1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (c) International Business Machines Corp., 2006 4 * Copyright (c) Nokia Corporation, 2007 5 * 6 * Author: Artem Bityutskiy (Битюцкий Артём), 7 * Frank Haverkamp 8 */ 9 10 /* 11 * This file includes UBI initialization and building of UBI devices. 12 * 13 * When UBI is initialized, it attaches all the MTD devices specified as the 14 * module load parameters or the kernel boot parameters. If MTD devices were 15 * specified, UBI does not attach any MTD device, but it is possible to do 16 * later using the "UBI control device". 17 */ 18 19 #ifndef __UBOOT__ 20 #include <linux/module.h> 21 #include <linux/moduleparam.h> 22 #include <linux/stringify.h> 23 #include <linux/namei.h> 24 #include <linux/stat.h> 25 #include <linux/miscdevice.h> 26 #include <linux/log2.h> 27 #include <linux/kthread.h> 28 #include <linux/kernel.h> 29 #include <linux/slab.h> 30 #include <linux/major.h> 31 #else 32 #include <linux/bug.h> 33 #include <linux/log2.h> 34 #endif 35 #include <linux/err.h> 36 #include <ubi_uboot.h> 37 #include <linux/mtd/partitions.h> 38 39 #include "ubi.h" 40 41 /* Maximum length of the 'mtd=' parameter */ 42 #define MTD_PARAM_LEN_MAX 64 43 44 /* Maximum number of comma-separated items in the 'mtd=' parameter */ 45 #define MTD_PARAM_MAX_COUNT 4 46 47 /* Maximum value for the number of bad PEBs per 1024 PEBs */ 48 #define MAX_MTD_UBI_BEB_LIMIT 768 49 50 #ifdef CONFIG_MTD_UBI_MODULE 51 #define ubi_is_module() 1 52 #else 53 #define ubi_is_module() 0 54 #endif 55 56 #if (CONFIG_SYS_MALLOC_LEN < (512 << 10)) 57 #error Malloc area too small for UBI, increase CONFIG_SYS_MALLOC_LEN to >= 512k 58 #endif 59 60 /** 61 * struct mtd_dev_param - MTD device parameter description data structure. 62 * @name: MTD character device node path, MTD device name, or MTD device number 63 * string 64 * @vid_hdr_offs: VID header offset 65 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs 66 */ 67 struct mtd_dev_param { 68 char name[MTD_PARAM_LEN_MAX]; 69 int ubi_num; 70 int vid_hdr_offs; 71 int max_beb_per1024; 72 }; 73 74 /* Numbers of elements set in the @mtd_dev_param array */ 75 static int __initdata mtd_devs; 76 77 /* MTD devices specification parameters */ 78 static struct mtd_dev_param __initdata mtd_dev_param[UBI_MAX_DEVICES]; 79 #ifndef __UBOOT__ 80 #ifdef CONFIG_MTD_UBI_FASTMAP 81 /* UBI module parameter to enable fastmap automatically on non-fastmap images */ 82 static bool fm_autoconvert; 83 static bool fm_debug; 84 #endif 85 #else 86 #ifdef CONFIG_MTD_UBI_FASTMAP 87 #if !defined(CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT) 88 #define CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT 0 89 #endif 90 static bool fm_autoconvert = CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT; 91 #if !defined(CONFIG_MTD_UBI_FM_DEBUG) 92 #define CONFIG_MTD_UBI_FM_DEBUG 0 93 #endif 94 static bool fm_debug = CONFIG_MTD_UBI_FM_DEBUG; 95 #endif 96 #endif 97 98 /* Slab cache for wear-leveling entries */ 99 struct kmem_cache *ubi_wl_entry_slab; 100 101 #ifndef __UBOOT__ 102 /* UBI control character device */ 103 static struct miscdevice ubi_ctrl_cdev = { 104 .minor = MISC_DYNAMIC_MINOR, 105 .name = "ubi_ctrl", 106 .fops = &ubi_ctrl_cdev_operations, 107 }; 108 #endif 109 110 /* All UBI devices in system */ 111 #ifndef __UBOOT__ 112 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES]; 113 #else 114 struct ubi_device *ubi_devices[UBI_MAX_DEVICES]; 115 #endif 116 117 #ifndef __UBOOT__ 118 /* Serializes UBI devices creations and removals */ 119 DEFINE_MUTEX(ubi_devices_mutex); 120 121 /* Protects @ubi_devices and @ubi->ref_count */ 122 static DEFINE_SPINLOCK(ubi_devices_lock); 123 124 /* "Show" method for files in '/<sysfs>/class/ubi/' */ 125 static ssize_t ubi_version_show(struct class *class, 126 struct class_attribute *attr, char *buf) 127 { 128 return sprintf(buf, "%d\n", UBI_VERSION); 129 } 130 131 /* UBI version attribute ('/<sysfs>/class/ubi/version') */ 132 static struct class_attribute ubi_class_attrs[] = { 133 __ATTR(version, S_IRUGO, ubi_version_show, NULL), 134 __ATTR_NULL 135 }; 136 137 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */ 138 struct class ubi_class = { 139 .name = UBI_NAME_STR, 140 .owner = THIS_MODULE, 141 .class_attrs = ubi_class_attrs, 142 }; 143 144 static ssize_t dev_attribute_show(struct device *dev, 145 struct device_attribute *attr, char *buf); 146 147 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */ 148 static struct device_attribute dev_eraseblock_size = 149 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL); 150 static struct device_attribute dev_avail_eraseblocks = 151 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 152 static struct device_attribute dev_total_eraseblocks = 153 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 154 static struct device_attribute dev_volumes_count = 155 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL); 156 static struct device_attribute dev_max_ec = 157 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL); 158 static struct device_attribute dev_reserved_for_bad = 159 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL); 160 static struct device_attribute dev_bad_peb_count = 161 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL); 162 static struct device_attribute dev_max_vol_count = 163 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL); 164 static struct device_attribute dev_min_io_size = 165 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL); 166 static struct device_attribute dev_bgt_enabled = 167 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL); 168 static struct device_attribute dev_mtd_num = 169 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL); 170 #endif 171 172 /** 173 * ubi_volume_notify - send a volume change notification. 174 * @ubi: UBI device description object 175 * @vol: volume description object of the changed volume 176 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 177 * 178 * This is a helper function which notifies all subscribers about a volume 179 * change event (creation, removal, re-sizing, re-naming, updating). Returns 180 * zero in case of success and a negative error code in case of failure. 181 */ 182 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype) 183 { 184 int ret; 185 struct ubi_notification nt; 186 187 ubi_do_get_device_info(ubi, &nt.di); 188 ubi_do_get_volume_info(ubi, vol, &nt.vi); 189 190 switch (ntype) { 191 case UBI_VOLUME_ADDED: 192 case UBI_VOLUME_REMOVED: 193 case UBI_VOLUME_RESIZED: 194 case UBI_VOLUME_RENAMED: 195 ret = ubi_update_fastmap(ubi); 196 if (ret) 197 ubi_msg(ubi, "Unable to write a new fastmap: %i", ret); 198 } 199 200 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt); 201 } 202 203 /** 204 * ubi_notify_all - send a notification to all volumes. 205 * @ubi: UBI device description object 206 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 207 * @nb: the notifier to call 208 * 209 * This function walks all volumes of UBI device @ubi and sends the @ntype 210 * notification for each volume. If @nb is %NULL, then all registered notifiers 211 * are called, otherwise only the @nb notifier is called. Returns the number of 212 * sent notifications. 213 */ 214 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb) 215 { 216 struct ubi_notification nt; 217 int i, count = 0; 218 #ifndef __UBOOT__ 219 int ret; 220 #endif 221 222 ubi_do_get_device_info(ubi, &nt.di); 223 224 mutex_lock(&ubi->device_mutex); 225 for (i = 0; i < ubi->vtbl_slots; i++) { 226 /* 227 * Since the @ubi->device is locked, and we are not going to 228 * change @ubi->volumes, we do not have to lock 229 * @ubi->volumes_lock. 230 */ 231 if (!ubi->volumes[i]) 232 continue; 233 234 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi); 235 #ifndef __UBOOT__ 236 if (nb) 237 nb->notifier_call(nb, ntype, &nt); 238 else 239 ret = blocking_notifier_call_chain(&ubi_notifiers, ntype, 240 &nt); 241 #endif 242 count += 1; 243 } 244 mutex_unlock(&ubi->device_mutex); 245 246 return count; 247 } 248 249 /** 250 * ubi_enumerate_volumes - send "add" notification for all existing volumes. 251 * @nb: the notifier to call 252 * 253 * This function walks all UBI devices and volumes and sends the 254 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all 255 * registered notifiers are called, otherwise only the @nb notifier is called. 256 * Returns the number of sent notifications. 257 */ 258 int ubi_enumerate_volumes(struct notifier_block *nb) 259 { 260 int i, count = 0; 261 262 /* 263 * Since the @ubi_devices_mutex is locked, and we are not going to 264 * change @ubi_devices, we do not have to lock @ubi_devices_lock. 265 */ 266 for (i = 0; i < UBI_MAX_DEVICES; i++) { 267 struct ubi_device *ubi = ubi_devices[i]; 268 269 if (!ubi) 270 continue; 271 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb); 272 } 273 274 return count; 275 } 276 277 /** 278 * ubi_get_device - get UBI device. 279 * @ubi_num: UBI device number 280 * 281 * This function returns UBI device description object for UBI device number 282 * @ubi_num, or %NULL if the device does not exist. This function increases the 283 * device reference count to prevent removal of the device. In other words, the 284 * device cannot be removed if its reference count is not zero. 285 */ 286 struct ubi_device *ubi_get_device(int ubi_num) 287 { 288 struct ubi_device *ubi; 289 290 spin_lock(&ubi_devices_lock); 291 ubi = ubi_devices[ubi_num]; 292 if (ubi) { 293 ubi_assert(ubi->ref_count >= 0); 294 ubi->ref_count += 1; 295 get_device(&ubi->dev); 296 } 297 spin_unlock(&ubi_devices_lock); 298 299 return ubi; 300 } 301 302 /** 303 * ubi_put_device - drop an UBI device reference. 304 * @ubi: UBI device description object 305 */ 306 void ubi_put_device(struct ubi_device *ubi) 307 { 308 spin_lock(&ubi_devices_lock); 309 ubi->ref_count -= 1; 310 put_device(&ubi->dev); 311 spin_unlock(&ubi_devices_lock); 312 } 313 314 /** 315 * ubi_get_by_major - get UBI device by character device major number. 316 * @major: major number 317 * 318 * This function is similar to 'ubi_get_device()', but it searches the device 319 * by its major number. 320 */ 321 struct ubi_device *ubi_get_by_major(int major) 322 { 323 int i; 324 struct ubi_device *ubi; 325 326 spin_lock(&ubi_devices_lock); 327 for (i = 0; i < UBI_MAX_DEVICES; i++) { 328 ubi = ubi_devices[i]; 329 if (ubi && MAJOR(ubi->cdev.dev) == major) { 330 ubi_assert(ubi->ref_count >= 0); 331 ubi->ref_count += 1; 332 get_device(&ubi->dev); 333 spin_unlock(&ubi_devices_lock); 334 return ubi; 335 } 336 } 337 spin_unlock(&ubi_devices_lock); 338 339 return NULL; 340 } 341 342 /** 343 * ubi_major2num - get UBI device number by character device major number. 344 * @major: major number 345 * 346 * This function searches UBI device number object by its major number. If UBI 347 * device was not found, this function returns -ENODEV, otherwise the UBI device 348 * number is returned. 349 */ 350 int ubi_major2num(int major) 351 { 352 int i, ubi_num = -ENODEV; 353 354 spin_lock(&ubi_devices_lock); 355 for (i = 0; i < UBI_MAX_DEVICES; i++) { 356 struct ubi_device *ubi = ubi_devices[i]; 357 358 if (ubi && MAJOR(ubi->cdev.dev) == major) { 359 ubi_num = ubi->ubi_num; 360 break; 361 } 362 } 363 spin_unlock(&ubi_devices_lock); 364 365 return ubi_num; 366 } 367 368 #ifndef __UBOOT__ 369 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */ 370 static ssize_t dev_attribute_show(struct device *dev, 371 struct device_attribute *attr, char *buf) 372 { 373 ssize_t ret; 374 struct ubi_device *ubi; 375 376 /* 377 * The below code looks weird, but it actually makes sense. We get the 378 * UBI device reference from the contained 'struct ubi_device'. But it 379 * is unclear if the device was removed or not yet. Indeed, if the 380 * device was removed before we increased its reference count, 381 * 'ubi_get_device()' will return -ENODEV and we fail. 382 * 383 * Remember, 'struct ubi_device' is freed in the release function, so 384 * we still can use 'ubi->ubi_num'. 385 */ 386 ubi = container_of(dev, struct ubi_device, dev); 387 ubi = ubi_get_device(ubi->ubi_num); 388 if (!ubi) 389 return -ENODEV; 390 391 if (attr == &dev_eraseblock_size) 392 ret = sprintf(buf, "%d\n", ubi->leb_size); 393 else if (attr == &dev_avail_eraseblocks) 394 ret = sprintf(buf, "%d\n", ubi->avail_pebs); 395 else if (attr == &dev_total_eraseblocks) 396 ret = sprintf(buf, "%d\n", ubi->good_peb_count); 397 else if (attr == &dev_volumes_count) 398 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT); 399 else if (attr == &dev_max_ec) 400 ret = sprintf(buf, "%d\n", ubi->max_ec); 401 else if (attr == &dev_reserved_for_bad) 402 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs); 403 else if (attr == &dev_bad_peb_count) 404 ret = sprintf(buf, "%d\n", ubi->bad_peb_count); 405 else if (attr == &dev_max_vol_count) 406 ret = sprintf(buf, "%d\n", ubi->vtbl_slots); 407 else if (attr == &dev_min_io_size) 408 ret = sprintf(buf, "%d\n", ubi->min_io_size); 409 else if (attr == &dev_bgt_enabled) 410 ret = sprintf(buf, "%d\n", ubi->thread_enabled); 411 else if (attr == &dev_mtd_num) 412 ret = sprintf(buf, "%d\n", ubi->mtd->index); 413 else 414 ret = -EINVAL; 415 416 ubi_put_device(ubi); 417 return ret; 418 } 419 420 static struct attribute *ubi_dev_attrs[] = { 421 &dev_eraseblock_size.attr, 422 &dev_avail_eraseblocks.attr, 423 &dev_total_eraseblocks.attr, 424 &dev_volumes_count.attr, 425 &dev_max_ec.attr, 426 &dev_reserved_for_bad.attr, 427 &dev_bad_peb_count.attr, 428 &dev_max_vol_count.attr, 429 &dev_min_io_size.attr, 430 &dev_bgt_enabled.attr, 431 &dev_mtd_num.attr, 432 NULL 433 }; 434 ATTRIBUTE_GROUPS(ubi_dev); 435 436 static void dev_release(struct device *dev) 437 { 438 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev); 439 440 kfree(ubi); 441 } 442 443 /** 444 * ubi_sysfs_init - initialize sysfs for an UBI device. 445 * @ubi: UBI device description object 446 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was 447 * taken 448 * 449 * This function returns zero in case of success and a negative error code in 450 * case of failure. 451 */ 452 static int ubi_sysfs_init(struct ubi_device *ubi, int *ref) 453 { 454 int err; 455 456 ubi->dev.release = dev_release; 457 ubi->dev.devt = ubi->cdev.dev; 458 ubi->dev.class = &ubi_class; 459 ubi->dev.groups = ubi_dev_groups; 460 dev_set_name(&ubi->dev, UBI_NAME_STR"%d", ubi->ubi_num); 461 err = device_register(&ubi->dev); 462 if (err) 463 return err; 464 465 *ref = 1; 466 return 0; 467 } 468 469 /** 470 * ubi_sysfs_close - close sysfs for an UBI device. 471 * @ubi: UBI device description object 472 */ 473 static void ubi_sysfs_close(struct ubi_device *ubi) 474 { 475 device_unregister(&ubi->dev); 476 } 477 #endif 478 479 /** 480 * kill_volumes - destroy all user volumes. 481 * @ubi: UBI device description object 482 */ 483 static void kill_volumes(struct ubi_device *ubi) 484 { 485 int i; 486 487 for (i = 0; i < ubi->vtbl_slots; i++) 488 if (ubi->volumes[i]) 489 ubi_free_volume(ubi, ubi->volumes[i]); 490 } 491 492 /** 493 * uif_init - initialize user interfaces for an UBI device. 494 * @ubi: UBI device description object 495 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was 496 * taken, otherwise set to %0 497 * 498 * This function initializes various user interfaces for an UBI device. If the 499 * initialization fails at an early stage, this function frees all the 500 * resources it allocated, returns an error, and @ref is set to %0. However, 501 * if the initialization fails after the UBI device was registered in the 502 * driver core subsystem, this function takes a reference to @ubi->dev, because 503 * otherwise the release function ('dev_release()') would free whole @ubi 504 * object. The @ref argument is set to %1 in this case. The caller has to put 505 * this reference. 506 * 507 * This function returns zero in case of success and a negative error code in 508 * case of failure. 509 */ 510 static int uif_init(struct ubi_device *ubi, int *ref) 511 { 512 int i, err; 513 #ifndef __UBOOT__ 514 dev_t dev; 515 #endif 516 517 *ref = 0; 518 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num); 519 520 /* 521 * Major numbers for the UBI character devices are allocated 522 * dynamically. Major numbers of volume character devices are 523 * equivalent to ones of the corresponding UBI character device. Minor 524 * numbers of UBI character devices are 0, while minor numbers of 525 * volume character devices start from 1. Thus, we allocate one major 526 * number and ubi->vtbl_slots + 1 minor numbers. 527 */ 528 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name); 529 if (err) { 530 ubi_err(ubi, "cannot register UBI character devices"); 531 return err; 532 } 533 534 ubi_assert(MINOR(dev) == 0); 535 cdev_init(&ubi->cdev, &ubi_cdev_operations); 536 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev)); 537 ubi->cdev.owner = THIS_MODULE; 538 539 err = cdev_add(&ubi->cdev, dev, 1); 540 if (err) { 541 ubi_err(ubi, "cannot add character device"); 542 goto out_unreg; 543 } 544 545 err = ubi_sysfs_init(ubi, ref); 546 if (err) 547 goto out_sysfs; 548 549 for (i = 0; i < ubi->vtbl_slots; i++) 550 if (ubi->volumes[i]) { 551 err = ubi_add_volume(ubi, ubi->volumes[i]); 552 if (err) { 553 ubi_err(ubi, "cannot add volume %d", i); 554 goto out_volumes; 555 } 556 } 557 558 return 0; 559 560 out_volumes: 561 kill_volumes(ubi); 562 out_sysfs: 563 if (*ref) 564 get_device(&ubi->dev); 565 ubi_sysfs_close(ubi); 566 cdev_del(&ubi->cdev); 567 out_unreg: 568 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 569 ubi_err(ubi, "cannot initialize UBI %s, error %d", 570 ubi->ubi_name, err); 571 return err; 572 } 573 574 /** 575 * uif_close - close user interfaces for an UBI device. 576 * @ubi: UBI device description object 577 * 578 * Note, since this function un-registers UBI volume device objects (@vol->dev), 579 * the memory allocated voe the volumes is freed as well (in the release 580 * function). 581 */ 582 static void uif_close(struct ubi_device *ubi) 583 { 584 kill_volumes(ubi); 585 ubi_sysfs_close(ubi); 586 cdev_del(&ubi->cdev); 587 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 588 } 589 590 /** 591 * ubi_free_internal_volumes - free internal volumes. 592 * @ubi: UBI device description object 593 */ 594 void ubi_free_internal_volumes(struct ubi_device *ubi) 595 { 596 int i; 597 598 for (i = ubi->vtbl_slots; 599 i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { 600 kfree(ubi->volumes[i]->eba_tbl); 601 kfree(ubi->volumes[i]); 602 } 603 } 604 605 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024) 606 { 607 int limit, device_pebs; 608 uint64_t device_size; 609 610 if (!max_beb_per1024) 611 return 0; 612 613 /* 614 * Here we are using size of the entire flash chip and 615 * not just the MTD partition size because the maximum 616 * number of bad eraseblocks is a percentage of the 617 * whole device and bad eraseblocks are not fairly 618 * distributed over the flash chip. So the worst case 619 * is that all the bad eraseblocks of the chip are in 620 * the MTD partition we are attaching (ubi->mtd). 621 */ 622 device_size = mtd_get_device_size(ubi->mtd); 623 device_pebs = mtd_div_by_eb(device_size, ubi->mtd); 624 limit = mult_frac(device_pebs, max_beb_per1024, 1024); 625 626 /* Round it up */ 627 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs) 628 limit += 1; 629 630 return limit; 631 } 632 633 /** 634 * io_init - initialize I/O sub-system for a given UBI device. 635 * @ubi: UBI device description object 636 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 637 * 638 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are 639 * assumed: 640 * o EC header is always at offset zero - this cannot be changed; 641 * o VID header starts just after the EC header at the closest address 642 * aligned to @io->hdrs_min_io_size; 643 * o data starts just after the VID header at the closest address aligned to 644 * @io->min_io_size 645 * 646 * This function returns zero in case of success and a negative error code in 647 * case of failure. 648 */ 649 static int io_init(struct ubi_device *ubi, int max_beb_per1024) 650 { 651 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb)); 652 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry)); 653 654 if (ubi->mtd->numeraseregions != 0) { 655 /* 656 * Some flashes have several erase regions. Different regions 657 * may have different eraseblock size and other 658 * characteristics. It looks like mostly multi-region flashes 659 * have one "main" region and one or more small regions to 660 * store boot loader code or boot parameters or whatever. I 661 * guess we should just pick the largest region. But this is 662 * not implemented. 663 */ 664 ubi_err(ubi, "multiple regions, not implemented"); 665 return -EINVAL; 666 } 667 668 if (ubi->vid_hdr_offset < 0) 669 return -EINVAL; 670 671 /* 672 * Note, in this implementation we support MTD devices with 0x7FFFFFFF 673 * physical eraseblocks maximum. 674 */ 675 676 ubi->peb_size = ubi->mtd->erasesize; 677 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd); 678 ubi->flash_size = ubi->mtd->size; 679 680 if (mtd_can_have_bb(ubi->mtd)) { 681 ubi->bad_allowed = 1; 682 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024); 683 } 684 685 if (ubi->mtd->type == MTD_NORFLASH) { 686 ubi_assert(ubi->mtd->writesize == 1); 687 ubi->nor_flash = 1; 688 } 689 690 ubi->min_io_size = ubi->mtd->writesize; 691 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft; 692 693 /* 694 * Make sure minimal I/O unit is power of 2. Note, there is no 695 * fundamental reason for this assumption. It is just an optimization 696 * which allows us to avoid costly division operations. 697 */ 698 if (!is_power_of_2(ubi->min_io_size)) { 699 ubi_err(ubi, "min. I/O unit (%d) is not power of 2", 700 ubi->min_io_size); 701 return -EINVAL; 702 } 703 704 ubi_assert(ubi->hdrs_min_io_size > 0); 705 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size); 706 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0); 707 708 ubi->max_write_size = ubi->mtd->writebufsize; 709 /* 710 * Maximum write size has to be greater or equivalent to min. I/O 711 * size, and be multiple of min. I/O size. 712 */ 713 if (ubi->max_write_size < ubi->min_io_size || 714 ubi->max_write_size % ubi->min_io_size || 715 !is_power_of_2(ubi->max_write_size)) { 716 ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit", 717 ubi->max_write_size, ubi->min_io_size); 718 return -EINVAL; 719 } 720 721 /* Calculate default aligned sizes of EC and VID headers */ 722 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size); 723 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size); 724 725 dbg_gen("min_io_size %d", ubi->min_io_size); 726 dbg_gen("max_write_size %d", ubi->max_write_size); 727 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size); 728 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize); 729 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize); 730 731 if (ubi->vid_hdr_offset == 0) 732 /* Default offset */ 733 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset = 734 ubi->ec_hdr_alsize; 735 else { 736 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset & 737 ~(ubi->hdrs_min_io_size - 1); 738 ubi->vid_hdr_shift = ubi->vid_hdr_offset - 739 ubi->vid_hdr_aloffset; 740 } 741 742 /* Similar for the data offset */ 743 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE; 744 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size); 745 746 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset); 747 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset); 748 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift); 749 dbg_gen("leb_start %d", ubi->leb_start); 750 751 /* The shift must be aligned to 32-bit boundary */ 752 if (ubi->vid_hdr_shift % 4) { 753 ubi_err(ubi, "unaligned VID header shift %d", 754 ubi->vid_hdr_shift); 755 return -EINVAL; 756 } 757 758 /* Check sanity */ 759 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE || 760 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE || 761 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE || 762 ubi->leb_start & (ubi->min_io_size - 1)) { 763 ubi_err(ubi, "bad VID header (%d) or data offsets (%d)", 764 ubi->vid_hdr_offset, ubi->leb_start); 765 return -EINVAL; 766 } 767 768 /* 769 * Set maximum amount of physical erroneous eraseblocks to be 10%. 770 * Erroneous PEB are those which have read errors. 771 */ 772 ubi->max_erroneous = ubi->peb_count / 10; 773 if (ubi->max_erroneous < 16) 774 ubi->max_erroneous = 16; 775 dbg_gen("max_erroneous %d", ubi->max_erroneous); 776 777 /* 778 * It may happen that EC and VID headers are situated in one minimal 779 * I/O unit. In this case we can only accept this UBI image in 780 * read-only mode. 781 */ 782 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) { 783 ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode"); 784 ubi->ro_mode = 1; 785 } 786 787 ubi->leb_size = ubi->peb_size - ubi->leb_start; 788 789 if (!(ubi->mtd->flags & MTD_WRITEABLE)) { 790 ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode", 791 ubi->mtd->index); 792 ubi->ro_mode = 1; 793 } 794 795 /* 796 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But 797 * unfortunately, MTD does not provide this information. We should loop 798 * over all physical eraseblocks and invoke mtd->block_is_bad() for 799 * each physical eraseblock. So, we leave @ubi->bad_peb_count 800 * uninitialized so far. 801 */ 802 803 return 0; 804 } 805 806 /** 807 * autoresize - re-size the volume which has the "auto-resize" flag set. 808 * @ubi: UBI device description object 809 * @vol_id: ID of the volume to re-size 810 * 811 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in 812 * the volume table to the largest possible size. See comments in ubi-header.h 813 * for more description of the flag. Returns zero in case of success and a 814 * negative error code in case of failure. 815 */ 816 static int autoresize(struct ubi_device *ubi, int vol_id) 817 { 818 struct ubi_volume_desc desc; 819 struct ubi_volume *vol = ubi->volumes[vol_id]; 820 int err, old_reserved_pebs = vol->reserved_pebs; 821 822 if (ubi->ro_mode) { 823 ubi_warn(ubi, "skip auto-resize because of R/O mode"); 824 return 0; 825 } 826 827 /* 828 * Clear the auto-resize flag in the volume in-memory copy of the 829 * volume table, and 'ubi_resize_volume()' will propagate this change 830 * to the flash. 831 */ 832 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG; 833 834 if (ubi->avail_pebs == 0) { 835 struct ubi_vtbl_record vtbl_rec; 836 837 /* 838 * No available PEBs to re-size the volume, clear the flag on 839 * flash and exit. 840 */ 841 vtbl_rec = ubi->vtbl[vol_id]; 842 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec); 843 if (err) 844 ubi_err(ubi, "cannot clean auto-resize flag for volume %d", 845 vol_id); 846 } else { 847 desc.vol = vol; 848 err = ubi_resize_volume(&desc, 849 old_reserved_pebs + ubi->avail_pebs); 850 if (err) 851 ubi_err(ubi, "cannot auto-resize volume %d", 852 vol_id); 853 } 854 855 if (err) 856 return err; 857 858 ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs", 859 vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs); 860 return 0; 861 } 862 863 /** 864 * ubi_attach_mtd_dev - attach an MTD device. 865 * @mtd: MTD device description object 866 * @ubi_num: number to assign to the new UBI device 867 * @vid_hdr_offset: VID header offset 868 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 869 * 870 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number 871 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in 872 * which case this function finds a vacant device number and assigns it 873 * automatically. Returns the new UBI device number in case of success and a 874 * negative error code in case of failure. 875 * 876 * Note, the invocations of this function has to be serialized by the 877 * @ubi_devices_mutex. 878 */ 879 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, 880 int vid_hdr_offset, int max_beb_per1024) 881 { 882 struct ubi_device *ubi; 883 int i, err, ref = 0; 884 885 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT) 886 return -EINVAL; 887 888 if (!max_beb_per1024) 889 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT; 890 891 /* 892 * Check if we already have the same MTD device attached. 893 * 894 * Note, this function assumes that UBI devices creations and deletions 895 * are serialized, so it does not take the &ubi_devices_lock. 896 */ 897 for (i = 0; i < UBI_MAX_DEVICES; i++) { 898 ubi = ubi_devices[i]; 899 if (ubi && mtd->index == ubi->mtd->index) { 900 ubi_err(ubi, "mtd%d is already attached to ubi%d", 901 mtd->index, i); 902 return -EEXIST; 903 } 904 } 905 906 /* 907 * Make sure this MTD device is not emulated on top of an UBI volume 908 * already. Well, generally this recursion works fine, but there are 909 * different problems like the UBI module takes a reference to itself 910 * by attaching (and thus, opening) the emulated MTD device. This 911 * results in inability to unload the module. And in general it makes 912 * no sense to attach emulated MTD devices, so we prohibit this. 913 */ 914 if (mtd->type == MTD_UBIVOLUME) { 915 ubi_err(ubi, "refuse attaching mtd%d - it is already emulated on top of UBI", 916 mtd->index); 917 return -EINVAL; 918 } 919 920 if (ubi_num == UBI_DEV_NUM_AUTO) { 921 /* Search for an empty slot in the @ubi_devices array */ 922 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++) 923 if (!ubi_devices[ubi_num]) 924 break; 925 if (ubi_num == UBI_MAX_DEVICES) { 926 ubi_err(ubi, "only %d UBI devices may be created", 927 UBI_MAX_DEVICES); 928 return -ENFILE; 929 } 930 } else { 931 if (ubi_num >= UBI_MAX_DEVICES) 932 return -EINVAL; 933 934 /* Make sure ubi_num is not busy */ 935 if (ubi_devices[ubi_num]) { 936 ubi_err(ubi, "already exists"); 937 return -EEXIST; 938 } 939 } 940 941 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL); 942 if (!ubi) 943 return -ENOMEM; 944 945 ubi->mtd = mtd; 946 ubi->ubi_num = ubi_num; 947 ubi->vid_hdr_offset = vid_hdr_offset; 948 ubi->autoresize_vol_id = -1; 949 950 #ifdef CONFIG_MTD_UBI_FASTMAP 951 ubi->fm_pool.used = ubi->fm_pool.size = 0; 952 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0; 953 954 /* 955 * fm_pool.max_size is 5% of the total number of PEBs but it's also 956 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE. 957 */ 958 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size, 959 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE); 960 ubi->fm_pool.max_size = max(ubi->fm_pool.max_size, 961 UBI_FM_MIN_POOL_SIZE); 962 963 ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2; 964 ubi->fm_disabled = !fm_autoconvert; 965 if (fm_debug) 966 ubi_enable_dbg_chk_fastmap(ubi); 967 968 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) 969 <= UBI_FM_MAX_START) { 970 ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.", 971 UBI_FM_MAX_START); 972 ubi->fm_disabled = 1; 973 } 974 975 ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size); 976 ubi_msg(ubi, "default fastmap WL pool size: %d", 977 ubi->fm_wl_pool.max_size); 978 #else 979 ubi->fm_disabled = 1; 980 #endif 981 mutex_init(&ubi->buf_mutex); 982 mutex_init(&ubi->ckvol_mutex); 983 mutex_init(&ubi->device_mutex); 984 spin_lock_init(&ubi->volumes_lock); 985 init_rwsem(&ubi->fm_protect); 986 init_rwsem(&ubi->fm_eba_sem); 987 988 ubi_msg(ubi, "attaching mtd%d", mtd->index); 989 990 err = io_init(ubi, max_beb_per1024); 991 if (err) 992 goto out_free; 993 994 err = -ENOMEM; 995 ubi->peb_buf = vmalloc(ubi->peb_size); 996 if (!ubi->peb_buf) 997 goto out_free; 998 999 #ifdef CONFIG_MTD_UBI_FASTMAP 1000 ubi->fm_size = ubi_calc_fm_size(ubi); 1001 ubi->fm_buf = vzalloc(ubi->fm_size); 1002 if (!ubi->fm_buf) 1003 goto out_free; 1004 #endif 1005 err = ubi_attach(ubi, 0); 1006 if (err) { 1007 ubi_err(ubi, "failed to attach mtd%d, error %d", 1008 mtd->index, err); 1009 goto out_free; 1010 } 1011 1012 if (ubi->autoresize_vol_id != -1) { 1013 err = autoresize(ubi, ubi->autoresize_vol_id); 1014 if (err) 1015 goto out_detach; 1016 } 1017 1018 err = uif_init(ubi, &ref); 1019 if (err) 1020 goto out_detach; 1021 1022 err = ubi_debugfs_init_dev(ubi); 1023 if (err) 1024 goto out_uif; 1025 1026 ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name); 1027 if (IS_ERR(ubi->bgt_thread)) { 1028 err = PTR_ERR(ubi->bgt_thread); 1029 ubi_err(ubi, "cannot spawn \"%s\", error %d", 1030 ubi->bgt_name, err); 1031 goto out_debugfs; 1032 } 1033 1034 ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)", 1035 mtd->index, mtd->name, ubi->flash_size >> 20); 1036 ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes", 1037 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size); 1038 ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d", 1039 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size); 1040 ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d", 1041 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start); 1042 ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d", 1043 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count); 1044 ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d", 1045 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT, 1046 ubi->vtbl_slots); 1047 ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u", 1048 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD, 1049 ubi->image_seq); 1050 ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d", 1051 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs); 1052 1053 /* 1054 * The below lock makes sure we do not race with 'ubi_thread()' which 1055 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up. 1056 */ 1057 spin_lock(&ubi->wl_lock); 1058 ubi->thread_enabled = 1; 1059 #ifndef __UBOOT__ 1060 wake_up_process(ubi->bgt_thread); 1061 #else 1062 ubi_do_worker(ubi); 1063 #endif 1064 1065 spin_unlock(&ubi->wl_lock); 1066 1067 ubi_devices[ubi_num] = ubi; 1068 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL); 1069 return ubi_num; 1070 1071 out_debugfs: 1072 ubi_debugfs_exit_dev(ubi); 1073 out_uif: 1074 get_device(&ubi->dev); 1075 ubi_assert(ref); 1076 uif_close(ubi); 1077 out_detach: 1078 ubi_wl_close(ubi); 1079 ubi_free_internal_volumes(ubi); 1080 vfree(ubi->vtbl); 1081 out_free: 1082 vfree(ubi->peb_buf); 1083 vfree(ubi->fm_buf); 1084 if (ref) 1085 put_device(&ubi->dev); 1086 else 1087 kfree(ubi); 1088 return err; 1089 } 1090 1091 /** 1092 * ubi_detach_mtd_dev - detach an MTD device. 1093 * @ubi_num: UBI device number to detach from 1094 * @anyway: detach MTD even if device reference count is not zero 1095 * 1096 * This function destroys an UBI device number @ubi_num and detaches the 1097 * underlying MTD device. Returns zero in case of success and %-EBUSY if the 1098 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not 1099 * exist. 1100 * 1101 * Note, the invocations of this function has to be serialized by the 1102 * @ubi_devices_mutex. 1103 */ 1104 int ubi_detach_mtd_dev(int ubi_num, int anyway) 1105 { 1106 struct ubi_device *ubi; 1107 1108 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES) 1109 return -EINVAL; 1110 1111 ubi = ubi_get_device(ubi_num); 1112 if (!ubi) 1113 return -EINVAL; 1114 1115 spin_lock(&ubi_devices_lock); 1116 put_device(&ubi->dev); 1117 ubi->ref_count -= 1; 1118 if (ubi->ref_count) { 1119 if (!anyway) { 1120 spin_unlock(&ubi_devices_lock); 1121 return -EBUSY; 1122 } 1123 /* This may only happen if there is a bug */ 1124 ubi_err(ubi, "%s reference count %d, destroy anyway", 1125 ubi->ubi_name, ubi->ref_count); 1126 } 1127 ubi_devices[ubi_num] = NULL; 1128 spin_unlock(&ubi_devices_lock); 1129 1130 ubi_assert(ubi_num == ubi->ubi_num); 1131 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL); 1132 ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index); 1133 #ifdef CONFIG_MTD_UBI_FASTMAP 1134 /* If we don't write a new fastmap at detach time we lose all 1135 * EC updates that have been made since the last written fastmap. 1136 * In case of fastmap debugging we omit the update to simulate an 1137 * unclean shutdown. */ 1138 if (!ubi_dbg_chk_fastmap(ubi)) 1139 ubi_update_fastmap(ubi); 1140 #endif 1141 /* 1142 * Before freeing anything, we have to stop the background thread to 1143 * prevent it from doing anything on this device while we are freeing. 1144 */ 1145 if (ubi->bgt_thread) 1146 kthread_stop(ubi->bgt_thread); 1147 1148 /* 1149 * Get a reference to the device in order to prevent 'dev_release()' 1150 * from freeing the @ubi object. 1151 */ 1152 get_device(&ubi->dev); 1153 1154 ubi_debugfs_exit_dev(ubi); 1155 uif_close(ubi); 1156 1157 ubi_wl_close(ubi); 1158 ubi_free_internal_volumes(ubi); 1159 vfree(ubi->vtbl); 1160 put_mtd_device(ubi->mtd); 1161 vfree(ubi->peb_buf); 1162 vfree(ubi->fm_buf); 1163 ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index); 1164 put_device(&ubi->dev); 1165 return 0; 1166 } 1167 1168 #ifndef __UBOOT__ 1169 /** 1170 * open_mtd_by_chdev - open an MTD device by its character device node path. 1171 * @mtd_dev: MTD character device node path 1172 * 1173 * This helper function opens an MTD device by its character node device path. 1174 * Returns MTD device description object in case of success and a negative 1175 * error code in case of failure. 1176 */ 1177 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev) 1178 { 1179 int err, major, minor, mode; 1180 struct path path; 1181 1182 /* Probably this is an MTD character device node path */ 1183 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path); 1184 if (err) 1185 return ERR_PTR(err); 1186 1187 /* MTD device number is defined by the major / minor numbers */ 1188 major = imajor(d_backing_inode(path.dentry)); 1189 minor = iminor(d_backing_inode(path.dentry)); 1190 mode = d_backing_inode(path.dentry)->i_mode; 1191 path_put(&path); 1192 if (major != MTD_CHAR_MAJOR || !S_ISCHR(mode)) 1193 return ERR_PTR(-EINVAL); 1194 1195 if (minor & 1) 1196 /* 1197 * Just do not think the "/dev/mtdrX" devices support is need, 1198 * so do not support them to avoid doing extra work. 1199 */ 1200 return ERR_PTR(-EINVAL); 1201 1202 return get_mtd_device(NULL, minor / 2); 1203 } 1204 #endif 1205 1206 /** 1207 * open_mtd_device - open MTD device by name, character device path, or number. 1208 * @mtd_dev: name, character device node path, or MTD device device number 1209 * 1210 * This function tries to open and MTD device described by @mtd_dev string, 1211 * which is first treated as ASCII MTD device number, and if it is not true, it 1212 * is treated as MTD device name, and if that is also not true, it is treated 1213 * as MTD character device node path. Returns MTD device description object in 1214 * case of success and a negative error code in case of failure. 1215 */ 1216 static struct mtd_info * __init open_mtd_device(const char *mtd_dev) 1217 { 1218 struct mtd_info *mtd; 1219 int mtd_num; 1220 char *endp; 1221 1222 mtd_num = simple_strtoul(mtd_dev, &endp, 0); 1223 if (*endp != '\0' || mtd_dev == endp) { 1224 /* 1225 * This does not look like an ASCII integer, probably this is 1226 * MTD device name. 1227 */ 1228 mtd = get_mtd_device_nm(mtd_dev); 1229 #ifndef __UBOOT__ 1230 if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV) 1231 /* Probably this is an MTD character device node path */ 1232 mtd = open_mtd_by_chdev(mtd_dev); 1233 #endif 1234 } else 1235 mtd = get_mtd_device(NULL, mtd_num); 1236 1237 return mtd; 1238 } 1239 1240 #ifndef __UBOOT__ 1241 static int __init ubi_init(void) 1242 #else 1243 int ubi_init(void) 1244 #endif 1245 { 1246 int err, i, k; 1247 1248 /* Ensure that EC and VID headers have correct size */ 1249 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64); 1250 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64); 1251 1252 if (mtd_devs > UBI_MAX_DEVICES) { 1253 pr_err("UBI error: too many MTD devices, maximum is %d\n", 1254 UBI_MAX_DEVICES); 1255 return -EINVAL; 1256 } 1257 1258 /* Create base sysfs directory and sysfs files */ 1259 err = class_register(&ubi_class); 1260 if (err < 0) 1261 return err; 1262 1263 err = misc_register(&ubi_ctrl_cdev); 1264 if (err) { 1265 pr_err("UBI error: cannot register device\n"); 1266 goto out; 1267 } 1268 1269 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab", 1270 sizeof(struct ubi_wl_entry), 1271 0, 0, NULL); 1272 if (!ubi_wl_entry_slab) { 1273 err = -ENOMEM; 1274 goto out_dev_unreg; 1275 } 1276 1277 err = ubi_debugfs_init(); 1278 if (err) 1279 goto out_slab; 1280 1281 1282 /* Attach MTD devices */ 1283 for (i = 0; i < mtd_devs; i++) { 1284 struct mtd_dev_param *p = &mtd_dev_param[i]; 1285 struct mtd_info *mtd; 1286 1287 cond_resched(); 1288 1289 mtd = open_mtd_device(p->name); 1290 if (IS_ERR(mtd)) { 1291 err = PTR_ERR(mtd); 1292 pr_err("UBI error: cannot open mtd %s, error %d\n", 1293 p->name, err); 1294 /* See comment below re-ubi_is_module(). */ 1295 if (ubi_is_module()) 1296 goto out_detach; 1297 continue; 1298 } 1299 1300 mutex_lock(&ubi_devices_mutex); 1301 err = ubi_attach_mtd_dev(mtd, p->ubi_num, 1302 p->vid_hdr_offs, p->max_beb_per1024); 1303 mutex_unlock(&ubi_devices_mutex); 1304 if (err < 0) { 1305 pr_err("UBI error: cannot attach mtd%d\n", 1306 mtd->index); 1307 put_mtd_device(mtd); 1308 1309 /* 1310 * Originally UBI stopped initializing on any error. 1311 * However, later on it was found out that this 1312 * behavior is not very good when UBI is compiled into 1313 * the kernel and the MTD devices to attach are passed 1314 * through the command line. Indeed, UBI failure 1315 * stopped whole boot sequence. 1316 * 1317 * To fix this, we changed the behavior for the 1318 * non-module case, but preserved the old behavior for 1319 * the module case, just for compatibility. This is a 1320 * little inconsistent, though. 1321 */ 1322 if (ubi_is_module()) 1323 goto out_detach; 1324 } 1325 } 1326 1327 err = ubiblock_init(); 1328 if (err) { 1329 pr_err("UBI error: block: cannot initialize, error %d\n", err); 1330 1331 /* See comment above re-ubi_is_module(). */ 1332 if (ubi_is_module()) 1333 goto out_detach; 1334 } 1335 1336 return 0; 1337 1338 out_detach: 1339 for (k = 0; k < i; k++) 1340 if (ubi_devices[k]) { 1341 mutex_lock(&ubi_devices_mutex); 1342 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1); 1343 mutex_unlock(&ubi_devices_mutex); 1344 } 1345 ubi_debugfs_exit(); 1346 out_slab: 1347 kmem_cache_destroy(ubi_wl_entry_slab); 1348 out_dev_unreg: 1349 misc_deregister(&ubi_ctrl_cdev); 1350 out: 1351 #ifdef __UBOOT__ 1352 /* Reset any globals that the driver depends on being zeroed */ 1353 mtd_devs = 0; 1354 #endif 1355 class_unregister(&ubi_class); 1356 pr_err("UBI error: cannot initialize UBI, error %d\n", err); 1357 return err; 1358 } 1359 late_initcall(ubi_init); 1360 1361 #ifndef __UBOOT__ 1362 static void __exit ubi_exit(void) 1363 #else 1364 void ubi_exit(void) 1365 #endif 1366 { 1367 int i; 1368 1369 ubiblock_exit(); 1370 1371 for (i = 0; i < UBI_MAX_DEVICES; i++) 1372 if (ubi_devices[i]) { 1373 mutex_lock(&ubi_devices_mutex); 1374 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1); 1375 mutex_unlock(&ubi_devices_mutex); 1376 } 1377 ubi_debugfs_exit(); 1378 kmem_cache_destroy(ubi_wl_entry_slab); 1379 misc_deregister(&ubi_ctrl_cdev); 1380 class_unregister(&ubi_class); 1381 #ifdef __UBOOT__ 1382 /* Reset any globals that the driver depends on being zeroed */ 1383 mtd_devs = 0; 1384 #endif 1385 } 1386 module_exit(ubi_exit); 1387 1388 /** 1389 * bytes_str_to_int - convert a number of bytes string into an integer. 1390 * @str: the string to convert 1391 * 1392 * This function returns positive resulting integer in case of success and a 1393 * negative error code in case of failure. 1394 */ 1395 static int __init bytes_str_to_int(const char *str) 1396 { 1397 char *endp; 1398 unsigned long result; 1399 1400 result = simple_strtoul(str, &endp, 0); 1401 if (str == endp || result >= INT_MAX) { 1402 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str); 1403 return -EINVAL; 1404 } 1405 1406 switch (*endp) { 1407 case 'G': 1408 result *= 1024; 1409 case 'M': 1410 result *= 1024; 1411 case 'K': 1412 result *= 1024; 1413 if (endp[1] == 'i' && endp[2] == 'B') 1414 endp += 2; 1415 case '\0': 1416 break; 1417 default: 1418 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str); 1419 return -EINVAL; 1420 } 1421 1422 return result; 1423 } 1424 1425 int kstrtoint(const char *s, unsigned int base, int *res) 1426 { 1427 unsigned long long tmp; 1428 1429 tmp = simple_strtoull(s, NULL, base); 1430 if (tmp != (unsigned long long)(int)tmp) 1431 return -ERANGE; 1432 1433 return (int)tmp; 1434 } 1435 1436 /** 1437 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter. 1438 * @val: the parameter value to parse 1439 * @kp: not used 1440 * 1441 * This function returns zero in case of success and a negative error code in 1442 * case of error. 1443 */ 1444 #ifndef __UBOOT__ 1445 static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp) 1446 #else 1447 int ubi_mtd_param_parse(const char *val, struct kernel_param *kp) 1448 #endif 1449 { 1450 int i, len; 1451 struct mtd_dev_param *p; 1452 char buf[MTD_PARAM_LEN_MAX]; 1453 char *pbuf = &buf[0]; 1454 char *tokens[MTD_PARAM_MAX_COUNT], *token; 1455 1456 if (!val) 1457 return -EINVAL; 1458 1459 if (mtd_devs == UBI_MAX_DEVICES) { 1460 pr_err("UBI error: too many parameters, max. is %d\n", 1461 UBI_MAX_DEVICES); 1462 return -EINVAL; 1463 } 1464 1465 len = strnlen(val, MTD_PARAM_LEN_MAX); 1466 if (len == MTD_PARAM_LEN_MAX) { 1467 pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n", 1468 val, MTD_PARAM_LEN_MAX); 1469 return -EINVAL; 1470 } 1471 1472 if (len == 0) { 1473 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n"); 1474 return 0; 1475 } 1476 1477 strcpy(buf, val); 1478 1479 /* Get rid of the final newline */ 1480 if (buf[len - 1] == '\n') 1481 buf[len - 1] = '\0'; 1482 1483 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++) 1484 tokens[i] = strsep(&pbuf, ","); 1485 1486 if (pbuf) { 1487 pr_err("UBI error: too many arguments at \"%s\"\n", val); 1488 return -EINVAL; 1489 } 1490 1491 p = &mtd_dev_param[mtd_devs]; 1492 strcpy(&p->name[0], tokens[0]); 1493 1494 token = tokens[1]; 1495 if (token) { 1496 p->vid_hdr_offs = bytes_str_to_int(token); 1497 1498 if (p->vid_hdr_offs < 0) 1499 return p->vid_hdr_offs; 1500 } 1501 1502 token = tokens[2]; 1503 if (token) { 1504 int err = kstrtoint(token, 10, &p->max_beb_per1024); 1505 1506 if (err) { 1507 pr_err("UBI error: bad value for max_beb_per1024 parameter: %s", 1508 token); 1509 return -EINVAL; 1510 } 1511 } 1512 1513 token = tokens[3]; 1514 if (token) { 1515 int err = kstrtoint(token, 10, &p->ubi_num); 1516 1517 if (err) { 1518 pr_err("UBI error: bad value for ubi_num parameter: %s", 1519 token); 1520 return -EINVAL; 1521 } 1522 } else 1523 p->ubi_num = UBI_DEV_NUM_AUTO; 1524 1525 mtd_devs += 1; 1526 return 0; 1527 } 1528 1529 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000); 1530 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n" 1531 "Multiple \"mtd\" parameters may be specified.\n" 1532 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n" 1533 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n" 1534 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value (" 1535 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n" 1536 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n" 1537 "\n" 1538 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n" 1539 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n" 1540 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n" 1541 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n" 1542 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device)."); 1543 #ifdef CONFIG_MTD_UBI_FASTMAP 1544 module_param(fm_autoconvert, bool, 0644); 1545 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap."); 1546 module_param(fm_debug, bool, 0); 1547 MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!"); 1548 #endif 1549 MODULE_VERSION(__stringify(UBI_VERSION)); 1550 MODULE_DESCRIPTION("UBI - Unsorted Block Images"); 1551 MODULE_AUTHOR("Artem Bityutskiy"); 1552 MODULE_LICENSE("GPL"); 1553