xref: /openbmc/u-boot/drivers/mtd/ubi/crc32.c (revision f214a20e)
1 /*
2  * Oct 15, 2000 Matt Domsch <Matt_Domsch@dell.com>
3  * Nicer crc32 functions/docs submitted by linux@horizon.com.  Thanks!
4  * Code was from the public domain, copyright abandoned.  Code was
5  * subsequently included in the kernel, thus was re-licensed under the
6  * GNU GPL v2.
7  *
8  * Oct 12, 2000 Matt Domsch <Matt_Domsch@dell.com>
9  * Same crc32 function was used in 5 other places in the kernel.
10  * I made one version, and deleted the others.
11  * There are various incantations of crc32().  Some use a seed of 0 or ~0.
12  * Some xor at the end with ~0.  The generic crc32() function takes
13  * seed as an argument, and doesn't xor at the end.  Then individual
14  * users can do whatever they need.
15  *   drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0.
16  *   fs/jffs2 uses seed 0, doesn't xor with ~0.
17  *   fs/partitions/efi.c uses seed ~0, xor's with ~0.
18  *
19  * This source code is licensed under the GNU General Public License,
20  * Version 2.  See the file COPYING for more details.
21  */
22 
23 #ifdef UBI_LINUX
24 #include <linux/crc32.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/compiler.h>
28 #endif
29 #include <linux/types.h>
30 
31 #include <asm/byteorder.h>
32 
33 #ifdef UBI_LINUX
34 #include <linux/slab.h>
35 #include <linux/init.h>
36 #include <asm/atomic.h>
37 #endif
38 #include "crc32defs.h"
39 #define CRC_LE_BITS 8
40 
41 # define __force
42 #ifndef __constant_cpu_to_le32
43 #define __constant_cpu_to_le32(x) ((__force __le32)(__u32)(x))
44 #endif
45 #ifndef __constant_le32_to_cpu
46 #define __constant_le32_to_cpu(x) ((__force __u32)(__le32)(x))
47 #endif
48 
49 #if CRC_LE_BITS == 8
50 #define tole(x) __constant_cpu_to_le32(x)
51 #define tobe(x) __constant_cpu_to_be32(x)
52 #else
53 #define tole(x) (x)
54 #define tobe(x) (x)
55 #endif
56 #include "crc32table.h"
57 #ifdef UBI_LINUX
58 MODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>");
59 MODULE_DESCRIPTION("Ethernet CRC32 calculations");
60 MODULE_LICENSE("GPL");
61 #endif
62 /**
63  * crc32_le() - Calculate bitwise little-endian Ethernet AUTODIN II CRC32
64  * @crc: seed value for computation.  ~0 for Ethernet, sometimes 0 for
65  *	other uses, or the previous crc32 value if computing incrementally.
66  * @p: pointer to buffer over which CRC is run
67  * @len: length of buffer @p
68  */
69 u32  crc32_le(u32 crc, unsigned char const *p, size_t len);
70 
71 #if CRC_LE_BITS == 1
72 /*
73  * In fact, the table-based code will work in this case, but it can be
74  * simplified by inlining the table in ?: form.
75  */
76 
77 u32 crc32_le(u32 crc, unsigned char const *p, size_t len)
78 {
79 	int i;
80 	while (len--) {
81 		crc ^= *p++;
82 		for (i = 0; i < 8; i++)
83 			crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
84 	}
85 	return crc;
86 }
87 #else				/* Table-based approach */
88 
89 u32 crc32_le(u32 crc, unsigned char const *p, size_t len)
90 {
91 # if CRC_LE_BITS == 8
92 	const u32      *b =(u32 *)p;
93 	const u32      *tab = crc32table_le;
94 
95 # ifdef __LITTLE_ENDIAN
96 #  define DO_CRC(x) crc = tab[ (crc ^ (x)) & 255 ] ^ (crc>>8)
97 # else
98 #  define DO_CRC(x) crc = tab[ ((crc >> 24) ^ (x)) & 255] ^ (crc<<8)
99 # endif
100 	/* printf("Crc32_le crc=%x\n",crc); */
101 	crc = __cpu_to_le32(crc);
102 	/* Align it */
103 	if((((long)b)&3 && len)){
104 		do {
105 			u8 *p = (u8 *)b;
106 			DO_CRC(*p++);
107 			b = (void *)p;
108 		} while ((--len) && ((long)b)&3 );
109 	}
110 	if((len >= 4)){
111 		/* load data 32 bits wide, xor data 32 bits wide. */
112 		size_t save_len = len & 3;
113 	        len = len >> 2;
114 		--b; /* use pre increment below(*++b) for speed */
115 		do {
116 			crc ^= *++b;
117 			DO_CRC(0);
118 			DO_CRC(0);
119 			DO_CRC(0);
120 			DO_CRC(0);
121 		} while (--len);
122 		b++; /* point to next byte(s) */
123 		len = save_len;
124 	}
125 	/* And the last few bytes */
126 	if(len){
127 		do {
128 			u8 *p = (u8 *)b;
129 			DO_CRC(*p++);
130 			b = (void *)p;
131 		} while (--len);
132 	}
133 
134 	return __le32_to_cpu(crc);
135 #undef ENDIAN_SHIFT
136 #undef DO_CRC
137 
138 # elif CRC_LE_BITS == 4
139 	while (len--) {
140 		crc ^= *p++;
141 		crc = (crc >> 4) ^ crc32table_le[crc & 15];
142 		crc = (crc >> 4) ^ crc32table_le[crc & 15];
143 	}
144 	return crc;
145 # elif CRC_LE_BITS == 2
146 	while (len--) {
147 		crc ^= *p++;
148 		crc = (crc >> 2) ^ crc32table_le[crc & 3];
149 		crc = (crc >> 2) ^ crc32table_le[crc & 3];
150 		crc = (crc >> 2) ^ crc32table_le[crc & 3];
151 		crc = (crc >> 2) ^ crc32table_le[crc & 3];
152 	}
153 	return crc;
154 # endif
155 }
156 #endif
157 #ifdef UBI_LINUX
158 /**
159  * crc32_be() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32
160  * @crc: seed value for computation.  ~0 for Ethernet, sometimes 0 for
161  *	other uses, or the previous crc32 value if computing incrementally.
162  * @p: pointer to buffer over which CRC is run
163  * @len: length of buffer @p
164  */
165 u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len);
166 
167 #if CRC_BE_BITS == 1
168 /*
169  * In fact, the table-based code will work in this case, but it can be
170  * simplified by inlining the table in ?: form.
171  */
172 
173 u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len)
174 {
175 	int i;
176 	while (len--) {
177 		crc ^= *p++ << 24;
178 		for (i = 0; i < 8; i++)
179 			crc =
180 			    (crc << 1) ^ ((crc & 0x80000000) ? CRCPOLY_BE :
181 					  0);
182 	}
183 	return crc;
184 }
185 
186 #else				/* Table-based approach */
187 u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len)
188 {
189 # if CRC_BE_BITS == 8
190 	const u32      *b =(u32 *)p;
191 	const u32      *tab = crc32table_be;
192 
193 # ifdef __LITTLE_ENDIAN
194 #  define DO_CRC(x) crc = tab[ (crc ^ (x)) & 255 ] ^ (crc>>8)
195 # else
196 #  define DO_CRC(x) crc = tab[ ((crc >> 24) ^ (x)) & 255] ^ (crc<<8)
197 # endif
198 
199 	crc = __cpu_to_be32(crc);
200 	/* Align it */
201 	if(unlikely(((long)b)&3 && len)){
202 		do {
203 			u8 *p = (u8 *)b;
204 			DO_CRC(*p++);
205 			b = (u32 *)p;
206 		} while ((--len) && ((long)b)&3 );
207 	}
208 	if(likely(len >= 4)){
209 		/* load data 32 bits wide, xor data 32 bits wide. */
210 		size_t save_len = len & 3;
211 	        len = len >> 2;
212 		--b; /* use pre increment below(*++b) for speed */
213 		do {
214 			crc ^= *++b;
215 			DO_CRC(0);
216 			DO_CRC(0);
217 			DO_CRC(0);
218 			DO_CRC(0);
219 		} while (--len);
220 		b++; /* point to next byte(s) */
221 		len = save_len;
222 	}
223 	/* And the last few bytes */
224 	if(len){
225 		do {
226 			u8 *p = (u8 *)b;
227 			DO_CRC(*p++);
228 			b = (void *)p;
229 		} while (--len);
230 	}
231 	return __be32_to_cpu(crc);
232 #undef ENDIAN_SHIFT
233 #undef DO_CRC
234 
235 # elif CRC_BE_BITS == 4
236 	while (len--) {
237 		crc ^= *p++ << 24;
238 		crc = (crc << 4) ^ crc32table_be[crc >> 28];
239 		crc = (crc << 4) ^ crc32table_be[crc >> 28];
240 	}
241 	return crc;
242 # elif CRC_BE_BITS == 2
243 	while (len--) {
244 		crc ^= *p++ << 24;
245 		crc = (crc << 2) ^ crc32table_be[crc >> 30];
246 		crc = (crc << 2) ^ crc32table_be[crc >> 30];
247 		crc = (crc << 2) ^ crc32table_be[crc >> 30];
248 		crc = (crc << 2) ^ crc32table_be[crc >> 30];
249 	}
250 	return crc;
251 # endif
252 }
253 #endif
254 
255 EXPORT_SYMBOL(crc32_le);
256 EXPORT_SYMBOL(crc32_be);
257 #endif
258 /*
259  * A brief CRC tutorial.
260  *
261  * A CRC is a long-division remainder.  You add the CRC to the message,
262  * and the whole thing (message+CRC) is a multiple of the given
263  * CRC polynomial.  To check the CRC, you can either check that the
264  * CRC matches the recomputed value, *or* you can check that the
265  * remainder computed on the message+CRC is 0.  This latter approach
266  * is used by a lot of hardware implementations, and is why so many
267  * protocols put the end-of-frame flag after the CRC.
268  *
269  * It's actually the same long division you learned in school, except that
270  * - We're working in binary, so the digits are only 0 and 1, and
271  * - When dividing polynomials, there are no carries.  Rather than add and
272  *   subtract, we just xor.  Thus, we tend to get a bit sloppy about
273  *   the difference between adding and subtracting.
274  *
275  * A 32-bit CRC polynomial is actually 33 bits long.  But since it's
276  * 33 bits long, bit 32 is always going to be set, so usually the CRC
277  * is written in hex with the most significant bit omitted.  (If you're
278  * familiar with the IEEE 754 floating-point format, it's the same idea.)
279  *
280  * Note that a CRC is computed over a string of *bits*, so you have
281  * to decide on the endianness of the bits within each byte.  To get
282  * the best error-detecting properties, this should correspond to the
283  * order they're actually sent.  For example, standard RS-232 serial is
284  * little-endian; the most significant bit (sometimes used for parity)
285  * is sent last.  And when appending a CRC word to a message, you should
286  * do it in the right order, matching the endianness.
287  *
288  * Just like with ordinary division, the remainder is always smaller than
289  * the divisor (the CRC polynomial) you're dividing by.  Each step of the
290  * division, you take one more digit (bit) of the dividend and append it
291  * to the current remainder.  Then you figure out the appropriate multiple
292  * of the divisor to subtract to being the remainder back into range.
293  * In binary, it's easy - it has to be either 0 or 1, and to make the
294  * XOR cancel, it's just a copy of bit 32 of the remainder.
295  *
296  * When computing a CRC, we don't care about the quotient, so we can
297  * throw the quotient bit away, but subtract the appropriate multiple of
298  * the polynomial from the remainder and we're back to where we started,
299  * ready to process the next bit.
300  *
301  * A big-endian CRC written this way would be coded like:
302  * for (i = 0; i < input_bits; i++) {
303  * 	multiple = remainder & 0x80000000 ? CRCPOLY : 0;
304  * 	remainder = (remainder << 1 | next_input_bit()) ^ multiple;
305  * }
306  * Notice how, to get at bit 32 of the shifted remainder, we look
307  * at bit 31 of the remainder *before* shifting it.
308  *
309  * But also notice how the next_input_bit() bits we're shifting into
310  * the remainder don't actually affect any decision-making until
311  * 32 bits later.  Thus, the first 32 cycles of this are pretty boring.
312  * Also, to add the CRC to a message, we need a 32-bit-long hole for it at
313  * the end, so we have to add 32 extra cycles shifting in zeros at the
314  * end of every message,
315  *
316  * So the standard trick is to rearrage merging in the next_input_bit()
317  * until the moment it's needed.  Then the first 32 cycles can be precomputed,
318  * and merging in the final 32 zero bits to make room for the CRC can be
319  * skipped entirely.
320  * This changes the code to:
321  * for (i = 0; i < input_bits; i++) {
322  *      remainder ^= next_input_bit() << 31;
323  * 	multiple = (remainder & 0x80000000) ? CRCPOLY : 0;
324  * 	remainder = (remainder << 1) ^ multiple;
325  * }
326  * With this optimization, the little-endian code is simpler:
327  * for (i = 0; i < input_bits; i++) {
328  *      remainder ^= next_input_bit();
329  * 	multiple = (remainder & 1) ? CRCPOLY : 0;
330  * 	remainder = (remainder >> 1) ^ multiple;
331  * }
332  *
333  * Note that the other details of endianness have been hidden in CRCPOLY
334  * (which must be bit-reversed) and next_input_bit().
335  *
336  * However, as long as next_input_bit is returning the bits in a sensible
337  * order, we can actually do the merging 8 or more bits at a time rather
338  * than one bit at a time:
339  * for (i = 0; i < input_bytes; i++) {
340  * 	remainder ^= next_input_byte() << 24;
341  * 	for (j = 0; j < 8; j++) {
342  * 		multiple = (remainder & 0x80000000) ? CRCPOLY : 0;
343  * 		remainder = (remainder << 1) ^ multiple;
344  * 	}
345  * }
346  * Or in little-endian:
347  * for (i = 0; i < input_bytes; i++) {
348  * 	remainder ^= next_input_byte();
349  * 	for (j = 0; j < 8; j++) {
350  * 		multiple = (remainder & 1) ? CRCPOLY : 0;
351  * 		remainder = (remainder << 1) ^ multiple;
352  * 	}
353  * }
354  * If the input is a multiple of 32 bits, you can even XOR in a 32-bit
355  * word at a time and increase the inner loop count to 32.
356  *
357  * You can also mix and match the two loop styles, for example doing the
358  * bulk of a message byte-at-a-time and adding bit-at-a-time processing
359  * for any fractional bytes at the end.
360  *
361  * The only remaining optimization is to the byte-at-a-time table method.
362  * Here, rather than just shifting one bit of the remainder to decide
363  * in the correct multiple to subtract, we can shift a byte at a time.
364  * This produces a 40-bit (rather than a 33-bit) intermediate remainder,
365  * but again the multiple of the polynomial to subtract depends only on
366  * the high bits, the high 8 bits in this case.
367  *
368  * The multile we need in that case is the low 32 bits of a 40-bit
369  * value whose high 8 bits are given, and which is a multiple of the
370  * generator polynomial.  This is simply the CRC-32 of the given
371  * one-byte message.
372  *
373  * Two more details: normally, appending zero bits to a message which
374  * is already a multiple of a polynomial produces a larger multiple of that
375  * polynomial.  To enable a CRC to detect this condition, it's common to
376  * invert the CRC before appending it.  This makes the remainder of the
377  * message+crc come out not as zero, but some fixed non-zero value.
378  *
379  * The same problem applies to zero bits prepended to the message, and
380  * a similar solution is used.  Instead of starting with a remainder of
381  * 0, an initial remainder of all ones is used.  As long as you start
382  * the same way on decoding, it doesn't make a difference.
383  */
384 
385 #ifdef UNITTEST
386 
387 #include <stdlib.h>
388 #include <stdio.h>
389 
390 #ifdef UBI_LINUX				/*Not used at present */
391 static void
392 buf_dump(char const *prefix, unsigned char const *buf, size_t len)
393 {
394 	fputs(prefix, stdout);
395 	while (len--)
396 		printf(" %02x", *buf++);
397 	putchar('\n');
398 
399 }
400 #endif
401 
402 static void bytereverse(unsigned char *buf, size_t len)
403 {
404 	while (len--) {
405 		unsigned char x = bitrev8(*buf);
406 		*buf++ = x;
407 	}
408 }
409 
410 static void random_garbage(unsigned char *buf, size_t len)
411 {
412 	while (len--)
413 		*buf++ = (unsigned char) random();
414 }
415 
416 #ifdef UBI_LINUX				/* Not used at present */
417 static void store_le(u32 x, unsigned char *buf)
418 {
419 	buf[0] = (unsigned char) x;
420 	buf[1] = (unsigned char) (x >> 8);
421 	buf[2] = (unsigned char) (x >> 16);
422 	buf[3] = (unsigned char) (x >> 24);
423 }
424 #endif
425 
426 static void store_be(u32 x, unsigned char *buf)
427 {
428 	buf[0] = (unsigned char) (x >> 24);
429 	buf[1] = (unsigned char) (x >> 16);
430 	buf[2] = (unsigned char) (x >> 8);
431 	buf[3] = (unsigned char) x;
432 }
433 
434 /*
435  * This checks that CRC(buf + CRC(buf)) = 0, and that
436  * CRC commutes with bit-reversal.  This has the side effect
437  * of bytewise bit-reversing the input buffer, and returns
438  * the CRC of the reversed buffer.
439  */
440 static u32 test_step(u32 init, unsigned char *buf, size_t len)
441 {
442 	u32 crc1, crc2;
443 	size_t i;
444 
445 	crc1 = crc32_be(init, buf, len);
446 	store_be(crc1, buf + len);
447 	crc2 = crc32_be(init, buf, len + 4);
448 	if (crc2)
449 		printf("\nCRC cancellation fail: 0x%08x should be 0\n",
450 		       crc2);
451 
452 	for (i = 0; i <= len + 4; i++) {
453 		crc2 = crc32_be(init, buf, i);
454 		crc2 = crc32_be(crc2, buf + i, len + 4 - i);
455 		if (crc2)
456 			printf("\nCRC split fail: 0x%08x\n", crc2);
457 	}
458 
459 	/* Now swap it around for the other test */
460 
461 	bytereverse(buf, len + 4);
462 	init = bitrev32(init);
463 	crc2 = bitrev32(crc1);
464 	if (crc1 != bitrev32(crc2))
465 		printf("\nBit reversal fail: 0x%08x -> 0x%08x -> 0x%08x\n",
466 		       crc1, crc2, bitrev32(crc2));
467 	crc1 = crc32_le(init, buf, len);
468 	if (crc1 != crc2)
469 		printf("\nCRC endianness fail: 0x%08x != 0x%08x\n", crc1,
470 		       crc2);
471 	crc2 = crc32_le(init, buf, len + 4);
472 	if (crc2)
473 		printf("\nCRC cancellation fail: 0x%08x should be 0\n",
474 		       crc2);
475 
476 	for (i = 0; i <= len + 4; i++) {
477 		crc2 = crc32_le(init, buf, i);
478 		crc2 = crc32_le(crc2, buf + i, len + 4 - i);
479 		if (crc2)
480 			printf("\nCRC split fail: 0x%08x\n", crc2);
481 	}
482 
483 	return crc1;
484 }
485 
486 #define SIZE 64
487 #define INIT1 0
488 #define INIT2 0
489 
490 int main(void)
491 {
492 	unsigned char buf1[SIZE + 4];
493 	unsigned char buf2[SIZE + 4];
494 	unsigned char buf3[SIZE + 4];
495 	int i, j;
496 	u32 crc1, crc2, crc3;
497 
498 	for (i = 0; i <= SIZE; i++) {
499 		printf("\rTesting length %d...", i);
500 		fflush(stdout);
501 		random_garbage(buf1, i);
502 		random_garbage(buf2, i);
503 		for (j = 0; j < i; j++)
504 			buf3[j] = buf1[j] ^ buf2[j];
505 
506 		crc1 = test_step(INIT1, buf1, i);
507 		crc2 = test_step(INIT2, buf2, i);
508 		/* Now check that CRC(buf1 ^ buf2) = CRC(buf1) ^ CRC(buf2) */
509 		crc3 = test_step(INIT1 ^ INIT2, buf3, i);
510 		if (crc3 != (crc1 ^ crc2))
511 			printf("CRC XOR fail: 0x%08x != 0x%08x ^ 0x%08x\n",
512 			       crc3, crc1, crc2);
513 	}
514 	printf("\nAll test complete.  No failures expected.\n");
515 	return 0;
516 }
517 
518 #endif				/* UNITTEST */
519