xref: /openbmc/u-boot/drivers/mtd/ubi/eba.c (revision 461be2f96e4b87e5065208c6659a47dd0ad9e9f8)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * SPDX-License-Identifier:	GPL-2.0+
5  *
6  * Author: Artem Bityutskiy (Битюцкий Артём)
7  */
8 
9 /*
10  * The UBI Eraseblock Association (EBA) sub-system.
11  *
12  * This sub-system is responsible for I/O to/from logical eraseblock.
13  *
14  * Although in this implementation the EBA table is fully kept and managed in
15  * RAM, which assumes poor scalability, it might be (partially) maintained on
16  * flash in future implementations.
17  *
18  * The EBA sub-system implements per-logical eraseblock locking. Before
19  * accessing a logical eraseblock it is locked for reading or writing. The
20  * per-logical eraseblock locking is implemented by means of the lock tree. The
21  * lock tree is an RB-tree which refers all the currently locked logical
22  * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
23  * They are indexed by (@vol_id, @lnum) pairs.
24  *
25  * EBA also maintains the global sequence counter which is incremented each
26  * time a logical eraseblock is mapped to a physical eraseblock and it is
27  * stored in the volume identifier header. This means that each VID header has
28  * a unique sequence number. The sequence number is only increased an we assume
29  * 64 bits is enough to never overflow.
30  */
31 
32 #define __UBOOT__
33 #ifndef __UBOOT__
34 #include <linux/slab.h>
35 #include <linux/crc32.h>
36 #else
37 #include <ubi_uboot.h>
38 #endif
39 
40 #include <linux/err.h>
41 #include "ubi.h"
42 
43 /* Number of physical eraseblocks reserved for atomic LEB change operation */
44 #define EBA_RESERVED_PEBS 1
45 
46 /**
47  * next_sqnum - get next sequence number.
48  * @ubi: UBI device description object
49  *
50  * This function returns next sequence number to use, which is just the current
51  * global sequence counter value. It also increases the global sequence
52  * counter.
53  */
54 unsigned long long ubi_next_sqnum(struct ubi_device *ubi)
55 {
56 	unsigned long long sqnum;
57 
58 	spin_lock(&ubi->ltree_lock);
59 	sqnum = ubi->global_sqnum++;
60 	spin_unlock(&ubi->ltree_lock);
61 
62 	return sqnum;
63 }
64 
65 /**
66  * ubi_get_compat - get compatibility flags of a volume.
67  * @ubi: UBI device description object
68  * @vol_id: volume ID
69  *
70  * This function returns compatibility flags for an internal volume. User
71  * volumes have no compatibility flags, so %0 is returned.
72  */
73 static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
74 {
75 	if (vol_id == UBI_LAYOUT_VOLUME_ID)
76 		return UBI_LAYOUT_VOLUME_COMPAT;
77 	return 0;
78 }
79 
80 /**
81  * ltree_lookup - look up the lock tree.
82  * @ubi: UBI device description object
83  * @vol_id: volume ID
84  * @lnum: logical eraseblock number
85  *
86  * This function returns a pointer to the corresponding &struct ubi_ltree_entry
87  * object if the logical eraseblock is locked and %NULL if it is not.
88  * @ubi->ltree_lock has to be locked.
89  */
90 static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
91 					    int lnum)
92 {
93 	struct rb_node *p;
94 
95 	p = ubi->ltree.rb_node;
96 	while (p) {
97 		struct ubi_ltree_entry *le;
98 
99 		le = rb_entry(p, struct ubi_ltree_entry, rb);
100 
101 		if (vol_id < le->vol_id)
102 			p = p->rb_left;
103 		else if (vol_id > le->vol_id)
104 			p = p->rb_right;
105 		else {
106 			if (lnum < le->lnum)
107 				p = p->rb_left;
108 			else if (lnum > le->lnum)
109 				p = p->rb_right;
110 			else
111 				return le;
112 		}
113 	}
114 
115 	return NULL;
116 }
117 
118 /**
119  * ltree_add_entry - add new entry to the lock tree.
120  * @ubi: UBI device description object
121  * @vol_id: volume ID
122  * @lnum: logical eraseblock number
123  *
124  * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
125  * lock tree. If such entry is already there, its usage counter is increased.
126  * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
127  * failed.
128  */
129 static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
130 					       int vol_id, int lnum)
131 {
132 	struct ubi_ltree_entry *le, *le1, *le_free;
133 
134 	le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
135 	if (!le)
136 		return ERR_PTR(-ENOMEM);
137 
138 	le->users = 0;
139 	init_rwsem(&le->mutex);
140 	le->vol_id = vol_id;
141 	le->lnum = lnum;
142 
143 	spin_lock(&ubi->ltree_lock);
144 	le1 = ltree_lookup(ubi, vol_id, lnum);
145 
146 	if (le1) {
147 		/*
148 		 * This logical eraseblock is already locked. The newly
149 		 * allocated lock entry is not needed.
150 		 */
151 		le_free = le;
152 		le = le1;
153 	} else {
154 		struct rb_node **p, *parent = NULL;
155 
156 		/*
157 		 * No lock entry, add the newly allocated one to the
158 		 * @ubi->ltree RB-tree.
159 		 */
160 		le_free = NULL;
161 
162 		p = &ubi->ltree.rb_node;
163 		while (*p) {
164 			parent = *p;
165 			le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
166 
167 			if (vol_id < le1->vol_id)
168 				p = &(*p)->rb_left;
169 			else if (vol_id > le1->vol_id)
170 				p = &(*p)->rb_right;
171 			else {
172 				ubi_assert(lnum != le1->lnum);
173 				if (lnum < le1->lnum)
174 					p = &(*p)->rb_left;
175 				else
176 					p = &(*p)->rb_right;
177 			}
178 		}
179 
180 		rb_link_node(&le->rb, parent, p);
181 		rb_insert_color(&le->rb, &ubi->ltree);
182 	}
183 	le->users += 1;
184 	spin_unlock(&ubi->ltree_lock);
185 
186 	kfree(le_free);
187 	return le;
188 }
189 
190 /**
191  * leb_read_lock - lock logical eraseblock for reading.
192  * @ubi: UBI device description object
193  * @vol_id: volume ID
194  * @lnum: logical eraseblock number
195  *
196  * This function locks a logical eraseblock for reading. Returns zero in case
197  * of success and a negative error code in case of failure.
198  */
199 static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
200 {
201 	struct ubi_ltree_entry *le;
202 
203 	le = ltree_add_entry(ubi, vol_id, lnum);
204 	if (IS_ERR(le))
205 		return PTR_ERR(le);
206 	down_read(&le->mutex);
207 	return 0;
208 }
209 
210 /**
211  * leb_read_unlock - unlock logical eraseblock.
212  * @ubi: UBI device description object
213  * @vol_id: volume ID
214  * @lnum: logical eraseblock number
215  */
216 static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
217 {
218 	struct ubi_ltree_entry *le;
219 
220 	spin_lock(&ubi->ltree_lock);
221 	le = ltree_lookup(ubi, vol_id, lnum);
222 	le->users -= 1;
223 	ubi_assert(le->users >= 0);
224 	up_read(&le->mutex);
225 	if (le->users == 0) {
226 		rb_erase(&le->rb, &ubi->ltree);
227 		kfree(le);
228 	}
229 	spin_unlock(&ubi->ltree_lock);
230 }
231 
232 /**
233  * leb_write_lock - lock logical eraseblock for writing.
234  * @ubi: UBI device description object
235  * @vol_id: volume ID
236  * @lnum: logical eraseblock number
237  *
238  * This function locks a logical eraseblock for writing. Returns zero in case
239  * of success and a negative error code in case of failure.
240  */
241 static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
242 {
243 	struct ubi_ltree_entry *le;
244 
245 	le = ltree_add_entry(ubi, vol_id, lnum);
246 	if (IS_ERR(le))
247 		return PTR_ERR(le);
248 	down_write(&le->mutex);
249 	return 0;
250 }
251 
252 /**
253  * leb_write_lock - lock logical eraseblock for writing.
254  * @ubi: UBI device description object
255  * @vol_id: volume ID
256  * @lnum: logical eraseblock number
257  *
258  * This function locks a logical eraseblock for writing if there is no
259  * contention and does nothing if there is contention. Returns %0 in case of
260  * success, %1 in case of contention, and and a negative error code in case of
261  * failure.
262  */
263 static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
264 {
265 	struct ubi_ltree_entry *le;
266 
267 	le = ltree_add_entry(ubi, vol_id, lnum);
268 	if (IS_ERR(le))
269 		return PTR_ERR(le);
270 	if (down_write_trylock(&le->mutex))
271 		return 0;
272 
273 	/* Contention, cancel */
274 	spin_lock(&ubi->ltree_lock);
275 	le->users -= 1;
276 	ubi_assert(le->users >= 0);
277 	if (le->users == 0) {
278 		rb_erase(&le->rb, &ubi->ltree);
279 		kfree(le);
280 	}
281 	spin_unlock(&ubi->ltree_lock);
282 
283 	return 1;
284 }
285 
286 /**
287  * leb_write_unlock - unlock logical eraseblock.
288  * @ubi: UBI device description object
289  * @vol_id: volume ID
290  * @lnum: logical eraseblock number
291  */
292 static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
293 {
294 	struct ubi_ltree_entry *le;
295 
296 	spin_lock(&ubi->ltree_lock);
297 	le = ltree_lookup(ubi, vol_id, lnum);
298 	le->users -= 1;
299 	ubi_assert(le->users >= 0);
300 	up_write(&le->mutex);
301 	if (le->users == 0) {
302 		rb_erase(&le->rb, &ubi->ltree);
303 		kfree(le);
304 	}
305 	spin_unlock(&ubi->ltree_lock);
306 }
307 
308 /**
309  * ubi_eba_unmap_leb - un-map logical eraseblock.
310  * @ubi: UBI device description object
311  * @vol: volume description object
312  * @lnum: logical eraseblock number
313  *
314  * This function un-maps logical eraseblock @lnum and schedules corresponding
315  * physical eraseblock for erasure. Returns zero in case of success and a
316  * negative error code in case of failure.
317  */
318 int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
319 		      int lnum)
320 {
321 	int err, pnum, vol_id = vol->vol_id;
322 
323 	if (ubi->ro_mode)
324 		return -EROFS;
325 
326 	err = leb_write_lock(ubi, vol_id, lnum);
327 	if (err)
328 		return err;
329 
330 	pnum = vol->eba_tbl[lnum];
331 	if (pnum < 0)
332 		/* This logical eraseblock is already unmapped */
333 		goto out_unlock;
334 
335 	dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
336 
337 	down_read(&ubi->fm_sem);
338 	vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
339 	up_read(&ubi->fm_sem);
340 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0);
341 
342 out_unlock:
343 	leb_write_unlock(ubi, vol_id, lnum);
344 	return err;
345 }
346 
347 /**
348  * ubi_eba_read_leb - read data.
349  * @ubi: UBI device description object
350  * @vol: volume description object
351  * @lnum: logical eraseblock number
352  * @buf: buffer to store the read data
353  * @offset: offset from where to read
354  * @len: how many bytes to read
355  * @check: data CRC check flag
356  *
357  * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
358  * bytes. The @check flag only makes sense for static volumes and forces
359  * eraseblock data CRC checking.
360  *
361  * In case of success this function returns zero. In case of a static volume,
362  * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
363  * returned for any volume type if an ECC error was detected by the MTD device
364  * driver. Other negative error cored may be returned in case of other errors.
365  */
366 int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
367 		     void *buf, int offset, int len, int check)
368 {
369 	int err, pnum, scrub = 0, vol_id = vol->vol_id;
370 	struct ubi_vid_hdr *vid_hdr;
371 	uint32_t uninitialized_var(crc);
372 
373 	err = leb_read_lock(ubi, vol_id, lnum);
374 	if (err)
375 		return err;
376 
377 	pnum = vol->eba_tbl[lnum];
378 	if (pnum < 0) {
379 		/*
380 		 * The logical eraseblock is not mapped, fill the whole buffer
381 		 * with 0xFF bytes. The exception is static volumes for which
382 		 * it is an error to read unmapped logical eraseblocks.
383 		 */
384 		dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
385 			len, offset, vol_id, lnum);
386 		leb_read_unlock(ubi, vol_id, lnum);
387 		ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
388 		memset(buf, 0xFF, len);
389 		return 0;
390 	}
391 
392 	dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
393 		len, offset, vol_id, lnum, pnum);
394 
395 	if (vol->vol_type == UBI_DYNAMIC_VOLUME)
396 		check = 0;
397 
398 retry:
399 	if (check) {
400 		vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
401 		if (!vid_hdr) {
402 			err = -ENOMEM;
403 			goto out_unlock;
404 		}
405 
406 		err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
407 		if (err && err != UBI_IO_BITFLIPS) {
408 			if (err > 0) {
409 				/*
410 				 * The header is either absent or corrupted.
411 				 * The former case means there is a bug -
412 				 * switch to read-only mode just in case.
413 				 * The latter case means a real corruption - we
414 				 * may try to recover data. FIXME: but this is
415 				 * not implemented.
416 				 */
417 				if (err == UBI_IO_BAD_HDR_EBADMSG ||
418 				    err == UBI_IO_BAD_HDR) {
419 					ubi_warn("corrupted VID header at PEB %d, LEB %d:%d",
420 						 pnum, vol_id, lnum);
421 					err = -EBADMSG;
422 				} else
423 					ubi_ro_mode(ubi);
424 			}
425 			goto out_free;
426 		} else if (err == UBI_IO_BITFLIPS)
427 			scrub = 1;
428 
429 		ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
430 		ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
431 
432 		crc = be32_to_cpu(vid_hdr->data_crc);
433 		ubi_free_vid_hdr(ubi, vid_hdr);
434 	}
435 
436 	err = ubi_io_read_data(ubi, buf, pnum, offset, len);
437 	if (err) {
438 		if (err == UBI_IO_BITFLIPS) {
439 			scrub = 1;
440 			err = 0;
441 		} else if (mtd_is_eccerr(err)) {
442 			if (vol->vol_type == UBI_DYNAMIC_VOLUME)
443 				goto out_unlock;
444 			scrub = 1;
445 			if (!check) {
446 				ubi_msg("force data checking");
447 				check = 1;
448 				goto retry;
449 			}
450 		} else
451 			goto out_unlock;
452 	}
453 
454 	if (check) {
455 		uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
456 		if (crc1 != crc) {
457 			ubi_warn("CRC error: calculated %#08x, must be %#08x",
458 				 crc1, crc);
459 			err = -EBADMSG;
460 			goto out_unlock;
461 		}
462 	}
463 
464 	if (scrub)
465 		err = ubi_wl_scrub_peb(ubi, pnum);
466 
467 	leb_read_unlock(ubi, vol_id, lnum);
468 	return err;
469 
470 out_free:
471 	ubi_free_vid_hdr(ubi, vid_hdr);
472 out_unlock:
473 	leb_read_unlock(ubi, vol_id, lnum);
474 	return err;
475 }
476 
477 /**
478  * recover_peb - recover from write failure.
479  * @ubi: UBI device description object
480  * @pnum: the physical eraseblock to recover
481  * @vol_id: volume ID
482  * @lnum: logical eraseblock number
483  * @buf: data which was not written because of the write failure
484  * @offset: offset of the failed write
485  * @len: how many bytes should have been written
486  *
487  * This function is called in case of a write failure and moves all good data
488  * from the potentially bad physical eraseblock to a good physical eraseblock.
489  * This function also writes the data which was not written due to the failure.
490  * Returns new physical eraseblock number in case of success, and a negative
491  * error code in case of failure.
492  */
493 static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
494 		       const void *buf, int offset, int len)
495 {
496 	int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
497 	struct ubi_volume *vol = ubi->volumes[idx];
498 	struct ubi_vid_hdr *vid_hdr;
499 
500 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
501 	if (!vid_hdr)
502 		return -ENOMEM;
503 
504 retry:
505 	new_pnum = ubi_wl_get_peb(ubi);
506 	if (new_pnum < 0) {
507 		ubi_free_vid_hdr(ubi, vid_hdr);
508 		return new_pnum;
509 	}
510 
511 	ubi_msg("recover PEB %d, move data to PEB %d", pnum, new_pnum);
512 
513 	err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
514 	if (err && err != UBI_IO_BITFLIPS) {
515 		if (err > 0)
516 			err = -EIO;
517 		goto out_put;
518 	}
519 
520 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
521 	err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
522 	if (err)
523 		goto write_error;
524 
525 	data_size = offset + len;
526 	mutex_lock(&ubi->buf_mutex);
527 	memset(ubi->peb_buf + offset, 0xFF, len);
528 
529 	/* Read everything before the area where the write failure happened */
530 	if (offset > 0) {
531 		err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset);
532 		if (err && err != UBI_IO_BITFLIPS)
533 			goto out_unlock;
534 	}
535 
536 	memcpy(ubi->peb_buf + offset, buf, len);
537 
538 	err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size);
539 	if (err) {
540 		mutex_unlock(&ubi->buf_mutex);
541 		goto write_error;
542 	}
543 
544 	mutex_unlock(&ubi->buf_mutex);
545 	ubi_free_vid_hdr(ubi, vid_hdr);
546 
547 	down_read(&ubi->fm_sem);
548 	vol->eba_tbl[lnum] = new_pnum;
549 	up_read(&ubi->fm_sem);
550 	ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
551 
552 	ubi_msg("data was successfully recovered");
553 	return 0;
554 
555 out_unlock:
556 	mutex_unlock(&ubi->buf_mutex);
557 out_put:
558 	ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
559 	ubi_free_vid_hdr(ubi, vid_hdr);
560 	return err;
561 
562 write_error:
563 	/*
564 	 * Bad luck? This physical eraseblock is bad too? Crud. Let's try to
565 	 * get another one.
566 	 */
567 	ubi_warn("failed to write to PEB %d", new_pnum);
568 	ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
569 	if (++tries > UBI_IO_RETRIES) {
570 		ubi_free_vid_hdr(ubi, vid_hdr);
571 		return err;
572 	}
573 	ubi_msg("try again");
574 	goto retry;
575 }
576 
577 /**
578  * ubi_eba_write_leb - write data to dynamic volume.
579  * @ubi: UBI device description object
580  * @vol: volume description object
581  * @lnum: logical eraseblock number
582  * @buf: the data to write
583  * @offset: offset within the logical eraseblock where to write
584  * @len: how many bytes to write
585  *
586  * This function writes data to logical eraseblock @lnum of a dynamic volume
587  * @vol. Returns zero in case of success and a negative error code in case
588  * of failure. In case of error, it is possible that something was still
589  * written to the flash media, but may be some garbage.
590  */
591 int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
592 		      const void *buf, int offset, int len)
593 {
594 	int err, pnum, tries = 0, vol_id = vol->vol_id;
595 	struct ubi_vid_hdr *vid_hdr;
596 
597 	if (ubi->ro_mode)
598 		return -EROFS;
599 
600 	err = leb_write_lock(ubi, vol_id, lnum);
601 	if (err)
602 		return err;
603 
604 	pnum = vol->eba_tbl[lnum];
605 	if (pnum >= 0) {
606 		dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
607 			len, offset, vol_id, lnum, pnum);
608 
609 		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
610 		if (err) {
611 			ubi_warn("failed to write data to PEB %d", pnum);
612 			if (err == -EIO && ubi->bad_allowed)
613 				err = recover_peb(ubi, pnum, vol_id, lnum, buf,
614 						  offset, len);
615 			if (err)
616 				ubi_ro_mode(ubi);
617 		}
618 		leb_write_unlock(ubi, vol_id, lnum);
619 		return err;
620 	}
621 
622 	/*
623 	 * The logical eraseblock is not mapped. We have to get a free physical
624 	 * eraseblock and write the volume identifier header there first.
625 	 */
626 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
627 	if (!vid_hdr) {
628 		leb_write_unlock(ubi, vol_id, lnum);
629 		return -ENOMEM;
630 	}
631 
632 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
633 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
634 	vid_hdr->vol_id = cpu_to_be32(vol_id);
635 	vid_hdr->lnum = cpu_to_be32(lnum);
636 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
637 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
638 
639 retry:
640 	pnum = ubi_wl_get_peb(ubi);
641 	if (pnum < 0) {
642 		ubi_free_vid_hdr(ubi, vid_hdr);
643 		leb_write_unlock(ubi, vol_id, lnum);
644 		return pnum;
645 	}
646 
647 	dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
648 		len, offset, vol_id, lnum, pnum);
649 
650 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
651 	if (err) {
652 		ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
653 			 vol_id, lnum, pnum);
654 		goto write_error;
655 	}
656 
657 	if (len) {
658 		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
659 		if (err) {
660 			ubi_warn("failed to write %d bytes at offset %d of LEB %d:%d, PEB %d",
661 				 len, offset, vol_id, lnum, pnum);
662 			goto write_error;
663 		}
664 	}
665 
666 	down_read(&ubi->fm_sem);
667 	vol->eba_tbl[lnum] = pnum;
668 	up_read(&ubi->fm_sem);
669 
670 	leb_write_unlock(ubi, vol_id, lnum);
671 	ubi_free_vid_hdr(ubi, vid_hdr);
672 	return 0;
673 
674 write_error:
675 	if (err != -EIO || !ubi->bad_allowed) {
676 		ubi_ro_mode(ubi);
677 		leb_write_unlock(ubi, vol_id, lnum);
678 		ubi_free_vid_hdr(ubi, vid_hdr);
679 		return err;
680 	}
681 
682 	/*
683 	 * Fortunately, this is the first write operation to this physical
684 	 * eraseblock, so just put it and request a new one. We assume that if
685 	 * this physical eraseblock went bad, the erase code will handle that.
686 	 */
687 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
688 	if (err || ++tries > UBI_IO_RETRIES) {
689 		ubi_ro_mode(ubi);
690 		leb_write_unlock(ubi, vol_id, lnum);
691 		ubi_free_vid_hdr(ubi, vid_hdr);
692 		return err;
693 	}
694 
695 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
696 	ubi_msg("try another PEB");
697 	goto retry;
698 }
699 
700 /**
701  * ubi_eba_write_leb_st - write data to static volume.
702  * @ubi: UBI device description object
703  * @vol: volume description object
704  * @lnum: logical eraseblock number
705  * @buf: data to write
706  * @len: how many bytes to write
707  * @used_ebs: how many logical eraseblocks will this volume contain
708  *
709  * This function writes data to logical eraseblock @lnum of static volume
710  * @vol. The @used_ebs argument should contain total number of logical
711  * eraseblock in this static volume.
712  *
713  * When writing to the last logical eraseblock, the @len argument doesn't have
714  * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
715  * to the real data size, although the @buf buffer has to contain the
716  * alignment. In all other cases, @len has to be aligned.
717  *
718  * It is prohibited to write more than once to logical eraseblocks of static
719  * volumes. This function returns zero in case of success and a negative error
720  * code in case of failure.
721  */
722 int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
723 			 int lnum, const void *buf, int len, int used_ebs)
724 {
725 	int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id;
726 	struct ubi_vid_hdr *vid_hdr;
727 	uint32_t crc;
728 
729 	if (ubi->ro_mode)
730 		return -EROFS;
731 
732 	if (lnum == used_ebs - 1)
733 		/* If this is the last LEB @len may be unaligned */
734 		len = ALIGN(data_size, ubi->min_io_size);
735 	else
736 		ubi_assert(!(len & (ubi->min_io_size - 1)));
737 
738 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
739 	if (!vid_hdr)
740 		return -ENOMEM;
741 
742 	err = leb_write_lock(ubi, vol_id, lnum);
743 	if (err) {
744 		ubi_free_vid_hdr(ubi, vid_hdr);
745 		return err;
746 	}
747 
748 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
749 	vid_hdr->vol_id = cpu_to_be32(vol_id);
750 	vid_hdr->lnum = cpu_to_be32(lnum);
751 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
752 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
753 
754 	crc = crc32(UBI_CRC32_INIT, buf, data_size);
755 	vid_hdr->vol_type = UBI_VID_STATIC;
756 	vid_hdr->data_size = cpu_to_be32(data_size);
757 	vid_hdr->used_ebs = cpu_to_be32(used_ebs);
758 	vid_hdr->data_crc = cpu_to_be32(crc);
759 
760 retry:
761 	pnum = ubi_wl_get_peb(ubi);
762 	if (pnum < 0) {
763 		ubi_free_vid_hdr(ubi, vid_hdr);
764 		leb_write_unlock(ubi, vol_id, lnum);
765 		return pnum;
766 	}
767 
768 	dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
769 		len, vol_id, lnum, pnum, used_ebs);
770 
771 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
772 	if (err) {
773 		ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
774 			 vol_id, lnum, pnum);
775 		goto write_error;
776 	}
777 
778 	err = ubi_io_write_data(ubi, buf, pnum, 0, len);
779 	if (err) {
780 		ubi_warn("failed to write %d bytes of data to PEB %d",
781 			 len, pnum);
782 		goto write_error;
783 	}
784 
785 	ubi_assert(vol->eba_tbl[lnum] < 0);
786 	down_read(&ubi->fm_sem);
787 	vol->eba_tbl[lnum] = pnum;
788 	up_read(&ubi->fm_sem);
789 
790 	leb_write_unlock(ubi, vol_id, lnum);
791 	ubi_free_vid_hdr(ubi, vid_hdr);
792 	return 0;
793 
794 write_error:
795 	if (err != -EIO || !ubi->bad_allowed) {
796 		/*
797 		 * This flash device does not admit of bad eraseblocks or
798 		 * something nasty and unexpected happened. Switch to read-only
799 		 * mode just in case.
800 		 */
801 		ubi_ro_mode(ubi);
802 		leb_write_unlock(ubi, vol_id, lnum);
803 		ubi_free_vid_hdr(ubi, vid_hdr);
804 		return err;
805 	}
806 
807 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
808 	if (err || ++tries > UBI_IO_RETRIES) {
809 		ubi_ro_mode(ubi);
810 		leb_write_unlock(ubi, vol_id, lnum);
811 		ubi_free_vid_hdr(ubi, vid_hdr);
812 		return err;
813 	}
814 
815 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
816 	ubi_msg("try another PEB");
817 	goto retry;
818 }
819 
820 /*
821  * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
822  * @ubi: UBI device description object
823  * @vol: volume description object
824  * @lnum: logical eraseblock number
825  * @buf: data to write
826  * @len: how many bytes to write
827  *
828  * This function changes the contents of a logical eraseblock atomically. @buf
829  * has to contain new logical eraseblock data, and @len - the length of the
830  * data, which has to be aligned. This function guarantees that in case of an
831  * unclean reboot the old contents is preserved. Returns zero in case of
832  * success and a negative error code in case of failure.
833  *
834  * UBI reserves one LEB for the "atomic LEB change" operation, so only one
835  * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
836  */
837 int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
838 			      int lnum, const void *buf, int len)
839 {
840 	int err, pnum, tries = 0, vol_id = vol->vol_id;
841 	struct ubi_vid_hdr *vid_hdr;
842 	uint32_t crc;
843 
844 	if (ubi->ro_mode)
845 		return -EROFS;
846 
847 	if (len == 0) {
848 		/*
849 		 * Special case when data length is zero. In this case the LEB
850 		 * has to be unmapped and mapped somewhere else.
851 		 */
852 		err = ubi_eba_unmap_leb(ubi, vol, lnum);
853 		if (err)
854 			return err;
855 		return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
856 	}
857 
858 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
859 	if (!vid_hdr)
860 		return -ENOMEM;
861 
862 	mutex_lock(&ubi->alc_mutex);
863 	err = leb_write_lock(ubi, vol_id, lnum);
864 	if (err)
865 		goto out_mutex;
866 
867 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
868 	vid_hdr->vol_id = cpu_to_be32(vol_id);
869 	vid_hdr->lnum = cpu_to_be32(lnum);
870 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
871 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
872 
873 	crc = crc32(UBI_CRC32_INIT, buf, len);
874 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
875 	vid_hdr->data_size = cpu_to_be32(len);
876 	vid_hdr->copy_flag = 1;
877 	vid_hdr->data_crc = cpu_to_be32(crc);
878 
879 retry:
880 	pnum = ubi_wl_get_peb(ubi);
881 	if (pnum < 0) {
882 		err = pnum;
883 		goto out_leb_unlock;
884 	}
885 
886 	dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
887 		vol_id, lnum, vol->eba_tbl[lnum], pnum);
888 
889 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
890 	if (err) {
891 		ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
892 			 vol_id, lnum, pnum);
893 		goto write_error;
894 	}
895 
896 	err = ubi_io_write_data(ubi, buf, pnum, 0, len);
897 	if (err) {
898 		ubi_warn("failed to write %d bytes of data to PEB %d",
899 			 len, pnum);
900 		goto write_error;
901 	}
902 
903 	if (vol->eba_tbl[lnum] >= 0) {
904 		err = ubi_wl_put_peb(ubi, vol_id, lnum, vol->eba_tbl[lnum], 0);
905 		if (err)
906 			goto out_leb_unlock;
907 	}
908 
909 	down_read(&ubi->fm_sem);
910 	vol->eba_tbl[lnum] = pnum;
911 	up_read(&ubi->fm_sem);
912 
913 out_leb_unlock:
914 	leb_write_unlock(ubi, vol_id, lnum);
915 out_mutex:
916 	mutex_unlock(&ubi->alc_mutex);
917 	ubi_free_vid_hdr(ubi, vid_hdr);
918 	return err;
919 
920 write_error:
921 	if (err != -EIO || !ubi->bad_allowed) {
922 		/*
923 		 * This flash device does not admit of bad eraseblocks or
924 		 * something nasty and unexpected happened. Switch to read-only
925 		 * mode just in case.
926 		 */
927 		ubi_ro_mode(ubi);
928 		goto out_leb_unlock;
929 	}
930 
931 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
932 	if (err || ++tries > UBI_IO_RETRIES) {
933 		ubi_ro_mode(ubi);
934 		goto out_leb_unlock;
935 	}
936 
937 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
938 	ubi_msg("try another PEB");
939 	goto retry;
940 }
941 
942 /**
943  * is_error_sane - check whether a read error is sane.
944  * @err: code of the error happened during reading
945  *
946  * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
947  * cannot read data from the target PEB (an error @err happened). If the error
948  * code is sane, then we treat this error as non-fatal. Otherwise the error is
949  * fatal and UBI will be switched to R/O mode later.
950  *
951  * The idea is that we try not to switch to R/O mode if the read error is
952  * something which suggests there was a real read problem. E.g., %-EIO. Or a
953  * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
954  * mode, simply because we do not know what happened at the MTD level, and we
955  * cannot handle this. E.g., the underlying driver may have become crazy, and
956  * it is safer to switch to R/O mode to preserve the data.
957  *
958  * And bear in mind, this is about reading from the target PEB, i.e. the PEB
959  * which we have just written.
960  */
961 static int is_error_sane(int err)
962 {
963 	if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
964 	    err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT)
965 		return 0;
966 	return 1;
967 }
968 
969 /**
970  * ubi_eba_copy_leb - copy logical eraseblock.
971  * @ubi: UBI device description object
972  * @from: physical eraseblock number from where to copy
973  * @to: physical eraseblock number where to copy
974  * @vid_hdr: VID header of the @from physical eraseblock
975  *
976  * This function copies logical eraseblock from physical eraseblock @from to
977  * physical eraseblock @to. The @vid_hdr buffer may be changed by this
978  * function. Returns:
979  *   o %0 in case of success;
980  *   o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
981  *   o a negative error code in case of failure.
982  */
983 int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
984 		     struct ubi_vid_hdr *vid_hdr)
985 {
986 	int err, vol_id, lnum, data_size, aldata_size, idx;
987 	struct ubi_volume *vol;
988 	uint32_t crc;
989 
990 	vol_id = be32_to_cpu(vid_hdr->vol_id);
991 	lnum = be32_to_cpu(vid_hdr->lnum);
992 
993 	dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
994 
995 	if (vid_hdr->vol_type == UBI_VID_STATIC) {
996 		data_size = be32_to_cpu(vid_hdr->data_size);
997 		aldata_size = ALIGN(data_size, ubi->min_io_size);
998 	} else
999 		data_size = aldata_size =
1000 			    ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
1001 
1002 	idx = vol_id2idx(ubi, vol_id);
1003 	spin_lock(&ubi->volumes_lock);
1004 	/*
1005 	 * Note, we may race with volume deletion, which means that the volume
1006 	 * this logical eraseblock belongs to might be being deleted. Since the
1007 	 * volume deletion un-maps all the volume's logical eraseblocks, it will
1008 	 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1009 	 */
1010 	vol = ubi->volumes[idx];
1011 	spin_unlock(&ubi->volumes_lock);
1012 	if (!vol) {
1013 		/* No need to do further work, cancel */
1014 		dbg_wl("volume %d is being removed, cancel", vol_id);
1015 		return MOVE_CANCEL_RACE;
1016 	}
1017 
1018 	/*
1019 	 * We do not want anybody to write to this logical eraseblock while we
1020 	 * are moving it, so lock it.
1021 	 *
1022 	 * Note, we are using non-waiting locking here, because we cannot sleep
1023 	 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1024 	 * unmapping the LEB which is mapped to the PEB we are going to move
1025 	 * (@from). This task locks the LEB and goes sleep in the
1026 	 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1027 	 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1028 	 * LEB is already locked, we just do not move it and return
1029 	 * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
1030 	 * we do not know the reasons of the contention - it may be just a
1031 	 * normal I/O on this LEB, so we want to re-try.
1032 	 */
1033 	err = leb_write_trylock(ubi, vol_id, lnum);
1034 	if (err) {
1035 		dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
1036 		return MOVE_RETRY;
1037 	}
1038 
1039 	/*
1040 	 * The LEB might have been put meanwhile, and the task which put it is
1041 	 * probably waiting on @ubi->move_mutex. No need to continue the work,
1042 	 * cancel it.
1043 	 */
1044 	if (vol->eba_tbl[lnum] != from) {
1045 		dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel",
1046 		       vol_id, lnum, from, vol->eba_tbl[lnum]);
1047 		err = MOVE_CANCEL_RACE;
1048 		goto out_unlock_leb;
1049 	}
1050 
1051 	/*
1052 	 * OK, now the LEB is locked and we can safely start moving it. Since
1053 	 * this function utilizes the @ubi->peb_buf buffer which is shared
1054 	 * with some other functions - we lock the buffer by taking the
1055 	 * @ubi->buf_mutex.
1056 	 */
1057 	mutex_lock(&ubi->buf_mutex);
1058 	dbg_wl("read %d bytes of data", aldata_size);
1059 	err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size);
1060 	if (err && err != UBI_IO_BITFLIPS) {
1061 		ubi_warn("error %d while reading data from PEB %d",
1062 			 err, from);
1063 		err = MOVE_SOURCE_RD_ERR;
1064 		goto out_unlock_buf;
1065 	}
1066 
1067 	/*
1068 	 * Now we have got to calculate how much data we have to copy. In
1069 	 * case of a static volume it is fairly easy - the VID header contains
1070 	 * the data size. In case of a dynamic volume it is more difficult - we
1071 	 * have to read the contents, cut 0xFF bytes from the end and copy only
1072 	 * the first part. We must do this to avoid writing 0xFF bytes as it
1073 	 * may have some side-effects. And not only this. It is important not
1074 	 * to include those 0xFFs to CRC because later the they may be filled
1075 	 * by data.
1076 	 */
1077 	if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1078 		aldata_size = data_size =
1079 			ubi_calc_data_len(ubi, ubi->peb_buf, data_size);
1080 
1081 	cond_resched();
1082 	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
1083 	cond_resched();
1084 
1085 	/*
1086 	 * It may turn out to be that the whole @from physical eraseblock
1087 	 * contains only 0xFF bytes. Then we have to only write the VID header
1088 	 * and do not write any data. This also means we should not set
1089 	 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1090 	 */
1091 	if (data_size > 0) {
1092 		vid_hdr->copy_flag = 1;
1093 		vid_hdr->data_size = cpu_to_be32(data_size);
1094 		vid_hdr->data_crc = cpu_to_be32(crc);
1095 	}
1096 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1097 
1098 	err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
1099 	if (err) {
1100 		if (err == -EIO)
1101 			err = MOVE_TARGET_WR_ERR;
1102 		goto out_unlock_buf;
1103 	}
1104 
1105 	cond_resched();
1106 
1107 	/* Read the VID header back and check if it was written correctly */
1108 	err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
1109 	if (err) {
1110 		if (err != UBI_IO_BITFLIPS) {
1111 			ubi_warn("error %d while reading VID header back from PEB %d",
1112 				 err, to);
1113 			if (is_error_sane(err))
1114 				err = MOVE_TARGET_RD_ERR;
1115 		} else
1116 			err = MOVE_TARGET_BITFLIPS;
1117 		goto out_unlock_buf;
1118 	}
1119 
1120 	if (data_size > 0) {
1121 		err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1122 		if (err) {
1123 			if (err == -EIO)
1124 				err = MOVE_TARGET_WR_ERR;
1125 			goto out_unlock_buf;
1126 		}
1127 
1128 		cond_resched();
1129 
1130 		/*
1131 		 * We've written the data and are going to read it back to make
1132 		 * sure it was written correctly.
1133 		 */
1134 		memset(ubi->peb_buf, 0xFF, aldata_size);
1135 		err = ubi_io_read_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1136 		if (err) {
1137 			if (err != UBI_IO_BITFLIPS) {
1138 				ubi_warn("error %d while reading data back from PEB %d",
1139 					 err, to);
1140 				if (is_error_sane(err))
1141 					err = MOVE_TARGET_RD_ERR;
1142 			} else
1143 				err = MOVE_TARGET_BITFLIPS;
1144 			goto out_unlock_buf;
1145 		}
1146 
1147 		cond_resched();
1148 
1149 		if (crc != crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size)) {
1150 			ubi_warn("read data back from PEB %d and it is different",
1151 				 to);
1152 			err = -EINVAL;
1153 			goto out_unlock_buf;
1154 		}
1155 	}
1156 
1157 	ubi_assert(vol->eba_tbl[lnum] == from);
1158 	down_read(&ubi->fm_sem);
1159 	vol->eba_tbl[lnum] = to;
1160 	up_read(&ubi->fm_sem);
1161 
1162 out_unlock_buf:
1163 	mutex_unlock(&ubi->buf_mutex);
1164 out_unlock_leb:
1165 	leb_write_unlock(ubi, vol_id, lnum);
1166 	return err;
1167 }
1168 
1169 /**
1170  * print_rsvd_warning - warn about not having enough reserved PEBs.
1171  * @ubi: UBI device description object
1172  *
1173  * This is a helper function for 'ubi_eba_init()' which is called when UBI
1174  * cannot reserve enough PEBs for bad block handling. This function makes a
1175  * decision whether we have to print a warning or not. The algorithm is as
1176  * follows:
1177  *   o if this is a new UBI image, then just print the warning
1178  *   o if this is an UBI image which has already been used for some time, print
1179  *     a warning only if we can reserve less than 10% of the expected amount of
1180  *     the reserved PEB.
1181  *
1182  * The idea is that when UBI is used, PEBs become bad, and the reserved pool
1183  * of PEBs becomes smaller, which is normal and we do not want to scare users
1184  * with a warning every time they attach the MTD device. This was an issue
1185  * reported by real users.
1186  */
1187 static void print_rsvd_warning(struct ubi_device *ubi,
1188 			       struct ubi_attach_info *ai)
1189 {
1190 	/*
1191 	 * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
1192 	 * large number to distinguish between newly flashed and used images.
1193 	 */
1194 	if (ai->max_sqnum > (1 << 18)) {
1195 		int min = ubi->beb_rsvd_level / 10;
1196 
1197 		if (!min)
1198 			min = 1;
1199 		if (ubi->beb_rsvd_pebs > min)
1200 			return;
1201 	}
1202 
1203 	ubi_warn("cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d",
1204 		 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1205 	if (ubi->corr_peb_count)
1206 		ubi_warn("%d PEBs are corrupted and not used",
1207 			 ubi->corr_peb_count);
1208 }
1209 
1210 /**
1211  * self_check_eba - run a self check on the EBA table constructed by fastmap.
1212  * @ubi: UBI device description object
1213  * @ai_fastmap: UBI attach info object created by fastmap
1214  * @ai_scan: UBI attach info object created by scanning
1215  *
1216  * Returns < 0 in case of an internal error, 0 otherwise.
1217  * If a bad EBA table entry was found it will be printed out and
1218  * ubi_assert() triggers.
1219  */
1220 int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap,
1221 		   struct ubi_attach_info *ai_scan)
1222 {
1223 	int i, j, num_volumes, ret = 0;
1224 	int **scan_eba, **fm_eba;
1225 	struct ubi_ainf_volume *av;
1226 	struct ubi_volume *vol;
1227 	struct ubi_ainf_peb *aeb;
1228 	struct rb_node *rb;
1229 
1230 	num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1231 
1232 	scan_eba = kmalloc(sizeof(*scan_eba) * num_volumes, GFP_KERNEL);
1233 	if (!scan_eba)
1234 		return -ENOMEM;
1235 
1236 	fm_eba = kmalloc(sizeof(*fm_eba) * num_volumes, GFP_KERNEL);
1237 	if (!fm_eba) {
1238 		kfree(scan_eba);
1239 		return -ENOMEM;
1240 	}
1241 
1242 	for (i = 0; i < num_volumes; i++) {
1243 		vol = ubi->volumes[i];
1244 		if (!vol)
1245 			continue;
1246 
1247 		scan_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**scan_eba),
1248 				      GFP_KERNEL);
1249 		if (!scan_eba[i]) {
1250 			ret = -ENOMEM;
1251 			goto out_free;
1252 		}
1253 
1254 		fm_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**fm_eba),
1255 				    GFP_KERNEL);
1256 		if (!fm_eba[i]) {
1257 			ret = -ENOMEM;
1258 			goto out_free;
1259 		}
1260 
1261 		for (j = 0; j < vol->reserved_pebs; j++)
1262 			scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED;
1263 
1264 		av = ubi_find_av(ai_scan, idx2vol_id(ubi, i));
1265 		if (!av)
1266 			continue;
1267 
1268 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1269 			scan_eba[i][aeb->lnum] = aeb->pnum;
1270 
1271 		av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i));
1272 		if (!av)
1273 			continue;
1274 
1275 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1276 			fm_eba[i][aeb->lnum] = aeb->pnum;
1277 
1278 		for (j = 0; j < vol->reserved_pebs; j++) {
1279 			if (scan_eba[i][j] != fm_eba[i][j]) {
1280 				if (scan_eba[i][j] == UBI_LEB_UNMAPPED ||
1281 					fm_eba[i][j] == UBI_LEB_UNMAPPED)
1282 					continue;
1283 
1284 				ubi_err("LEB:%i:%i is PEB:%i instead of %i!",
1285 					vol->vol_id, i, fm_eba[i][j],
1286 					scan_eba[i][j]);
1287 				ubi_assert(0);
1288 			}
1289 		}
1290 	}
1291 
1292 out_free:
1293 	for (i = 0; i < num_volumes; i++) {
1294 		if (!ubi->volumes[i])
1295 			continue;
1296 
1297 		kfree(scan_eba[i]);
1298 		kfree(fm_eba[i]);
1299 	}
1300 
1301 	kfree(scan_eba);
1302 	kfree(fm_eba);
1303 	return ret;
1304 }
1305 
1306 /**
1307  * ubi_eba_init - initialize the EBA sub-system using attaching information.
1308  * @ubi: UBI device description object
1309  * @ai: attaching information
1310  *
1311  * This function returns zero in case of success and a negative error code in
1312  * case of failure.
1313  */
1314 int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1315 {
1316 	int i, j, err, num_volumes;
1317 	struct ubi_ainf_volume *av;
1318 	struct ubi_volume *vol;
1319 	struct ubi_ainf_peb *aeb;
1320 	struct rb_node *rb;
1321 
1322 	dbg_eba("initialize EBA sub-system");
1323 
1324 	spin_lock_init(&ubi->ltree_lock);
1325 	mutex_init(&ubi->alc_mutex);
1326 	ubi->ltree = RB_ROOT;
1327 
1328 	ubi->global_sqnum = ai->max_sqnum + 1;
1329 	num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1330 
1331 	for (i = 0; i < num_volumes; i++) {
1332 		vol = ubi->volumes[i];
1333 		if (!vol)
1334 			continue;
1335 
1336 		cond_resched();
1337 
1338 		vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
1339 				       GFP_KERNEL);
1340 		if (!vol->eba_tbl) {
1341 			err = -ENOMEM;
1342 			goto out_free;
1343 		}
1344 
1345 		for (j = 0; j < vol->reserved_pebs; j++)
1346 			vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
1347 
1348 		av = ubi_find_av(ai, idx2vol_id(ubi, i));
1349 		if (!av)
1350 			continue;
1351 
1352 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
1353 			if (aeb->lnum >= vol->reserved_pebs)
1354 				/*
1355 				 * This may happen in case of an unclean reboot
1356 				 * during re-size.
1357 				 */
1358 				ubi_move_aeb_to_list(av, aeb, &ai->erase);
1359 			vol->eba_tbl[aeb->lnum] = aeb->pnum;
1360 		}
1361 	}
1362 
1363 	if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1364 		ubi_err("no enough physical eraseblocks (%d, need %d)",
1365 			ubi->avail_pebs, EBA_RESERVED_PEBS);
1366 		if (ubi->corr_peb_count)
1367 			ubi_err("%d PEBs are corrupted and not used",
1368 				ubi->corr_peb_count);
1369 		err = -ENOSPC;
1370 		goto out_free;
1371 	}
1372 	ubi->avail_pebs -= EBA_RESERVED_PEBS;
1373 	ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1374 
1375 	if (ubi->bad_allowed) {
1376 		ubi_calculate_reserved(ubi);
1377 
1378 		if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1379 			/* No enough free physical eraseblocks */
1380 			ubi->beb_rsvd_pebs = ubi->avail_pebs;
1381 			print_rsvd_warning(ubi, ai);
1382 		} else
1383 			ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1384 
1385 		ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1386 		ubi->rsvd_pebs  += ubi->beb_rsvd_pebs;
1387 	}
1388 
1389 	dbg_eba("EBA sub-system is initialized");
1390 	return 0;
1391 
1392 out_free:
1393 	for (i = 0; i < num_volumes; i++) {
1394 		if (!ubi->volumes[i])
1395 			continue;
1396 		kfree(ubi->volumes[i]->eba_tbl);
1397 		ubi->volumes[i]->eba_tbl = NULL;
1398 	}
1399 	return err;
1400 }
1401