xref: /openbmc/u-boot/drivers/mtd/ubi/build.c (revision e4430779)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2007
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13  * the GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  *
19  * Author: Artem Bityutskiy (Битюцкий Артём),
20  *         Frank Haverkamp
21  */
22 
23 /*
24  * This file includes UBI initialization and building of UBI devices.
25  *
26  * When UBI is initialized, it attaches all the MTD devices specified as the
27  * module load parameters or the kernel boot parameters. If MTD devices were
28  * specified, UBI does not attach any MTD device, but it is possible to do
29  * later using the "UBI control device".
30  *
31  * At the moment we only attach UBI devices by scanning, which will become a
32  * bottleneck when flashes reach certain large size. Then one may improve UBI
33  * and add other methods, although it does not seem to be easy to do.
34  */
35 
36 #ifdef UBI_LINUX
37 #include <linux/err.h>
38 #include <linux/module.h>
39 #include <linux/moduleparam.h>
40 #include <linux/stringify.h>
41 #include <linux/stat.h>
42 #include <linux/miscdevice.h>
43 #include <linux/log2.h>
44 #include <linux/kthread.h>
45 #endif
46 #include <ubi_uboot.h>
47 #include "ubi.h"
48 
49 /* Maximum length of the 'mtd=' parameter */
50 #define MTD_PARAM_LEN_MAX 64
51 
52 /**
53  * struct mtd_dev_param - MTD device parameter description data structure.
54  * @name: MTD device name or number string
55  * @vid_hdr_offs: VID header offset
56  */
57 struct mtd_dev_param
58 {
59 	char name[MTD_PARAM_LEN_MAX];
60 	int vid_hdr_offs;
61 };
62 
63 /* Numbers of elements set in the @mtd_dev_param array */
64 static int mtd_devs = 0;
65 
66 /* MTD devices specification parameters */
67 static struct mtd_dev_param mtd_dev_param[UBI_MAX_DEVICES];
68 
69 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
70 struct class *ubi_class;
71 
72 #ifdef UBI_LINUX
73 /* Slab cache for wear-leveling entries */
74 struct kmem_cache *ubi_wl_entry_slab;
75 
76 /* UBI control character device */
77 static struct miscdevice ubi_ctrl_cdev = {
78 	.minor = MISC_DYNAMIC_MINOR,
79 	.name = "ubi_ctrl",
80 	.fops = &ubi_ctrl_cdev_operations,
81 };
82 #endif
83 
84 /* All UBI devices in system */
85 struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
86 
87 #ifdef UBI_LINUX
88 /* Serializes UBI devices creations and removals */
89 DEFINE_MUTEX(ubi_devices_mutex);
90 
91 /* Protects @ubi_devices and @ubi->ref_count */
92 static DEFINE_SPINLOCK(ubi_devices_lock);
93 
94 /* "Show" method for files in '/<sysfs>/class/ubi/' */
95 static ssize_t ubi_version_show(struct class *class, char *buf)
96 {
97 	return sprintf(buf, "%d\n", UBI_VERSION);
98 }
99 
100 /* UBI version attribute ('/<sysfs>/class/ubi/version') */
101 static struct class_attribute ubi_version =
102 	__ATTR(version, S_IRUGO, ubi_version_show, NULL);
103 
104 static ssize_t dev_attribute_show(struct device *dev,
105 				  struct device_attribute *attr, char *buf);
106 
107 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
108 static struct device_attribute dev_eraseblock_size =
109 	__ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
110 static struct device_attribute dev_avail_eraseblocks =
111 	__ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
112 static struct device_attribute dev_total_eraseblocks =
113 	__ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
114 static struct device_attribute dev_volumes_count =
115 	__ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
116 static struct device_attribute dev_max_ec =
117 	__ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
118 static struct device_attribute dev_reserved_for_bad =
119 	__ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
120 static struct device_attribute dev_bad_peb_count =
121 	__ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
122 static struct device_attribute dev_max_vol_count =
123 	__ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
124 static struct device_attribute dev_min_io_size =
125 	__ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
126 static struct device_attribute dev_bgt_enabled =
127 	__ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
128 static struct device_attribute dev_mtd_num =
129 	__ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
130 #endif
131 
132 /**
133  * ubi_get_device - get UBI device.
134  * @ubi_num: UBI device number
135  *
136  * This function returns UBI device description object for UBI device number
137  * @ubi_num, or %NULL if the device does not exist. This function increases the
138  * device reference count to prevent removal of the device. In other words, the
139  * device cannot be removed if its reference count is not zero.
140  */
141 struct ubi_device *ubi_get_device(int ubi_num)
142 {
143 	struct ubi_device *ubi;
144 
145 	spin_lock(&ubi_devices_lock);
146 	ubi = ubi_devices[ubi_num];
147 	if (ubi) {
148 		ubi_assert(ubi->ref_count >= 0);
149 		ubi->ref_count += 1;
150 		get_device(&ubi->dev);
151 	}
152 	spin_unlock(&ubi_devices_lock);
153 
154 	return ubi;
155 }
156 
157 /**
158  * ubi_put_device - drop an UBI device reference.
159  * @ubi: UBI device description object
160  */
161 void ubi_put_device(struct ubi_device *ubi)
162 {
163 	spin_lock(&ubi_devices_lock);
164 	ubi->ref_count -= 1;
165 	put_device(&ubi->dev);
166 	spin_unlock(&ubi_devices_lock);
167 }
168 
169 /**
170  * ubi_get_by_major - get UBI device description object by character device
171  *                    major number.
172  * @major: major number
173  *
174  * This function is similar to 'ubi_get_device()', but it searches the device
175  * by its major number.
176  */
177 struct ubi_device *ubi_get_by_major(int major)
178 {
179 	int i;
180 	struct ubi_device *ubi;
181 
182 	spin_lock(&ubi_devices_lock);
183 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
184 		ubi = ubi_devices[i];
185 		if (ubi && MAJOR(ubi->cdev.dev) == major) {
186 			ubi_assert(ubi->ref_count >= 0);
187 			ubi->ref_count += 1;
188 			get_device(&ubi->dev);
189 			spin_unlock(&ubi_devices_lock);
190 			return ubi;
191 		}
192 	}
193 	spin_unlock(&ubi_devices_lock);
194 
195 	return NULL;
196 }
197 
198 /**
199  * ubi_major2num - get UBI device number by character device major number.
200  * @major: major number
201  *
202  * This function searches UBI device number object by its major number. If UBI
203  * device was not found, this function returns -ENODEV, otherwise the UBI device
204  * number is returned.
205  */
206 int ubi_major2num(int major)
207 {
208 	int i, ubi_num = -ENODEV;
209 
210 	spin_lock(&ubi_devices_lock);
211 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
212 		struct ubi_device *ubi = ubi_devices[i];
213 
214 		if (ubi && MAJOR(ubi->cdev.dev) == major) {
215 			ubi_num = ubi->ubi_num;
216 			break;
217 		}
218 	}
219 	spin_unlock(&ubi_devices_lock);
220 
221 	return ubi_num;
222 }
223 
224 #ifdef UBI_LINUX
225 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
226 static ssize_t dev_attribute_show(struct device *dev,
227 				  struct device_attribute *attr, char *buf)
228 {
229 	ssize_t ret;
230 	struct ubi_device *ubi;
231 
232 	/*
233 	 * The below code looks weird, but it actually makes sense. We get the
234 	 * UBI device reference from the contained 'struct ubi_device'. But it
235 	 * is unclear if the device was removed or not yet. Indeed, if the
236 	 * device was removed before we increased its reference count,
237 	 * 'ubi_get_device()' will return -ENODEV and we fail.
238 	 *
239 	 * Remember, 'struct ubi_device' is freed in the release function, so
240 	 * we still can use 'ubi->ubi_num'.
241 	 */
242 	ubi = container_of(dev, struct ubi_device, dev);
243 	ubi = ubi_get_device(ubi->ubi_num);
244 	if (!ubi)
245 		return -ENODEV;
246 
247 	if (attr == &dev_eraseblock_size)
248 		ret = sprintf(buf, "%d\n", ubi->leb_size);
249 	else if (attr == &dev_avail_eraseblocks)
250 		ret = sprintf(buf, "%d\n", ubi->avail_pebs);
251 	else if (attr == &dev_total_eraseblocks)
252 		ret = sprintf(buf, "%d\n", ubi->good_peb_count);
253 	else if (attr == &dev_volumes_count)
254 		ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
255 	else if (attr == &dev_max_ec)
256 		ret = sprintf(buf, "%d\n", ubi->max_ec);
257 	else if (attr == &dev_reserved_for_bad)
258 		ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
259 	else if (attr == &dev_bad_peb_count)
260 		ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
261 	else if (attr == &dev_max_vol_count)
262 		ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
263 	else if (attr == &dev_min_io_size)
264 		ret = sprintf(buf, "%d\n", ubi->min_io_size);
265 	else if (attr == &dev_bgt_enabled)
266 		ret = sprintf(buf, "%d\n", ubi->thread_enabled);
267 	else if (attr == &dev_mtd_num)
268 		ret = sprintf(buf, "%d\n", ubi->mtd->index);
269 	else
270 		ret = -EINVAL;
271 
272 	ubi_put_device(ubi);
273 	return ret;
274 }
275 
276 /* Fake "release" method for UBI devices */
277 static void dev_release(struct device *dev) { }
278 
279 /**
280  * ubi_sysfs_init - initialize sysfs for an UBI device.
281  * @ubi: UBI device description object
282  *
283  * This function returns zero in case of success and a negative error code in
284  * case of failure.
285  */
286 static int ubi_sysfs_init(struct ubi_device *ubi)
287 {
288 	int err;
289 
290 	ubi->dev.release = dev_release;
291 	ubi->dev.devt = ubi->cdev.dev;
292 	ubi->dev.class = ubi_class;
293 	sprintf(&ubi->dev.bus_id[0], UBI_NAME_STR"%d", ubi->ubi_num);
294 	err = device_register(&ubi->dev);
295 	if (err)
296 		return err;
297 
298 	err = device_create_file(&ubi->dev, &dev_eraseblock_size);
299 	if (err)
300 		return err;
301 	err = device_create_file(&ubi->dev, &dev_avail_eraseblocks);
302 	if (err)
303 		return err;
304 	err = device_create_file(&ubi->dev, &dev_total_eraseblocks);
305 	if (err)
306 		return err;
307 	err = device_create_file(&ubi->dev, &dev_volumes_count);
308 	if (err)
309 		return err;
310 	err = device_create_file(&ubi->dev, &dev_max_ec);
311 	if (err)
312 		return err;
313 	err = device_create_file(&ubi->dev, &dev_reserved_for_bad);
314 	if (err)
315 		return err;
316 	err = device_create_file(&ubi->dev, &dev_bad_peb_count);
317 	if (err)
318 		return err;
319 	err = device_create_file(&ubi->dev, &dev_max_vol_count);
320 	if (err)
321 		return err;
322 	err = device_create_file(&ubi->dev, &dev_min_io_size);
323 	if (err)
324 		return err;
325 	err = device_create_file(&ubi->dev, &dev_bgt_enabled);
326 	if (err)
327 		return err;
328 	err = device_create_file(&ubi->dev, &dev_mtd_num);
329 	return err;
330 }
331 
332 /**
333  * ubi_sysfs_close - close sysfs for an UBI device.
334  * @ubi: UBI device description object
335  */
336 static void ubi_sysfs_close(struct ubi_device *ubi)
337 {
338 	device_remove_file(&ubi->dev, &dev_mtd_num);
339 	device_remove_file(&ubi->dev, &dev_bgt_enabled);
340 	device_remove_file(&ubi->dev, &dev_min_io_size);
341 	device_remove_file(&ubi->dev, &dev_max_vol_count);
342 	device_remove_file(&ubi->dev, &dev_bad_peb_count);
343 	device_remove_file(&ubi->dev, &dev_reserved_for_bad);
344 	device_remove_file(&ubi->dev, &dev_max_ec);
345 	device_remove_file(&ubi->dev, &dev_volumes_count);
346 	device_remove_file(&ubi->dev, &dev_total_eraseblocks);
347 	device_remove_file(&ubi->dev, &dev_avail_eraseblocks);
348 	device_remove_file(&ubi->dev, &dev_eraseblock_size);
349 	device_unregister(&ubi->dev);
350 }
351 #endif
352 
353 /**
354  * kill_volumes - destroy all volumes.
355  * @ubi: UBI device description object
356  */
357 static void kill_volumes(struct ubi_device *ubi)
358 {
359 	int i;
360 
361 	for (i = 0; i < ubi->vtbl_slots; i++)
362 		if (ubi->volumes[i])
363 			ubi_free_volume(ubi, ubi->volumes[i]);
364 }
365 
366 /**
367  * uif_init - initialize user interfaces for an UBI device.
368  * @ubi: UBI device description object
369  *
370  * This function returns zero in case of success and a negative error code in
371  * case of failure.
372  */
373 static int uif_init(struct ubi_device *ubi)
374 {
375 	int i, err;
376 #ifdef UBI_LINUX
377 	dev_t dev;
378 #endif
379 
380 	sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
381 
382 	/*
383 	 * Major numbers for the UBI character devices are allocated
384 	 * dynamically. Major numbers of volume character devices are
385 	 * equivalent to ones of the corresponding UBI character device. Minor
386 	 * numbers of UBI character devices are 0, while minor numbers of
387 	 * volume character devices start from 1. Thus, we allocate one major
388 	 * number and ubi->vtbl_slots + 1 minor numbers.
389 	 */
390 	err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
391 	if (err) {
392 		ubi_err("cannot register UBI character devices");
393 		return err;
394 	}
395 
396 	ubi_assert(MINOR(dev) == 0);
397 	cdev_init(&ubi->cdev, &ubi_cdev_operations);
398 	dbg_msg("%s major is %u", ubi->ubi_name, MAJOR(dev));
399 	ubi->cdev.owner = THIS_MODULE;
400 
401 	err = cdev_add(&ubi->cdev, dev, 1);
402 	if (err) {
403 		ubi_err("cannot add character device");
404 		goto out_unreg;
405 	}
406 
407 	err = ubi_sysfs_init(ubi);
408 	if (err)
409 		goto out_sysfs;
410 
411 	for (i = 0; i < ubi->vtbl_slots; i++)
412 		if (ubi->volumes[i]) {
413 			err = ubi_add_volume(ubi, ubi->volumes[i]);
414 			if (err) {
415 				ubi_err("cannot add volume %d", i);
416 				goto out_volumes;
417 			}
418 		}
419 
420 	return 0;
421 
422 out_volumes:
423 	kill_volumes(ubi);
424 out_sysfs:
425 	ubi_sysfs_close(ubi);
426 	cdev_del(&ubi->cdev);
427 out_unreg:
428 	unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
429 	ubi_err("cannot initialize UBI %s, error %d", ubi->ubi_name, err);
430 	return err;
431 }
432 
433 /**
434  * uif_close - close user interfaces for an UBI device.
435  * @ubi: UBI device description object
436  */
437 static void uif_close(struct ubi_device *ubi)
438 {
439 	kill_volumes(ubi);
440 	ubi_sysfs_close(ubi);
441 	cdev_del(&ubi->cdev);
442 	unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
443 }
444 
445 /**
446  * attach_by_scanning - attach an MTD device using scanning method.
447  * @ubi: UBI device descriptor
448  *
449  * This function returns zero in case of success and a negative error code in
450  * case of failure.
451  *
452  * Note, currently this is the only method to attach UBI devices. Hopefully in
453  * the future we'll have more scalable attaching methods and avoid full media
454  * scanning. But even in this case scanning will be needed as a fall-back
455  * attaching method if there are some on-flash table corruptions.
456  */
457 static int attach_by_scanning(struct ubi_device *ubi)
458 {
459 	int err;
460 	struct ubi_scan_info *si;
461 
462 	si = ubi_scan(ubi);
463 	if (IS_ERR(si))
464 		return PTR_ERR(si);
465 
466 	ubi->bad_peb_count = si->bad_peb_count;
467 	ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
468 	ubi->max_ec = si->max_ec;
469 	ubi->mean_ec = si->mean_ec;
470 
471 	err = ubi_read_volume_table(ubi, si);
472 	if (err)
473 		goto out_si;
474 
475 	err = ubi_wl_init_scan(ubi, si);
476 	if (err)
477 		goto out_vtbl;
478 
479 	err = ubi_eba_init_scan(ubi, si);
480 	if (err)
481 		goto out_wl;
482 
483 	ubi_scan_destroy_si(si);
484 	return 0;
485 
486 out_wl:
487 	ubi_wl_close(ubi);
488 out_vtbl:
489 	vfree(ubi->vtbl);
490 out_si:
491 	ubi_scan_destroy_si(si);
492 	return err;
493 }
494 
495 /**
496  * io_init - initialize I/O unit for a given UBI device.
497  * @ubi: UBI device description object
498  *
499  * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
500  * assumed:
501  *   o EC header is always at offset zero - this cannot be changed;
502  *   o VID header starts just after the EC header at the closest address
503  *     aligned to @io->hdrs_min_io_size;
504  *   o data starts just after the VID header at the closest address aligned to
505  *     @io->min_io_size
506  *
507  * This function returns zero in case of success and a negative error code in
508  * case of failure.
509  */
510 static int io_init(struct ubi_device *ubi)
511 {
512 	if (ubi->mtd->numeraseregions != 0) {
513 		/*
514 		 * Some flashes have several erase regions. Different regions
515 		 * may have different eraseblock size and other
516 		 * characteristics. It looks like mostly multi-region flashes
517 		 * have one "main" region and one or more small regions to
518 		 * store boot loader code or boot parameters or whatever. I
519 		 * guess we should just pick the largest region. But this is
520 		 * not implemented.
521 		 */
522 		ubi_err("multiple regions, not implemented");
523 		return -EINVAL;
524 	}
525 
526 	if (ubi->vid_hdr_offset < 0)
527 		return -EINVAL;
528 
529 	/*
530 	 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
531 	 * physical eraseblocks maximum.
532 	 */
533 
534 	ubi->peb_size   = ubi->mtd->erasesize;
535 	ubi->peb_count  = ubi->mtd->size / ubi->mtd->erasesize;
536 	ubi->flash_size = ubi->mtd->size;
537 
538 	if (ubi->mtd->block_isbad && ubi->mtd->block_markbad)
539 		ubi->bad_allowed = 1;
540 
541 	ubi->min_io_size = ubi->mtd->writesize;
542 	ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
543 
544 	/*
545 	 * Make sure minimal I/O unit is power of 2. Note, there is no
546 	 * fundamental reason for this assumption. It is just an optimization
547 	 * which allows us to avoid costly division operations.
548 	 */
549 	if (!is_power_of_2(ubi->min_io_size)) {
550 		ubi_err("min. I/O unit (%d) is not power of 2",
551 			ubi->min_io_size);
552 		return -EINVAL;
553 	}
554 
555 	ubi_assert(ubi->hdrs_min_io_size > 0);
556 	ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
557 	ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
558 
559 	/* Calculate default aligned sizes of EC and VID headers */
560 	ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
561 	ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
562 
563 	dbg_msg("min_io_size      %d", ubi->min_io_size);
564 	dbg_msg("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
565 	dbg_msg("ec_hdr_alsize    %d", ubi->ec_hdr_alsize);
566 	dbg_msg("vid_hdr_alsize   %d", ubi->vid_hdr_alsize);
567 
568 	if (ubi->vid_hdr_offset == 0)
569 		/* Default offset */
570 		ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
571 				      ubi->ec_hdr_alsize;
572 	else {
573 		ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
574 						~(ubi->hdrs_min_io_size - 1);
575 		ubi->vid_hdr_shift = ubi->vid_hdr_offset -
576 						ubi->vid_hdr_aloffset;
577 	}
578 
579 	/* Similar for the data offset */
580 	ubi->leb_start = ubi->vid_hdr_offset + UBI_EC_HDR_SIZE;
581 	ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
582 
583 	dbg_msg("vid_hdr_offset   %d", ubi->vid_hdr_offset);
584 	dbg_msg("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
585 	dbg_msg("vid_hdr_shift    %d", ubi->vid_hdr_shift);
586 	dbg_msg("leb_start        %d", ubi->leb_start);
587 
588 	/* The shift must be aligned to 32-bit boundary */
589 	if (ubi->vid_hdr_shift % 4) {
590 		ubi_err("unaligned VID header shift %d",
591 			ubi->vid_hdr_shift);
592 		return -EINVAL;
593 	}
594 
595 	/* Check sanity */
596 	if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
597 	    ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
598 	    ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
599 	    ubi->leb_start & (ubi->min_io_size - 1)) {
600 		ubi_err("bad VID header (%d) or data offsets (%d)",
601 			ubi->vid_hdr_offset, ubi->leb_start);
602 		return -EINVAL;
603 	}
604 
605 	/*
606 	 * It may happen that EC and VID headers are situated in one minimal
607 	 * I/O unit. In this case we can only accept this UBI image in
608 	 * read-only mode.
609 	 */
610 	if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
611 		ubi_warn("EC and VID headers are in the same minimal I/O unit, "
612 			 "switch to read-only mode");
613 		ubi->ro_mode = 1;
614 	}
615 
616 	ubi->leb_size = ubi->peb_size - ubi->leb_start;
617 
618 	if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
619 		ubi_msg("MTD device %d is write-protected, attach in "
620 			"read-only mode", ubi->mtd->index);
621 		ubi->ro_mode = 1;
622 	}
623 
624 	ubi_msg("physical eraseblock size:   %d bytes (%d KiB)",
625 		ubi->peb_size, ubi->peb_size >> 10);
626 	ubi_msg("logical eraseblock size:    %d bytes", ubi->leb_size);
627 	ubi_msg("smallest flash I/O unit:    %d", ubi->min_io_size);
628 	if (ubi->hdrs_min_io_size != ubi->min_io_size)
629 		ubi_msg("sub-page size:              %d",
630 			ubi->hdrs_min_io_size);
631 	ubi_msg("VID header offset:          %d (aligned %d)",
632 		ubi->vid_hdr_offset, ubi->vid_hdr_aloffset);
633 	ubi_msg("data offset:                %d", ubi->leb_start);
634 
635 	/*
636 	 * Note, ideally, we have to initialize ubi->bad_peb_count here. But
637 	 * unfortunately, MTD does not provide this information. We should loop
638 	 * over all physical eraseblocks and invoke mtd->block_is_bad() for
639 	 * each physical eraseblock. So, we skip ubi->bad_peb_count
640 	 * uninitialized and initialize it after scanning.
641 	 */
642 
643 	return 0;
644 }
645 
646 /**
647  * autoresize - re-size the volume which has the "auto-resize" flag set.
648  * @ubi: UBI device description object
649  * @vol_id: ID of the volume to re-size
650  *
651  * This function re-sizes the volume marked by the @UBI_VTBL_AUTORESIZE_FLG in
652  * the volume table to the largest possible size. See comments in ubi-header.h
653  * for more description of the flag. Returns zero in case of success and a
654  * negative error code in case of failure.
655  */
656 static int autoresize(struct ubi_device *ubi, int vol_id)
657 {
658 	struct ubi_volume_desc desc;
659 	struct ubi_volume *vol = ubi->volumes[vol_id];
660 	int err, old_reserved_pebs = vol->reserved_pebs;
661 
662 	/*
663 	 * Clear the auto-resize flag in the volume in-memory copy of the
664 	 * volume table, and 'ubi_resize_volume()' will propogate this change
665 	 * to the flash.
666 	 */
667 	ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
668 
669 	if (ubi->avail_pebs == 0) {
670 		struct ubi_vtbl_record vtbl_rec;
671 
672 		/*
673 		 * No avalilable PEBs to re-size the volume, clear the flag on
674 		 * flash and exit.
675 		 */
676 		memcpy(&vtbl_rec, &ubi->vtbl[vol_id],
677 		       sizeof(struct ubi_vtbl_record));
678 		err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
679 		if (err)
680 			ubi_err("cannot clean auto-resize flag for volume %d",
681 				vol_id);
682 	} else {
683 		desc.vol = vol;
684 		err = ubi_resize_volume(&desc,
685 					old_reserved_pebs + ubi->avail_pebs);
686 		if (err)
687 			ubi_err("cannot auto-resize volume %d", vol_id);
688 	}
689 
690 	if (err)
691 		return err;
692 
693 	ubi_msg("volume %d (\"%s\") re-sized from %d to %d LEBs", vol_id,
694 		vol->name, old_reserved_pebs, vol->reserved_pebs);
695 	return 0;
696 }
697 
698 /**
699  * ubi_attach_mtd_dev - attach an MTD device.
700  * @mtd_dev: MTD device description object
701  * @ubi_num: number to assign to the new UBI device
702  * @vid_hdr_offset: VID header offset
703  *
704  * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
705  * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
706  * which case this function finds a vacant device nubert and assings it
707  * automatically. Returns the new UBI device number in case of success and a
708  * negative error code in case of failure.
709  *
710  * Note, the invocations of this function has to be serialized by the
711  * @ubi_devices_mutex.
712  */
713 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, int vid_hdr_offset)
714 {
715 	struct ubi_device *ubi;
716 	int i, err;
717 
718 	/*
719 	 * Check if we already have the same MTD device attached.
720 	 *
721 	 * Note, this function assumes that UBI devices creations and deletions
722 	 * are serialized, so it does not take the &ubi_devices_lock.
723 	 */
724 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
725 		ubi = ubi_devices[i];
726 		if (ubi && mtd->index == ubi->mtd->index) {
727 			dbg_err("mtd%d is already attached to ubi%d",
728 				mtd->index, i);
729 			return -EEXIST;
730 		}
731 	}
732 
733 	/*
734 	 * Make sure this MTD device is not emulated on top of an UBI volume
735 	 * already. Well, generally this recursion works fine, but there are
736 	 * different problems like the UBI module takes a reference to itself
737 	 * by attaching (and thus, opening) the emulated MTD device. This
738 	 * results in inability to unload the module. And in general it makes
739 	 * no sense to attach emulated MTD devices, so we prohibit this.
740 	 */
741 	if (mtd->type == MTD_UBIVOLUME) {
742 		ubi_err("refuse attaching mtd%d - it is already emulated on "
743 			"top of UBI", mtd->index);
744 		return -EINVAL;
745 	}
746 
747 	if (ubi_num == UBI_DEV_NUM_AUTO) {
748 		/* Search for an empty slot in the @ubi_devices array */
749 		for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
750 			if (!ubi_devices[ubi_num])
751 				break;
752 		if (ubi_num == UBI_MAX_DEVICES) {
753 			dbg_err("only %d UBI devices may be created", UBI_MAX_DEVICES);
754 			return -ENFILE;
755 		}
756 	} else {
757 		if (ubi_num >= UBI_MAX_DEVICES)
758 			return -EINVAL;
759 
760 		/* Make sure ubi_num is not busy */
761 		if (ubi_devices[ubi_num]) {
762 			dbg_err("ubi%d already exists", ubi_num);
763 			return -EEXIST;
764 		}
765 	}
766 
767 	ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
768 	if (!ubi)
769 		return -ENOMEM;
770 
771 	ubi->mtd = mtd;
772 	ubi->ubi_num = ubi_num;
773 	ubi->vid_hdr_offset = vid_hdr_offset;
774 	ubi->autoresize_vol_id = -1;
775 
776 	mutex_init(&ubi->buf_mutex);
777 	mutex_init(&ubi->ckvol_mutex);
778 	mutex_init(&ubi->volumes_mutex);
779 	spin_lock_init(&ubi->volumes_lock);
780 
781 	ubi_msg("attaching mtd%d to ubi%d", mtd->index, ubi_num);
782 
783 	err = io_init(ubi);
784 	if (err)
785 		goto out_free;
786 
787 	err = -ENOMEM;
788 	ubi->peb_buf1 = vmalloc(ubi->peb_size);
789 	if (!ubi->peb_buf1)
790 		goto out_free;
791 
792 	ubi->peb_buf2 = vmalloc(ubi->peb_size);
793 	if (!ubi->peb_buf2)
794 		goto out_free;
795 
796 #ifdef CONFIG_MTD_UBI_DEBUG
797 	mutex_init(&ubi->dbg_buf_mutex);
798 	ubi->dbg_peb_buf = vmalloc(ubi->peb_size);
799 	if (!ubi->dbg_peb_buf)
800 		goto out_free;
801 #endif
802 
803 	err = attach_by_scanning(ubi);
804 	if (err) {
805 		dbg_err("failed to attach by scanning, error %d", err);
806 		goto out_free;
807 	}
808 
809 	if (ubi->autoresize_vol_id != -1) {
810 		err = autoresize(ubi, ubi->autoresize_vol_id);
811 		if (err)
812 			goto out_detach;
813 	}
814 
815 	err = uif_init(ubi);
816 	if (err)
817 		goto out_detach;
818 
819 	ubi->bgt_thread = kthread_create(ubi_thread, ubi, ubi->bgt_name);
820 	if (IS_ERR(ubi->bgt_thread)) {
821 		err = PTR_ERR(ubi->bgt_thread);
822 		ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name,
823 			err);
824 		goto out_uif;
825 	}
826 
827 	ubi_msg("attached mtd%d to ubi%d", mtd->index, ubi_num);
828 	ubi_msg("MTD device name:            \"%s\"", mtd->name);
829 	ubi_msg("MTD device size:            %llu MiB", ubi->flash_size >> 20);
830 	ubi_msg("number of good PEBs:        %d", ubi->good_peb_count);
831 	ubi_msg("number of bad PEBs:         %d", ubi->bad_peb_count);
832 	ubi_msg("max. allowed volumes:       %d", ubi->vtbl_slots);
833 	ubi_msg("wear-leveling threshold:    %d", CONFIG_MTD_UBI_WL_THRESHOLD);
834 	ubi_msg("number of internal volumes: %d", UBI_INT_VOL_COUNT);
835 	ubi_msg("number of user volumes:     %d",
836 		ubi->vol_count - UBI_INT_VOL_COUNT);
837 	ubi_msg("available PEBs:             %d", ubi->avail_pebs);
838 	ubi_msg("total number of reserved PEBs: %d", ubi->rsvd_pebs);
839 	ubi_msg("number of PEBs reserved for bad PEB handling: %d",
840 		ubi->beb_rsvd_pebs);
841 	ubi_msg("max/mean erase counter: %d/%d", ubi->max_ec, ubi->mean_ec);
842 
843 	/* Enable the background thread */
844 	if (!DBG_DISABLE_BGT) {
845 		ubi->thread_enabled = 1;
846 		wake_up_process(ubi->bgt_thread);
847 	}
848 
849 	ubi_devices[ubi_num] = ubi;
850 	return ubi_num;
851 
852 out_uif:
853 	uif_close(ubi);
854 out_detach:
855 	ubi_eba_close(ubi);
856 	ubi_wl_close(ubi);
857 	vfree(ubi->vtbl);
858 out_free:
859 	vfree(ubi->peb_buf1);
860 	vfree(ubi->peb_buf2);
861 #ifdef CONFIG_MTD_UBI_DEBUG
862 	vfree(ubi->dbg_peb_buf);
863 #endif
864 	kfree(ubi);
865 	return err;
866 }
867 
868 /**
869  * ubi_detach_mtd_dev - detach an MTD device.
870  * @ubi_num: UBI device number to detach from
871  * @anyway: detach MTD even if device reference count is not zero
872  *
873  * This function destroys an UBI device number @ubi_num and detaches the
874  * underlying MTD device. Returns zero in case of success and %-EBUSY if the
875  * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
876  * exist.
877  *
878  * Note, the invocations of this function has to be serialized by the
879  * @ubi_devices_mutex.
880  */
881 int ubi_detach_mtd_dev(int ubi_num, int anyway)
882 {
883 	struct ubi_device *ubi;
884 
885 	if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
886 		return -EINVAL;
887 
888 	spin_lock(&ubi_devices_lock);
889 	ubi = ubi_devices[ubi_num];
890 	if (!ubi) {
891 		spin_unlock(&ubi_devices_lock);
892 		return -EINVAL;
893 	}
894 
895 	if (ubi->ref_count) {
896 		if (!anyway) {
897 			spin_unlock(&ubi_devices_lock);
898 			return -EBUSY;
899 		}
900 		/* This may only happen if there is a bug */
901 		ubi_err("%s reference count %d, destroy anyway",
902 			ubi->ubi_name, ubi->ref_count);
903 	}
904 	ubi_devices[ubi_num] = NULL;
905 	spin_unlock(&ubi_devices_lock);
906 
907 	ubi_assert(ubi_num == ubi->ubi_num);
908 	dbg_msg("detaching mtd%d from ubi%d", ubi->mtd->index, ubi_num);
909 
910 	/*
911 	 * Before freeing anything, we have to stop the background thread to
912 	 * prevent it from doing anything on this device while we are freeing.
913 	 */
914 	if (ubi->bgt_thread)
915 		kthread_stop(ubi->bgt_thread);
916 
917 	uif_close(ubi);
918 	ubi_eba_close(ubi);
919 	ubi_wl_close(ubi);
920 	vfree(ubi->vtbl);
921 	put_mtd_device(ubi->mtd);
922 	vfree(ubi->peb_buf1);
923 	vfree(ubi->peb_buf2);
924 #ifdef CONFIG_MTD_UBI_DEBUG
925 	vfree(ubi->dbg_peb_buf);
926 #endif
927 	ubi_msg("mtd%d is detached from ubi%d", ubi->mtd->index, ubi->ubi_num);
928 	kfree(ubi);
929 	return 0;
930 }
931 
932 /**
933  * find_mtd_device - open an MTD device by its name or number.
934  * @mtd_dev: name or number of the device
935  *
936  * This function tries to open and MTD device described by @mtd_dev string,
937  * which is first treated as an ASCII number, and if it is not true, it is
938  * treated as MTD device name. Returns MTD device description object in case of
939  * success and a negative error code in case of failure.
940  */
941 static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
942 {
943 	struct mtd_info *mtd;
944 	int mtd_num;
945 	char *endp;
946 
947 	mtd_num = simple_strtoul(mtd_dev, &endp, 0);
948 	if (*endp != '\0' || mtd_dev == endp) {
949 		/*
950 		 * This does not look like an ASCII integer, probably this is
951 		 * MTD device name.
952 		 */
953 		mtd = get_mtd_device_nm(mtd_dev);
954 	} else
955 		mtd = get_mtd_device(NULL, mtd_num);
956 
957 	return mtd;
958 }
959 
960 int __init ubi_init(void)
961 {
962 	int err, i, k;
963 
964 	/* Ensure that EC and VID headers have correct size */
965 	BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
966 	BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
967 
968 	if (mtd_devs > UBI_MAX_DEVICES) {
969 		ubi_err("too many MTD devices, maximum is %d", UBI_MAX_DEVICES);
970 		return -EINVAL;
971 	}
972 
973 	/* Create base sysfs directory and sysfs files */
974 	ubi_class = class_create(THIS_MODULE, UBI_NAME_STR);
975 	if (IS_ERR(ubi_class)) {
976 		err = PTR_ERR(ubi_class);
977 		ubi_err("cannot create UBI class");
978 		goto out;
979 	}
980 
981 	err = class_create_file(ubi_class, &ubi_version);
982 	if (err) {
983 		ubi_err("cannot create sysfs file");
984 		goto out_class;
985 	}
986 
987 	err = misc_register(&ubi_ctrl_cdev);
988 	if (err) {
989 		ubi_err("cannot register device");
990 		goto out_version;
991 	}
992 
993 #ifdef UBI_LINUX
994 	ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
995 					      sizeof(struct ubi_wl_entry),
996 					      0, 0, NULL);
997 	if (!ubi_wl_entry_slab)
998 		goto out_dev_unreg;
999 #endif
1000 
1001 	/* Attach MTD devices */
1002 	for (i = 0; i < mtd_devs; i++) {
1003 		struct mtd_dev_param *p = &mtd_dev_param[i];
1004 		struct mtd_info *mtd;
1005 
1006 		cond_resched();
1007 
1008 		mtd = open_mtd_device(p->name);
1009 		if (IS_ERR(mtd)) {
1010 			err = PTR_ERR(mtd);
1011 			goto out_detach;
1012 		}
1013 
1014 		mutex_lock(&ubi_devices_mutex);
1015 		err = ubi_attach_mtd_dev(mtd, UBI_DEV_NUM_AUTO,
1016 					 p->vid_hdr_offs);
1017 		mutex_unlock(&ubi_devices_mutex);
1018 		if (err < 0) {
1019 			put_mtd_device(mtd);
1020 			ubi_err("cannot attach mtd%d", mtd->index);
1021 			goto out_detach;
1022 		}
1023 	}
1024 
1025 	return 0;
1026 
1027 out_detach:
1028 	for (k = 0; k < i; k++)
1029 		if (ubi_devices[k]) {
1030 			mutex_lock(&ubi_devices_mutex);
1031 			ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1032 			mutex_unlock(&ubi_devices_mutex);
1033 		}
1034 #ifdef UBI_LINUX
1035 	kmem_cache_destroy(ubi_wl_entry_slab);
1036 out_dev_unreg:
1037 #endif
1038 	misc_deregister(&ubi_ctrl_cdev);
1039 out_version:
1040 	class_remove_file(ubi_class, &ubi_version);
1041 out_class:
1042 	class_destroy(ubi_class);
1043 out:
1044 	ubi_err("UBI error: cannot initialize UBI, error %d", err);
1045 	return err;
1046 }
1047 module_init(ubi_init);
1048 
1049 void __exit ubi_exit(void)
1050 {
1051 	int i;
1052 
1053 	for (i = 0; i < UBI_MAX_DEVICES; i++)
1054 		if (ubi_devices[i]) {
1055 			mutex_lock(&ubi_devices_mutex);
1056 			ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1057 			mutex_unlock(&ubi_devices_mutex);
1058 		}
1059 	kmem_cache_destroy(ubi_wl_entry_slab);
1060 	misc_deregister(&ubi_ctrl_cdev);
1061 	class_remove_file(ubi_class, &ubi_version);
1062 	class_destroy(ubi_class);
1063 	mtd_devs = 0;
1064 }
1065 module_exit(ubi_exit);
1066 
1067 /**
1068  * bytes_str_to_int - convert a string representing number of bytes to an
1069  * integer.
1070  * @str: the string to convert
1071  *
1072  * This function returns positive resulting integer in case of success and a
1073  * negative error code in case of failure.
1074  */
1075 static int __init bytes_str_to_int(const char *str)
1076 {
1077 	char *endp;
1078 	unsigned long result;
1079 
1080 	result = simple_strtoul(str, &endp, 0);
1081 	if (str == endp || result < 0) {
1082 		printk(KERN_ERR "UBI error: incorrect bytes count: \"%s\"\n",
1083 		       str);
1084 		return -EINVAL;
1085 	}
1086 
1087 	switch (*endp) {
1088 	case 'G':
1089 		result *= 1024;
1090 	case 'M':
1091 		result *= 1024;
1092 	case 'K':
1093 		result *= 1024;
1094 		if (endp[1] == 'i' && endp[2] == 'B')
1095 			endp += 2;
1096 	case '\0':
1097 		break;
1098 	default:
1099 		printk(KERN_ERR "UBI error: incorrect bytes count: \"%s\"\n",
1100 		       str);
1101 		return -EINVAL;
1102 	}
1103 
1104 	return result;
1105 }
1106 
1107 /**
1108  * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1109  * @val: the parameter value to parse
1110  * @kp: not used
1111  *
1112  * This function returns zero in case of success and a negative error code in
1113  * case of error.
1114  */
1115 int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1116 {
1117 	int i, len;
1118 	struct mtd_dev_param *p;
1119 	char buf[MTD_PARAM_LEN_MAX];
1120 	char *pbuf = &buf[0];
1121 	char *tokens[2] = {NULL, NULL};
1122 
1123 	if (!val)
1124 		return -EINVAL;
1125 
1126 	if (mtd_devs == UBI_MAX_DEVICES) {
1127 		printk(KERN_ERR "UBI error: too many parameters, max. is %d\n",
1128 		       UBI_MAX_DEVICES);
1129 		return -EINVAL;
1130 	}
1131 
1132 	len = strnlen(val, MTD_PARAM_LEN_MAX);
1133 	if (len == MTD_PARAM_LEN_MAX) {
1134 		printk(KERN_ERR "UBI error: parameter \"%s\" is too long, "
1135 		       "max. is %d\n", val, MTD_PARAM_LEN_MAX);
1136 		return -EINVAL;
1137 	}
1138 
1139 	if (len == 0) {
1140 		printk(KERN_WARNING "UBI warning: empty 'mtd=' parameter - "
1141 		       "ignored\n");
1142 		return 0;
1143 	}
1144 
1145 	strcpy(buf, val);
1146 
1147 	/* Get rid of the final newline */
1148 	if (buf[len - 1] == '\n')
1149 		buf[len - 1] = '\0';
1150 
1151 	for (i = 0; i < 2; i++)
1152 		tokens[i] = strsep(&pbuf, ",");
1153 
1154 	if (pbuf) {
1155 		printk(KERN_ERR "UBI error: too many arguments at \"%s\"\n",
1156 		       val);
1157 		return -EINVAL;
1158 	}
1159 
1160 	p = &mtd_dev_param[mtd_devs];
1161 	strcpy(&p->name[0], tokens[0]);
1162 
1163 	if (tokens[1])
1164 		p->vid_hdr_offs = bytes_str_to_int(tokens[1]);
1165 
1166 	if (p->vid_hdr_offs < 0)
1167 		return p->vid_hdr_offs;
1168 
1169 	mtd_devs += 1;
1170 	return 0;
1171 }
1172 
1173 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000);
1174 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: "
1175 		      "mtd=<name|num>[,<vid_hdr_offs>].\n"
1176 		      "Multiple \"mtd\" parameters may be specified.\n"
1177 		      "MTD devices may be specified by their number or name.\n"
1178 		      "Optional \"vid_hdr_offs\" parameter specifies UBI VID "
1179 		      "header position and data starting position to be used "
1180 		      "by UBI.\n"
1181 		      "Example: mtd=content,1984 mtd=4 - attach MTD device"
1182 		      "with name \"content\" using VID header offset 1984, and "
1183 		      "MTD device number 4 with default VID header offset.");
1184 
1185 MODULE_VERSION(__stringify(UBI_VERSION));
1186 MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1187 MODULE_AUTHOR("Artem Bityutskiy");
1188 MODULE_LICENSE("GPL");
1189