraseblock most probably 829 * went bad. 830 */ 831 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum, 832 struct ubi_ec_hdr *ec_hdr) 833 { 834 int err; 835 uint32_t crc; 836 837 dbg_io("write EC header to PEB %d", pnum); 838 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 839 840 ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC); 841 ec_hdr->version = UBI_VERSION; 842 ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset); 843 ec_hdr->data_offset = cpu_to_be32(ubi->leb_start); 844 ec_hdr->image_seq = cpu_to_be32(ubi->image_seq); 845 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 846 ec_hdr->hdr_crc = cpu_to_be32(crc); 847 848 err = self_check_ec_hdr(ubi, pnum, ec_hdr); 849 if (err) 850 return err; 851 852 err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize); 853 return err; 854 } 855 856 /** 857 * validate_vid_hdr - validate a volume identifier header. 858 * @ubi: UBI device description object 859 * @vid_hdr: the volume identifier header to check 860 * 861 * This function checks that data stored in the volume identifier header 862 * @vid_hdr. Returns zero if the VID header is OK and %1 if not. 863 */ 864 static int validate_vid_hdr(const struct ubi_device *ubi, 865 const struct ubi_vid_hdr *vid_hdr) 866 { 867 int vol_type = vid_hdr->vol_type; 868 int copy_flag = vid_hdr->copy_flag; 869 int vol_id = be32_to_cpu(vid_hdr->vol_id); 870 int lnum = be32_to_cpu(vid_hdr->lnum); 871 int compat = vid_hdr->compat; 872 int data_size = be32_to_cpu(vid_hdr->data_size); 873 int used_ebs = be32_to_cpu(vid_hdr->used_ebs); 874 int data_pad = be32_to_cpu(vid_hdr->data_pad); 875 int data_crc = be32_to_cpu(vid_hdr->data_crc); 876 int usable_leb_size = ubi->leb_size - data_pad; 877 878 if (copy_flag != 0 && copy_flag != 1) { 879 ubi_err("bad copy_flag"); 880 goto bad; 881 } 882 883 if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 || 884 data_pad < 0) { 885 ubi_err("negative values"); 886 goto bad; 887 } 888 889 if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) { 890 ubi_err("bad vol_id"); 891 goto bad; 892 } 893 894 if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) { 895 ubi_err("bad compat"); 896 goto bad; 897 } 898 899 if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE && 900 compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE && 901 compat != UBI_COMPAT_REJECT) { 902 ubi_err("bad compat"); 903 goto bad; 904 } 905 906 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) { 907 ubi_err("bad vol_type"); 908 goto bad; 909 } 910 911 if (data_pad >= ubi->leb_size / 2) { 912 ubi_err("bad data_pad"); 913 goto bad; 914 } 915 916 if (vol_type == UBI_VID_STATIC) { 917 /* 918 * Although from high-level point of view static volumes may 919 * contain zero bytes of data, but no VID headers can contain 920 * zero at these fields, because they empty volumes do not have 921 * mapped logical eraseblocks. 922 */ 923 if (used_ebs == 0) { 924 ubi_err("zero used_ebs"); 925 goto bad; 926 } 927 if (data_size == 0) { 928 ubi_err("zero data_size"); 929 goto bad; 930 } 931 if (lnum < used_ebs - 1) { 932 if (data_size != usable_leb_size) { 933 ubi_err("bad data_size"); 934 goto bad; 935 } 936 } else if (lnum == used_ebs - 1) { 937 if (data_size == 0) { 938 ubi_err("bad data_size at last LEB"); 939 goto bad; 940 } 941 } else { 942 ubi_err("too high lnum"); 943 goto bad; 944 } 945 } else { 946 if (copy_flag == 0) { 947 if (data_crc != 0) { 948 ubi_err("non-zero data CRC"); 949 goto bad; 950 } 951 if (data_size != 0) { 952 ubi_err("non-zero data_size"); 953 goto bad; 954 } 955 } else { 956 if (data_size == 0) { 957 ubi_err("zero data_size of copy"); 958 goto bad; 959 } 960 } 961 if (used_ebs != 0) { 962 ubi_err("bad used_ebs"); 963 goto bad; 964 } 965 } 966 967 return 0; 968 969 bad: 970 ubi_err("bad VID header"); 971 ubi_dump_vid_hdr(vid_hdr); 972 dump_stack(); 973 return 1; 974 } 975 976 /** 977 * ubi_io_read_vid_hdr - read and check a volume identifier header. 978 * @ubi: UBI device description object 979 * @pnum: physical eraseblock number to read from 980 * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume 981 * identifier header 982 * @verbose: be verbose if the header is corrupted or wasn't found 983 * 984 * This function reads the volume identifier header from physical eraseblock 985 * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read 986 * volume identifier header. The error codes are the same as in 987 * 'ubi_io_read_ec_hdr()'. 988 * 989 * Note, the implementation of this function is also very similar to 990 * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'. 991 */ 992 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum, 993 struct ubi_vid_hdr *vid_hdr, int verbose) 994 { 995 int err, read_err; 996 uint32_t crc, magic, hdr_crc; 997 void *p; 998 999 dbg_io("read VID header from PEB %d", pnum); 1000 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 1001 1002 p = (char *)vid_hdr - ubi->vid_hdr_shift; 1003 read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, 1004 ubi->vid_hdr_alsize); 1005 if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err)) 1006 return read_err; 1007 1008 magic = be32_to_cpu(vid_hdr->magic); 1009 if (magic != UBI_VID_HDR_MAGIC) { 1010 if (mtd_is_eccerr(read_err)) 1011 return UBI_IO_BAD_HDR_EBADMSG; 1012 1013 if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) { 1014 if (verbose) 1015 ubi_warn("no VID header found at PEB %d, only 0xFF bytes", 1016 pnum); 1017 dbg_bld("no VID header found at PEB %d, only 0xFF bytes", 1018 pnum); 1019 if (!read_err) 1020 return UBI_IO_FF; 1021 else 1022 return UBI_IO_FF_BITFLIPS; 1023 } 1024 1025 if (verbose) { 1026 ubi_warn("bad magic number at PEB %d: %08x instead of %08x", 1027 pnum, magic, UBI_VID_HDR_MAGIC); 1028 ubi_dump_vid_hdr(vid_hdr); 1029 } 1030 dbg_bld("bad magic number at PEB %d: %08x instead of %08x", 1031 pnum, magic, UBI_VID_HDR_MAGIC); 1032 return UBI_IO_BAD_HDR; 1033 } 1034 1035 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); 1036 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); 1037 1038 if (hdr_crc != crc) { 1039 if (verbose) { 1040 ubi_warn("bad CRC at PEB %d, calculated %#08x, read %#08x", 1041 pnum, crc, hdr_crc); 1042 ubi_dump_vid_hdr(vid_hdr); 1043 } 1044 dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x", 1045 pnum, crc, hdr_crc); 1046 if (!read_err) 1047 return UBI_IO_BAD_HDR; 1048 else 1049 return UBI_IO_BAD_HDR_EBADMSG; 1050 } 1051 1052 err = validate_vid_hdr(ubi, vid_hdr); 1053 if (err) { 1054 ubi_err("validation failed for PEB %d", pnum); 1055 return -EINVAL; 1056 } 1057 1058 return read_err ? UBI_IO_BITFLIPS : 0; 1059 } 1060 1061 /** 1062 * ubi_io_write_vid_hdr - write a volume identifier header. 1063 * @ubi: UBI device description object 1064 * @pnum: the physical eraseblock number to write to 1065 * @vid_hdr: the volume identifier header to write 1066 * 1067 * This function writes the volume identifier header described by @vid_hdr to 1068 * physical eraseblock @pnum. This function automatically fills the 1069 * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates 1070 * header CRC checksum and stores it at vid_hdr->hdr_crc. 1071 * 1072 * This function returns zero in case of success and a negative error code in 1073 * case of failure. If %-EIO is returned, the physical eraseblock probably went 1074 * bad. 1075 */ 1076 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum, 1077 struct ubi_vid_hdr *vid_hdr) 1078 { 1079 int err; 1080 uint32_t crc; 1081 void *p; 1082 1083 dbg_io("write VID header to PEB %d", pnum); 1084 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 1085 1086 err = self_check_peb_ec_hdr(ubi, pnum); 1087 if (err) 1088 return err; 1089 1090 vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC); 1091 vid_hdr->version = UBI_VERSION; 1092 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); 1093 vid_hdr->hdr_crc = cpu_to_be32(crc); 1094 1095 err = self_check_vid_hdr(ubi, pnum, vid_hdr); 1096 if (err) 1097 return err; 1098 1099 p = (char *)vid_hdr - ubi->vid_hdr_shift; 1100 err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset, 1101 ubi->vid_hdr_alsize); 1102 return err; 1103 } 1104 1105 /** 1106 * self_check_not_bad - ensure that a physical eraseblock is not bad. 1107 * @ubi: UBI device description object 1108 * @pnum: physical eraseblock number to check 1109 * 1110 * This function returns zero if the physical eraseblock is good, %-EINVAL if 1111 * it is bad and a negative error code if an error occurred. 1112 */ 1113 static int self_check_not_bad(const struct ubi_device *ubi, int pnum) 1114 { 1115 int err; 1116 1117 if (!ubi_dbg_chk_io(ubi)) 1118 return 0; 1119 1120 err = ubi_io_is_bad(ubi, pnum); 1121 if (!err) 1122 return err; 1123 1124 ubi_err("self-check failed for PEB %d", pnum); 1125 dump_stack(); 1126 return err > 0 ? -EINVAL : err; 1127 } 1128 1129 /** 1130 * self_check_ec_hdr - check if an erase counter header is all right. 1131 * @ubi: UBI device description object 1132 * @pnum: physical eraseblock number the erase counter header belongs to 1133 * @ec_hdr: the erase counter header to check 1134 * 1135 * This function returns zero if the erase counter header contains valid 1136 * values, and %-EINVAL if not. 1137 */ 1138 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum, 1139 const struct ubi_ec_hdr *ec_hdr) 1140 { 1141 int err; 1142 uint32_t magic; 1143 1144 if (!ubi_dbg_chk_io(ubi)) 1145 return 0; 1146 1147 magic = be32_to_cpu(ec_hdr->magic); 1148 if (magic != UBI_EC_HDR_MAGIC) { 1149 ubi_err("bad magic %#08x, must be %#08x", 1150 magic, UBI_EC_HDR_MAGIC); 1151 goto fail; 1152 } 1153 1154 err = validate_ec_hdr(ubi, ec_hdr); 1155 if (err) { 1156 ubi_err("self-check failed for PEB %d", pnum); 1157 goto fail; 1158 } 1159 1160 return 0; 1161 1162 fail: 1163 ubi_dump_ec_hdr(ec_hdr); 1164 dump_stack(); 1165 return -EINVAL; 1166 } 1167 1168 /** 1169 * self_check_peb_ec_hdr - check erase counter header. 1170 * @ubi: UBI device description object 1171 * @pnum: the physical eraseblock number to check 1172 * 1173 * This function returns zero if the erase counter header is all right and and 1174 * a negative error code if not or if an error occurred. 1175 */ 1176 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum) 1177 { 1178 int err; 1179 uint32_t crc, hdr_crc; 1180 struct ubi_ec_hdr *ec_hdr; 1181 1182 if (!ubi_dbg_chk_io(ubi)) 1183 return 0; 1184 1185 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 1186 if (!ec_hdr) 1187 return -ENOMEM; 1188 1189 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); 1190 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) 1191 goto exit; 1192 1193 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 1194 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); 1195 if (hdr_crc != crc) { 1196 ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc); 1197 ubi_err("self-check failed for PEB %d", pnum); 1198 ubi_dump_ec_hdr(ec_hdr); 1199 dump_stack(); 1200 err = -EINVAL; 1201 goto exit; 1202 } 1203 1204 err = self_check_ec_hdr(ubi, pnum, ec_hdr); 1205 1206 exit: 1207 kfree(ec_hdr); 1208 return err; 1209 } 1210 1211 /** 1212 * self_check_vid_hdr - check that a volume identifier header is all right. 1213 * @ubi: UBI device description object 1214 * @pnum: physical eraseblock number the volume identifier header belongs to 1215 * @vid_hdr: the volume identifier header to check 1216 * 1217 * This function returns zero if the volume identifier header is all right, and 1218 * %-EINVAL if not. 1219 */ 1220 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum, 1221 const struct ubi_vid_hdr *vid_hdr) 1222 { 1223 int err; 1224 uint32_t magic; 1225 1226 if (!ubi_dbg_chk_io(ubi)) 1227 return 0; 1228 1229 magic = be32_to_cpu(vid_hdr->magic); 1230 if (magic != UBI_VID_HDR_MAGIC) { 1231 ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x", 1232 magic, pnum, UBI_VID_HDR_MAGIC); 1233 goto fail; 1234 } 1235 1236 err = validate_vid_hdr(ubi, vid_hdr); 1237 if (err) { 1238 ubi_err("self-check failed for PEB %d", pnum); 1239 goto fail; 1240 } 1241 1242 return err; 1243 1244 fail: 1245 ubi_err("self-check failed for PEB %d", pnum); 1246 ubi_dump_vid_hdr(vid_hdr); 1247 dump_stack(); 1248 return -EINVAL; 1249 1250 } 1251 1252 /** 1253 * self_check_peb_vid_hdr - check volume identifier header. 1254 * @ubi: UBI device description object 1255 * @pnum: the physical eraseblock number to check 1256 * 1257 * This function returns zero if the volume identifier header is all right, 1258 * and a negative error code if not or if an error occurred. 1259 */ 1260 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum) 1261 { 1262 int err; 1263 uint32_t crc, hdr_crc; 1264 struct ubi_vid_hdr *vid_hdr; 1265 void *p; 1266 1267 if (!ubi_dbg_chk_io(ubi)) 1268 return 0; 1269 1270 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 1271 if (!vid_hdr) 1272 return -ENOMEM; 1273 1274 p = (char *)vid_hdr - ubi->vid_hdr_shift; 1275 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, 1276 ubi->vid_hdr_alsize); 1277 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) 1278 goto exit; 1279 1280 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC); 1281 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); 1282 if (hdr_crc != crc) { 1283 ubi_err("bad VID header CRC at PEB %d, calculated %#08x, read %#08x", 1284 pnum, crc, hdr_crc); 1285 ubi_err("self-check failed for PEB %d", pnum); 1286 ubi_dump_vid_hdr(vid_hdr); 1287 dump_stack(); 1288 err = -EINVAL; 1289 goto exit; 1290 } 1291 1292 err = self_check_vid_hdr(ubi, pnum, vid_hdr); 1293 1294 exit: 1295 ubi_free_vid_hdr(ubi, vid_hdr); 1296 return err; 1297 } 1298 1299 /** 1300 * self_check_write - make sure write succeeded. 1301 * @ubi: UBI device description object 1302 * @buf: buffer with data which were written 1303 * @pnum: physical eraseblock number the data were written to 1304 * @offset: offset within the physical eraseblock the data were written to 1305 * @len: how many bytes were written 1306 * 1307 * This functions reads data which were recently written and compares it with 1308 * the original data buffer - the data have to match. Returns zero if the data 1309 * match and a negative error code if not or in case of failure. 1310 */ 1311 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum, 1312 int offset, int len) 1313 { 1314 int err, i; 1315 size_t read; 1316 void *buf1; 1317 loff_t addr = (loff_t)pnum * ubi->peb_size + offset; 1318 1319 if (!ubi_dbg_chk_io(ubi)) 1320 return 0; 1321 1322 buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL); 1323 if (!buf1) { 1324 ubi_err("cannot allocate memory to check writes"); 1325 return 0; 1326 } 1327 1328 err = mtd_read(ubi->mtd, addr, len, &read, buf1); 1329 if (err && !mtd_is_bitflip(err)) 1330 goto out_free; 1331 1332 for (i = 0; i < len; i++) { 1333 uint8_t c = ((uint8_t *)buf)[i]; 1334 uint8_t c1 = ((uint8_t *)buf1)[i]; 1335 #if !defined(CONFIG_UBI_SILENCE_MSG) 1336 int dump_len = max_t(int, 128, len - i); 1337 #endif 1338 1339 if (c == c1) 1340 continue; 1341 1342 ubi_err("self-check failed for PEB %d:%d, len %d", 1343 pnum, offset, len); 1344 ubi_msg("data differ at position %d", i); 1345 ubi_msg("hex dump of the original buffer from %d to %d", 1346 i, i + dump_len); 1347 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 1348 buf + i, dump_len, 1); 1349 ubi_msg("hex dump of the read buffer from %d to %d", 1350 i, i + dump_len); 1351 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 1352 buf1 + i, dump_len, 1); 1353 dump_stack(); 1354 err = -EINVAL; 1355 goto out_free; 1356 } 1357 1358 vfree(buf1); 1359 return 0; 1360 1361 out_free: 1362 vfree(buf1); 1363 return err; 1364 } 1365 1366 /** 1367 * ubi_self_check_all_ff - check that a region of flash is empty. 1368 * @ubi: UBI device description object 1369 * @pnum: the physical eraseblock number to check 1370 * @offset: the starting offset within the physical eraseblock to check 1371 * @len: the length of the region to check 1372 * 1373 * This function returns zero if only 0xFF bytes are present at offset 1374 * @offset of the physical eraseblock @pnum, and a negative error code if not 1375 * or if an error occurred. 1376 */ 1377 int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len) 1378 { 1379 size_t read; 1380 int err; 1381 void *buf; 1382 loff_t addr = (loff_t)pnum * ubi->peb_size + offset; 1383 1384 if (!ubi_dbg_chk_io(ubi)) 1385 return 0; 1386 1387 buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL); 1388 if (!buf) { 1389 ubi_err("cannot allocate memory to check for 0xFFs"); 1390 return 0; 1391 } 1392 1393 err = mtd_read(ubi->mtd, addr, len, &read, buf); 1394 if (err && !mtd_is_bitflip(err)) { 1395 ubi_err("error %d while reading %d bytes from PEB %d:%d, read %zd bytes", 1396 err, len, pnum, offset, read); 1397 goto error; 1398 } 1399 1400 err = ubi_check_pattern(buf, 0xFF, len); 1401 if (err == 0) { 1402 ubi_err("flash region at PEB %d:%d, length %d does not contain all 0xFF bytes", 1403 pnum, offset, len); 1404 goto fail; 1405 } 1406 1407 vfree(buf); 1408 return 0; 1409 1410 fail: 1411 ubi_err("self-check failed for PEB %d", pnum); 1412 ubi_msg("hex dump of the %d-%d region", offset, offset + len); 1413 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1); 1414 err = -EINVAL; 1415 error: 1416 dump_stack(); 1417 vfree(buf); 1418 return err; 1419 } 1420