1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * Copyright (c) Nokia Corporation, 2006, 2007 4 * SPDX-License-Identifier: GPL-2.0+ 5 * 6 * Author: Artem Bityutskiy (Битюцкий Артём) 7 */ 8 9 /* 10 * UBI input/output sub-system. 11 * 12 * This sub-system provides a uniform way to work with all kinds of the 13 * underlying MTD devices. It also implements handy functions for reading and 14 * writing UBI headers. 15 * 16 * We are trying to have a paranoid mindset and not to trust to what we read 17 * from the flash media in order to be more secure and robust. So this 18 * sub-system validates every single header it reads from the flash media. 19 * 20 * Some words about how the eraseblock headers are stored. 21 * 22 * The erase counter header is always stored at offset zero. By default, the 23 * VID header is stored after the EC header at the closest aligned offset 24 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID 25 * header at the closest aligned offset. But this default layout may be 26 * changed. For example, for different reasons (e.g., optimization) UBI may be 27 * asked to put the VID header at further offset, and even at an unaligned 28 * offset. Of course, if the offset of the VID header is unaligned, UBI adds 29 * proper padding in front of it. Data offset may also be changed but it has to 30 * be aligned. 31 * 32 * About minimal I/O units. In general, UBI assumes flash device model where 33 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1, 34 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the 35 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another 36 * (smaller) minimal I/O unit size for EC and VID headers to make it possible 37 * to do different optimizations. 38 * 39 * This is extremely useful in case of NAND flashes which admit of several 40 * write operations to one NAND page. In this case UBI can fit EC and VID 41 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal 42 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still 43 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI 44 * users. 45 * 46 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so 47 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID 48 * headers. 49 * 50 * Q: why not just to treat sub-page as a minimal I/O unit of this flash 51 * device, e.g., make @ubi->min_io_size = 512 in the example above? 52 * 53 * A: because when writing a sub-page, MTD still writes a full 2K page but the 54 * bytes which are not relevant to the sub-page are 0xFF. So, basically, 55 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page. 56 * Thus, we prefer to use sub-pages only for EC and VID headers. 57 * 58 * As it was noted above, the VID header may start at a non-aligned offset. 59 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page, 60 * the VID header may reside at offset 1984 which is the last 64 bytes of the 61 * last sub-page (EC header is always at offset zero). This causes some 62 * difficulties when reading and writing VID headers. 63 * 64 * Suppose we have a 64-byte buffer and we read a VID header at it. We change 65 * the data and want to write this VID header out. As we can only write in 66 * 512-byte chunks, we have to allocate one more buffer and copy our VID header 67 * to offset 448 of this buffer. 68 * 69 * The I/O sub-system does the following trick in order to avoid this extra 70 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID 71 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer. 72 * When the VID header is being written out, it shifts the VID header pointer 73 * back and writes the whole sub-page. 74 */ 75 76 #ifndef __UBOOT__ 77 #include <linux/crc32.h> 78 #include <linux/err.h> 79 #include <linux/slab.h> 80 #else 81 #include <ubi_uboot.h> 82 #endif 83 84 #include "ubi.h" 85 86 static int self_check_not_bad(const struct ubi_device *ubi, int pnum); 87 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum); 88 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum, 89 const struct ubi_ec_hdr *ec_hdr); 90 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum); 91 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum, 92 const struct ubi_vid_hdr *vid_hdr); 93 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum, 94 int offset, int len); 95 96 /** 97 * ubi_io_read - read data from a physical eraseblock. 98 * @ubi: UBI device description object 99 * @buf: buffer where to store the read data 100 * @pnum: physical eraseblock number to read from 101 * @offset: offset within the physical eraseblock from where to read 102 * @len: how many bytes to read 103 * 104 * This function reads data from offset @offset of physical eraseblock @pnum 105 * and stores the read data in the @buf buffer. The following return codes are 106 * possible: 107 * 108 * o %0 if all the requested data were successfully read; 109 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but 110 * correctable bit-flips were detected; this is harmless but may indicate 111 * that this eraseblock may become bad soon (but do not have to); 112 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for 113 * example it can be an ECC error in case of NAND; this most probably means 114 * that the data is corrupted; 115 * o %-EIO if some I/O error occurred; 116 * o other negative error codes in case of other errors. 117 */ 118 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset, 119 int len) 120 { 121 int err, retries = 0; 122 size_t read; 123 loff_t addr; 124 125 dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset); 126 127 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 128 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); 129 ubi_assert(len > 0); 130 131 err = self_check_not_bad(ubi, pnum); 132 if (err) 133 return err; 134 135 /* 136 * Deliberately corrupt the buffer to improve robustness. Indeed, if we 137 * do not do this, the following may happen: 138 * 1. The buffer contains data from previous operation, e.g., read from 139 * another PEB previously. The data looks like expected, e.g., if we 140 * just do not read anything and return - the caller would not 141 * notice this. E.g., if we are reading a VID header, the buffer may 142 * contain a valid VID header from another PEB. 143 * 2. The driver is buggy and returns us success or -EBADMSG or 144 * -EUCLEAN, but it does not actually put any data to the buffer. 145 * 146 * This may confuse UBI or upper layers - they may think the buffer 147 * contains valid data while in fact it is just old data. This is 148 * especially possible because UBI (and UBIFS) relies on CRC, and 149 * treats data as correct even in case of ECC errors if the CRC is 150 * correct. 151 * 152 * Try to prevent this situation by changing the first byte of the 153 * buffer. 154 */ 155 *((uint8_t *)buf) ^= 0xFF; 156 157 addr = (loff_t)pnum * ubi->peb_size + offset; 158 retry: 159 err = mtd_read(ubi->mtd, addr, len, &read, buf); 160 if (err) { 161 const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : ""; 162 163 if (mtd_is_bitflip(err)) { 164 /* 165 * -EUCLEAN is reported if there was a bit-flip which 166 * was corrected, so this is harmless. 167 * 168 * We do not report about it here unless debugging is 169 * enabled. A corresponding message will be printed 170 * later, when it is has been scrubbed. 171 */ 172 ubi_msg(ubi, "fixable bit-flip detected at PEB %d", 173 pnum); 174 ubi_assert(len == read); 175 return UBI_IO_BITFLIPS; 176 } 177 178 if (retries++ < UBI_IO_RETRIES) { 179 ubi_warn(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry", 180 err, errstr, len, pnum, offset, read); 181 yield(); 182 goto retry; 183 } 184 185 ubi_err(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes", 186 err, errstr, len, pnum, offset, read); 187 dump_stack(); 188 189 /* 190 * The driver should never return -EBADMSG if it failed to read 191 * all the requested data. But some buggy drivers might do 192 * this, so we change it to -EIO. 193 */ 194 if (read != len && mtd_is_eccerr(err)) { 195 ubi_assert(0); 196 err = -EIO; 197 } 198 } else { 199 ubi_assert(len == read); 200 201 if (ubi_dbg_is_bitflip(ubi)) { 202 dbg_gen("bit-flip (emulated)"); 203 err = UBI_IO_BITFLIPS; 204 } 205 } 206 207 return err; 208 } 209 210 /** 211 * ubi_io_write - write data to a physical eraseblock. 212 * @ubi: UBI device description object 213 * @buf: buffer with the data to write 214 * @pnum: physical eraseblock number to write to 215 * @offset: offset within the physical eraseblock where to write 216 * @len: how many bytes to write 217 * 218 * This function writes @len bytes of data from buffer @buf to offset @offset 219 * of physical eraseblock @pnum. If all the data were successfully written, 220 * zero is returned. If an error occurred, this function returns a negative 221 * error code. If %-EIO is returned, the physical eraseblock most probably went 222 * bad. 223 * 224 * Note, in case of an error, it is possible that something was still written 225 * to the flash media, but may be some garbage. 226 */ 227 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset, 228 int len) 229 { 230 int err; 231 size_t written; 232 loff_t addr; 233 234 dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset); 235 236 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 237 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); 238 ubi_assert(offset % ubi->hdrs_min_io_size == 0); 239 ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0); 240 241 if (ubi->ro_mode) { 242 ubi_err(ubi, "read-only mode"); 243 return -EROFS; 244 } 245 246 err = self_check_not_bad(ubi, pnum); 247 if (err) 248 return err; 249 250 /* The area we are writing to has to contain all 0xFF bytes */ 251 err = ubi_self_check_all_ff(ubi, pnum, offset, len); 252 if (err) 253 return err; 254 255 if (offset >= ubi->leb_start) { 256 /* 257 * We write to the data area of the physical eraseblock. Make 258 * sure it has valid EC and VID headers. 259 */ 260 err = self_check_peb_ec_hdr(ubi, pnum); 261 if (err) 262 return err; 263 err = self_check_peb_vid_hdr(ubi, pnum); 264 if (err) 265 return err; 266 } 267 268 if (ubi_dbg_is_write_failure(ubi)) { 269 ubi_err(ubi, "cannot write %d bytes to PEB %d:%d (emulated)", 270 len, pnum, offset); 271 dump_stack(); 272 return -EIO; 273 } 274 275 addr = (loff_t)pnum * ubi->peb_size + offset; 276 err = mtd_write(ubi->mtd, addr, len, &written, buf); 277 if (err) { 278 ubi_err(ubi, "error %d while writing %d bytes to PEB %d:%d, written %zd bytes", 279 err, len, pnum, offset, written); 280 dump_stack(); 281 ubi_dump_flash(ubi, pnum, offset, len); 282 } else 283 ubi_assert(written == len); 284 285 if (!err) { 286 err = self_check_write(ubi, buf, pnum, offset, len); 287 if (err) 288 return err; 289 290 /* 291 * Since we always write sequentially, the rest of the PEB has 292 * to contain only 0xFF bytes. 293 */ 294 offset += len; 295 len = ubi->peb_size - offset; 296 if (len) 297 err = ubi_self_check_all_ff(ubi, pnum, offset, len); 298 } 299 300 return err; 301 } 302 303 /** 304 * erase_callback - MTD erasure call-back. 305 * @ei: MTD erase information object. 306 * 307 * Note, even though MTD erase interface is asynchronous, all the current 308 * implementations are synchronous anyway. 309 */ 310 static void erase_callback(struct erase_info *ei) 311 { 312 wake_up_interruptible((wait_queue_head_t *)ei->priv); 313 } 314 315 /** 316 * do_sync_erase - synchronously erase a physical eraseblock. 317 * @ubi: UBI device description object 318 * @pnum: the physical eraseblock number to erase 319 * 320 * This function synchronously erases physical eraseblock @pnum and returns 321 * zero in case of success and a negative error code in case of failure. If 322 * %-EIO is returned, the physical eraseblock most probably went bad. 323 */ 324 static int do_sync_erase(struct ubi_device *ubi, int pnum) 325 { 326 int err, retries = 0; 327 struct erase_info ei; 328 wait_queue_head_t wq; 329 330 dbg_io("erase PEB %d", pnum); 331 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 332 333 if (ubi->ro_mode) { 334 ubi_err(ubi, "read-only mode"); 335 return -EROFS; 336 } 337 338 retry: 339 init_waitqueue_head(&wq); 340 memset(&ei, 0, sizeof(struct erase_info)); 341 342 ei.mtd = ubi->mtd; 343 ei.addr = (loff_t)pnum * ubi->peb_size; 344 ei.len = ubi->peb_size; 345 ei.callback = erase_callback; 346 ei.priv = (unsigned long)&wq; 347 348 err = mtd_erase(ubi->mtd, &ei); 349 if (err) { 350 if (retries++ < UBI_IO_RETRIES) { 351 ubi_warn(ubi, "error %d while erasing PEB %d, retry", 352 err, pnum); 353 yield(); 354 goto retry; 355 } 356 ubi_err(ubi, "cannot erase PEB %d, error %d", pnum, err); 357 dump_stack(); 358 return err; 359 } 360 361 err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE || 362 ei.state == MTD_ERASE_FAILED); 363 if (err) { 364 ubi_err(ubi, "interrupted PEB %d erasure", pnum); 365 return -EINTR; 366 } 367 368 if (ei.state == MTD_ERASE_FAILED) { 369 if (retries++ < UBI_IO_RETRIES) { 370 ubi_warn(ubi, "error while erasing PEB %d, retry", 371 pnum); 372 yield(); 373 goto retry; 374 } 375 ubi_err(ubi, "cannot erase PEB %d", pnum); 376 dump_stack(); 377 return -EIO; 378 } 379 380 err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size); 381 if (err) 382 return err; 383 384 if (ubi_dbg_is_erase_failure(ubi)) { 385 ubi_err(ubi, "cannot erase PEB %d (emulated)", pnum); 386 return -EIO; 387 } 388 389 return 0; 390 } 391 392 /* Patterns to write to a physical eraseblock when torturing it */ 393 static uint8_t patterns[] = {0xa5, 0x5a, 0x0}; 394 395 /** 396 * torture_peb - test a supposedly bad physical eraseblock. 397 * @ubi: UBI device description object 398 * @pnum: the physical eraseblock number to test 399 * 400 * This function returns %-EIO if the physical eraseblock did not pass the 401 * test, a positive number of erase operations done if the test was 402 * successfully passed, and other negative error codes in case of other errors. 403 */ 404 static int torture_peb(struct ubi_device *ubi, int pnum) 405 { 406 int err, i, patt_count; 407 408 ubi_msg(ubi, "run torture test for PEB %d", pnum); 409 patt_count = ARRAY_SIZE(patterns); 410 ubi_assert(patt_count > 0); 411 412 mutex_lock(&ubi->buf_mutex); 413 for (i = 0; i < patt_count; i++) { 414 err = do_sync_erase(ubi, pnum); 415 if (err) 416 goto out; 417 418 /* Make sure the PEB contains only 0xFF bytes */ 419 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 420 if (err) 421 goto out; 422 423 err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size); 424 if (err == 0) { 425 ubi_err(ubi, "erased PEB %d, but a non-0xFF byte found", 426 pnum); 427 err = -EIO; 428 goto out; 429 } 430 431 /* Write a pattern and check it */ 432 memset(ubi->peb_buf, patterns[i], ubi->peb_size); 433 err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 434 if (err) 435 goto out; 436 437 memset(ubi->peb_buf, ~patterns[i], ubi->peb_size); 438 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 439 if (err) 440 goto out; 441 442 err = ubi_check_pattern(ubi->peb_buf, patterns[i], 443 ubi->peb_size); 444 if (err == 0) { 445 ubi_err(ubi, "pattern %x checking failed for PEB %d", 446 patterns[i], pnum); 447 err = -EIO; 448 goto out; 449 } 450 } 451 452 err = patt_count; 453 ubi_msg(ubi, "PEB %d passed torture test, do not mark it as bad", pnum); 454 455 out: 456 mutex_unlock(&ubi->buf_mutex); 457 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) { 458 /* 459 * If a bit-flip or data integrity error was detected, the test 460 * has not passed because it happened on a freshly erased 461 * physical eraseblock which means something is wrong with it. 462 */ 463 ubi_err(ubi, "read problems on freshly erased PEB %d, must be bad", 464 pnum); 465 err = -EIO; 466 } 467 return err; 468 } 469 470 /** 471 * nor_erase_prepare - prepare a NOR flash PEB for erasure. 472 * @ubi: UBI device description object 473 * @pnum: physical eraseblock number to prepare 474 * 475 * NOR flash, or at least some of them, have peculiar embedded PEB erasure 476 * algorithm: the PEB is first filled with zeroes, then it is erased. And 477 * filling with zeroes starts from the end of the PEB. This was observed with 478 * Spansion S29GL512N NOR flash. 479 * 480 * This means that in case of a power cut we may end up with intact data at the 481 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the 482 * EC and VID headers are OK, but a large chunk of data at the end of PEB is 483 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it 484 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails). 485 * 486 * This function is called before erasing NOR PEBs and it zeroes out EC and VID 487 * magic numbers in order to invalidate them and prevent the failures. Returns 488 * zero in case of success and a negative error code in case of failure. 489 */ 490 static int nor_erase_prepare(struct ubi_device *ubi, int pnum) 491 { 492 int err; 493 size_t written; 494 loff_t addr; 495 uint32_t data = 0; 496 struct ubi_ec_hdr ec_hdr; 497 498 /* 499 * Note, we cannot generally define VID header buffers on stack, 500 * because of the way we deal with these buffers (see the header 501 * comment in this file). But we know this is a NOR-specific piece of 502 * code, so we can do this. But yes, this is error-prone and we should 503 * (pre-)allocate VID header buffer instead. 504 */ 505 struct ubi_vid_hdr vid_hdr; 506 507 /* 508 * If VID or EC is valid, we have to corrupt them before erasing. 509 * It is important to first invalidate the EC header, and then the VID 510 * header. Otherwise a power cut may lead to valid EC header and 511 * invalid VID header, in which case UBI will treat this PEB as 512 * corrupted and will try to preserve it, and print scary warnings. 513 */ 514 addr = (loff_t)pnum * ubi->peb_size; 515 err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0); 516 if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR && 517 err != UBI_IO_FF){ 518 err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data); 519 if(err) 520 goto error; 521 } 522 523 err = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0); 524 if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR && 525 err != UBI_IO_FF){ 526 addr += ubi->vid_hdr_aloffset; 527 err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data); 528 if (err) 529 goto error; 530 } 531 return 0; 532 533 error: 534 /* 535 * The PEB contains a valid VID or EC header, but we cannot invalidate 536 * it. Supposedly the flash media or the driver is screwed up, so 537 * return an error. 538 */ 539 ubi_err(ubi, "cannot invalidate PEB %d, write returned %d", pnum, err); 540 ubi_dump_flash(ubi, pnum, 0, ubi->peb_size); 541 return -EIO; 542 } 543 544 /** 545 * ubi_io_sync_erase - synchronously erase a physical eraseblock. 546 * @ubi: UBI device description object 547 * @pnum: physical eraseblock number to erase 548 * @torture: if this physical eraseblock has to be tortured 549 * 550 * This function synchronously erases physical eraseblock @pnum. If @torture 551 * flag is not zero, the physical eraseblock is checked by means of writing 552 * different patterns to it and reading them back. If the torturing is enabled, 553 * the physical eraseblock is erased more than once. 554 * 555 * This function returns the number of erasures made in case of success, %-EIO 556 * if the erasure failed or the torturing test failed, and other negative error 557 * codes in case of other errors. Note, %-EIO means that the physical 558 * eraseblock is bad. 559 */ 560 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture) 561 { 562 int err, ret = 0; 563 564 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 565 566 err = self_check_not_bad(ubi, pnum); 567 if (err != 0) 568 return err; 569 570 if (ubi->ro_mode) { 571 ubi_err(ubi, "read-only mode"); 572 return -EROFS; 573 } 574 575 if (ubi->nor_flash) { 576 err = nor_erase_prepare(ubi, pnum); 577 if (err) 578 return err; 579 } 580 581 if (torture) { 582 ret = torture_peb(ubi, pnum); 583 if (ret < 0) 584 return ret; 585 } 586 587 err = do_sync_erase(ubi, pnum); 588 if (err) 589 return err; 590 591 return ret + 1; 592 } 593 594 /** 595 * ubi_io_is_bad - check if a physical eraseblock is bad. 596 * @ubi: UBI device description object 597 * @pnum: the physical eraseblock number to check 598 * 599 * This function returns a positive number if the physical eraseblock is bad, 600 * zero if not, and a negative error code if an error occurred. 601 */ 602 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum) 603 { 604 struct mtd_info *mtd = ubi->mtd; 605 606 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 607 608 if (ubi->bad_allowed) { 609 int ret; 610 611 ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size); 612 if (ret < 0) 613 ubi_err(ubi, "error %d while checking if PEB %d is bad", 614 ret, pnum); 615 else if (ret) 616 dbg_io("PEB %d is bad", pnum); 617 return ret; 618 } 619 620 return 0; 621 } 622 623 /** 624 * ubi_io_mark_bad - mark a physical eraseblock as bad. 625 * @ubi: UBI device description object 626 * @pnum: the physical eraseblock number to mark 627 * 628 * This function returns zero in case of success and a negative error code in 629 * case of failure. 630 */ 631 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum) 632 { 633 int err; 634 struct mtd_info *mtd = ubi->mtd; 635 636 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 637 638 if (ubi->ro_mode) { 639 ubi_err(ubi, "read-only mode"); 640 return -EROFS; 641 } 642 643 if (!ubi->bad_allowed) 644 return 0; 645 646 err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size); 647 if (err) 648 ubi_err(ubi, "cannot mark PEB %d bad, error %d", pnum, err); 649 return err; 650 } 651 652 /** 653 * validate_ec_hdr - validate an erase counter header. 654 * @ubi: UBI device description object 655 * @ec_hdr: the erase counter header to check 656 * 657 * This function returns zero if the erase counter header is OK, and %1 if 658 * not. 659 */ 660 static int validate_ec_hdr(const struct ubi_device *ubi, 661 const struct ubi_ec_hdr *ec_hdr) 662 { 663 long long ec; 664 int vid_hdr_offset, leb_start; 665 666 ec = be64_to_cpu(ec_hdr->ec); 667 vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset); 668 leb_start = be32_to_cpu(ec_hdr->data_offset); 669 670 if (ec_hdr->version != UBI_VERSION) { 671 ubi_err(ubi, "node with incompatible UBI version found: this UBI version is %d, image version is %d", 672 UBI_VERSION, (int)ec_hdr->version); 673 goto bad; 674 } 675 676 if (vid_hdr_offset != ubi->vid_hdr_offset) { 677 ubi_err(ubi, "bad VID header offset %d, expected %d", 678 vid_hdr_offset, ubi->vid_hdr_offset); 679 goto bad; 680 } 681 682 if (leb_start != ubi->leb_start) { 683 ubi_err(ubi, "bad data offset %d, expected %d", 684 leb_start, ubi->leb_start); 685 goto bad; 686 } 687 688 if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) { 689 ubi_err(ubi, "bad erase counter %lld", ec); 690 goto bad; 691 } 692 693 return 0; 694 695 bad: 696 ubi_err(ubi, "bad EC header"); 697 ubi_dump_ec_hdr(ec_hdr); 698 dump_stack(); 699 return 1; 700 } 701 702 /** 703 * ubi_io_read_ec_hdr - read and check an erase counter header. 704 * @ubi: UBI device description object 705 * @pnum: physical eraseblock to read from 706 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter 707 * header 708 * @verbose: be verbose if the header is corrupted or was not found 709 * 710 * This function reads erase counter header from physical eraseblock @pnum and 711 * stores it in @ec_hdr. This function also checks CRC checksum of the read 712 * erase counter header. The following codes may be returned: 713 * 714 * o %0 if the CRC checksum is correct and the header was successfully read; 715 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected 716 * and corrected by the flash driver; this is harmless but may indicate that 717 * this eraseblock may become bad soon (but may be not); 718 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error); 719 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was 720 * a data integrity error (uncorrectable ECC error in case of NAND); 721 * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty) 722 * o a negative error code in case of failure. 723 */ 724 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum, 725 struct ubi_ec_hdr *ec_hdr, int verbose) 726 { 727 int err, read_err; 728 uint32_t crc, magic, hdr_crc; 729 730 dbg_io("read EC header from PEB %d", pnum); 731 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 732 733 read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); 734 if (read_err) { 735 if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err)) 736 return read_err; 737 738 /* 739 * We read all the data, but either a correctable bit-flip 740 * occurred, or MTD reported a data integrity error 741 * (uncorrectable ECC error in case of NAND). The former is 742 * harmless, the later may mean that the read data is 743 * corrupted. But we have a CRC check-sum and we will detect 744 * this. If the EC header is still OK, we just report this as 745 * there was a bit-flip, to force scrubbing. 746 */ 747 } 748 749 magic = be32_to_cpu(ec_hdr->magic); 750 if (magic != UBI_EC_HDR_MAGIC) { 751 if (mtd_is_eccerr(read_err)) 752 return UBI_IO_BAD_HDR_EBADMSG; 753 754 /* 755 * The magic field is wrong. Let's check if we have read all 756 * 0xFF. If yes, this physical eraseblock is assumed to be 757 * empty. 758 */ 759 if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) { 760 /* The physical eraseblock is supposedly empty */ 761 if (verbose) 762 ubi_warn(ubi, "no EC header found at PEB %d, only 0xFF bytes", 763 pnum); 764 dbg_bld("no EC header found at PEB %d, only 0xFF bytes", 765 pnum); 766 if (!read_err) 767 return UBI_IO_FF; 768 else 769 return UBI_IO_FF_BITFLIPS; 770 } 771 772 /* 773 * This is not a valid erase counter header, and these are not 774 * 0xFF bytes. Report that the header is corrupted. 775 */ 776 if (verbose) { 777 ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x", 778 pnum, magic, UBI_EC_HDR_MAGIC); 779 ubi_dump_ec_hdr(ec_hdr); 780 } 781 dbg_bld("bad magic number at PEB %d: %08x instead of %08x", 782 pnum, magic, UBI_EC_HDR_MAGIC); 783 return UBI_IO_BAD_HDR; 784 } 785 786 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 787 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); 788 789 if (hdr_crc != crc) { 790 if (verbose) { 791 ubi_warn(ubi, "bad EC header CRC at PEB %d, calculated %#08x, read %#08x", 792 pnum, crc, hdr_crc); 793 ubi_dump_ec_hdr(ec_hdr); 794 } 795 dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x", 796 pnum, crc, hdr_crc); 797 798 if (!read_err) 799 return UBI_IO_BAD_HDR; 800 else 801 return UBI_IO_BAD_HDR_EBADMSG; 802 } 803 804 /* And of course validate what has just been read from the media */ 805 err = validate_ec_hdr(ubi, ec_hdr); 806 if (err) { 807 ubi_err(ubi, "validation failed for PEB %d", pnum); 808 return -EINVAL; 809 } 810 811 /* 812 * If there was %-EBADMSG, but the header CRC is still OK, report about 813 * a bit-flip to force scrubbing on this PEB. 814 */ 815 return read_err ? UBI_IO_BITFLIPS : 0; 816 } 817 818 /** 819 * ubi_io_write_ec_hdr - write an erase counter header. 820 * @ubi: UBI device description object 821 * @pnum: physical eraseblock to write to 822 * @ec_hdr: the erase counter header to write 823 * 824 * This function writes erase counter header described by @ec_hdr to physical 825 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so 826 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec 827 * field. 828 * 829 * This function returns zero in case of success and a negative error code in 830 * case of failure. If %-EIO is returned, the physical eraseblock most probably 831 * went bad. 832 */ 833 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum, 834 struct ubi_ec_hdr *ec_hdr) 835 { 836 int err; 837 uint32_t crc; 838 839 dbg_io("write EC header to PEB %d", pnum); 840 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 841 842 ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC); 843 ec_hdr->version = UBI_VERSION; 844 ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset); 845 ec_hdr->data_offset = cpu_to_be32(ubi->leb_start); 846 ec_hdr->image_seq = cpu_to_be32(ubi->image_seq); 847 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 848 ec_hdr->hdr_crc = cpu_to_be32(crc); 849 850 err = self_check_ec_hdr(ubi, pnum, ec_hdr); 851 if (err) 852 return err; 853 854 if (ubi_dbg_power_cut(ubi, POWER_CUT_EC_WRITE)) 855 return -EROFS; 856 857 err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize); 858 return err; 859 } 860 861 /** 862 * validate_vid_hdr - validate a volume identifier header. 863 * @ubi: UBI device description object 864 * @vid_hdr: the volume identifier header to check 865 * 866 * This function checks that data stored in the volume identifier header 867 * @vid_hdr. Returns zero if the VID header is OK and %1 if not. 868 */ 869 static int validate_vid_hdr(const struct ubi_device *ubi, 870 const struct ubi_vid_hdr *vid_hdr) 871 { 872 int vol_type = vid_hdr->vol_type; 873 int copy_flag = vid_hdr->copy_flag; 874 int vol_id = be32_to_cpu(vid_hdr->vol_id); 875 int lnum = be32_to_cpu(vid_hdr->lnum); 876 int compat = vid_hdr->compat; 877 int data_size = be32_to_cpu(vid_hdr->data_size); 878 int used_ebs = be32_to_cpu(vid_hdr->used_ebs); 879 int data_pad = be32_to_cpu(vid_hdr->data_pad); 880 int data_crc = be32_to_cpu(vid_hdr->data_crc); 881 int usable_leb_size = ubi->leb_size - data_pad; 882 883 if (copy_flag != 0 && copy_flag != 1) { 884 ubi_err(ubi, "bad copy_flag"); 885 goto bad; 886 } 887 888 if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 || 889 data_pad < 0) { 890 ubi_err(ubi, "negative values"); 891 goto bad; 892 } 893 894 if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) { 895 ubi_err(ubi, "bad vol_id"); 896 goto bad; 897 } 898 899 if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) { 900 ubi_err(ubi, "bad compat"); 901 goto bad; 902 } 903 904 if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE && 905 compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE && 906 compat != UBI_COMPAT_REJECT) { 907 ubi_err(ubi, "bad compat"); 908 goto bad; 909 } 910 911 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) { 912 ubi_err(ubi, "bad vol_type"); 913 goto bad; 914 } 915 916 if (data_pad >= ubi->leb_size / 2) { 917 ubi_err(ubi, "bad data_pad"); 918 goto bad; 919 } 920 921 if (vol_type == UBI_VID_STATIC) { 922 /* 923 * Although from high-level point of view static volumes may 924 * contain zero bytes of data, but no VID headers can contain 925 * zero at these fields, because they empty volumes do not have 926 * mapped logical eraseblocks. 927 */ 928 if (used_ebs == 0) { 929 ubi_err(ubi, "zero used_ebs"); 930 goto bad; 931 } 932 if (data_size == 0) { 933 ubi_err(ubi, "zero data_size"); 934 goto bad; 935 } 936 if (lnum < used_ebs - 1) { 937 if (data_size != usable_leb_size) { 938 ubi_err(ubi, "bad data_size"); 939 goto bad; 940 } 941 } else if (lnum == used_ebs - 1) { 942 if (data_size == 0) { 943 ubi_err(ubi, "bad data_size at last LEB"); 944 goto bad; 945 } 946 } else { 947 ubi_err(ubi, "too high lnum"); 948 goto bad; 949 } 950 } else { 951 if (copy_flag == 0) { 952 if (data_crc != 0) { 953 ubi_err(ubi, "non-zero data CRC"); 954 goto bad; 955 } 956 if (data_size != 0) { 957 ubi_err(ubi, "non-zero data_size"); 958 goto bad; 959 } 960 } else { 961 if (data_size == 0) { 962 ubi_err(ubi, "zero data_size of copy"); 963 goto bad; 964 } 965 } 966 if (used_ebs != 0) { 967 ubi_err(ubi, "bad used_ebs"); 968 goto bad; 969 } 970 } 971 972 return 0; 973 974 bad: 975 ubi_err(ubi, "bad VID header"); 976 ubi_dump_vid_hdr(vid_hdr); 977 dump_stack(); 978 return 1; 979 } 980 981 /** 982 * ubi_io_read_vid_hdr - read and check a volume identifier header. 983 * @ubi: UBI device description object 984 * @pnum: physical eraseblock number to read from 985 * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume 986 * identifier header 987 * @verbose: be verbose if the header is corrupted or wasn't found 988 * 989 * This function reads the volume identifier header from physical eraseblock 990 * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read 991 * volume identifier header. The error codes are the same as in 992 * 'ubi_io_read_ec_hdr()'. 993 * 994 * Note, the implementation of this function is also very similar to 995 * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'. 996 */ 997 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum, 998 struct ubi_vid_hdr *vid_hdr, int verbose) 999 { 1000 int err, read_err; 1001 uint32_t crc, magic, hdr_crc; 1002 void *p; 1003 1004 dbg_io("read VID header from PEB %d", pnum); 1005 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 1006 1007 p = (char *)vid_hdr - ubi->vid_hdr_shift; 1008 read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, 1009 ubi->vid_hdr_alsize); 1010 if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err)) 1011 return read_err; 1012 1013 magic = be32_to_cpu(vid_hdr->magic); 1014 if (magic != UBI_VID_HDR_MAGIC) { 1015 if (mtd_is_eccerr(read_err)) 1016 return UBI_IO_BAD_HDR_EBADMSG; 1017 1018 if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) { 1019 if (verbose) 1020 ubi_warn(ubi, "no VID header found at PEB %d, only 0xFF bytes", 1021 pnum); 1022 dbg_bld("no VID header found at PEB %d, only 0xFF bytes", 1023 pnum); 1024 if (!read_err) 1025 return UBI_IO_FF; 1026 else 1027 return UBI_IO_FF_BITFLIPS; 1028 } 1029 1030 if (verbose) { 1031 ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x", 1032 pnum, magic, UBI_VID_HDR_MAGIC); 1033 ubi_dump_vid_hdr(vid_hdr); 1034 } 1035 dbg_bld("bad magic number at PEB %d: %08x instead of %08x", 1036 pnum, magic, UBI_VID_HDR_MAGIC); 1037 return UBI_IO_BAD_HDR; 1038 } 1039 1040 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); 1041 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); 1042 1043 if (hdr_crc != crc) { 1044 if (verbose) { 1045 ubi_warn(ubi, "bad CRC at PEB %d, calculated %#08x, read %#08x", 1046 pnum, crc, hdr_crc); 1047 ubi_dump_vid_hdr(vid_hdr); 1048 } 1049 dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x", 1050 pnum, crc, hdr_crc); 1051 if (!read_err) 1052 return UBI_IO_BAD_HDR; 1053 else 1054 return UBI_IO_BAD_HDR_EBADMSG; 1055 } 1056 1057 err = validate_vid_hdr(ubi, vid_hdr); 1058 if (err) { 1059 ubi_err(ubi, "validation failed for PEB %d", pnum); 1060 return -EINVAL; 1061 } 1062 1063 return read_err ? UBI_IO_BITFLIPS : 0; 1064 } 1065 1066 /** 1067 * ubi_io_write_vid_hdr - write a volume identifier header. 1068 * @ubi: UBI device description object 1069 * @pnum: the physical eraseblock number to write to 1070 * @vid_hdr: the volume identifier header to write 1071 * 1072 * This function writes the volume identifier header described by @vid_hdr to 1073 * physical eraseblock @pnum. This function automatically fills the 1074 * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates 1075 * header CRC checksum and stores it at vid_hdr->hdr_crc. 1076 * 1077 * This function returns zero in case of success and a negative error code in 1078 * case of failure. If %-EIO is returned, the physical eraseblock probably went 1079 * bad. 1080 */ 1081 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum, 1082 struct ubi_vid_hdr *vid_hdr) 1083 { 1084 int err; 1085 uint32_t crc; 1086 void *p; 1087 1088 dbg_io("write VID header to PEB %d", pnum); 1089 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 1090 1091 err = self_check_peb_ec_hdr(ubi, pnum); 1092 if (err) 1093 return err; 1094 1095 vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC); 1096 vid_hdr->version = UBI_VERSION; 1097 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); 1098 vid_hdr->hdr_crc = cpu_to_be32(crc); 1099 1100 err = self_check_vid_hdr(ubi, pnum, vid_hdr); 1101 if (err) 1102 return err; 1103 1104 if (ubi_dbg_power_cut(ubi, POWER_CUT_VID_WRITE)) 1105 return -EROFS; 1106 1107 p = (char *)vid_hdr - ubi->vid_hdr_shift; 1108 err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset, 1109 ubi->vid_hdr_alsize); 1110 return err; 1111 } 1112 1113 /** 1114 * self_check_not_bad - ensure that a physical eraseblock is not bad. 1115 * @ubi: UBI device description object 1116 * @pnum: physical eraseblock number to check 1117 * 1118 * This function returns zero if the physical eraseblock is good, %-EINVAL if 1119 * it is bad and a negative error code if an error occurred. 1120 */ 1121 static int self_check_not_bad(const struct ubi_device *ubi, int pnum) 1122 { 1123 int err; 1124 1125 if (!ubi_dbg_chk_io(ubi)) 1126 return 0; 1127 1128 err = ubi_io_is_bad(ubi, pnum); 1129 if (!err) 1130 return err; 1131 1132 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1133 dump_stack(); 1134 return err > 0 ? -EINVAL : err; 1135 } 1136 1137 /** 1138 * self_check_ec_hdr - check if an erase counter header is all right. 1139 * @ubi: UBI device description object 1140 * @pnum: physical eraseblock number the erase counter header belongs to 1141 * @ec_hdr: the erase counter header to check 1142 * 1143 * This function returns zero if the erase counter header contains valid 1144 * values, and %-EINVAL if not. 1145 */ 1146 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum, 1147 const struct ubi_ec_hdr *ec_hdr) 1148 { 1149 int err; 1150 uint32_t magic; 1151 1152 if (!ubi_dbg_chk_io(ubi)) 1153 return 0; 1154 1155 magic = be32_to_cpu(ec_hdr->magic); 1156 if (magic != UBI_EC_HDR_MAGIC) { 1157 ubi_err(ubi, "bad magic %#08x, must be %#08x", 1158 magic, UBI_EC_HDR_MAGIC); 1159 goto fail; 1160 } 1161 1162 err = validate_ec_hdr(ubi, ec_hdr); 1163 if (err) { 1164 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1165 goto fail; 1166 } 1167 1168 return 0; 1169 1170 fail: 1171 ubi_dump_ec_hdr(ec_hdr); 1172 dump_stack(); 1173 return -EINVAL; 1174 } 1175 1176 /** 1177 * self_check_peb_ec_hdr - check erase counter header. 1178 * @ubi: UBI device description object 1179 * @pnum: the physical eraseblock number to check 1180 * 1181 * This function returns zero if the erase counter header is all right and and 1182 * a negative error code if not or if an error occurred. 1183 */ 1184 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum) 1185 { 1186 int err; 1187 uint32_t crc, hdr_crc; 1188 struct ubi_ec_hdr *ec_hdr; 1189 1190 if (!ubi_dbg_chk_io(ubi)) 1191 return 0; 1192 1193 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 1194 if (!ec_hdr) 1195 return -ENOMEM; 1196 1197 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); 1198 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) 1199 goto exit; 1200 1201 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 1202 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); 1203 if (hdr_crc != crc) { 1204 ubi_err(ubi, "bad CRC, calculated %#08x, read %#08x", 1205 crc, hdr_crc); 1206 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1207 ubi_dump_ec_hdr(ec_hdr); 1208 dump_stack(); 1209 err = -EINVAL; 1210 goto exit; 1211 } 1212 1213 err = self_check_ec_hdr(ubi, pnum, ec_hdr); 1214 1215 exit: 1216 kfree(ec_hdr); 1217 return err; 1218 } 1219 1220 /** 1221 * self_check_vid_hdr - check that a volume identifier header is all right. 1222 * @ubi: UBI device description object 1223 * @pnum: physical eraseblock number the volume identifier header belongs to 1224 * @vid_hdr: the volume identifier header to check 1225 * 1226 * This function returns zero if the volume identifier header is all right, and 1227 * %-EINVAL if not. 1228 */ 1229 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum, 1230 const struct ubi_vid_hdr *vid_hdr) 1231 { 1232 int err; 1233 uint32_t magic; 1234 1235 if (!ubi_dbg_chk_io(ubi)) 1236 return 0; 1237 1238 magic = be32_to_cpu(vid_hdr->magic); 1239 if (magic != UBI_VID_HDR_MAGIC) { 1240 ubi_err(ubi, "bad VID header magic %#08x at PEB %d, must be %#08x", 1241 magic, pnum, UBI_VID_HDR_MAGIC); 1242 goto fail; 1243 } 1244 1245 err = validate_vid_hdr(ubi, vid_hdr); 1246 if (err) { 1247 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1248 goto fail; 1249 } 1250 1251 return err; 1252 1253 fail: 1254 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1255 ubi_dump_vid_hdr(vid_hdr); 1256 dump_stack(); 1257 return -EINVAL; 1258 1259 } 1260 1261 /** 1262 * self_check_peb_vid_hdr - check volume identifier header. 1263 * @ubi: UBI device description object 1264 * @pnum: the physical eraseblock number to check 1265 * 1266 * This function returns zero if the volume identifier header is all right, 1267 * and a negative error code if not or if an error occurred. 1268 */ 1269 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum) 1270 { 1271 int err; 1272 uint32_t crc, hdr_crc; 1273 struct ubi_vid_hdr *vid_hdr; 1274 void *p; 1275 1276 if (!ubi_dbg_chk_io(ubi)) 1277 return 0; 1278 1279 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 1280 if (!vid_hdr) 1281 return -ENOMEM; 1282 1283 p = (char *)vid_hdr - ubi->vid_hdr_shift; 1284 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, 1285 ubi->vid_hdr_alsize); 1286 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) 1287 goto exit; 1288 1289 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC); 1290 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); 1291 if (hdr_crc != crc) { 1292 ubi_err(ubi, "bad VID header CRC at PEB %d, calculated %#08x, read %#08x", 1293 pnum, crc, hdr_crc); 1294 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1295 ubi_dump_vid_hdr(vid_hdr); 1296 dump_stack(); 1297 err = -EINVAL; 1298 goto exit; 1299 } 1300 1301 err = self_check_vid_hdr(ubi, pnum, vid_hdr); 1302 1303 exit: 1304 ubi_free_vid_hdr(ubi, vid_hdr); 1305 return err; 1306 } 1307 1308 /** 1309 * self_check_write - make sure write succeeded. 1310 * @ubi: UBI device description object 1311 * @buf: buffer with data which were written 1312 * @pnum: physical eraseblock number the data were written to 1313 * @offset: offset within the physical eraseblock the data were written to 1314 * @len: how many bytes were written 1315 * 1316 * This functions reads data which were recently written and compares it with 1317 * the original data buffer - the data have to match. Returns zero if the data 1318 * match and a negative error code if not or in case of failure. 1319 */ 1320 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum, 1321 int offset, int len) 1322 { 1323 int err, i; 1324 size_t read; 1325 void *buf1; 1326 loff_t addr = (loff_t)pnum * ubi->peb_size + offset; 1327 1328 if (!ubi_dbg_chk_io(ubi)) 1329 return 0; 1330 1331 buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL); 1332 if (!buf1) { 1333 ubi_err(ubi, "cannot allocate memory to check writes"); 1334 return 0; 1335 } 1336 1337 err = mtd_read(ubi->mtd, addr, len, &read, buf1); 1338 if (err && !mtd_is_bitflip(err)) 1339 goto out_free; 1340 1341 for (i = 0; i < len; i++) { 1342 uint8_t c = ((uint8_t *)buf)[i]; 1343 uint8_t c1 = ((uint8_t *)buf1)[i]; 1344 #if !defined(CONFIG_UBI_SILENCE_MSG) 1345 int dump_len = max_t(int, 128, len - i); 1346 #endif 1347 1348 if (c == c1) 1349 continue; 1350 1351 ubi_err(ubi, "self-check failed for PEB %d:%d, len %d", 1352 pnum, offset, len); 1353 ubi_msg(ubi, "data differ at position %d", i); 1354 ubi_msg(ubi, "hex dump of the original buffer from %d to %d", 1355 i, i + dump_len); 1356 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 1357 buf + i, dump_len, 1); 1358 ubi_msg(ubi, "hex dump of the read buffer from %d to %d", 1359 i, i + dump_len); 1360 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 1361 buf1 + i, dump_len, 1); 1362 dump_stack(); 1363 err = -EINVAL; 1364 goto out_free; 1365 } 1366 1367 vfree(buf1); 1368 return 0; 1369 1370 out_free: 1371 vfree(buf1); 1372 return err; 1373 } 1374 1375 /** 1376 * ubi_self_check_all_ff - check that a region of flash is empty. 1377 * @ubi: UBI device description object 1378 * @pnum: the physical eraseblock number to check 1379 * @offset: the starting offset within the physical eraseblock to check 1380 * @len: the length of the region to check 1381 * 1382 * This function returns zero if only 0xFF bytes are present at offset 1383 * @offset of the physical eraseblock @pnum, and a negative error code if not 1384 * or if an error occurred. 1385 */ 1386 int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len) 1387 { 1388 size_t read; 1389 int err; 1390 void *buf; 1391 loff_t addr = (loff_t)pnum * ubi->peb_size + offset; 1392 1393 if (!ubi_dbg_chk_io(ubi)) 1394 return 0; 1395 1396 buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL); 1397 if (!buf) { 1398 ubi_err(ubi, "cannot allocate memory to check for 0xFFs"); 1399 return 0; 1400 } 1401 1402 err = mtd_read(ubi->mtd, addr, len, &read, buf); 1403 if (err && !mtd_is_bitflip(err)) { 1404 ubi_err(ubi, "err %d while reading %d bytes from PEB %d:%d, read %zd bytes", 1405 err, len, pnum, offset, read); 1406 goto error; 1407 } 1408 1409 err = ubi_check_pattern(buf, 0xFF, len); 1410 if (err == 0) { 1411 ubi_err(ubi, "flash region at PEB %d:%d, length %d does not contain all 0xFF bytes", 1412 pnum, offset, len); 1413 goto fail; 1414 } 1415 1416 vfree(buf); 1417 return 0; 1418 1419 fail: 1420 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1421 ubi_msg(ubi, "hex dump of the %d-%d region", offset, offset + len); 1422 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1); 1423 err = -EINVAL; 1424 error: 1425 dump_stack(); 1426 vfree(buf); 1427 return err; 1428 } 1429