xref: /openbmc/u-boot/drivers/mtd/ubi/eba.c (revision 3dc23f7852158fafde9eb736060f9e8131997f19)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * SPDX-License-Identifier:	GPL-2.0+
5  *
6  * Author: Artem Bityutskiy (Битюцкий Артём)
7  */
8 
9 /*
10  * The UBI Eraseblock Association (EBA) sub-system.
11  *
12  * This sub-system is responsible for I/O to/from logical eraseblock.
13  *
14  * Although in this implementation the EBA table is fully kept and managed in
15  * RAM, which assumes poor scalability, it might be (partially) maintained on
16  * flash in future implementations.
17  *
18  * The EBA sub-system implements per-logical eraseblock locking. Before
19  * accessing a logical eraseblock it is locked for reading or writing. The
20  * per-logical eraseblock locking is implemented by means of the lock tree. The
21  * lock tree is an RB-tree which refers all the currently locked logical
22  * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
23  * They are indexed by (@vol_id, @lnum) pairs.
24  *
25  * EBA also maintains the global sequence counter which is incremented each
26  * time a logical eraseblock is mapped to a physical eraseblock and it is
27  * stored in the volume identifier header. This means that each VID header has
28  * a unique sequence number. The sequence number is only increased an we assume
29  * 64 bits is enough to never overflow.
30  */
31 
32 #ifndef __UBOOT__
33 #include <linux/slab.h>
34 #include <linux/crc32.h>
35 #else
36 #include <ubi_uboot.h>
37 #endif
38 
39 #include <linux/err.h>
40 #include "ubi.h"
41 
42 /* Number of physical eraseblocks reserved for atomic LEB change operation */
43 #define EBA_RESERVED_PEBS 1
44 
45 /**
46  * next_sqnum - get next sequence number.
47  * @ubi: UBI device description object
48  *
49  * This function returns next sequence number to use, which is just the current
50  * global sequence counter value. It also increases the global sequence
51  * counter.
52  */
53 unsigned long long ubi_next_sqnum(struct ubi_device *ubi)
54 {
55 	unsigned long long sqnum;
56 
57 	spin_lock(&ubi->ltree_lock);
58 	sqnum = ubi->global_sqnum++;
59 	spin_unlock(&ubi->ltree_lock);
60 
61 	return sqnum;
62 }
63 
64 /**
65  * ubi_get_compat - get compatibility flags of a volume.
66  * @ubi: UBI device description object
67  * @vol_id: volume ID
68  *
69  * This function returns compatibility flags for an internal volume. User
70  * volumes have no compatibility flags, so %0 is returned.
71  */
72 static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
73 {
74 	if (vol_id == UBI_LAYOUT_VOLUME_ID)
75 		return UBI_LAYOUT_VOLUME_COMPAT;
76 	return 0;
77 }
78 
79 /**
80  * ltree_lookup - look up the lock tree.
81  * @ubi: UBI device description object
82  * @vol_id: volume ID
83  * @lnum: logical eraseblock number
84  *
85  * This function returns a pointer to the corresponding &struct ubi_ltree_entry
86  * object if the logical eraseblock is locked and %NULL if it is not.
87  * @ubi->ltree_lock has to be locked.
88  */
89 static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
90 					    int lnum)
91 {
92 	struct rb_node *p;
93 
94 	p = ubi->ltree.rb_node;
95 	while (p) {
96 		struct ubi_ltree_entry *le;
97 
98 		le = rb_entry(p, struct ubi_ltree_entry, rb);
99 
100 		if (vol_id < le->vol_id)
101 			p = p->rb_left;
102 		else if (vol_id > le->vol_id)
103 			p = p->rb_right;
104 		else {
105 			if (lnum < le->lnum)
106 				p = p->rb_left;
107 			else if (lnum > le->lnum)
108 				p = p->rb_right;
109 			else
110 				return le;
111 		}
112 	}
113 
114 	return NULL;
115 }
116 
117 /**
118  * ltree_add_entry - add new entry to the lock tree.
119  * @ubi: UBI device description object
120  * @vol_id: volume ID
121  * @lnum: logical eraseblock number
122  *
123  * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
124  * lock tree. If such entry is already there, its usage counter is increased.
125  * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
126  * failed.
127  */
128 static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
129 					       int vol_id, int lnum)
130 {
131 	struct ubi_ltree_entry *le, *le1, *le_free;
132 
133 	le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
134 	if (!le)
135 		return ERR_PTR(-ENOMEM);
136 
137 	le->users = 0;
138 	init_rwsem(&le->mutex);
139 	le->vol_id = vol_id;
140 	le->lnum = lnum;
141 
142 	spin_lock(&ubi->ltree_lock);
143 	le1 = ltree_lookup(ubi, vol_id, lnum);
144 
145 	if (le1) {
146 		/*
147 		 * This logical eraseblock is already locked. The newly
148 		 * allocated lock entry is not needed.
149 		 */
150 		le_free = le;
151 		le = le1;
152 	} else {
153 		struct rb_node **p, *parent = NULL;
154 
155 		/*
156 		 * No lock entry, add the newly allocated one to the
157 		 * @ubi->ltree RB-tree.
158 		 */
159 		le_free = NULL;
160 
161 		p = &ubi->ltree.rb_node;
162 		while (*p) {
163 			parent = *p;
164 			le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
165 
166 			if (vol_id < le1->vol_id)
167 				p = &(*p)->rb_left;
168 			else if (vol_id > le1->vol_id)
169 				p = &(*p)->rb_right;
170 			else {
171 				ubi_assert(lnum != le1->lnum);
172 				if (lnum < le1->lnum)
173 					p = &(*p)->rb_left;
174 				else
175 					p = &(*p)->rb_right;
176 			}
177 		}
178 
179 		rb_link_node(&le->rb, parent, p);
180 		rb_insert_color(&le->rb, &ubi->ltree);
181 	}
182 	le->users += 1;
183 	spin_unlock(&ubi->ltree_lock);
184 
185 	kfree(le_free);
186 	return le;
187 }
188 
189 /**
190  * leb_read_lock - lock logical eraseblock for reading.
191  * @ubi: UBI device description object
192  * @vol_id: volume ID
193  * @lnum: logical eraseblock number
194  *
195  * This function locks a logical eraseblock for reading. Returns zero in case
196  * of success and a negative error code in case of failure.
197  */
198 static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
199 {
200 	struct ubi_ltree_entry *le;
201 
202 	le = ltree_add_entry(ubi, vol_id, lnum);
203 	if (IS_ERR(le))
204 		return PTR_ERR(le);
205 	down_read(&le->mutex);
206 	return 0;
207 }
208 
209 /**
210  * leb_read_unlock - unlock logical eraseblock.
211  * @ubi: UBI device description object
212  * @vol_id: volume ID
213  * @lnum: logical eraseblock number
214  */
215 static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
216 {
217 	struct ubi_ltree_entry *le;
218 
219 	spin_lock(&ubi->ltree_lock);
220 	le = ltree_lookup(ubi, vol_id, lnum);
221 	le->users -= 1;
222 	ubi_assert(le->users >= 0);
223 	up_read(&le->mutex);
224 	if (le->users == 0) {
225 		rb_erase(&le->rb, &ubi->ltree);
226 		kfree(le);
227 	}
228 	spin_unlock(&ubi->ltree_lock);
229 }
230 
231 /**
232  * leb_write_lock - lock logical eraseblock for writing.
233  * @ubi: UBI device description object
234  * @vol_id: volume ID
235  * @lnum: logical eraseblock number
236  *
237  * This function locks a logical eraseblock for writing. Returns zero in case
238  * of success and a negative error code in case of failure.
239  */
240 static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
241 {
242 	struct ubi_ltree_entry *le;
243 
244 	le = ltree_add_entry(ubi, vol_id, lnum);
245 	if (IS_ERR(le))
246 		return PTR_ERR(le);
247 	down_write(&le->mutex);
248 	return 0;
249 }
250 
251 /**
252  * leb_write_lock - lock logical eraseblock for writing.
253  * @ubi: UBI device description object
254  * @vol_id: volume ID
255  * @lnum: logical eraseblock number
256  *
257  * This function locks a logical eraseblock for writing if there is no
258  * contention and does nothing if there is contention. Returns %0 in case of
259  * success, %1 in case of contention, and and a negative error code in case of
260  * failure.
261  */
262 static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
263 {
264 	struct ubi_ltree_entry *le;
265 
266 	le = ltree_add_entry(ubi, vol_id, lnum);
267 	if (IS_ERR(le))
268 		return PTR_ERR(le);
269 	if (down_write_trylock(&le->mutex))
270 		return 0;
271 
272 	/* Contention, cancel */
273 	spin_lock(&ubi->ltree_lock);
274 	le->users -= 1;
275 	ubi_assert(le->users >= 0);
276 	if (le->users == 0) {
277 		rb_erase(&le->rb, &ubi->ltree);
278 		kfree(le);
279 	}
280 	spin_unlock(&ubi->ltree_lock);
281 
282 	return 1;
283 }
284 
285 /**
286  * leb_write_unlock - unlock logical eraseblock.
287  * @ubi: UBI device description object
288  * @vol_id: volume ID
289  * @lnum: logical eraseblock number
290  */
291 static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
292 {
293 	struct ubi_ltree_entry *le;
294 
295 	spin_lock(&ubi->ltree_lock);
296 	le = ltree_lookup(ubi, vol_id, lnum);
297 	le->users -= 1;
298 	ubi_assert(le->users >= 0);
299 	up_write(&le->mutex);
300 	if (le->users == 0) {
301 		rb_erase(&le->rb, &ubi->ltree);
302 		kfree(le);
303 	}
304 	spin_unlock(&ubi->ltree_lock);
305 }
306 
307 /**
308  * ubi_eba_unmap_leb - un-map logical eraseblock.
309  * @ubi: UBI device description object
310  * @vol: volume description object
311  * @lnum: logical eraseblock number
312  *
313  * This function un-maps logical eraseblock @lnum and schedules corresponding
314  * physical eraseblock for erasure. Returns zero in case of success and a
315  * negative error code in case of failure.
316  */
317 int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
318 		      int lnum)
319 {
320 	int err, pnum, vol_id = vol->vol_id;
321 
322 	if (ubi->ro_mode)
323 		return -EROFS;
324 
325 	err = leb_write_lock(ubi, vol_id, lnum);
326 	if (err)
327 		return err;
328 
329 	pnum = vol->eba_tbl[lnum];
330 	if (pnum < 0)
331 		/* This logical eraseblock is already unmapped */
332 		goto out_unlock;
333 
334 	dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
335 
336 	down_read(&ubi->fm_sem);
337 	vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
338 	up_read(&ubi->fm_sem);
339 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0);
340 
341 out_unlock:
342 	leb_write_unlock(ubi, vol_id, lnum);
343 	return err;
344 }
345 
346 /**
347  * ubi_eba_read_leb - read data.
348  * @ubi: UBI device description object
349  * @vol: volume description object
350  * @lnum: logical eraseblock number
351  * @buf: buffer to store the read data
352  * @offset: offset from where to read
353  * @len: how many bytes to read
354  * @check: data CRC check flag
355  *
356  * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
357  * bytes. The @check flag only makes sense for static volumes and forces
358  * eraseblock data CRC checking.
359  *
360  * In case of success this function returns zero. In case of a static volume,
361  * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
362  * returned for any volume type if an ECC error was detected by the MTD device
363  * driver. Other negative error cored may be returned in case of other errors.
364  */
365 int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
366 		     void *buf, int offset, int len, int check)
367 {
368 	int err, pnum, scrub = 0, vol_id = vol->vol_id;
369 	struct ubi_vid_hdr *vid_hdr;
370 	uint32_t uninitialized_var(crc);
371 
372 	err = leb_read_lock(ubi, vol_id, lnum);
373 	if (err)
374 		return err;
375 
376 	pnum = vol->eba_tbl[lnum];
377 	if (pnum < 0) {
378 		/*
379 		 * The logical eraseblock is not mapped, fill the whole buffer
380 		 * with 0xFF bytes. The exception is static volumes for which
381 		 * it is an error to read unmapped logical eraseblocks.
382 		 */
383 		dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
384 			len, offset, vol_id, lnum);
385 		leb_read_unlock(ubi, vol_id, lnum);
386 		ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
387 		memset(buf, 0xFF, len);
388 		return 0;
389 	}
390 
391 	dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
392 		len, offset, vol_id, lnum, pnum);
393 
394 	if (vol->vol_type == UBI_DYNAMIC_VOLUME)
395 		check = 0;
396 
397 retry:
398 	if (check) {
399 		vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
400 		if (!vid_hdr) {
401 			err = -ENOMEM;
402 			goto out_unlock;
403 		}
404 
405 		err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
406 		if (err && err != UBI_IO_BITFLIPS) {
407 			if (err > 0) {
408 				/*
409 				 * The header is either absent or corrupted.
410 				 * The former case means there is a bug -
411 				 * switch to read-only mode just in case.
412 				 * The latter case means a real corruption - we
413 				 * may try to recover data. FIXME: but this is
414 				 * not implemented.
415 				 */
416 				if (err == UBI_IO_BAD_HDR_EBADMSG ||
417 				    err == UBI_IO_BAD_HDR) {
418 					ubi_warn("corrupted VID header at PEB %d, LEB %d:%d",
419 						 pnum, vol_id, lnum);
420 					err = -EBADMSG;
421 				} else
422 					ubi_ro_mode(ubi);
423 			}
424 			goto out_free;
425 		} else if (err == UBI_IO_BITFLIPS)
426 			scrub = 1;
427 
428 		ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
429 		ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
430 
431 		crc = be32_to_cpu(vid_hdr->data_crc);
432 		ubi_free_vid_hdr(ubi, vid_hdr);
433 	}
434 
435 	err = ubi_io_read_data(ubi, buf, pnum, offset, len);
436 	if (err) {
437 		if (err == UBI_IO_BITFLIPS) {
438 			scrub = 1;
439 			err = 0;
440 		} else if (mtd_is_eccerr(err)) {
441 			if (vol->vol_type == UBI_DYNAMIC_VOLUME)
442 				goto out_unlock;
443 			scrub = 1;
444 			if (!check) {
445 				ubi_msg("force data checking");
446 				check = 1;
447 				goto retry;
448 			}
449 		} else
450 			goto out_unlock;
451 	}
452 
453 	if (check) {
454 		uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
455 		if (crc1 != crc) {
456 			ubi_warn("CRC error: calculated %#08x, must be %#08x",
457 				 crc1, crc);
458 			err = -EBADMSG;
459 			goto out_unlock;
460 		}
461 	}
462 
463 	if (scrub)
464 		err = ubi_wl_scrub_peb(ubi, pnum);
465 
466 	leb_read_unlock(ubi, vol_id, lnum);
467 	return err;
468 
469 out_free:
470 	ubi_free_vid_hdr(ubi, vid_hdr);
471 out_unlock:
472 	leb_read_unlock(ubi, vol_id, lnum);
473 	return err;
474 }
475 
476 /**
477  * recover_peb - recover from write failure.
478  * @ubi: UBI device description object
479  * @pnum: the physical eraseblock to recover
480  * @vol_id: volume ID
481  * @lnum: logical eraseblock number
482  * @buf: data which was not written because of the write failure
483  * @offset: offset of the failed write
484  * @len: how many bytes should have been written
485  *
486  * This function is called in case of a write failure and moves all good data
487  * from the potentially bad physical eraseblock to a good physical eraseblock.
488  * This function also writes the data which was not written due to the failure.
489  * Returns new physical eraseblock number in case of success, and a negative
490  * error code in case of failure.
491  */
492 static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
493 		       const void *buf, int offset, int len)
494 {
495 	int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
496 	struct ubi_volume *vol = ubi->volumes[idx];
497 	struct ubi_vid_hdr *vid_hdr;
498 
499 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
500 	if (!vid_hdr)
501 		return -ENOMEM;
502 
503 retry:
504 	new_pnum = ubi_wl_get_peb(ubi);
505 	if (new_pnum < 0) {
506 		ubi_free_vid_hdr(ubi, vid_hdr);
507 		return new_pnum;
508 	}
509 
510 	ubi_msg("recover PEB %d, move data to PEB %d", pnum, new_pnum);
511 
512 	err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
513 	if (err && err != UBI_IO_BITFLIPS) {
514 		if (err > 0)
515 			err = -EIO;
516 		goto out_put;
517 	}
518 
519 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
520 	err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
521 	if (err)
522 		goto write_error;
523 
524 	data_size = offset + len;
525 	mutex_lock(&ubi->buf_mutex);
526 	memset(ubi->peb_buf + offset, 0xFF, len);
527 
528 	/* Read everything before the area where the write failure happened */
529 	if (offset > 0) {
530 		err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset);
531 		if (err && err != UBI_IO_BITFLIPS)
532 			goto out_unlock;
533 	}
534 
535 	memcpy(ubi->peb_buf + offset, buf, len);
536 
537 	err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size);
538 	if (err) {
539 		mutex_unlock(&ubi->buf_mutex);
540 		goto write_error;
541 	}
542 
543 	mutex_unlock(&ubi->buf_mutex);
544 	ubi_free_vid_hdr(ubi, vid_hdr);
545 
546 	down_read(&ubi->fm_sem);
547 	vol->eba_tbl[lnum] = new_pnum;
548 	up_read(&ubi->fm_sem);
549 	ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
550 
551 	ubi_msg("data was successfully recovered");
552 	return 0;
553 
554 out_unlock:
555 	mutex_unlock(&ubi->buf_mutex);
556 out_put:
557 	ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
558 	ubi_free_vid_hdr(ubi, vid_hdr);
559 	return err;
560 
561 write_error:
562 	/*
563 	 * Bad luck? This physical eraseblock is bad too? Crud. Let's try to
564 	 * get another one.
565 	 */
566 	ubi_warn("failed to write to PEB %d", new_pnum);
567 	ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
568 	if (++tries > UBI_IO_RETRIES) {
569 		ubi_free_vid_hdr(ubi, vid_hdr);
570 		return err;
571 	}
572 	ubi_msg("try again");
573 	goto retry;
574 }
575 
576 /**
577  * ubi_eba_write_leb - write data to dynamic volume.
578  * @ubi: UBI device description object
579  * @vol: volume description object
580  * @lnum: logical eraseblock number
581  * @buf: the data to write
582  * @offset: offset within the logical eraseblock where to write
583  * @len: how many bytes to write
584  *
585  * This function writes data to logical eraseblock @lnum of a dynamic volume
586  * @vol. Returns zero in case of success and a negative error code in case
587  * of failure. In case of error, it is possible that something was still
588  * written to the flash media, but may be some garbage.
589  */
590 int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
591 		      const void *buf, int offset, int len)
592 {
593 	int err, pnum, tries = 0, vol_id = vol->vol_id;
594 	struct ubi_vid_hdr *vid_hdr;
595 
596 	if (ubi->ro_mode)
597 		return -EROFS;
598 
599 	err = leb_write_lock(ubi, vol_id, lnum);
600 	if (err)
601 		return err;
602 
603 	pnum = vol->eba_tbl[lnum];
604 	if (pnum >= 0) {
605 		dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
606 			len, offset, vol_id, lnum, pnum);
607 
608 		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
609 		if (err) {
610 			ubi_warn("failed to write data to PEB %d", pnum);
611 			if (err == -EIO && ubi->bad_allowed)
612 				err = recover_peb(ubi, pnum, vol_id, lnum, buf,
613 						  offset, len);
614 			if (err)
615 				ubi_ro_mode(ubi);
616 		}
617 		leb_write_unlock(ubi, vol_id, lnum);
618 		return err;
619 	}
620 
621 	/*
622 	 * The logical eraseblock is not mapped. We have to get a free physical
623 	 * eraseblock and write the volume identifier header there first.
624 	 */
625 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
626 	if (!vid_hdr) {
627 		leb_write_unlock(ubi, vol_id, lnum);
628 		return -ENOMEM;
629 	}
630 
631 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
632 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
633 	vid_hdr->vol_id = cpu_to_be32(vol_id);
634 	vid_hdr->lnum = cpu_to_be32(lnum);
635 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
636 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
637 
638 retry:
639 	pnum = ubi_wl_get_peb(ubi);
640 	if (pnum < 0) {
641 		ubi_free_vid_hdr(ubi, vid_hdr);
642 		leb_write_unlock(ubi, vol_id, lnum);
643 		return pnum;
644 	}
645 
646 	dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
647 		len, offset, vol_id, lnum, pnum);
648 
649 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
650 	if (err) {
651 		ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
652 			 vol_id, lnum, pnum);
653 		goto write_error;
654 	}
655 
656 	if (len) {
657 		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
658 		if (err) {
659 			ubi_warn("failed to write %d bytes at offset %d of LEB %d:%d, PEB %d",
660 				 len, offset, vol_id, lnum, pnum);
661 			goto write_error;
662 		}
663 	}
664 
665 	down_read(&ubi->fm_sem);
666 	vol->eba_tbl[lnum] = pnum;
667 	up_read(&ubi->fm_sem);
668 
669 	leb_write_unlock(ubi, vol_id, lnum);
670 	ubi_free_vid_hdr(ubi, vid_hdr);
671 	return 0;
672 
673 write_error:
674 	if (err != -EIO || !ubi->bad_allowed) {
675 		ubi_ro_mode(ubi);
676 		leb_write_unlock(ubi, vol_id, lnum);
677 		ubi_free_vid_hdr(ubi, vid_hdr);
678 		return err;
679 	}
680 
681 	/*
682 	 * Fortunately, this is the first write operation to this physical
683 	 * eraseblock, so just put it and request a new one. We assume that if
684 	 * this physical eraseblock went bad, the erase code will handle that.
685 	 */
686 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
687 	if (err || ++tries > UBI_IO_RETRIES) {
688 		ubi_ro_mode(ubi);
689 		leb_write_unlock(ubi, vol_id, lnum);
690 		ubi_free_vid_hdr(ubi, vid_hdr);
691 		return err;
692 	}
693 
694 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
695 	ubi_msg("try another PEB");
696 	goto retry;
697 }
698 
699 /**
700  * ubi_eba_write_leb_st - write data to static volume.
701  * @ubi: UBI device description object
702  * @vol: volume description object
703  * @lnum: logical eraseblock number
704  * @buf: data to write
705  * @len: how many bytes to write
706  * @used_ebs: how many logical eraseblocks will this volume contain
707  *
708  * This function writes data to logical eraseblock @lnum of static volume
709  * @vol. The @used_ebs argument should contain total number of logical
710  * eraseblock in this static volume.
711  *
712  * When writing to the last logical eraseblock, the @len argument doesn't have
713  * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
714  * to the real data size, although the @buf buffer has to contain the
715  * alignment. In all other cases, @len has to be aligned.
716  *
717  * It is prohibited to write more than once to logical eraseblocks of static
718  * volumes. This function returns zero in case of success and a negative error
719  * code in case of failure.
720  */
721 int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
722 			 int lnum, const void *buf, int len, int used_ebs)
723 {
724 	int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id;
725 	struct ubi_vid_hdr *vid_hdr;
726 	uint32_t crc;
727 
728 	if (ubi->ro_mode)
729 		return -EROFS;
730 
731 	if (lnum == used_ebs - 1)
732 		/* If this is the last LEB @len may be unaligned */
733 		len = ALIGN(data_size, ubi->min_io_size);
734 	else
735 		ubi_assert(!(len & (ubi->min_io_size - 1)));
736 
737 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
738 	if (!vid_hdr)
739 		return -ENOMEM;
740 
741 	err = leb_write_lock(ubi, vol_id, lnum);
742 	if (err) {
743 		ubi_free_vid_hdr(ubi, vid_hdr);
744 		return err;
745 	}
746 
747 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
748 	vid_hdr->vol_id = cpu_to_be32(vol_id);
749 	vid_hdr->lnum = cpu_to_be32(lnum);
750 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
751 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
752 
753 	crc = crc32(UBI_CRC32_INIT, buf, data_size);
754 	vid_hdr->vol_type = UBI_VID_STATIC;
755 	vid_hdr->data_size = cpu_to_be32(data_size);
756 	vid_hdr->used_ebs = cpu_to_be32(used_ebs);
757 	vid_hdr->data_crc = cpu_to_be32(crc);
758 
759 retry:
760 	pnum = ubi_wl_get_peb(ubi);
761 	if (pnum < 0) {
762 		ubi_free_vid_hdr(ubi, vid_hdr);
763 		leb_write_unlock(ubi, vol_id, lnum);
764 		return pnum;
765 	}
766 
767 	dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
768 		len, vol_id, lnum, pnum, used_ebs);
769 
770 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
771 	if (err) {
772 		ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
773 			 vol_id, lnum, pnum);
774 		goto write_error;
775 	}
776 
777 	err = ubi_io_write_data(ubi, buf, pnum, 0, len);
778 	if (err) {
779 		ubi_warn("failed to write %d bytes of data to PEB %d",
780 			 len, pnum);
781 		goto write_error;
782 	}
783 
784 	ubi_assert(vol->eba_tbl[lnum] < 0);
785 	down_read(&ubi->fm_sem);
786 	vol->eba_tbl[lnum] = pnum;
787 	up_read(&ubi->fm_sem);
788 
789 	leb_write_unlock(ubi, vol_id, lnum);
790 	ubi_free_vid_hdr(ubi, vid_hdr);
791 	return 0;
792 
793 write_error:
794 	if (err != -EIO || !ubi->bad_allowed) {
795 		/*
796 		 * This flash device does not admit of bad eraseblocks or
797 		 * something nasty and unexpected happened. Switch to read-only
798 		 * mode just in case.
799 		 */
800 		ubi_ro_mode(ubi);
801 		leb_write_unlock(ubi, vol_id, lnum);
802 		ubi_free_vid_hdr(ubi, vid_hdr);
803 		return err;
804 	}
805 
806 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
807 	if (err || ++tries > UBI_IO_RETRIES) {
808 		ubi_ro_mode(ubi);
809 		leb_write_unlock(ubi, vol_id, lnum);
810 		ubi_free_vid_hdr(ubi, vid_hdr);
811 		return err;
812 	}
813 
814 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
815 	ubi_msg("try another PEB");
816 	goto retry;
817 }
818 
819 /*
820  * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
821  * @ubi: UBI device description object
822  * @vol: volume description object
823  * @lnum: logical eraseblock number
824  * @buf: data to write
825  * @len: how many bytes to write
826  *
827  * This function changes the contents of a logical eraseblock atomically. @buf
828  * has to contain new logical eraseblock data, and @len - the length of the
829  * data, which has to be aligned. This function guarantees that in case of an
830  * unclean reboot the old contents is preserved. Returns zero in case of
831  * success and a negative error code in case of failure.
832  *
833  * UBI reserves one LEB for the "atomic LEB change" operation, so only one
834  * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
835  */
836 int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
837 			      int lnum, const void *buf, int len)
838 {
839 	int err, pnum, tries = 0, vol_id = vol->vol_id;
840 	struct ubi_vid_hdr *vid_hdr;
841 	uint32_t crc;
842 
843 	if (ubi->ro_mode)
844 		return -EROFS;
845 
846 	if (len == 0) {
847 		/*
848 		 * Special case when data length is zero. In this case the LEB
849 		 * has to be unmapped and mapped somewhere else.
850 		 */
851 		err = ubi_eba_unmap_leb(ubi, vol, lnum);
852 		if (err)
853 			return err;
854 		return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
855 	}
856 
857 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
858 	if (!vid_hdr)
859 		return -ENOMEM;
860 
861 	mutex_lock(&ubi->alc_mutex);
862 	err = leb_write_lock(ubi, vol_id, lnum);
863 	if (err)
864 		goto out_mutex;
865 
866 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
867 	vid_hdr->vol_id = cpu_to_be32(vol_id);
868 	vid_hdr->lnum = cpu_to_be32(lnum);
869 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
870 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
871 
872 	crc = crc32(UBI_CRC32_INIT, buf, len);
873 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
874 	vid_hdr->data_size = cpu_to_be32(len);
875 	vid_hdr->copy_flag = 1;
876 	vid_hdr->data_crc = cpu_to_be32(crc);
877 
878 retry:
879 	pnum = ubi_wl_get_peb(ubi);
880 	if (pnum < 0) {
881 		err = pnum;
882 		goto out_leb_unlock;
883 	}
884 
885 	dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
886 		vol_id, lnum, vol->eba_tbl[lnum], pnum);
887 
888 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
889 	if (err) {
890 		ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
891 			 vol_id, lnum, pnum);
892 		goto write_error;
893 	}
894 
895 	err = ubi_io_write_data(ubi, buf, pnum, 0, len);
896 	if (err) {
897 		ubi_warn("failed to write %d bytes of data to PEB %d",
898 			 len, pnum);
899 		goto write_error;
900 	}
901 
902 	if (vol->eba_tbl[lnum] >= 0) {
903 		err = ubi_wl_put_peb(ubi, vol_id, lnum, vol->eba_tbl[lnum], 0);
904 		if (err)
905 			goto out_leb_unlock;
906 	}
907 
908 	down_read(&ubi->fm_sem);
909 	vol->eba_tbl[lnum] = pnum;
910 	up_read(&ubi->fm_sem);
911 
912 out_leb_unlock:
913 	leb_write_unlock(ubi, vol_id, lnum);
914 out_mutex:
915 	mutex_unlock(&ubi->alc_mutex);
916 	ubi_free_vid_hdr(ubi, vid_hdr);
917 	return err;
918 
919 write_error:
920 	if (err != -EIO || !ubi->bad_allowed) {
921 		/*
922 		 * This flash device does not admit of bad eraseblocks or
923 		 * something nasty and unexpected happened. Switch to read-only
924 		 * mode just in case.
925 		 */
926 		ubi_ro_mode(ubi);
927 		goto out_leb_unlock;
928 	}
929 
930 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
931 	if (err || ++tries > UBI_IO_RETRIES) {
932 		ubi_ro_mode(ubi);
933 		goto out_leb_unlock;
934 	}
935 
936 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
937 	ubi_msg("try another PEB");
938 	goto retry;
939 }
940 
941 /**
942  * is_error_sane - check whether a read error is sane.
943  * @err: code of the error happened during reading
944  *
945  * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
946  * cannot read data from the target PEB (an error @err happened). If the error
947  * code is sane, then we treat this error as non-fatal. Otherwise the error is
948  * fatal and UBI will be switched to R/O mode later.
949  *
950  * The idea is that we try not to switch to R/O mode if the read error is
951  * something which suggests there was a real read problem. E.g., %-EIO. Or a
952  * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
953  * mode, simply because we do not know what happened at the MTD level, and we
954  * cannot handle this. E.g., the underlying driver may have become crazy, and
955  * it is safer to switch to R/O mode to preserve the data.
956  *
957  * And bear in mind, this is about reading from the target PEB, i.e. the PEB
958  * which we have just written.
959  */
960 static int is_error_sane(int err)
961 {
962 	if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
963 	    err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT)
964 		return 0;
965 	return 1;
966 }
967 
968 /**
969  * ubi_eba_copy_leb - copy logical eraseblock.
970  * @ubi: UBI device description object
971  * @from: physical eraseblock number from where to copy
972  * @to: physical eraseblock number where to copy
973  * @vid_hdr: VID header of the @from physical eraseblock
974  *
975  * This function copies logical eraseblock from physical eraseblock @from to
976  * physical eraseblock @to. The @vid_hdr buffer may be changed by this
977  * function. Returns:
978  *   o %0 in case of success;
979  *   o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
980  *   o a negative error code in case of failure.
981  */
982 int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
983 		     struct ubi_vid_hdr *vid_hdr)
984 {
985 	int err, vol_id, lnum, data_size, aldata_size, idx;
986 	struct ubi_volume *vol;
987 	uint32_t crc;
988 
989 	vol_id = be32_to_cpu(vid_hdr->vol_id);
990 	lnum = be32_to_cpu(vid_hdr->lnum);
991 
992 	dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
993 
994 	if (vid_hdr->vol_type == UBI_VID_STATIC) {
995 		data_size = be32_to_cpu(vid_hdr->data_size);
996 		aldata_size = ALIGN(data_size, ubi->min_io_size);
997 	} else
998 		data_size = aldata_size =
999 			    ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
1000 
1001 	idx = vol_id2idx(ubi, vol_id);
1002 	spin_lock(&ubi->volumes_lock);
1003 	/*
1004 	 * Note, we may race with volume deletion, which means that the volume
1005 	 * this logical eraseblock belongs to might be being deleted. Since the
1006 	 * volume deletion un-maps all the volume's logical eraseblocks, it will
1007 	 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1008 	 */
1009 	vol = ubi->volumes[idx];
1010 	spin_unlock(&ubi->volumes_lock);
1011 	if (!vol) {
1012 		/* No need to do further work, cancel */
1013 		dbg_wl("volume %d is being removed, cancel", vol_id);
1014 		return MOVE_CANCEL_RACE;
1015 	}
1016 
1017 	/*
1018 	 * We do not want anybody to write to this logical eraseblock while we
1019 	 * are moving it, so lock it.
1020 	 *
1021 	 * Note, we are using non-waiting locking here, because we cannot sleep
1022 	 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1023 	 * unmapping the LEB which is mapped to the PEB we are going to move
1024 	 * (@from). This task locks the LEB and goes sleep in the
1025 	 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1026 	 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1027 	 * LEB is already locked, we just do not move it and return
1028 	 * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
1029 	 * we do not know the reasons of the contention - it may be just a
1030 	 * normal I/O on this LEB, so we want to re-try.
1031 	 */
1032 	err = leb_write_trylock(ubi, vol_id, lnum);
1033 	if (err) {
1034 		dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
1035 		return MOVE_RETRY;
1036 	}
1037 
1038 	/*
1039 	 * The LEB might have been put meanwhile, and the task which put it is
1040 	 * probably waiting on @ubi->move_mutex. No need to continue the work,
1041 	 * cancel it.
1042 	 */
1043 	if (vol->eba_tbl[lnum] != from) {
1044 		dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel",
1045 		       vol_id, lnum, from, vol->eba_tbl[lnum]);
1046 		err = MOVE_CANCEL_RACE;
1047 		goto out_unlock_leb;
1048 	}
1049 
1050 	/*
1051 	 * OK, now the LEB is locked and we can safely start moving it. Since
1052 	 * this function utilizes the @ubi->peb_buf buffer which is shared
1053 	 * with some other functions - we lock the buffer by taking the
1054 	 * @ubi->buf_mutex.
1055 	 */
1056 	mutex_lock(&ubi->buf_mutex);
1057 	dbg_wl("read %d bytes of data", aldata_size);
1058 	err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size);
1059 	if (err && err != UBI_IO_BITFLIPS) {
1060 		ubi_warn("error %d while reading data from PEB %d",
1061 			 err, from);
1062 		err = MOVE_SOURCE_RD_ERR;
1063 		goto out_unlock_buf;
1064 	}
1065 
1066 	/*
1067 	 * Now we have got to calculate how much data we have to copy. In
1068 	 * case of a static volume it is fairly easy - the VID header contains
1069 	 * the data size. In case of a dynamic volume it is more difficult - we
1070 	 * have to read the contents, cut 0xFF bytes from the end and copy only
1071 	 * the first part. We must do this to avoid writing 0xFF bytes as it
1072 	 * may have some side-effects. And not only this. It is important not
1073 	 * to include those 0xFFs to CRC because later the they may be filled
1074 	 * by data.
1075 	 */
1076 	if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1077 		aldata_size = data_size =
1078 			ubi_calc_data_len(ubi, ubi->peb_buf, data_size);
1079 
1080 	cond_resched();
1081 	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
1082 	cond_resched();
1083 
1084 	/*
1085 	 * It may turn out to be that the whole @from physical eraseblock
1086 	 * contains only 0xFF bytes. Then we have to only write the VID header
1087 	 * and do not write any data. This also means we should not set
1088 	 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1089 	 */
1090 	if (data_size > 0) {
1091 		vid_hdr->copy_flag = 1;
1092 		vid_hdr->data_size = cpu_to_be32(data_size);
1093 		vid_hdr->data_crc = cpu_to_be32(crc);
1094 	}
1095 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1096 
1097 	err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
1098 	if (err) {
1099 		if (err == -EIO)
1100 			err = MOVE_TARGET_WR_ERR;
1101 		goto out_unlock_buf;
1102 	}
1103 
1104 	cond_resched();
1105 
1106 	/* Read the VID header back and check if it was written correctly */
1107 	err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
1108 	if (err) {
1109 		if (err != UBI_IO_BITFLIPS) {
1110 			ubi_warn("error %d while reading VID header back from PEB %d",
1111 				 err, to);
1112 			if (is_error_sane(err))
1113 				err = MOVE_TARGET_RD_ERR;
1114 		} else
1115 			err = MOVE_TARGET_BITFLIPS;
1116 		goto out_unlock_buf;
1117 	}
1118 
1119 	if (data_size > 0) {
1120 		err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1121 		if (err) {
1122 			if (err == -EIO)
1123 				err = MOVE_TARGET_WR_ERR;
1124 			goto out_unlock_buf;
1125 		}
1126 
1127 		cond_resched();
1128 
1129 		/*
1130 		 * We've written the data and are going to read it back to make
1131 		 * sure it was written correctly.
1132 		 */
1133 		memset(ubi->peb_buf, 0xFF, aldata_size);
1134 		err = ubi_io_read_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1135 		if (err) {
1136 			if (err != UBI_IO_BITFLIPS) {
1137 				ubi_warn("error %d while reading data back from PEB %d",
1138 					 err, to);
1139 				if (is_error_sane(err))
1140 					err = MOVE_TARGET_RD_ERR;
1141 			} else
1142 				err = MOVE_TARGET_BITFLIPS;
1143 			goto out_unlock_buf;
1144 		}
1145 
1146 		cond_resched();
1147 
1148 		if (crc != crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size)) {
1149 			ubi_warn("read data back from PEB %d and it is different",
1150 				 to);
1151 			err = -EINVAL;
1152 			goto out_unlock_buf;
1153 		}
1154 	}
1155 
1156 	ubi_assert(vol->eba_tbl[lnum] == from);
1157 	down_read(&ubi->fm_sem);
1158 	vol->eba_tbl[lnum] = to;
1159 	up_read(&ubi->fm_sem);
1160 
1161 out_unlock_buf:
1162 	mutex_unlock(&ubi->buf_mutex);
1163 out_unlock_leb:
1164 	leb_write_unlock(ubi, vol_id, lnum);
1165 	return err;
1166 }
1167 
1168 /**
1169  * print_rsvd_warning - warn about not having enough reserved PEBs.
1170  * @ubi: UBI device description object
1171  *
1172  * This is a helper function for 'ubi_eba_init()' which is called when UBI
1173  * cannot reserve enough PEBs for bad block handling. This function makes a
1174  * decision whether we have to print a warning or not. The algorithm is as
1175  * follows:
1176  *   o if this is a new UBI image, then just print the warning
1177  *   o if this is an UBI image which has already been used for some time, print
1178  *     a warning only if we can reserve less than 10% of the expected amount of
1179  *     the reserved PEB.
1180  *
1181  * The idea is that when UBI is used, PEBs become bad, and the reserved pool
1182  * of PEBs becomes smaller, which is normal and we do not want to scare users
1183  * with a warning every time they attach the MTD device. This was an issue
1184  * reported by real users.
1185  */
1186 static void print_rsvd_warning(struct ubi_device *ubi,
1187 			       struct ubi_attach_info *ai)
1188 {
1189 	/*
1190 	 * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
1191 	 * large number to distinguish between newly flashed and used images.
1192 	 */
1193 	if (ai->max_sqnum > (1 << 18)) {
1194 		int min = ubi->beb_rsvd_level / 10;
1195 
1196 		if (!min)
1197 			min = 1;
1198 		if (ubi->beb_rsvd_pebs > min)
1199 			return;
1200 	}
1201 
1202 	ubi_warn("cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d",
1203 		 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1204 	if (ubi->corr_peb_count)
1205 		ubi_warn("%d PEBs are corrupted and not used",
1206 			 ubi->corr_peb_count);
1207 }
1208 
1209 /**
1210  * self_check_eba - run a self check on the EBA table constructed by fastmap.
1211  * @ubi: UBI device description object
1212  * @ai_fastmap: UBI attach info object created by fastmap
1213  * @ai_scan: UBI attach info object created by scanning
1214  *
1215  * Returns < 0 in case of an internal error, 0 otherwise.
1216  * If a bad EBA table entry was found it will be printed out and
1217  * ubi_assert() triggers.
1218  */
1219 int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap,
1220 		   struct ubi_attach_info *ai_scan)
1221 {
1222 	int i, j, num_volumes, ret = 0;
1223 	int **scan_eba, **fm_eba;
1224 	struct ubi_ainf_volume *av;
1225 	struct ubi_volume *vol;
1226 	struct ubi_ainf_peb *aeb;
1227 	struct rb_node *rb;
1228 
1229 	num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1230 
1231 	scan_eba = kmalloc(sizeof(*scan_eba) * num_volumes, GFP_KERNEL);
1232 	if (!scan_eba)
1233 		return -ENOMEM;
1234 
1235 	fm_eba = kmalloc(sizeof(*fm_eba) * num_volumes, GFP_KERNEL);
1236 	if (!fm_eba) {
1237 		kfree(scan_eba);
1238 		return -ENOMEM;
1239 	}
1240 
1241 	for (i = 0; i < num_volumes; i++) {
1242 		vol = ubi->volumes[i];
1243 		if (!vol)
1244 			continue;
1245 
1246 		scan_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**scan_eba),
1247 				      GFP_KERNEL);
1248 		if (!scan_eba[i]) {
1249 			ret = -ENOMEM;
1250 			goto out_free;
1251 		}
1252 
1253 		fm_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**fm_eba),
1254 				    GFP_KERNEL);
1255 		if (!fm_eba[i]) {
1256 			ret = -ENOMEM;
1257 			goto out_free;
1258 		}
1259 
1260 		for (j = 0; j < vol->reserved_pebs; j++)
1261 			scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED;
1262 
1263 		av = ubi_find_av(ai_scan, idx2vol_id(ubi, i));
1264 		if (!av)
1265 			continue;
1266 
1267 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1268 			scan_eba[i][aeb->lnum] = aeb->pnum;
1269 
1270 		av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i));
1271 		if (!av)
1272 			continue;
1273 
1274 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1275 			fm_eba[i][aeb->lnum] = aeb->pnum;
1276 
1277 		for (j = 0; j < vol->reserved_pebs; j++) {
1278 			if (scan_eba[i][j] != fm_eba[i][j]) {
1279 				if (scan_eba[i][j] == UBI_LEB_UNMAPPED ||
1280 					fm_eba[i][j] == UBI_LEB_UNMAPPED)
1281 					continue;
1282 
1283 				ubi_err("LEB:%i:%i is PEB:%i instead of %i!",
1284 					vol->vol_id, i, fm_eba[i][j],
1285 					scan_eba[i][j]);
1286 				ubi_assert(0);
1287 			}
1288 		}
1289 	}
1290 
1291 out_free:
1292 	for (i = 0; i < num_volumes; i++) {
1293 		if (!ubi->volumes[i])
1294 			continue;
1295 
1296 		kfree(scan_eba[i]);
1297 		kfree(fm_eba[i]);
1298 	}
1299 
1300 	kfree(scan_eba);
1301 	kfree(fm_eba);
1302 	return ret;
1303 }
1304 
1305 /**
1306  * ubi_eba_init - initialize the EBA sub-system using attaching information.
1307  * @ubi: UBI device description object
1308  * @ai: attaching information
1309  *
1310  * This function returns zero in case of success and a negative error code in
1311  * case of failure.
1312  */
1313 int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1314 {
1315 	int i, j, err, num_volumes;
1316 	struct ubi_ainf_volume *av;
1317 	struct ubi_volume *vol;
1318 	struct ubi_ainf_peb *aeb;
1319 	struct rb_node *rb;
1320 
1321 	dbg_eba("initialize EBA sub-system");
1322 
1323 	spin_lock_init(&ubi->ltree_lock);
1324 	mutex_init(&ubi->alc_mutex);
1325 	ubi->ltree = RB_ROOT;
1326 
1327 	ubi->global_sqnum = ai->max_sqnum + 1;
1328 	num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1329 
1330 	for (i = 0; i < num_volumes; i++) {
1331 		vol = ubi->volumes[i];
1332 		if (!vol)
1333 			continue;
1334 
1335 		cond_resched();
1336 
1337 		vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
1338 				       GFP_KERNEL);
1339 		if (!vol->eba_tbl) {
1340 			err = -ENOMEM;
1341 			goto out_free;
1342 		}
1343 
1344 		for (j = 0; j < vol->reserved_pebs; j++)
1345 			vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
1346 
1347 		av = ubi_find_av(ai, idx2vol_id(ubi, i));
1348 		if (!av)
1349 			continue;
1350 
1351 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
1352 			if (aeb->lnum >= vol->reserved_pebs)
1353 				/*
1354 				 * This may happen in case of an unclean reboot
1355 				 * during re-size.
1356 				 */
1357 				ubi_move_aeb_to_list(av, aeb, &ai->erase);
1358 			vol->eba_tbl[aeb->lnum] = aeb->pnum;
1359 		}
1360 	}
1361 
1362 	if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1363 		ubi_err("no enough physical eraseblocks (%d, need %d)",
1364 			ubi->avail_pebs, EBA_RESERVED_PEBS);
1365 		if (ubi->corr_peb_count)
1366 			ubi_err("%d PEBs are corrupted and not used",
1367 				ubi->corr_peb_count);
1368 		err = -ENOSPC;
1369 		goto out_free;
1370 	}
1371 	ubi->avail_pebs -= EBA_RESERVED_PEBS;
1372 	ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1373 
1374 	if (ubi->bad_allowed) {
1375 		ubi_calculate_reserved(ubi);
1376 
1377 		if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1378 			/* No enough free physical eraseblocks */
1379 			ubi->beb_rsvd_pebs = ubi->avail_pebs;
1380 			print_rsvd_warning(ubi, ai);
1381 		} else
1382 			ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1383 
1384 		ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1385 		ubi->rsvd_pebs  += ubi->beb_rsvd_pebs;
1386 	}
1387 
1388 	dbg_eba("EBA sub-system is initialized");
1389 	return 0;
1390 
1391 out_free:
1392 	for (i = 0; i < num_volumes; i++) {
1393 		if (!ubi->volumes[i])
1394 			continue;
1395 		kfree(ubi->volumes[i]->eba_tbl);
1396 		ubi->volumes[i]->eba_tbl = NULL;
1397 	}
1398 	return err;
1399 }
1400