1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * Copyright (c) Nokia Corporation, 2007 4 * 5 * SPDX-License-Identifier: GPL-2.0+ 6 * 7 * Author: Artem Bityutskiy (Битюцкий Артём), 8 * Frank Haverkamp 9 */ 10 11 /* 12 * This file includes UBI initialization and building of UBI devices. 13 * 14 * When UBI is initialized, it attaches all the MTD devices specified as the 15 * module load parameters or the kernel boot parameters. If MTD devices were 16 * specified, UBI does not attach any MTD device, but it is possible to do 17 * later using the "UBI control device". 18 */ 19 20 #ifndef __UBOOT__ 21 #include <linux/module.h> 22 #include <linux/moduleparam.h> 23 #include <linux/stringify.h> 24 #include <linux/namei.h> 25 #include <linux/stat.h> 26 #include <linux/miscdevice.h> 27 #include <linux/log2.h> 28 #include <linux/kthread.h> 29 #include <linux/kernel.h> 30 #include <linux/slab.h> 31 #include <linux/major.h> 32 #else 33 #include <linux/compat.h> 34 #endif 35 #include <linux/err.h> 36 #include <ubi_uboot.h> 37 #include <linux/mtd/partitions.h> 38 39 #include "ubi.h" 40 41 /* Maximum length of the 'mtd=' parameter */ 42 #define MTD_PARAM_LEN_MAX 64 43 44 /* Maximum number of comma-separated items in the 'mtd=' parameter */ 45 #define MTD_PARAM_MAX_COUNT 4 46 47 /* Maximum value for the number of bad PEBs per 1024 PEBs */ 48 #define MAX_MTD_UBI_BEB_LIMIT 768 49 50 #ifdef CONFIG_MTD_UBI_MODULE 51 #define ubi_is_module() 1 52 #else 53 #define ubi_is_module() 0 54 #endif 55 56 #if (CONFIG_SYS_MALLOC_LEN < (512 << 10)) 57 #error Malloc area too small for UBI, increase CONFIG_SYS_MALLOC_LEN to >= 512k 58 #endif 59 60 /** 61 * struct mtd_dev_param - MTD device parameter description data structure. 62 * @name: MTD character device node path, MTD device name, or MTD device number 63 * string 64 * @vid_hdr_offs: VID header offset 65 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs 66 */ 67 struct mtd_dev_param { 68 char name[MTD_PARAM_LEN_MAX]; 69 int ubi_num; 70 int vid_hdr_offs; 71 int max_beb_per1024; 72 }; 73 74 /* Numbers of elements set in the @mtd_dev_param array */ 75 static int __initdata mtd_devs; 76 77 /* MTD devices specification parameters */ 78 static struct mtd_dev_param __initdata mtd_dev_param[UBI_MAX_DEVICES]; 79 #ifndef __UBOOT__ 80 #ifdef CONFIG_MTD_UBI_FASTMAP 81 /* UBI module parameter to enable fastmap automatically on non-fastmap images */ 82 static bool fm_autoconvert; 83 #endif 84 #else 85 #ifdef CONFIG_MTD_UBI_FASTMAP 86 #if !defined(CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT) 87 #define CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT 0 88 #endif 89 static bool fm_autoconvert = CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT; 90 #endif 91 #endif 92 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */ 93 struct class *ubi_class; 94 95 /* Slab cache for wear-leveling entries */ 96 struct kmem_cache *ubi_wl_entry_slab; 97 98 #ifndef __UBOOT__ 99 /* UBI control character device */ 100 static struct miscdevice ubi_ctrl_cdev = { 101 .minor = MISC_DYNAMIC_MINOR, 102 .name = "ubi_ctrl", 103 .fops = &ubi_ctrl_cdev_operations, 104 }; 105 #endif 106 107 /* All UBI devices in system */ 108 #ifndef __UBOOT__ 109 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES]; 110 #else 111 struct ubi_device *ubi_devices[UBI_MAX_DEVICES]; 112 #endif 113 114 #ifndef __UBOOT__ 115 /* Serializes UBI devices creations and removals */ 116 DEFINE_MUTEX(ubi_devices_mutex); 117 118 /* Protects @ubi_devices and @ubi->ref_count */ 119 static DEFINE_SPINLOCK(ubi_devices_lock); 120 121 /* "Show" method for files in '/<sysfs>/class/ubi/' */ 122 static ssize_t ubi_version_show(struct class *class, 123 struct class_attribute *attr, char *buf) 124 { 125 return sprintf(buf, "%d\n", UBI_VERSION); 126 } 127 128 /* UBI version attribute ('/<sysfs>/class/ubi/version') */ 129 static struct class_attribute ubi_version = 130 __ATTR(version, S_IRUGO, ubi_version_show, NULL); 131 132 static ssize_t dev_attribute_show(struct device *dev, 133 struct device_attribute *attr, char *buf); 134 135 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */ 136 static struct device_attribute dev_eraseblock_size = 137 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL); 138 static struct device_attribute dev_avail_eraseblocks = 139 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 140 static struct device_attribute dev_total_eraseblocks = 141 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 142 static struct device_attribute dev_volumes_count = 143 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL); 144 static struct device_attribute dev_max_ec = 145 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL); 146 static struct device_attribute dev_reserved_for_bad = 147 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL); 148 static struct device_attribute dev_bad_peb_count = 149 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL); 150 static struct device_attribute dev_max_vol_count = 151 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL); 152 static struct device_attribute dev_min_io_size = 153 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL); 154 static struct device_attribute dev_bgt_enabled = 155 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL); 156 static struct device_attribute dev_mtd_num = 157 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL); 158 #endif 159 160 /** 161 * ubi_volume_notify - send a volume change notification. 162 * @ubi: UBI device description object 163 * @vol: volume description object of the changed volume 164 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 165 * 166 * This is a helper function which notifies all subscribers about a volume 167 * change event (creation, removal, re-sizing, re-naming, updating). Returns 168 * zero in case of success and a negative error code in case of failure. 169 */ 170 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype) 171 { 172 struct ubi_notification nt; 173 174 ubi_do_get_device_info(ubi, &nt.di); 175 ubi_do_get_volume_info(ubi, vol, &nt.vi); 176 177 #ifdef CONFIG_MTD_UBI_FASTMAP 178 switch (ntype) { 179 case UBI_VOLUME_ADDED: 180 case UBI_VOLUME_REMOVED: 181 case UBI_VOLUME_RESIZED: 182 case UBI_VOLUME_RENAMED: 183 if (ubi_update_fastmap(ubi)) { 184 ubi_err("Unable to update fastmap!"); 185 ubi_ro_mode(ubi); 186 } 187 } 188 #endif 189 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt); 190 } 191 192 /** 193 * ubi_notify_all - send a notification to all volumes. 194 * @ubi: UBI device description object 195 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 196 * @nb: the notifier to call 197 * 198 * This function walks all volumes of UBI device @ubi and sends the @ntype 199 * notification for each volume. If @nb is %NULL, then all registered notifiers 200 * are called, otherwise only the @nb notifier is called. Returns the number of 201 * sent notifications. 202 */ 203 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb) 204 { 205 struct ubi_notification nt; 206 int i, count = 0; 207 #ifndef __UBOOT__ 208 int ret; 209 #endif 210 211 ubi_do_get_device_info(ubi, &nt.di); 212 213 mutex_lock(&ubi->device_mutex); 214 for (i = 0; i < ubi->vtbl_slots; i++) { 215 /* 216 * Since the @ubi->device is locked, and we are not going to 217 * change @ubi->volumes, we do not have to lock 218 * @ubi->volumes_lock. 219 */ 220 if (!ubi->volumes[i]) 221 continue; 222 223 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi); 224 #ifndef __UBOOT__ 225 if (nb) 226 nb->notifier_call(nb, ntype, &nt); 227 else 228 ret = blocking_notifier_call_chain(&ubi_notifiers, ntype, 229 &nt); 230 #endif 231 count += 1; 232 } 233 mutex_unlock(&ubi->device_mutex); 234 235 return count; 236 } 237 238 /** 239 * ubi_enumerate_volumes - send "add" notification for all existing volumes. 240 * @nb: the notifier to call 241 * 242 * This function walks all UBI devices and volumes and sends the 243 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all 244 * registered notifiers are called, otherwise only the @nb notifier is called. 245 * Returns the number of sent notifications. 246 */ 247 int ubi_enumerate_volumes(struct notifier_block *nb) 248 { 249 int i, count = 0; 250 251 /* 252 * Since the @ubi_devices_mutex is locked, and we are not going to 253 * change @ubi_devices, we do not have to lock @ubi_devices_lock. 254 */ 255 for (i = 0; i < UBI_MAX_DEVICES; i++) { 256 struct ubi_device *ubi = ubi_devices[i]; 257 258 if (!ubi) 259 continue; 260 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb); 261 } 262 263 return count; 264 } 265 266 /** 267 * ubi_get_device - get UBI device. 268 * @ubi_num: UBI device number 269 * 270 * This function returns UBI device description object for UBI device number 271 * @ubi_num, or %NULL if the device does not exist. This function increases the 272 * device reference count to prevent removal of the device. In other words, the 273 * device cannot be removed if its reference count is not zero. 274 */ 275 struct ubi_device *ubi_get_device(int ubi_num) 276 { 277 struct ubi_device *ubi; 278 279 spin_lock(&ubi_devices_lock); 280 ubi = ubi_devices[ubi_num]; 281 if (ubi) { 282 ubi_assert(ubi->ref_count >= 0); 283 ubi->ref_count += 1; 284 get_device(&ubi->dev); 285 } 286 spin_unlock(&ubi_devices_lock); 287 288 return ubi; 289 } 290 291 /** 292 * ubi_put_device - drop an UBI device reference. 293 * @ubi: UBI device description object 294 */ 295 void ubi_put_device(struct ubi_device *ubi) 296 { 297 spin_lock(&ubi_devices_lock); 298 ubi->ref_count -= 1; 299 put_device(&ubi->dev); 300 spin_unlock(&ubi_devices_lock); 301 } 302 303 /** 304 * ubi_get_by_major - get UBI device by character device major number. 305 * @major: major number 306 * 307 * This function is similar to 'ubi_get_device()', but it searches the device 308 * by its major number. 309 */ 310 struct ubi_device *ubi_get_by_major(int major) 311 { 312 int i; 313 struct ubi_device *ubi; 314 315 spin_lock(&ubi_devices_lock); 316 for (i = 0; i < UBI_MAX_DEVICES; i++) { 317 ubi = ubi_devices[i]; 318 if (ubi && MAJOR(ubi->cdev.dev) == major) { 319 ubi_assert(ubi->ref_count >= 0); 320 ubi->ref_count += 1; 321 get_device(&ubi->dev); 322 spin_unlock(&ubi_devices_lock); 323 return ubi; 324 } 325 } 326 spin_unlock(&ubi_devices_lock); 327 328 return NULL; 329 } 330 331 /** 332 * ubi_major2num - get UBI device number by character device major number. 333 * @major: major number 334 * 335 * This function searches UBI device number object by its major number. If UBI 336 * device was not found, this function returns -ENODEV, otherwise the UBI device 337 * number is returned. 338 */ 339 int ubi_major2num(int major) 340 { 341 int i, ubi_num = -ENODEV; 342 343 spin_lock(&ubi_devices_lock); 344 for (i = 0; i < UBI_MAX_DEVICES; i++) { 345 struct ubi_device *ubi = ubi_devices[i]; 346 347 if (ubi && MAJOR(ubi->cdev.dev) == major) { 348 ubi_num = ubi->ubi_num; 349 break; 350 } 351 } 352 spin_unlock(&ubi_devices_lock); 353 354 return ubi_num; 355 } 356 357 #ifndef __UBOOT__ 358 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */ 359 static ssize_t dev_attribute_show(struct device *dev, 360 struct device_attribute *attr, char *buf) 361 { 362 ssize_t ret; 363 struct ubi_device *ubi; 364 365 /* 366 * The below code looks weird, but it actually makes sense. We get the 367 * UBI device reference from the contained 'struct ubi_device'. But it 368 * is unclear if the device was removed or not yet. Indeed, if the 369 * device was removed before we increased its reference count, 370 * 'ubi_get_device()' will return -ENODEV and we fail. 371 * 372 * Remember, 'struct ubi_device' is freed in the release function, so 373 * we still can use 'ubi->ubi_num'. 374 */ 375 ubi = container_of(dev, struct ubi_device, dev); 376 ubi = ubi_get_device(ubi->ubi_num); 377 if (!ubi) 378 return -ENODEV; 379 380 if (attr == &dev_eraseblock_size) 381 ret = sprintf(buf, "%d\n", ubi->leb_size); 382 else if (attr == &dev_avail_eraseblocks) 383 ret = sprintf(buf, "%d\n", ubi->avail_pebs); 384 else if (attr == &dev_total_eraseblocks) 385 ret = sprintf(buf, "%d\n", ubi->good_peb_count); 386 else if (attr == &dev_volumes_count) 387 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT); 388 else if (attr == &dev_max_ec) 389 ret = sprintf(buf, "%d\n", ubi->max_ec); 390 else if (attr == &dev_reserved_for_bad) 391 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs); 392 else if (attr == &dev_bad_peb_count) 393 ret = sprintf(buf, "%d\n", ubi->bad_peb_count); 394 else if (attr == &dev_max_vol_count) 395 ret = sprintf(buf, "%d\n", ubi->vtbl_slots); 396 else if (attr == &dev_min_io_size) 397 ret = sprintf(buf, "%d\n", ubi->min_io_size); 398 else if (attr == &dev_bgt_enabled) 399 ret = sprintf(buf, "%d\n", ubi->thread_enabled); 400 else if (attr == &dev_mtd_num) 401 ret = sprintf(buf, "%d\n", ubi->mtd->index); 402 else 403 ret = -EINVAL; 404 405 ubi_put_device(ubi); 406 return ret; 407 } 408 409 static void dev_release(struct device *dev) 410 { 411 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev); 412 413 kfree(ubi); 414 } 415 416 /** 417 * ubi_sysfs_init - initialize sysfs for an UBI device. 418 * @ubi: UBI device description object 419 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was 420 * taken 421 * 422 * This function returns zero in case of success and a negative error code in 423 * case of failure. 424 */ 425 static int ubi_sysfs_init(struct ubi_device *ubi, int *ref) 426 { 427 int err; 428 429 ubi->dev.release = dev_release; 430 ubi->dev.devt = ubi->cdev.dev; 431 ubi->dev.class = ubi_class; 432 dev_set_name(&ubi->dev, UBI_NAME_STR"%d", ubi->ubi_num); 433 err = device_register(&ubi->dev); 434 if (err) 435 return err; 436 437 *ref = 1; 438 err = device_create_file(&ubi->dev, &dev_eraseblock_size); 439 if (err) 440 return err; 441 err = device_create_file(&ubi->dev, &dev_avail_eraseblocks); 442 if (err) 443 return err; 444 err = device_create_file(&ubi->dev, &dev_total_eraseblocks); 445 if (err) 446 return err; 447 err = device_create_file(&ubi->dev, &dev_volumes_count); 448 if (err) 449 return err; 450 err = device_create_file(&ubi->dev, &dev_max_ec); 451 if (err) 452 return err; 453 err = device_create_file(&ubi->dev, &dev_reserved_for_bad); 454 if (err) 455 return err; 456 err = device_create_file(&ubi->dev, &dev_bad_peb_count); 457 if (err) 458 return err; 459 err = device_create_file(&ubi->dev, &dev_max_vol_count); 460 if (err) 461 return err; 462 err = device_create_file(&ubi->dev, &dev_min_io_size); 463 if (err) 464 return err; 465 err = device_create_file(&ubi->dev, &dev_bgt_enabled); 466 if (err) 467 return err; 468 err = device_create_file(&ubi->dev, &dev_mtd_num); 469 return err; 470 } 471 472 /** 473 * ubi_sysfs_close - close sysfs for an UBI device. 474 * @ubi: UBI device description object 475 */ 476 static void ubi_sysfs_close(struct ubi_device *ubi) 477 { 478 device_remove_file(&ubi->dev, &dev_mtd_num); 479 device_remove_file(&ubi->dev, &dev_bgt_enabled); 480 device_remove_file(&ubi->dev, &dev_min_io_size); 481 device_remove_file(&ubi->dev, &dev_max_vol_count); 482 device_remove_file(&ubi->dev, &dev_bad_peb_count); 483 device_remove_file(&ubi->dev, &dev_reserved_for_bad); 484 device_remove_file(&ubi->dev, &dev_max_ec); 485 device_remove_file(&ubi->dev, &dev_volumes_count); 486 device_remove_file(&ubi->dev, &dev_total_eraseblocks); 487 device_remove_file(&ubi->dev, &dev_avail_eraseblocks); 488 device_remove_file(&ubi->dev, &dev_eraseblock_size); 489 device_unregister(&ubi->dev); 490 } 491 #endif 492 493 /** 494 * kill_volumes - destroy all user volumes. 495 * @ubi: UBI device description object 496 */ 497 static void kill_volumes(struct ubi_device *ubi) 498 { 499 int i; 500 501 for (i = 0; i < ubi->vtbl_slots; i++) 502 if (ubi->volumes[i]) 503 ubi_free_volume(ubi, ubi->volumes[i]); 504 } 505 506 /** 507 * uif_init - initialize user interfaces for an UBI device. 508 * @ubi: UBI device description object 509 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was 510 * taken, otherwise set to %0 511 * 512 * This function initializes various user interfaces for an UBI device. If the 513 * initialization fails at an early stage, this function frees all the 514 * resources it allocated, returns an error, and @ref is set to %0. However, 515 * if the initialization fails after the UBI device was registered in the 516 * driver core subsystem, this function takes a reference to @ubi->dev, because 517 * otherwise the release function ('dev_release()') would free whole @ubi 518 * object. The @ref argument is set to %1 in this case. The caller has to put 519 * this reference. 520 * 521 * This function returns zero in case of success and a negative error code in 522 * case of failure. 523 */ 524 static int uif_init(struct ubi_device *ubi, int *ref) 525 { 526 int i, err; 527 #ifndef __UBOOT__ 528 dev_t dev; 529 #endif 530 531 *ref = 0; 532 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num); 533 534 /* 535 * Major numbers for the UBI character devices are allocated 536 * dynamically. Major numbers of volume character devices are 537 * equivalent to ones of the corresponding UBI character device. Minor 538 * numbers of UBI character devices are 0, while minor numbers of 539 * volume character devices start from 1. Thus, we allocate one major 540 * number and ubi->vtbl_slots + 1 minor numbers. 541 */ 542 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name); 543 if (err) { 544 ubi_err("cannot register UBI character devices"); 545 return err; 546 } 547 548 ubi_assert(MINOR(dev) == 0); 549 cdev_init(&ubi->cdev, &ubi_cdev_operations); 550 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev)); 551 ubi->cdev.owner = THIS_MODULE; 552 553 err = cdev_add(&ubi->cdev, dev, 1); 554 if (err) { 555 ubi_err("cannot add character device"); 556 goto out_unreg; 557 } 558 559 err = ubi_sysfs_init(ubi, ref); 560 if (err) 561 goto out_sysfs; 562 563 for (i = 0; i < ubi->vtbl_slots; i++) 564 if (ubi->volumes[i]) { 565 err = ubi_add_volume(ubi, ubi->volumes[i]); 566 if (err) { 567 ubi_err("cannot add volume %d", i); 568 goto out_volumes; 569 } 570 } 571 572 return 0; 573 574 out_volumes: 575 kill_volumes(ubi); 576 out_sysfs: 577 if (*ref) 578 get_device(&ubi->dev); 579 ubi_sysfs_close(ubi); 580 cdev_del(&ubi->cdev); 581 out_unreg: 582 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 583 ubi_err("cannot initialize UBI %s, error %d", ubi->ubi_name, err); 584 return err; 585 } 586 587 /** 588 * uif_close - close user interfaces for an UBI device. 589 * @ubi: UBI device description object 590 * 591 * Note, since this function un-registers UBI volume device objects (@vol->dev), 592 * the memory allocated voe the volumes is freed as well (in the release 593 * function). 594 */ 595 static void uif_close(struct ubi_device *ubi) 596 { 597 kill_volumes(ubi); 598 ubi_sysfs_close(ubi); 599 cdev_del(&ubi->cdev); 600 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 601 } 602 603 /** 604 * ubi_free_internal_volumes - free internal volumes. 605 * @ubi: UBI device description object 606 */ 607 void ubi_free_internal_volumes(struct ubi_device *ubi) 608 { 609 int i; 610 611 for (i = ubi->vtbl_slots; 612 i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { 613 kfree(ubi->volumes[i]->eba_tbl); 614 kfree(ubi->volumes[i]); 615 } 616 } 617 618 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024) 619 { 620 int limit, device_pebs; 621 uint64_t device_size; 622 623 if (!max_beb_per1024) 624 return 0; 625 626 /* 627 * Here we are using size of the entire flash chip and 628 * not just the MTD partition size because the maximum 629 * number of bad eraseblocks is a percentage of the 630 * whole device and bad eraseblocks are not fairly 631 * distributed over the flash chip. So the worst case 632 * is that all the bad eraseblocks of the chip are in 633 * the MTD partition we are attaching (ubi->mtd). 634 */ 635 device_size = mtd_get_device_size(ubi->mtd); 636 device_pebs = mtd_div_by_eb(device_size, ubi->mtd); 637 limit = mult_frac(device_pebs, max_beb_per1024, 1024); 638 639 /* Round it up */ 640 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs) 641 limit += 1; 642 643 return limit; 644 } 645 646 /** 647 * io_init - initialize I/O sub-system for a given UBI device. 648 * @ubi: UBI device description object 649 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 650 * 651 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are 652 * assumed: 653 * o EC header is always at offset zero - this cannot be changed; 654 * o VID header starts just after the EC header at the closest address 655 * aligned to @io->hdrs_min_io_size; 656 * o data starts just after the VID header at the closest address aligned to 657 * @io->min_io_size 658 * 659 * This function returns zero in case of success and a negative error code in 660 * case of failure. 661 */ 662 static int io_init(struct ubi_device *ubi, int max_beb_per1024) 663 { 664 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb)); 665 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry)); 666 667 if (ubi->mtd->numeraseregions != 0) { 668 /* 669 * Some flashes have several erase regions. Different regions 670 * may have different eraseblock size and other 671 * characteristics. It looks like mostly multi-region flashes 672 * have one "main" region and one or more small regions to 673 * store boot loader code or boot parameters or whatever. I 674 * guess we should just pick the largest region. But this is 675 * not implemented. 676 */ 677 ubi_err("multiple regions, not implemented"); 678 return -EINVAL; 679 } 680 681 if (ubi->vid_hdr_offset < 0) 682 return -EINVAL; 683 684 /* 685 * Note, in this implementation we support MTD devices with 0x7FFFFFFF 686 * physical eraseblocks maximum. 687 */ 688 689 ubi->peb_size = ubi->mtd->erasesize; 690 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd); 691 ubi->flash_size = ubi->mtd->size; 692 693 if (mtd_can_have_bb(ubi->mtd)) { 694 ubi->bad_allowed = 1; 695 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024); 696 } 697 698 if (ubi->mtd->type == MTD_NORFLASH) { 699 ubi_assert(ubi->mtd->writesize == 1); 700 ubi->nor_flash = 1; 701 } 702 703 ubi->min_io_size = ubi->mtd->writesize; 704 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft; 705 706 /* 707 * Make sure minimal I/O unit is power of 2. Note, there is no 708 * fundamental reason for this assumption. It is just an optimization 709 * which allows us to avoid costly division operations. 710 */ 711 if (!is_power_of_2(ubi->min_io_size)) { 712 ubi_err("min. I/O unit (%d) is not power of 2", 713 ubi->min_io_size); 714 return -EINVAL; 715 } 716 717 ubi_assert(ubi->hdrs_min_io_size > 0); 718 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size); 719 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0); 720 721 ubi->max_write_size = ubi->mtd->writebufsize; 722 /* 723 * Maximum write size has to be greater or equivalent to min. I/O 724 * size, and be multiple of min. I/O size. 725 */ 726 if (ubi->max_write_size < ubi->min_io_size || 727 ubi->max_write_size % ubi->min_io_size || 728 !is_power_of_2(ubi->max_write_size)) { 729 ubi_err("bad write buffer size %d for %d min. I/O unit", 730 ubi->max_write_size, ubi->min_io_size); 731 return -EINVAL; 732 } 733 734 /* Calculate default aligned sizes of EC and VID headers */ 735 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size); 736 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size); 737 738 dbg_gen("min_io_size %d", ubi->min_io_size); 739 dbg_gen("max_write_size %d", ubi->max_write_size); 740 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size); 741 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize); 742 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize); 743 744 if (ubi->vid_hdr_offset == 0) 745 /* Default offset */ 746 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset = 747 ubi->ec_hdr_alsize; 748 else { 749 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset & 750 ~(ubi->hdrs_min_io_size - 1); 751 ubi->vid_hdr_shift = ubi->vid_hdr_offset - 752 ubi->vid_hdr_aloffset; 753 } 754 755 /* Similar for the data offset */ 756 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE; 757 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size); 758 759 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset); 760 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset); 761 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift); 762 dbg_gen("leb_start %d", ubi->leb_start); 763 764 /* The shift must be aligned to 32-bit boundary */ 765 if (ubi->vid_hdr_shift % 4) { 766 ubi_err("unaligned VID header shift %d", 767 ubi->vid_hdr_shift); 768 return -EINVAL; 769 } 770 771 /* Check sanity */ 772 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE || 773 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE || 774 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE || 775 ubi->leb_start & (ubi->min_io_size - 1)) { 776 ubi_err("bad VID header (%d) or data offsets (%d)", 777 ubi->vid_hdr_offset, ubi->leb_start); 778 return -EINVAL; 779 } 780 781 /* 782 * Set maximum amount of physical erroneous eraseblocks to be 10%. 783 * Erroneous PEB are those which have read errors. 784 */ 785 ubi->max_erroneous = ubi->peb_count / 10; 786 if (ubi->max_erroneous < 16) 787 ubi->max_erroneous = 16; 788 dbg_gen("max_erroneous %d", ubi->max_erroneous); 789 790 /* 791 * It may happen that EC and VID headers are situated in one minimal 792 * I/O unit. In this case we can only accept this UBI image in 793 * read-only mode. 794 */ 795 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) { 796 ubi_warn("EC and VID headers are in the same minimal I/O unit, switch to read-only mode"); 797 ubi->ro_mode = 1; 798 } 799 800 ubi->leb_size = ubi->peb_size - ubi->leb_start; 801 802 if (!(ubi->mtd->flags & MTD_WRITEABLE)) { 803 ubi_msg("MTD device %d is write-protected, attach in read-only mode", 804 ubi->mtd->index); 805 ubi->ro_mode = 1; 806 } 807 808 /* 809 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But 810 * unfortunately, MTD does not provide this information. We should loop 811 * over all physical eraseblocks and invoke mtd->block_is_bad() for 812 * each physical eraseblock. So, we leave @ubi->bad_peb_count 813 * uninitialized so far. 814 */ 815 816 return 0; 817 } 818 819 /** 820 * autoresize - re-size the volume which has the "auto-resize" flag set. 821 * @ubi: UBI device description object 822 * @vol_id: ID of the volume to re-size 823 * 824 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in 825 * the volume table to the largest possible size. See comments in ubi-header.h 826 * for more description of the flag. Returns zero in case of success and a 827 * negative error code in case of failure. 828 */ 829 static int autoresize(struct ubi_device *ubi, int vol_id) 830 { 831 struct ubi_volume_desc desc; 832 struct ubi_volume *vol = ubi->volumes[vol_id]; 833 int err, old_reserved_pebs = vol->reserved_pebs; 834 835 if (ubi->ro_mode) { 836 ubi_warn("skip auto-resize because of R/O mode"); 837 return 0; 838 } 839 840 /* 841 * Clear the auto-resize flag in the volume in-memory copy of the 842 * volume table, and 'ubi_resize_volume()' will propagate this change 843 * to the flash. 844 */ 845 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG; 846 847 if (ubi->avail_pebs == 0) { 848 struct ubi_vtbl_record vtbl_rec; 849 850 /* 851 * No available PEBs to re-size the volume, clear the flag on 852 * flash and exit. 853 */ 854 vtbl_rec = ubi->vtbl[vol_id]; 855 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec); 856 if (err) 857 ubi_err("cannot clean auto-resize flag for volume %d", 858 vol_id); 859 } else { 860 desc.vol = vol; 861 err = ubi_resize_volume(&desc, 862 old_reserved_pebs + ubi->avail_pebs); 863 if (err) 864 ubi_err("cannot auto-resize volume %d", vol_id); 865 } 866 867 if (err) 868 return err; 869 870 ubi_msg("volume %d (\"%s\") re-sized from %d to %d LEBs", vol_id, 871 vol->name, old_reserved_pebs, vol->reserved_pebs); 872 return 0; 873 } 874 875 /** 876 * ubi_attach_mtd_dev - attach an MTD device. 877 * @mtd: MTD device description object 878 * @ubi_num: number to assign to the new UBI device 879 * @vid_hdr_offset: VID header offset 880 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 881 * 882 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number 883 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in 884 * which case this function finds a vacant device number and assigns it 885 * automatically. Returns the new UBI device number in case of success and a 886 * negative error code in case of failure. 887 * 888 * Note, the invocations of this function has to be serialized by the 889 * @ubi_devices_mutex. 890 */ 891 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, 892 int vid_hdr_offset, int max_beb_per1024) 893 { 894 struct ubi_device *ubi; 895 int i, err, ref = 0; 896 897 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT) 898 return -EINVAL; 899 900 if (!max_beb_per1024) 901 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT; 902 903 /* 904 * Check if we already have the same MTD device attached. 905 * 906 * Note, this function assumes that UBI devices creations and deletions 907 * are serialized, so it does not take the &ubi_devices_lock. 908 */ 909 for (i = 0; i < UBI_MAX_DEVICES; i++) { 910 ubi = ubi_devices[i]; 911 if (ubi && mtd->index == ubi->mtd->index) { 912 ubi_err("mtd%d is already attached to ubi%d", 913 mtd->index, i); 914 return -EEXIST; 915 } 916 } 917 918 /* 919 * Make sure this MTD device is not emulated on top of an UBI volume 920 * already. Well, generally this recursion works fine, but there are 921 * different problems like the UBI module takes a reference to itself 922 * by attaching (and thus, opening) the emulated MTD device. This 923 * results in inability to unload the module. And in general it makes 924 * no sense to attach emulated MTD devices, so we prohibit this. 925 */ 926 if (mtd->type == MTD_UBIVOLUME) { 927 ubi_err("refuse attaching mtd%d - it is already emulated on top of UBI", 928 mtd->index); 929 return -EINVAL; 930 } 931 932 if (ubi_num == UBI_DEV_NUM_AUTO) { 933 /* Search for an empty slot in the @ubi_devices array */ 934 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++) 935 if (!ubi_devices[ubi_num]) 936 break; 937 if (ubi_num == UBI_MAX_DEVICES) { 938 ubi_err("only %d UBI devices may be created", 939 UBI_MAX_DEVICES); 940 return -ENFILE; 941 } 942 } else { 943 if (ubi_num >= UBI_MAX_DEVICES) 944 return -EINVAL; 945 946 /* Make sure ubi_num is not busy */ 947 if (ubi_devices[ubi_num]) { 948 ubi_err("ubi%d already exists", ubi_num); 949 return -EEXIST; 950 } 951 } 952 953 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL); 954 if (!ubi) 955 return -ENOMEM; 956 957 ubi->mtd = mtd; 958 ubi->ubi_num = ubi_num; 959 ubi->vid_hdr_offset = vid_hdr_offset; 960 ubi->autoresize_vol_id = -1; 961 962 #ifdef CONFIG_MTD_UBI_FASTMAP 963 ubi->fm_pool.used = ubi->fm_pool.size = 0; 964 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0; 965 966 /* 967 * fm_pool.max_size is 5% of the total number of PEBs but it's also 968 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE. 969 */ 970 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size, 971 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE); 972 if (ubi->fm_pool.max_size < UBI_FM_MIN_POOL_SIZE) 973 ubi->fm_pool.max_size = UBI_FM_MIN_POOL_SIZE; 974 975 ubi->fm_wl_pool.max_size = UBI_FM_WL_POOL_SIZE; 976 ubi->fm_disabled = !fm_autoconvert; 977 978 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) 979 <= UBI_FM_MAX_START) { 980 ubi_err("More than %i PEBs are needed for fastmap, sorry.", 981 UBI_FM_MAX_START); 982 ubi->fm_disabled = 1; 983 } 984 985 ubi_msg("default fastmap pool size: %d", ubi->fm_pool.max_size); 986 ubi_msg("default fastmap WL pool size: %d", ubi->fm_wl_pool.max_size); 987 #else 988 ubi->fm_disabled = 1; 989 #endif 990 mutex_init(&ubi->buf_mutex); 991 mutex_init(&ubi->ckvol_mutex); 992 mutex_init(&ubi->device_mutex); 993 spin_lock_init(&ubi->volumes_lock); 994 mutex_init(&ubi->fm_mutex); 995 init_rwsem(&ubi->fm_sem); 996 997 ubi_msg("attaching mtd%d to ubi%d", mtd->index, ubi_num); 998 999 err = io_init(ubi, max_beb_per1024); 1000 if (err) 1001 goto out_free; 1002 1003 err = -ENOMEM; 1004 ubi->peb_buf = vmalloc(ubi->peb_size); 1005 if (!ubi->peb_buf) 1006 goto out_free; 1007 1008 #ifdef CONFIG_MTD_UBI_FASTMAP 1009 ubi->fm_size = ubi_calc_fm_size(ubi); 1010 ubi->fm_buf = vzalloc(ubi->fm_size); 1011 if (!ubi->fm_buf) 1012 goto out_free; 1013 #endif 1014 err = ubi_attach(ubi, 0); 1015 if (err) { 1016 ubi_err("failed to attach mtd%d, error %d", mtd->index, err); 1017 goto out_free; 1018 } 1019 1020 if (ubi->autoresize_vol_id != -1) { 1021 err = autoresize(ubi, ubi->autoresize_vol_id); 1022 if (err) 1023 goto out_detach; 1024 } 1025 1026 err = uif_init(ubi, &ref); 1027 if (err) 1028 goto out_detach; 1029 1030 err = ubi_debugfs_init_dev(ubi); 1031 if (err) 1032 goto out_uif; 1033 1034 ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name); 1035 if (IS_ERR(ubi->bgt_thread)) { 1036 err = PTR_ERR(ubi->bgt_thread); 1037 ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name, 1038 err); 1039 goto out_debugfs; 1040 } 1041 1042 ubi_msg("attached mtd%d (name \"%s\", size %llu MiB) to ubi%d", 1043 mtd->index, mtd->name, ubi->flash_size >> 20, ubi_num); 1044 ubi_msg("PEB size: %d bytes (%d KiB), LEB size: %d bytes", 1045 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size); 1046 ubi_msg("min./max. I/O unit sizes: %d/%d, sub-page size %d", 1047 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size); 1048 ubi_msg("VID header offset: %d (aligned %d), data offset: %d", 1049 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start); 1050 ubi_msg("good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d", 1051 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count); 1052 ubi_msg("user volume: %d, internal volumes: %d, max. volumes count: %d", 1053 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT, 1054 ubi->vtbl_slots); 1055 ubi_msg("max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u", 1056 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD, 1057 ubi->image_seq); 1058 ubi_msg("available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d", 1059 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs); 1060 1061 /* 1062 * The below lock makes sure we do not race with 'ubi_thread()' which 1063 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up. 1064 */ 1065 spin_lock(&ubi->wl_lock); 1066 ubi->thread_enabled = 1; 1067 wake_up_process(ubi->bgt_thread); 1068 spin_unlock(&ubi->wl_lock); 1069 1070 ubi_devices[ubi_num] = ubi; 1071 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL); 1072 return ubi_num; 1073 1074 out_debugfs: 1075 ubi_debugfs_exit_dev(ubi); 1076 out_uif: 1077 get_device(&ubi->dev); 1078 ubi_assert(ref); 1079 uif_close(ubi); 1080 out_detach: 1081 ubi_wl_close(ubi); 1082 ubi_free_internal_volumes(ubi); 1083 vfree(ubi->vtbl); 1084 out_free: 1085 vfree(ubi->peb_buf); 1086 vfree(ubi->fm_buf); 1087 if (ref) 1088 put_device(&ubi->dev); 1089 else 1090 kfree(ubi); 1091 return err; 1092 } 1093 1094 /** 1095 * ubi_detach_mtd_dev - detach an MTD device. 1096 * @ubi_num: UBI device number to detach from 1097 * @anyway: detach MTD even if device reference count is not zero 1098 * 1099 * This function destroys an UBI device number @ubi_num and detaches the 1100 * underlying MTD device. Returns zero in case of success and %-EBUSY if the 1101 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not 1102 * exist. 1103 * 1104 * Note, the invocations of this function has to be serialized by the 1105 * @ubi_devices_mutex. 1106 */ 1107 int ubi_detach_mtd_dev(int ubi_num, int anyway) 1108 { 1109 struct ubi_device *ubi; 1110 1111 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES) 1112 return -EINVAL; 1113 1114 ubi = ubi_get_device(ubi_num); 1115 if (!ubi) 1116 return -EINVAL; 1117 1118 spin_lock(&ubi_devices_lock); 1119 put_device(&ubi->dev); 1120 ubi->ref_count -= 1; 1121 if (ubi->ref_count) { 1122 if (!anyway) { 1123 spin_unlock(&ubi_devices_lock); 1124 return -EBUSY; 1125 } 1126 /* This may only happen if there is a bug */ 1127 ubi_err("%s reference count %d, destroy anyway", 1128 ubi->ubi_name, ubi->ref_count); 1129 } 1130 ubi_devices[ubi_num] = NULL; 1131 spin_unlock(&ubi_devices_lock); 1132 1133 ubi_assert(ubi_num == ubi->ubi_num); 1134 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL); 1135 ubi_msg("detaching mtd%d from ubi%d", ubi->mtd->index, ubi_num); 1136 #ifdef CONFIG_MTD_UBI_FASTMAP 1137 /* If we don't write a new fastmap at detach time we lose all 1138 * EC updates that have been made since the last written fastmap. */ 1139 ubi_update_fastmap(ubi); 1140 #endif 1141 /* 1142 * Before freeing anything, we have to stop the background thread to 1143 * prevent it from doing anything on this device while we are freeing. 1144 */ 1145 if (ubi->bgt_thread) 1146 kthread_stop(ubi->bgt_thread); 1147 1148 /* 1149 * Get a reference to the device in order to prevent 'dev_release()' 1150 * from freeing the @ubi object. 1151 */ 1152 get_device(&ubi->dev); 1153 1154 ubi_debugfs_exit_dev(ubi); 1155 uif_close(ubi); 1156 1157 ubi_wl_close(ubi); 1158 ubi_free_internal_volumes(ubi); 1159 vfree(ubi->vtbl); 1160 put_mtd_device(ubi->mtd); 1161 vfree(ubi->peb_buf); 1162 vfree(ubi->fm_buf); 1163 ubi_msg("mtd%d is detached from ubi%d", ubi->mtd->index, ubi->ubi_num); 1164 put_device(&ubi->dev); 1165 return 0; 1166 } 1167 1168 #ifndef __UBOOT__ 1169 /** 1170 * open_mtd_by_chdev - open an MTD device by its character device node path. 1171 * @mtd_dev: MTD character device node path 1172 * 1173 * This helper function opens an MTD device by its character node device path. 1174 * Returns MTD device description object in case of success and a negative 1175 * error code in case of failure. 1176 */ 1177 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev) 1178 { 1179 int err, major, minor, mode; 1180 struct path path; 1181 1182 /* Probably this is an MTD character device node path */ 1183 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path); 1184 if (err) 1185 return ERR_PTR(err); 1186 1187 /* MTD device number is defined by the major / minor numbers */ 1188 major = imajor(path.dentry->d_inode); 1189 minor = iminor(path.dentry->d_inode); 1190 mode = path.dentry->d_inode->i_mode; 1191 path_put(&path); 1192 if (major != MTD_CHAR_MAJOR || !S_ISCHR(mode)) 1193 return ERR_PTR(-EINVAL); 1194 1195 if (minor & 1) 1196 /* 1197 * Just do not think the "/dev/mtdrX" devices support is need, 1198 * so do not support them to avoid doing extra work. 1199 */ 1200 return ERR_PTR(-EINVAL); 1201 1202 return get_mtd_device(NULL, minor / 2); 1203 } 1204 #endif 1205 1206 /** 1207 * open_mtd_device - open MTD device by name, character device path, or number. 1208 * @mtd_dev: name, character device node path, or MTD device device number 1209 * 1210 * This function tries to open and MTD device described by @mtd_dev string, 1211 * which is first treated as ASCII MTD device number, and if it is not true, it 1212 * is treated as MTD device name, and if that is also not true, it is treated 1213 * as MTD character device node path. Returns MTD device description object in 1214 * case of success and a negative error code in case of failure. 1215 */ 1216 static struct mtd_info * __init open_mtd_device(const char *mtd_dev) 1217 { 1218 struct mtd_info *mtd; 1219 int mtd_num; 1220 char *endp; 1221 1222 mtd_num = simple_strtoul(mtd_dev, &endp, 0); 1223 if (*endp != '\0' || mtd_dev == endp) { 1224 /* 1225 * This does not look like an ASCII integer, probably this is 1226 * MTD device name. 1227 */ 1228 mtd = get_mtd_device_nm(mtd_dev); 1229 #ifndef __UBOOT__ 1230 if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV) 1231 /* Probably this is an MTD character device node path */ 1232 mtd = open_mtd_by_chdev(mtd_dev); 1233 #endif 1234 } else 1235 mtd = get_mtd_device(NULL, mtd_num); 1236 1237 return mtd; 1238 } 1239 1240 #ifndef __UBOOT__ 1241 static int __init ubi_init(void) 1242 #else 1243 int ubi_init(void) 1244 #endif 1245 { 1246 int err, i, k; 1247 1248 /* Ensure that EC and VID headers have correct size */ 1249 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64); 1250 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64); 1251 1252 if (mtd_devs > UBI_MAX_DEVICES) { 1253 ubi_err("too many MTD devices, maximum is %d", UBI_MAX_DEVICES); 1254 return -EINVAL; 1255 } 1256 1257 /* Create base sysfs directory and sysfs files */ 1258 ubi_class = class_create(THIS_MODULE, UBI_NAME_STR); 1259 if (IS_ERR(ubi_class)) { 1260 err = PTR_ERR(ubi_class); 1261 ubi_err("cannot create UBI class"); 1262 goto out; 1263 } 1264 1265 err = class_create_file(ubi_class, &ubi_version); 1266 if (err) { 1267 ubi_err("cannot create sysfs file"); 1268 goto out_class; 1269 } 1270 1271 err = misc_register(&ubi_ctrl_cdev); 1272 if (err) { 1273 ubi_err("cannot register device"); 1274 goto out_version; 1275 } 1276 1277 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab", 1278 sizeof(struct ubi_wl_entry), 1279 0, 0, NULL); 1280 if (!ubi_wl_entry_slab) { 1281 err = -ENOMEM; 1282 goto out_dev_unreg; 1283 } 1284 1285 err = ubi_debugfs_init(); 1286 if (err) 1287 goto out_slab; 1288 1289 1290 /* Attach MTD devices */ 1291 for (i = 0; i < mtd_devs; i++) { 1292 struct mtd_dev_param *p = &mtd_dev_param[i]; 1293 struct mtd_info *mtd; 1294 1295 cond_resched(); 1296 1297 mtd = open_mtd_device(p->name); 1298 if (IS_ERR(mtd)) { 1299 err = PTR_ERR(mtd); 1300 ubi_err("cannot open mtd %s, error %d", p->name, err); 1301 /* See comment below re-ubi_is_module(). */ 1302 if (ubi_is_module()) 1303 goto out_detach; 1304 continue; 1305 } 1306 1307 mutex_lock(&ubi_devices_mutex); 1308 err = ubi_attach_mtd_dev(mtd, p->ubi_num, 1309 p->vid_hdr_offs, p->max_beb_per1024); 1310 mutex_unlock(&ubi_devices_mutex); 1311 if (err < 0) { 1312 ubi_err("cannot attach mtd%d", mtd->index); 1313 put_mtd_device(mtd); 1314 1315 /* 1316 * Originally UBI stopped initializing on any error. 1317 * However, later on it was found out that this 1318 * behavior is not very good when UBI is compiled into 1319 * the kernel and the MTD devices to attach are passed 1320 * through the command line. Indeed, UBI failure 1321 * stopped whole boot sequence. 1322 * 1323 * To fix this, we changed the behavior for the 1324 * non-module case, but preserved the old behavior for 1325 * the module case, just for compatibility. This is a 1326 * little inconsistent, though. 1327 */ 1328 if (ubi_is_module()) 1329 goto out_detach; 1330 } 1331 } 1332 1333 err = ubiblock_init(); 1334 if (err) { 1335 ubi_err("block: cannot initialize, error %d", err); 1336 1337 /* See comment above re-ubi_is_module(). */ 1338 if (ubi_is_module()) 1339 goto out_detach; 1340 } 1341 1342 return 0; 1343 1344 out_detach: 1345 for (k = 0; k < i; k++) 1346 if (ubi_devices[k]) { 1347 mutex_lock(&ubi_devices_mutex); 1348 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1); 1349 mutex_unlock(&ubi_devices_mutex); 1350 } 1351 ubi_debugfs_exit(); 1352 out_slab: 1353 kmem_cache_destroy(ubi_wl_entry_slab); 1354 out_dev_unreg: 1355 misc_deregister(&ubi_ctrl_cdev); 1356 out_version: 1357 class_remove_file(ubi_class, &ubi_version); 1358 out_class: 1359 class_destroy(ubi_class); 1360 out: 1361 #ifdef __UBOOT__ 1362 /* Reset any globals that the driver depends on being zeroed */ 1363 mtd_devs = 0; 1364 #endif 1365 ubi_err("cannot initialize UBI, error %d", err); 1366 return err; 1367 } 1368 late_initcall(ubi_init); 1369 1370 #ifndef __UBOOT__ 1371 static void __exit ubi_exit(void) 1372 #else 1373 void ubi_exit(void) 1374 #endif 1375 { 1376 int i; 1377 1378 ubiblock_exit(); 1379 1380 for (i = 0; i < UBI_MAX_DEVICES; i++) 1381 if (ubi_devices[i]) { 1382 mutex_lock(&ubi_devices_mutex); 1383 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1); 1384 mutex_unlock(&ubi_devices_mutex); 1385 } 1386 ubi_debugfs_exit(); 1387 kmem_cache_destroy(ubi_wl_entry_slab); 1388 misc_deregister(&ubi_ctrl_cdev); 1389 class_remove_file(ubi_class, &ubi_version); 1390 class_destroy(ubi_class); 1391 #ifdef __UBOOT__ 1392 /* Reset any globals that the driver depends on being zeroed */ 1393 mtd_devs = 0; 1394 #endif 1395 } 1396 module_exit(ubi_exit); 1397 1398 /** 1399 * bytes_str_to_int - convert a number of bytes string into an integer. 1400 * @str: the string to convert 1401 * 1402 * This function returns positive resulting integer in case of success and a 1403 * negative error code in case of failure. 1404 */ 1405 static int __init bytes_str_to_int(const char *str) 1406 { 1407 char *endp; 1408 unsigned long result; 1409 1410 result = simple_strtoul(str, &endp, 0); 1411 if (str == endp || result >= INT_MAX) { 1412 ubi_err("incorrect bytes count: \"%s\"\n", str); 1413 return -EINVAL; 1414 } 1415 1416 switch (*endp) { 1417 case 'G': 1418 result *= 1024; 1419 case 'M': 1420 result *= 1024; 1421 case 'K': 1422 result *= 1024; 1423 if (endp[1] == 'i' && endp[2] == 'B') 1424 endp += 2; 1425 case '\0': 1426 break; 1427 default: 1428 ubi_err("incorrect bytes count: \"%s\"\n", str); 1429 return -EINVAL; 1430 } 1431 1432 return result; 1433 } 1434 1435 int kstrtoint(const char *s, unsigned int base, int *res) 1436 { 1437 unsigned long long tmp; 1438 1439 tmp = simple_strtoull(s, NULL, base); 1440 if (tmp != (unsigned long long)(int)tmp) 1441 return -ERANGE; 1442 1443 return (int)tmp; 1444 } 1445 1446 /** 1447 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter. 1448 * @val: the parameter value to parse 1449 * @kp: not used 1450 * 1451 * This function returns zero in case of success and a negative error code in 1452 * case of error. 1453 */ 1454 #ifndef __UBOOT__ 1455 static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp) 1456 #else 1457 int ubi_mtd_param_parse(const char *val, struct kernel_param *kp) 1458 #endif 1459 { 1460 int i, len; 1461 struct mtd_dev_param *p; 1462 char buf[MTD_PARAM_LEN_MAX]; 1463 char *pbuf = &buf[0]; 1464 char *tokens[MTD_PARAM_MAX_COUNT], *token; 1465 1466 if (!val) 1467 return -EINVAL; 1468 1469 if (mtd_devs == UBI_MAX_DEVICES) { 1470 ubi_err("too many parameters, max. is %d\n", 1471 UBI_MAX_DEVICES); 1472 return -EINVAL; 1473 } 1474 1475 len = strnlen(val, MTD_PARAM_LEN_MAX); 1476 if (len == MTD_PARAM_LEN_MAX) { 1477 ubi_err("parameter \"%s\" is too long, max. is %d\n", 1478 val, MTD_PARAM_LEN_MAX); 1479 return -EINVAL; 1480 } 1481 1482 if (len == 0) { 1483 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n"); 1484 return 0; 1485 } 1486 1487 strcpy(buf, val); 1488 1489 /* Get rid of the final newline */ 1490 if (buf[len - 1] == '\n') 1491 buf[len - 1] = '\0'; 1492 1493 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++) 1494 tokens[i] = strsep(&pbuf, ","); 1495 1496 if (pbuf) { 1497 ubi_err("too many arguments at \"%s\"\n", val); 1498 return -EINVAL; 1499 } 1500 1501 p = &mtd_dev_param[mtd_devs]; 1502 strcpy(&p->name[0], tokens[0]); 1503 1504 token = tokens[1]; 1505 if (token) { 1506 p->vid_hdr_offs = bytes_str_to_int(token); 1507 1508 if (p->vid_hdr_offs < 0) 1509 return p->vid_hdr_offs; 1510 } 1511 1512 token = tokens[2]; 1513 if (token) { 1514 int err = kstrtoint(token, 10, &p->max_beb_per1024); 1515 1516 if (err) { 1517 ubi_err("bad value for max_beb_per1024 parameter: %s", 1518 token); 1519 return -EINVAL; 1520 } 1521 } 1522 1523 token = tokens[3]; 1524 if (token) { 1525 int err = kstrtoint(token, 10, &p->ubi_num); 1526 1527 if (err) { 1528 ubi_err("bad value for ubi_num parameter: %s", token); 1529 return -EINVAL; 1530 } 1531 } else 1532 p->ubi_num = UBI_DEV_NUM_AUTO; 1533 1534 mtd_devs += 1; 1535 return 0; 1536 } 1537 1538 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000); 1539 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n" 1540 "Multiple \"mtd\" parameters may be specified.\n" 1541 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n" 1542 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n" 1543 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value (" 1544 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n" 1545 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n" 1546 "\n" 1547 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n" 1548 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n" 1549 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n" 1550 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n" 1551 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device)."); 1552 #ifdef CONFIG_MTD_UBI_FASTMAP 1553 module_param(fm_autoconvert, bool, 0644); 1554 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap."); 1555 #endif 1556 MODULE_VERSION(__stringify(UBI_VERSION)); 1557 MODULE_DESCRIPTION("UBI - Unsorted Block Images"); 1558 MODULE_AUTHOR("Artem Bityutskiy"); 1559 MODULE_LICENSE("GPL"); 1560