xref: /openbmc/u-boot/drivers/mtd/ubi/build.c (revision d9b88d25)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2007
4  *
5  * SPDX-License-Identifier:	GPL-2.0+
6  *
7  * Author: Artem Bityutskiy (Битюцкий Артём),
8  *         Frank Haverkamp
9  */
10 
11 /*
12  * This file includes UBI initialization and building of UBI devices.
13  *
14  * When UBI is initialized, it attaches all the MTD devices specified as the
15  * module load parameters or the kernel boot parameters. If MTD devices were
16  * specified, UBI does not attach any MTD device, but it is possible to do
17  * later using the "UBI control device".
18  */
19 
20 #ifndef __UBOOT__
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/stringify.h>
24 #include <linux/namei.h>
25 #include <linux/stat.h>
26 #include <linux/miscdevice.h>
27 #include <linux/log2.h>
28 #include <linux/kthread.h>
29 #include <linux/kernel.h>
30 #include <linux/slab.h>
31 #include <linux/major.h>
32 #else
33 #include <linux/bug.h>
34 #include <linux/log2.h>
35 #endif
36 #include <linux/err.h>
37 #include <ubi_uboot.h>
38 #include <linux/mtd/partitions.h>
39 
40 #include "ubi.h"
41 
42 /* Maximum length of the 'mtd=' parameter */
43 #define MTD_PARAM_LEN_MAX 64
44 
45 /* Maximum number of comma-separated items in the 'mtd=' parameter */
46 #define MTD_PARAM_MAX_COUNT 4
47 
48 /* Maximum value for the number of bad PEBs per 1024 PEBs */
49 #define MAX_MTD_UBI_BEB_LIMIT 768
50 
51 #ifdef CONFIG_MTD_UBI_MODULE
52 #define ubi_is_module() 1
53 #else
54 #define ubi_is_module() 0
55 #endif
56 
57 #if (CONFIG_SYS_MALLOC_LEN < (512 << 10))
58 #error Malloc area too small for UBI, increase CONFIG_SYS_MALLOC_LEN to >= 512k
59 #endif
60 
61 /**
62  * struct mtd_dev_param - MTD device parameter description data structure.
63  * @name: MTD character device node path, MTD device name, or MTD device number
64  *        string
65  * @vid_hdr_offs: VID header offset
66  * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs
67  */
68 struct mtd_dev_param {
69 	char name[MTD_PARAM_LEN_MAX];
70 	int ubi_num;
71 	int vid_hdr_offs;
72 	int max_beb_per1024;
73 };
74 
75 /* Numbers of elements set in the @mtd_dev_param array */
76 static int __initdata mtd_devs;
77 
78 /* MTD devices specification parameters */
79 static struct mtd_dev_param __initdata mtd_dev_param[UBI_MAX_DEVICES];
80 #ifndef __UBOOT__
81 #ifdef CONFIG_MTD_UBI_FASTMAP
82 /* UBI module parameter to enable fastmap automatically on non-fastmap images */
83 static bool fm_autoconvert;
84 static bool fm_debug;
85 #endif
86 #else
87 #ifdef CONFIG_MTD_UBI_FASTMAP
88 #if !defined(CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT)
89 #define CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT 0
90 #endif
91 static bool fm_autoconvert = CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT;
92 #if !defined(CONFIG_MTD_UBI_FM_DEBUG)
93 #define CONFIG_MTD_UBI_FM_DEBUG 0
94 #endif
95 static bool fm_debug = CONFIG_MTD_UBI_FM_DEBUG;
96 #endif
97 #endif
98 
99 /* Slab cache for wear-leveling entries */
100 struct kmem_cache *ubi_wl_entry_slab;
101 
102 #ifndef __UBOOT__
103 /* UBI control character device */
104 static struct miscdevice ubi_ctrl_cdev = {
105 	.minor = MISC_DYNAMIC_MINOR,
106 	.name = "ubi_ctrl",
107 	.fops = &ubi_ctrl_cdev_operations,
108 };
109 #endif
110 
111 /* All UBI devices in system */
112 #ifndef __UBOOT__
113 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
114 #else
115 struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
116 #endif
117 
118 #ifndef __UBOOT__
119 /* Serializes UBI devices creations and removals */
120 DEFINE_MUTEX(ubi_devices_mutex);
121 
122 /* Protects @ubi_devices and @ubi->ref_count */
123 static DEFINE_SPINLOCK(ubi_devices_lock);
124 
125 /* "Show" method for files in '/<sysfs>/class/ubi/' */
126 static ssize_t ubi_version_show(struct class *class,
127 				struct class_attribute *attr, char *buf)
128 {
129 	return sprintf(buf, "%d\n", UBI_VERSION);
130 }
131 
132 /* UBI version attribute ('/<sysfs>/class/ubi/version') */
133 static struct class_attribute ubi_class_attrs[] = {
134 	__ATTR(version, S_IRUGO, ubi_version_show, NULL),
135 	__ATTR_NULL
136 };
137 
138 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
139 struct class ubi_class = {
140 	.name		= UBI_NAME_STR,
141 	.owner		= THIS_MODULE,
142 	.class_attrs	= ubi_class_attrs,
143 };
144 
145 static ssize_t dev_attribute_show(struct device *dev,
146 				  struct device_attribute *attr, char *buf);
147 
148 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
149 static struct device_attribute dev_eraseblock_size =
150 	__ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
151 static struct device_attribute dev_avail_eraseblocks =
152 	__ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
153 static struct device_attribute dev_total_eraseblocks =
154 	__ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
155 static struct device_attribute dev_volumes_count =
156 	__ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
157 static struct device_attribute dev_max_ec =
158 	__ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
159 static struct device_attribute dev_reserved_for_bad =
160 	__ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
161 static struct device_attribute dev_bad_peb_count =
162 	__ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
163 static struct device_attribute dev_max_vol_count =
164 	__ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
165 static struct device_attribute dev_min_io_size =
166 	__ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
167 static struct device_attribute dev_bgt_enabled =
168 	__ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
169 static struct device_attribute dev_mtd_num =
170 	__ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
171 #endif
172 
173 /**
174  * ubi_volume_notify - send a volume change notification.
175  * @ubi: UBI device description object
176  * @vol: volume description object of the changed volume
177  * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
178  *
179  * This is a helper function which notifies all subscribers about a volume
180  * change event (creation, removal, re-sizing, re-naming, updating). Returns
181  * zero in case of success and a negative error code in case of failure.
182  */
183 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
184 {
185 	int ret;
186 	struct ubi_notification nt;
187 
188 	ubi_do_get_device_info(ubi, &nt.di);
189 	ubi_do_get_volume_info(ubi, vol, &nt.vi);
190 
191 	switch (ntype) {
192 	case UBI_VOLUME_ADDED:
193 	case UBI_VOLUME_REMOVED:
194 	case UBI_VOLUME_RESIZED:
195 	case UBI_VOLUME_RENAMED:
196 		ret = ubi_update_fastmap(ubi);
197 		if (ret)
198 			ubi_msg(ubi, "Unable to write a new fastmap: %i", ret);
199 	}
200 
201 	return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
202 }
203 
204 /**
205  * ubi_notify_all - send a notification to all volumes.
206  * @ubi: UBI device description object
207  * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
208  * @nb: the notifier to call
209  *
210  * This function walks all volumes of UBI device @ubi and sends the @ntype
211  * notification for each volume. If @nb is %NULL, then all registered notifiers
212  * are called, otherwise only the @nb notifier is called. Returns the number of
213  * sent notifications.
214  */
215 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
216 {
217 	struct ubi_notification nt;
218 	int i, count = 0;
219 #ifndef __UBOOT__
220 	int ret;
221 #endif
222 
223 	ubi_do_get_device_info(ubi, &nt.di);
224 
225 	mutex_lock(&ubi->device_mutex);
226 	for (i = 0; i < ubi->vtbl_slots; i++) {
227 		/*
228 		 * Since the @ubi->device is locked, and we are not going to
229 		 * change @ubi->volumes, we do not have to lock
230 		 * @ubi->volumes_lock.
231 		 */
232 		if (!ubi->volumes[i])
233 			continue;
234 
235 		ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
236 #ifndef __UBOOT__
237 		if (nb)
238 			nb->notifier_call(nb, ntype, &nt);
239 		else
240 			ret = blocking_notifier_call_chain(&ubi_notifiers, ntype,
241 						     &nt);
242 #endif
243 		count += 1;
244 	}
245 	mutex_unlock(&ubi->device_mutex);
246 
247 	return count;
248 }
249 
250 /**
251  * ubi_enumerate_volumes - send "add" notification for all existing volumes.
252  * @nb: the notifier to call
253  *
254  * This function walks all UBI devices and volumes and sends the
255  * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
256  * registered notifiers are called, otherwise only the @nb notifier is called.
257  * Returns the number of sent notifications.
258  */
259 int ubi_enumerate_volumes(struct notifier_block *nb)
260 {
261 	int i, count = 0;
262 
263 	/*
264 	 * Since the @ubi_devices_mutex is locked, and we are not going to
265 	 * change @ubi_devices, we do not have to lock @ubi_devices_lock.
266 	 */
267 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
268 		struct ubi_device *ubi = ubi_devices[i];
269 
270 		if (!ubi)
271 			continue;
272 		count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
273 	}
274 
275 	return count;
276 }
277 
278 /**
279  * ubi_get_device - get UBI device.
280  * @ubi_num: UBI device number
281  *
282  * This function returns UBI device description object for UBI device number
283  * @ubi_num, or %NULL if the device does not exist. This function increases the
284  * device reference count to prevent removal of the device. In other words, the
285  * device cannot be removed if its reference count is not zero.
286  */
287 struct ubi_device *ubi_get_device(int ubi_num)
288 {
289 	struct ubi_device *ubi;
290 
291 	spin_lock(&ubi_devices_lock);
292 	ubi = ubi_devices[ubi_num];
293 	if (ubi) {
294 		ubi_assert(ubi->ref_count >= 0);
295 		ubi->ref_count += 1;
296 		get_device(&ubi->dev);
297 	}
298 	spin_unlock(&ubi_devices_lock);
299 
300 	return ubi;
301 }
302 
303 /**
304  * ubi_put_device - drop an UBI device reference.
305  * @ubi: UBI device description object
306  */
307 void ubi_put_device(struct ubi_device *ubi)
308 {
309 	spin_lock(&ubi_devices_lock);
310 	ubi->ref_count -= 1;
311 	put_device(&ubi->dev);
312 	spin_unlock(&ubi_devices_lock);
313 }
314 
315 /**
316  * ubi_get_by_major - get UBI device by character device major number.
317  * @major: major number
318  *
319  * This function is similar to 'ubi_get_device()', but it searches the device
320  * by its major number.
321  */
322 struct ubi_device *ubi_get_by_major(int major)
323 {
324 	int i;
325 	struct ubi_device *ubi;
326 
327 	spin_lock(&ubi_devices_lock);
328 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
329 		ubi = ubi_devices[i];
330 		if (ubi && MAJOR(ubi->cdev.dev) == major) {
331 			ubi_assert(ubi->ref_count >= 0);
332 			ubi->ref_count += 1;
333 			get_device(&ubi->dev);
334 			spin_unlock(&ubi_devices_lock);
335 			return ubi;
336 		}
337 	}
338 	spin_unlock(&ubi_devices_lock);
339 
340 	return NULL;
341 }
342 
343 /**
344  * ubi_major2num - get UBI device number by character device major number.
345  * @major: major number
346  *
347  * This function searches UBI device number object by its major number. If UBI
348  * device was not found, this function returns -ENODEV, otherwise the UBI device
349  * number is returned.
350  */
351 int ubi_major2num(int major)
352 {
353 	int i, ubi_num = -ENODEV;
354 
355 	spin_lock(&ubi_devices_lock);
356 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
357 		struct ubi_device *ubi = ubi_devices[i];
358 
359 		if (ubi && MAJOR(ubi->cdev.dev) == major) {
360 			ubi_num = ubi->ubi_num;
361 			break;
362 		}
363 	}
364 	spin_unlock(&ubi_devices_lock);
365 
366 	return ubi_num;
367 }
368 
369 #ifndef __UBOOT__
370 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
371 static ssize_t dev_attribute_show(struct device *dev,
372 				  struct device_attribute *attr, char *buf)
373 {
374 	ssize_t ret;
375 	struct ubi_device *ubi;
376 
377 	/*
378 	 * The below code looks weird, but it actually makes sense. We get the
379 	 * UBI device reference from the contained 'struct ubi_device'. But it
380 	 * is unclear if the device was removed or not yet. Indeed, if the
381 	 * device was removed before we increased its reference count,
382 	 * 'ubi_get_device()' will return -ENODEV and we fail.
383 	 *
384 	 * Remember, 'struct ubi_device' is freed in the release function, so
385 	 * we still can use 'ubi->ubi_num'.
386 	 */
387 	ubi = container_of(dev, struct ubi_device, dev);
388 	ubi = ubi_get_device(ubi->ubi_num);
389 	if (!ubi)
390 		return -ENODEV;
391 
392 	if (attr == &dev_eraseblock_size)
393 		ret = sprintf(buf, "%d\n", ubi->leb_size);
394 	else if (attr == &dev_avail_eraseblocks)
395 		ret = sprintf(buf, "%d\n", ubi->avail_pebs);
396 	else if (attr == &dev_total_eraseblocks)
397 		ret = sprintf(buf, "%d\n", ubi->good_peb_count);
398 	else if (attr == &dev_volumes_count)
399 		ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
400 	else if (attr == &dev_max_ec)
401 		ret = sprintf(buf, "%d\n", ubi->max_ec);
402 	else if (attr == &dev_reserved_for_bad)
403 		ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
404 	else if (attr == &dev_bad_peb_count)
405 		ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
406 	else if (attr == &dev_max_vol_count)
407 		ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
408 	else if (attr == &dev_min_io_size)
409 		ret = sprintf(buf, "%d\n", ubi->min_io_size);
410 	else if (attr == &dev_bgt_enabled)
411 		ret = sprintf(buf, "%d\n", ubi->thread_enabled);
412 	else if (attr == &dev_mtd_num)
413 		ret = sprintf(buf, "%d\n", ubi->mtd->index);
414 	else
415 		ret = -EINVAL;
416 
417 	ubi_put_device(ubi);
418 	return ret;
419 }
420 
421 static struct attribute *ubi_dev_attrs[] = {
422 	&dev_eraseblock_size.attr,
423 	&dev_avail_eraseblocks.attr,
424 	&dev_total_eraseblocks.attr,
425 	&dev_volumes_count.attr,
426 	&dev_max_ec.attr,
427 	&dev_reserved_for_bad.attr,
428 	&dev_bad_peb_count.attr,
429 	&dev_max_vol_count.attr,
430 	&dev_min_io_size.attr,
431 	&dev_bgt_enabled.attr,
432 	&dev_mtd_num.attr,
433 	NULL
434 };
435 ATTRIBUTE_GROUPS(ubi_dev);
436 
437 static void dev_release(struct device *dev)
438 {
439 	struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
440 
441 	kfree(ubi);
442 }
443 
444 /**
445  * ubi_sysfs_init - initialize sysfs for an UBI device.
446  * @ubi: UBI device description object
447  * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
448  *       taken
449  *
450  * This function returns zero in case of success and a negative error code in
451  * case of failure.
452  */
453 static int ubi_sysfs_init(struct ubi_device *ubi, int *ref)
454 {
455 	int err;
456 
457 	ubi->dev.release = dev_release;
458 	ubi->dev.devt = ubi->cdev.dev;
459 	ubi->dev.class = &ubi_class;
460 	ubi->dev.groups = ubi_dev_groups;
461 	dev_set_name(&ubi->dev, UBI_NAME_STR"%d", ubi->ubi_num);
462 	err = device_register(&ubi->dev);
463 	if (err)
464 		return err;
465 
466 	*ref = 1;
467 	return 0;
468 }
469 
470 /**
471  * ubi_sysfs_close - close sysfs for an UBI device.
472  * @ubi: UBI device description object
473  */
474 static void ubi_sysfs_close(struct ubi_device *ubi)
475 {
476 	device_unregister(&ubi->dev);
477 }
478 #endif
479 
480 /**
481  * kill_volumes - destroy all user volumes.
482  * @ubi: UBI device description object
483  */
484 static void kill_volumes(struct ubi_device *ubi)
485 {
486 	int i;
487 
488 	for (i = 0; i < ubi->vtbl_slots; i++)
489 		if (ubi->volumes[i])
490 			ubi_free_volume(ubi, ubi->volumes[i]);
491 }
492 
493 /**
494  * uif_init - initialize user interfaces for an UBI device.
495  * @ubi: UBI device description object
496  * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
497  *       taken, otherwise set to %0
498  *
499  * This function initializes various user interfaces for an UBI device. If the
500  * initialization fails at an early stage, this function frees all the
501  * resources it allocated, returns an error, and @ref is set to %0. However,
502  * if the initialization fails after the UBI device was registered in the
503  * driver core subsystem, this function takes a reference to @ubi->dev, because
504  * otherwise the release function ('dev_release()') would free whole @ubi
505  * object. The @ref argument is set to %1 in this case. The caller has to put
506  * this reference.
507  *
508  * This function returns zero in case of success and a negative error code in
509  * case of failure.
510  */
511 static int uif_init(struct ubi_device *ubi, int *ref)
512 {
513 	int i, err;
514 #ifndef __UBOOT__
515 	dev_t dev;
516 #endif
517 
518 	*ref = 0;
519 	sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
520 
521 	/*
522 	 * Major numbers for the UBI character devices are allocated
523 	 * dynamically. Major numbers of volume character devices are
524 	 * equivalent to ones of the corresponding UBI character device. Minor
525 	 * numbers of UBI character devices are 0, while minor numbers of
526 	 * volume character devices start from 1. Thus, we allocate one major
527 	 * number and ubi->vtbl_slots + 1 minor numbers.
528 	 */
529 	err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
530 	if (err) {
531 		ubi_err(ubi, "cannot register UBI character devices");
532 		return err;
533 	}
534 
535 	ubi_assert(MINOR(dev) == 0);
536 	cdev_init(&ubi->cdev, &ubi_cdev_operations);
537 	dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
538 	ubi->cdev.owner = THIS_MODULE;
539 
540 	err = cdev_add(&ubi->cdev, dev, 1);
541 	if (err) {
542 		ubi_err(ubi, "cannot add character device");
543 		goto out_unreg;
544 	}
545 
546 	err = ubi_sysfs_init(ubi, ref);
547 	if (err)
548 		goto out_sysfs;
549 
550 	for (i = 0; i < ubi->vtbl_slots; i++)
551 		if (ubi->volumes[i]) {
552 			err = ubi_add_volume(ubi, ubi->volumes[i]);
553 			if (err) {
554 				ubi_err(ubi, "cannot add volume %d", i);
555 				goto out_volumes;
556 			}
557 		}
558 
559 	return 0;
560 
561 out_volumes:
562 	kill_volumes(ubi);
563 out_sysfs:
564 	if (*ref)
565 		get_device(&ubi->dev);
566 	ubi_sysfs_close(ubi);
567 	cdev_del(&ubi->cdev);
568 out_unreg:
569 	unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
570 	ubi_err(ubi, "cannot initialize UBI %s, error %d",
571 		ubi->ubi_name, err);
572 	return err;
573 }
574 
575 /**
576  * uif_close - close user interfaces for an UBI device.
577  * @ubi: UBI device description object
578  *
579  * Note, since this function un-registers UBI volume device objects (@vol->dev),
580  * the memory allocated voe the volumes is freed as well (in the release
581  * function).
582  */
583 static void uif_close(struct ubi_device *ubi)
584 {
585 	kill_volumes(ubi);
586 	ubi_sysfs_close(ubi);
587 	cdev_del(&ubi->cdev);
588 	unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
589 }
590 
591 /**
592  * ubi_free_internal_volumes - free internal volumes.
593  * @ubi: UBI device description object
594  */
595 void ubi_free_internal_volumes(struct ubi_device *ubi)
596 {
597 	int i;
598 
599 	for (i = ubi->vtbl_slots;
600 	     i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
601 		kfree(ubi->volumes[i]->eba_tbl);
602 		kfree(ubi->volumes[i]);
603 	}
604 }
605 
606 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024)
607 {
608 	int limit, device_pebs;
609 	uint64_t device_size;
610 
611 	if (!max_beb_per1024)
612 		return 0;
613 
614 	/*
615 	 * Here we are using size of the entire flash chip and
616 	 * not just the MTD partition size because the maximum
617 	 * number of bad eraseblocks is a percentage of the
618 	 * whole device and bad eraseblocks are not fairly
619 	 * distributed over the flash chip. So the worst case
620 	 * is that all the bad eraseblocks of the chip are in
621 	 * the MTD partition we are attaching (ubi->mtd).
622 	 */
623 	device_size = mtd_get_device_size(ubi->mtd);
624 	device_pebs = mtd_div_by_eb(device_size, ubi->mtd);
625 	limit = mult_frac(device_pebs, max_beb_per1024, 1024);
626 
627 	/* Round it up */
628 	if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs)
629 		limit += 1;
630 
631 	return limit;
632 }
633 
634 /**
635  * io_init - initialize I/O sub-system for a given UBI device.
636  * @ubi: UBI device description object
637  * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
638  *
639  * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
640  * assumed:
641  *   o EC header is always at offset zero - this cannot be changed;
642  *   o VID header starts just after the EC header at the closest address
643  *     aligned to @io->hdrs_min_io_size;
644  *   o data starts just after the VID header at the closest address aligned to
645  *     @io->min_io_size
646  *
647  * This function returns zero in case of success and a negative error code in
648  * case of failure.
649  */
650 static int io_init(struct ubi_device *ubi, int max_beb_per1024)
651 {
652 	dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb));
653 	dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
654 
655 	if (ubi->mtd->numeraseregions != 0) {
656 		/*
657 		 * Some flashes have several erase regions. Different regions
658 		 * may have different eraseblock size and other
659 		 * characteristics. It looks like mostly multi-region flashes
660 		 * have one "main" region and one or more small regions to
661 		 * store boot loader code or boot parameters or whatever. I
662 		 * guess we should just pick the largest region. But this is
663 		 * not implemented.
664 		 */
665 		ubi_err(ubi, "multiple regions, not implemented");
666 		return -EINVAL;
667 	}
668 
669 	if (ubi->vid_hdr_offset < 0)
670 		return -EINVAL;
671 
672 	/*
673 	 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
674 	 * physical eraseblocks maximum.
675 	 */
676 
677 	ubi->peb_size   = ubi->mtd->erasesize;
678 	ubi->peb_count  = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
679 	ubi->flash_size = ubi->mtd->size;
680 
681 	if (mtd_can_have_bb(ubi->mtd)) {
682 		ubi->bad_allowed = 1;
683 		ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024);
684 	}
685 
686 	if (ubi->mtd->type == MTD_NORFLASH) {
687 		ubi_assert(ubi->mtd->writesize == 1);
688 		ubi->nor_flash = 1;
689 	}
690 
691 	ubi->min_io_size = ubi->mtd->writesize;
692 	ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
693 
694 	/*
695 	 * Make sure minimal I/O unit is power of 2. Note, there is no
696 	 * fundamental reason for this assumption. It is just an optimization
697 	 * which allows us to avoid costly division operations.
698 	 */
699 	if (!is_power_of_2(ubi->min_io_size)) {
700 		ubi_err(ubi, "min. I/O unit (%d) is not power of 2",
701 			ubi->min_io_size);
702 		return -EINVAL;
703 	}
704 
705 	ubi_assert(ubi->hdrs_min_io_size > 0);
706 	ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
707 	ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
708 
709 	ubi->max_write_size = ubi->mtd->writebufsize;
710 	/*
711 	 * Maximum write size has to be greater or equivalent to min. I/O
712 	 * size, and be multiple of min. I/O size.
713 	 */
714 	if (ubi->max_write_size < ubi->min_io_size ||
715 	    ubi->max_write_size % ubi->min_io_size ||
716 	    !is_power_of_2(ubi->max_write_size)) {
717 		ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit",
718 			ubi->max_write_size, ubi->min_io_size);
719 		return -EINVAL;
720 	}
721 
722 	/* Calculate default aligned sizes of EC and VID headers */
723 	ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
724 	ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
725 
726 	dbg_gen("min_io_size      %d", ubi->min_io_size);
727 	dbg_gen("max_write_size   %d", ubi->max_write_size);
728 	dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
729 	dbg_gen("ec_hdr_alsize    %d", ubi->ec_hdr_alsize);
730 	dbg_gen("vid_hdr_alsize   %d", ubi->vid_hdr_alsize);
731 
732 	if (ubi->vid_hdr_offset == 0)
733 		/* Default offset */
734 		ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
735 				      ubi->ec_hdr_alsize;
736 	else {
737 		ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
738 						~(ubi->hdrs_min_io_size - 1);
739 		ubi->vid_hdr_shift = ubi->vid_hdr_offset -
740 						ubi->vid_hdr_aloffset;
741 	}
742 
743 	/* Similar for the data offset */
744 	ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
745 	ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
746 
747 	dbg_gen("vid_hdr_offset   %d", ubi->vid_hdr_offset);
748 	dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
749 	dbg_gen("vid_hdr_shift    %d", ubi->vid_hdr_shift);
750 	dbg_gen("leb_start        %d", ubi->leb_start);
751 
752 	/* The shift must be aligned to 32-bit boundary */
753 	if (ubi->vid_hdr_shift % 4) {
754 		ubi_err(ubi, "unaligned VID header shift %d",
755 			ubi->vid_hdr_shift);
756 		return -EINVAL;
757 	}
758 
759 	/* Check sanity */
760 	if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
761 	    ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
762 	    ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
763 	    ubi->leb_start & (ubi->min_io_size - 1)) {
764 		ubi_err(ubi, "bad VID header (%d) or data offsets (%d)",
765 			ubi->vid_hdr_offset, ubi->leb_start);
766 		return -EINVAL;
767 	}
768 
769 	/*
770 	 * Set maximum amount of physical erroneous eraseblocks to be 10%.
771 	 * Erroneous PEB are those which have read errors.
772 	 */
773 	ubi->max_erroneous = ubi->peb_count / 10;
774 	if (ubi->max_erroneous < 16)
775 		ubi->max_erroneous = 16;
776 	dbg_gen("max_erroneous    %d", ubi->max_erroneous);
777 
778 	/*
779 	 * It may happen that EC and VID headers are situated in one minimal
780 	 * I/O unit. In this case we can only accept this UBI image in
781 	 * read-only mode.
782 	 */
783 	if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
784 		ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode");
785 		ubi->ro_mode = 1;
786 	}
787 
788 	ubi->leb_size = ubi->peb_size - ubi->leb_start;
789 
790 	if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
791 		ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode",
792 			ubi->mtd->index);
793 		ubi->ro_mode = 1;
794 	}
795 
796 	/*
797 	 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
798 	 * unfortunately, MTD does not provide this information. We should loop
799 	 * over all physical eraseblocks and invoke mtd->block_is_bad() for
800 	 * each physical eraseblock. So, we leave @ubi->bad_peb_count
801 	 * uninitialized so far.
802 	 */
803 
804 	return 0;
805 }
806 
807 /**
808  * autoresize - re-size the volume which has the "auto-resize" flag set.
809  * @ubi: UBI device description object
810  * @vol_id: ID of the volume to re-size
811  *
812  * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
813  * the volume table to the largest possible size. See comments in ubi-header.h
814  * for more description of the flag. Returns zero in case of success and a
815  * negative error code in case of failure.
816  */
817 static int autoresize(struct ubi_device *ubi, int vol_id)
818 {
819 	struct ubi_volume_desc desc;
820 	struct ubi_volume *vol = ubi->volumes[vol_id];
821 	int err, old_reserved_pebs = vol->reserved_pebs;
822 
823 	if (ubi->ro_mode) {
824 		ubi_warn(ubi, "skip auto-resize because of R/O mode");
825 		return 0;
826 	}
827 
828 	/*
829 	 * Clear the auto-resize flag in the volume in-memory copy of the
830 	 * volume table, and 'ubi_resize_volume()' will propagate this change
831 	 * to the flash.
832 	 */
833 	ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
834 
835 	if (ubi->avail_pebs == 0) {
836 		struct ubi_vtbl_record vtbl_rec;
837 
838 		/*
839 		 * No available PEBs to re-size the volume, clear the flag on
840 		 * flash and exit.
841 		 */
842 		vtbl_rec = ubi->vtbl[vol_id];
843 		err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
844 		if (err)
845 			ubi_err(ubi, "cannot clean auto-resize flag for volume %d",
846 				vol_id);
847 	} else {
848 		desc.vol = vol;
849 		err = ubi_resize_volume(&desc,
850 					old_reserved_pebs + ubi->avail_pebs);
851 		if (err)
852 			ubi_err(ubi, "cannot auto-resize volume %d",
853 				vol_id);
854 	}
855 
856 	if (err)
857 		return err;
858 
859 	ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs",
860 		vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs);
861 	return 0;
862 }
863 
864 /**
865  * ubi_attach_mtd_dev - attach an MTD device.
866  * @mtd: MTD device description object
867  * @ubi_num: number to assign to the new UBI device
868  * @vid_hdr_offset: VID header offset
869  * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
870  *
871  * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
872  * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
873  * which case this function finds a vacant device number and assigns it
874  * automatically. Returns the new UBI device number in case of success and a
875  * negative error code in case of failure.
876  *
877  * Note, the invocations of this function has to be serialized by the
878  * @ubi_devices_mutex.
879  */
880 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num,
881 		       int vid_hdr_offset, int max_beb_per1024)
882 {
883 	struct ubi_device *ubi;
884 	int i, err, ref = 0;
885 
886 	if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT)
887 		return -EINVAL;
888 
889 	if (!max_beb_per1024)
890 		max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT;
891 
892 	/*
893 	 * Check if we already have the same MTD device attached.
894 	 *
895 	 * Note, this function assumes that UBI devices creations and deletions
896 	 * are serialized, so it does not take the &ubi_devices_lock.
897 	 */
898 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
899 		ubi = ubi_devices[i];
900 		if (ubi && mtd->index == ubi->mtd->index) {
901 			ubi_err(ubi, "mtd%d is already attached to ubi%d",
902 				mtd->index, i);
903 			return -EEXIST;
904 		}
905 	}
906 
907 	/*
908 	 * Make sure this MTD device is not emulated on top of an UBI volume
909 	 * already. Well, generally this recursion works fine, but there are
910 	 * different problems like the UBI module takes a reference to itself
911 	 * by attaching (and thus, opening) the emulated MTD device. This
912 	 * results in inability to unload the module. And in general it makes
913 	 * no sense to attach emulated MTD devices, so we prohibit this.
914 	 */
915 	if (mtd->type == MTD_UBIVOLUME) {
916 		ubi_err(ubi, "refuse attaching mtd%d - it is already emulated on top of UBI",
917 			mtd->index);
918 		return -EINVAL;
919 	}
920 
921 	if (ubi_num == UBI_DEV_NUM_AUTO) {
922 		/* Search for an empty slot in the @ubi_devices array */
923 		for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
924 			if (!ubi_devices[ubi_num])
925 				break;
926 		if (ubi_num == UBI_MAX_DEVICES) {
927 			ubi_err(ubi, "only %d UBI devices may be created",
928 				UBI_MAX_DEVICES);
929 			return -ENFILE;
930 		}
931 	} else {
932 		if (ubi_num >= UBI_MAX_DEVICES)
933 			return -EINVAL;
934 
935 		/* Make sure ubi_num is not busy */
936 		if (ubi_devices[ubi_num]) {
937 			ubi_err(ubi, "already exists");
938 			return -EEXIST;
939 		}
940 	}
941 
942 	ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
943 	if (!ubi)
944 		return -ENOMEM;
945 
946 	ubi->mtd = mtd;
947 	ubi->ubi_num = ubi_num;
948 	ubi->vid_hdr_offset = vid_hdr_offset;
949 	ubi->autoresize_vol_id = -1;
950 
951 #ifdef CONFIG_MTD_UBI_FASTMAP
952 	ubi->fm_pool.used = ubi->fm_pool.size = 0;
953 	ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0;
954 
955 	/*
956 	 * fm_pool.max_size is 5% of the total number of PEBs but it's also
957 	 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE.
958 	 */
959 	ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size,
960 		ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE);
961 	ubi->fm_pool.max_size = max(ubi->fm_pool.max_size,
962 		UBI_FM_MIN_POOL_SIZE);
963 
964 	ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2;
965 	ubi->fm_disabled = !fm_autoconvert;
966 	if (fm_debug)
967 		ubi_enable_dbg_chk_fastmap(ubi);
968 
969 	if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd)
970 	    <= UBI_FM_MAX_START) {
971 		ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.",
972 			UBI_FM_MAX_START);
973 		ubi->fm_disabled = 1;
974 	}
975 
976 	ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size);
977 	ubi_msg(ubi, "default fastmap WL pool size: %d",
978 		ubi->fm_wl_pool.max_size);
979 #else
980 	ubi->fm_disabled = 1;
981 #endif
982 	mutex_init(&ubi->buf_mutex);
983 	mutex_init(&ubi->ckvol_mutex);
984 	mutex_init(&ubi->device_mutex);
985 	spin_lock_init(&ubi->volumes_lock);
986 	init_rwsem(&ubi->fm_protect);
987 	init_rwsem(&ubi->fm_eba_sem);
988 
989 	ubi_msg(ubi, "attaching mtd%d", mtd->index);
990 
991 	err = io_init(ubi, max_beb_per1024);
992 	if (err)
993 		goto out_free;
994 
995 	err = -ENOMEM;
996 	ubi->peb_buf = vmalloc(ubi->peb_size);
997 	if (!ubi->peb_buf)
998 		goto out_free;
999 
1000 #ifdef CONFIG_MTD_UBI_FASTMAP
1001 	ubi->fm_size = ubi_calc_fm_size(ubi);
1002 	ubi->fm_buf = vzalloc(ubi->fm_size);
1003 	if (!ubi->fm_buf)
1004 		goto out_free;
1005 #endif
1006 	err = ubi_attach(ubi, 0);
1007 	if (err) {
1008 		ubi_err(ubi, "failed to attach mtd%d, error %d",
1009 			mtd->index, err);
1010 		goto out_free;
1011 	}
1012 
1013 	if (ubi->autoresize_vol_id != -1) {
1014 		err = autoresize(ubi, ubi->autoresize_vol_id);
1015 		if (err)
1016 			goto out_detach;
1017 	}
1018 
1019 	err = uif_init(ubi, &ref);
1020 	if (err)
1021 		goto out_detach;
1022 
1023 	err = ubi_debugfs_init_dev(ubi);
1024 	if (err)
1025 		goto out_uif;
1026 
1027 	ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name);
1028 	if (IS_ERR(ubi->bgt_thread)) {
1029 		err = PTR_ERR(ubi->bgt_thread);
1030 		ubi_err(ubi, "cannot spawn \"%s\", error %d",
1031 			ubi->bgt_name, err);
1032 		goto out_debugfs;
1033 	}
1034 
1035 	ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)",
1036 		mtd->index, mtd->name, ubi->flash_size >> 20);
1037 	ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes",
1038 		ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size);
1039 	ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d",
1040 		ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size);
1041 	ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d",
1042 		ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start);
1043 	ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d",
1044 		ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count);
1045 	ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d",
1046 		ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT,
1047 		ubi->vtbl_slots);
1048 	ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u",
1049 		ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD,
1050 		ubi->image_seq);
1051 	ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d",
1052 		ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs);
1053 
1054 	/*
1055 	 * The below lock makes sure we do not race with 'ubi_thread()' which
1056 	 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1057 	 */
1058 	spin_lock(&ubi->wl_lock);
1059 	ubi->thread_enabled = 1;
1060 #ifndef __UBOOT__
1061 	wake_up_process(ubi->bgt_thread);
1062 #else
1063 	/*
1064 	 * U-Boot special: We have no bgt_thread in U-Boot!
1065 	 * So just call do_work() here directly.
1066 	 */
1067 	err = do_work(ubi);
1068 	if (err) {
1069 		ubi_err(ubi, "%s: work failed with error code %d",
1070 			ubi->bgt_name, err);
1071 	}
1072 #endif
1073 
1074 	spin_unlock(&ubi->wl_lock);
1075 
1076 	ubi_devices[ubi_num] = ubi;
1077 	ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1078 	return ubi_num;
1079 
1080 out_debugfs:
1081 	ubi_debugfs_exit_dev(ubi);
1082 out_uif:
1083 	get_device(&ubi->dev);
1084 	ubi_assert(ref);
1085 	uif_close(ubi);
1086 out_detach:
1087 	ubi_wl_close(ubi);
1088 	ubi_free_internal_volumes(ubi);
1089 	vfree(ubi->vtbl);
1090 out_free:
1091 	vfree(ubi->peb_buf);
1092 	vfree(ubi->fm_buf);
1093 	if (ref)
1094 		put_device(&ubi->dev);
1095 	else
1096 		kfree(ubi);
1097 	return err;
1098 }
1099 
1100 /**
1101  * ubi_detach_mtd_dev - detach an MTD device.
1102  * @ubi_num: UBI device number to detach from
1103  * @anyway: detach MTD even if device reference count is not zero
1104  *
1105  * This function destroys an UBI device number @ubi_num and detaches the
1106  * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1107  * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1108  * exist.
1109  *
1110  * Note, the invocations of this function has to be serialized by the
1111  * @ubi_devices_mutex.
1112  */
1113 int ubi_detach_mtd_dev(int ubi_num, int anyway)
1114 {
1115 	struct ubi_device *ubi;
1116 
1117 	if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1118 		return -EINVAL;
1119 
1120 	ubi = ubi_get_device(ubi_num);
1121 	if (!ubi)
1122 		return -EINVAL;
1123 
1124 	spin_lock(&ubi_devices_lock);
1125 	put_device(&ubi->dev);
1126 	ubi->ref_count -= 1;
1127 	if (ubi->ref_count) {
1128 		if (!anyway) {
1129 			spin_unlock(&ubi_devices_lock);
1130 			return -EBUSY;
1131 		}
1132 		/* This may only happen if there is a bug */
1133 		ubi_err(ubi, "%s reference count %d, destroy anyway",
1134 			ubi->ubi_name, ubi->ref_count);
1135 	}
1136 	ubi_devices[ubi_num] = NULL;
1137 	spin_unlock(&ubi_devices_lock);
1138 
1139 	ubi_assert(ubi_num == ubi->ubi_num);
1140 	ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1141 	ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index);
1142 #ifdef CONFIG_MTD_UBI_FASTMAP
1143 	/* If we don't write a new fastmap at detach time we lose all
1144 	 * EC updates that have been made since the last written fastmap.
1145 	 * In case of fastmap debugging we omit the update to simulate an
1146 	 * unclean shutdown. */
1147 	if (!ubi_dbg_chk_fastmap(ubi))
1148 		ubi_update_fastmap(ubi);
1149 #endif
1150 	/*
1151 	 * Before freeing anything, we have to stop the background thread to
1152 	 * prevent it from doing anything on this device while we are freeing.
1153 	 */
1154 	if (ubi->bgt_thread)
1155 		kthread_stop(ubi->bgt_thread);
1156 
1157 	/*
1158 	 * Get a reference to the device in order to prevent 'dev_release()'
1159 	 * from freeing the @ubi object.
1160 	 */
1161 	get_device(&ubi->dev);
1162 
1163 	ubi_debugfs_exit_dev(ubi);
1164 	uif_close(ubi);
1165 
1166 	ubi_wl_close(ubi);
1167 	ubi_free_internal_volumes(ubi);
1168 	vfree(ubi->vtbl);
1169 	put_mtd_device(ubi->mtd);
1170 	vfree(ubi->peb_buf);
1171 	vfree(ubi->fm_buf);
1172 	ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index);
1173 	put_device(&ubi->dev);
1174 	return 0;
1175 }
1176 
1177 #ifndef __UBOOT__
1178 /**
1179  * open_mtd_by_chdev - open an MTD device by its character device node path.
1180  * @mtd_dev: MTD character device node path
1181  *
1182  * This helper function opens an MTD device by its character node device path.
1183  * Returns MTD device description object in case of success and a negative
1184  * error code in case of failure.
1185  */
1186 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1187 {
1188 	int err, major, minor, mode;
1189 	struct path path;
1190 
1191 	/* Probably this is an MTD character device node path */
1192 	err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1193 	if (err)
1194 		return ERR_PTR(err);
1195 
1196 	/* MTD device number is defined by the major / minor numbers */
1197 	major = imajor(d_backing_inode(path.dentry));
1198 	minor = iminor(d_backing_inode(path.dentry));
1199 	mode = d_backing_inode(path.dentry)->i_mode;
1200 	path_put(&path);
1201 	if (major != MTD_CHAR_MAJOR || !S_ISCHR(mode))
1202 		return ERR_PTR(-EINVAL);
1203 
1204 	if (minor & 1)
1205 		/*
1206 		 * Just do not think the "/dev/mtdrX" devices support is need,
1207 		 * so do not support them to avoid doing extra work.
1208 		 */
1209 		return ERR_PTR(-EINVAL);
1210 
1211 	return get_mtd_device(NULL, minor / 2);
1212 }
1213 #endif
1214 
1215 /**
1216  * open_mtd_device - open MTD device by name, character device path, or number.
1217  * @mtd_dev: name, character device node path, or MTD device device number
1218  *
1219  * This function tries to open and MTD device described by @mtd_dev string,
1220  * which is first treated as ASCII MTD device number, and if it is not true, it
1221  * is treated as MTD device name, and if that is also not true, it is treated
1222  * as MTD character device node path. Returns MTD device description object in
1223  * case of success and a negative error code in case of failure.
1224  */
1225 static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1226 {
1227 	struct mtd_info *mtd;
1228 	int mtd_num;
1229 	char *endp;
1230 
1231 	mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1232 	if (*endp != '\0' || mtd_dev == endp) {
1233 		/*
1234 		 * This does not look like an ASCII integer, probably this is
1235 		 * MTD device name.
1236 		 */
1237 		mtd = get_mtd_device_nm(mtd_dev);
1238 #ifndef __UBOOT__
1239 		if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV)
1240 			/* Probably this is an MTD character device node path */
1241 			mtd = open_mtd_by_chdev(mtd_dev);
1242 #endif
1243 	} else
1244 		mtd = get_mtd_device(NULL, mtd_num);
1245 
1246 	return mtd;
1247 }
1248 
1249 #ifndef __UBOOT__
1250 static int __init ubi_init(void)
1251 #else
1252 int ubi_init(void)
1253 #endif
1254 {
1255 	int err, i, k;
1256 
1257 	/* Ensure that EC and VID headers have correct size */
1258 	BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1259 	BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1260 
1261 	if (mtd_devs > UBI_MAX_DEVICES) {
1262 		pr_err("UBI error: too many MTD devices, maximum is %d",
1263 		       UBI_MAX_DEVICES);
1264 		return -EINVAL;
1265 	}
1266 
1267 	/* Create base sysfs directory and sysfs files */
1268 	err = class_register(&ubi_class);
1269 	if (err < 0)
1270 		return err;
1271 
1272 	err = misc_register(&ubi_ctrl_cdev);
1273 	if (err) {
1274 		pr_err("UBI error: cannot register device");
1275 		goto out;
1276 	}
1277 
1278 	ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1279 					      sizeof(struct ubi_wl_entry),
1280 					      0, 0, NULL);
1281 	if (!ubi_wl_entry_slab) {
1282 		err = -ENOMEM;
1283 		goto out_dev_unreg;
1284 	}
1285 
1286 	err = ubi_debugfs_init();
1287 	if (err)
1288 		goto out_slab;
1289 
1290 
1291 	/* Attach MTD devices */
1292 	for (i = 0; i < mtd_devs; i++) {
1293 		struct mtd_dev_param *p = &mtd_dev_param[i];
1294 		struct mtd_info *mtd;
1295 
1296 		cond_resched();
1297 
1298 		mtd = open_mtd_device(p->name);
1299 		if (IS_ERR(mtd)) {
1300 			err = PTR_ERR(mtd);
1301 			pr_err("UBI error: cannot open mtd %s, error %d",
1302 			       p->name, err);
1303 			/* See comment below re-ubi_is_module(). */
1304 			if (ubi_is_module())
1305 				goto out_detach;
1306 			continue;
1307 		}
1308 
1309 		mutex_lock(&ubi_devices_mutex);
1310 		err = ubi_attach_mtd_dev(mtd, p->ubi_num,
1311 					 p->vid_hdr_offs, p->max_beb_per1024);
1312 		mutex_unlock(&ubi_devices_mutex);
1313 		if (err < 0) {
1314 			pr_err("UBI error: cannot attach mtd%d",
1315 			       mtd->index);
1316 			put_mtd_device(mtd);
1317 
1318 			/*
1319 			 * Originally UBI stopped initializing on any error.
1320 			 * However, later on it was found out that this
1321 			 * behavior is not very good when UBI is compiled into
1322 			 * the kernel and the MTD devices to attach are passed
1323 			 * through the command line. Indeed, UBI failure
1324 			 * stopped whole boot sequence.
1325 			 *
1326 			 * To fix this, we changed the behavior for the
1327 			 * non-module case, but preserved the old behavior for
1328 			 * the module case, just for compatibility. This is a
1329 			 * little inconsistent, though.
1330 			 */
1331 			if (ubi_is_module())
1332 				goto out_detach;
1333 		}
1334 	}
1335 
1336 	err = ubiblock_init();
1337 	if (err) {
1338 		pr_err("UBI error: block: cannot initialize, error %d", err);
1339 
1340 		/* See comment above re-ubi_is_module(). */
1341 		if (ubi_is_module())
1342 			goto out_detach;
1343 	}
1344 
1345 	return 0;
1346 
1347 out_detach:
1348 	for (k = 0; k < i; k++)
1349 		if (ubi_devices[k]) {
1350 			mutex_lock(&ubi_devices_mutex);
1351 			ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1352 			mutex_unlock(&ubi_devices_mutex);
1353 		}
1354 	ubi_debugfs_exit();
1355 out_slab:
1356 	kmem_cache_destroy(ubi_wl_entry_slab);
1357 out_dev_unreg:
1358 	misc_deregister(&ubi_ctrl_cdev);
1359 out:
1360 #ifdef __UBOOT__
1361 	/* Reset any globals that the driver depends on being zeroed */
1362 	mtd_devs = 0;
1363 #endif
1364 	class_unregister(&ubi_class);
1365 	pr_err("UBI error: cannot initialize UBI, error %d", err);
1366 	return err;
1367 }
1368 late_initcall(ubi_init);
1369 
1370 #ifndef __UBOOT__
1371 static void __exit ubi_exit(void)
1372 #else
1373 void ubi_exit(void)
1374 #endif
1375 {
1376 	int i;
1377 
1378 	ubiblock_exit();
1379 
1380 	for (i = 0; i < UBI_MAX_DEVICES; i++)
1381 		if (ubi_devices[i]) {
1382 			mutex_lock(&ubi_devices_mutex);
1383 			ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1384 			mutex_unlock(&ubi_devices_mutex);
1385 		}
1386 	ubi_debugfs_exit();
1387 	kmem_cache_destroy(ubi_wl_entry_slab);
1388 	misc_deregister(&ubi_ctrl_cdev);
1389 	class_unregister(&ubi_class);
1390 #ifdef __UBOOT__
1391 	/* Reset any globals that the driver depends on being zeroed */
1392 	mtd_devs = 0;
1393 #endif
1394 }
1395 module_exit(ubi_exit);
1396 
1397 /**
1398  * bytes_str_to_int - convert a number of bytes string into an integer.
1399  * @str: the string to convert
1400  *
1401  * This function returns positive resulting integer in case of success and a
1402  * negative error code in case of failure.
1403  */
1404 static int __init bytes_str_to_int(const char *str)
1405 {
1406 	char *endp;
1407 	unsigned long result;
1408 
1409 	result = simple_strtoul(str, &endp, 0);
1410 	if (str == endp || result >= INT_MAX) {
1411 		pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1412 		return -EINVAL;
1413 	}
1414 
1415 	switch (*endp) {
1416 	case 'G':
1417 		result *= 1024;
1418 	case 'M':
1419 		result *= 1024;
1420 	case 'K':
1421 		result *= 1024;
1422 		if (endp[1] == 'i' && endp[2] == 'B')
1423 			endp += 2;
1424 	case '\0':
1425 		break;
1426 	default:
1427 		pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1428 		return -EINVAL;
1429 	}
1430 
1431 	return result;
1432 }
1433 
1434 int kstrtoint(const char *s, unsigned int base, int *res)
1435 {
1436 	unsigned long long tmp;
1437 
1438 	tmp = simple_strtoull(s, NULL, base);
1439 	if (tmp != (unsigned long long)(int)tmp)
1440 		return -ERANGE;
1441 
1442 	return (int)tmp;
1443 }
1444 
1445 /**
1446  * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1447  * @val: the parameter value to parse
1448  * @kp: not used
1449  *
1450  * This function returns zero in case of success and a negative error code in
1451  * case of error.
1452  */
1453 #ifndef __UBOOT__
1454 static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1455 #else
1456 int ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1457 #endif
1458 {
1459 	int i, len;
1460 	struct mtd_dev_param *p;
1461 	char buf[MTD_PARAM_LEN_MAX];
1462 	char *pbuf = &buf[0];
1463 	char *tokens[MTD_PARAM_MAX_COUNT], *token;
1464 
1465 	if (!val)
1466 		return -EINVAL;
1467 
1468 	if (mtd_devs == UBI_MAX_DEVICES) {
1469 		pr_err("UBI error: too many parameters, max. is %d\n",
1470 		       UBI_MAX_DEVICES);
1471 		return -EINVAL;
1472 	}
1473 
1474 	len = strnlen(val, MTD_PARAM_LEN_MAX);
1475 	if (len == MTD_PARAM_LEN_MAX) {
1476 		pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n",
1477 		       val, MTD_PARAM_LEN_MAX);
1478 		return -EINVAL;
1479 	}
1480 
1481 	if (len == 0) {
1482 		pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n");
1483 		return 0;
1484 	}
1485 
1486 	strcpy(buf, val);
1487 
1488 	/* Get rid of the final newline */
1489 	if (buf[len - 1] == '\n')
1490 		buf[len - 1] = '\0';
1491 
1492 	for (i = 0; i < MTD_PARAM_MAX_COUNT; i++)
1493 		tokens[i] = strsep(&pbuf, ",");
1494 
1495 	if (pbuf) {
1496 		pr_err("UBI error: too many arguments at \"%s\"\n", val);
1497 		return -EINVAL;
1498 	}
1499 
1500 	p = &mtd_dev_param[mtd_devs];
1501 	strcpy(&p->name[0], tokens[0]);
1502 
1503 	token = tokens[1];
1504 	if (token) {
1505 		p->vid_hdr_offs = bytes_str_to_int(token);
1506 
1507 		if (p->vid_hdr_offs < 0)
1508 			return p->vid_hdr_offs;
1509 	}
1510 
1511 	token = tokens[2];
1512 	if (token) {
1513 		int err = kstrtoint(token, 10, &p->max_beb_per1024);
1514 
1515 		if (err) {
1516 			pr_err("UBI error: bad value for max_beb_per1024 parameter: %s",
1517 			       token);
1518 			return -EINVAL;
1519 		}
1520 	}
1521 
1522 	token = tokens[3];
1523 	if (token) {
1524 		int err = kstrtoint(token, 10, &p->ubi_num);
1525 
1526 		if (err) {
1527 			pr_err("UBI error: bad value for ubi_num parameter: %s",
1528 			       token);
1529 			return -EINVAL;
1530 		}
1531 	} else
1532 		p->ubi_num = UBI_DEV_NUM_AUTO;
1533 
1534 	mtd_devs += 1;
1535 	return 0;
1536 }
1537 
1538 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000);
1539 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n"
1540 		      "Multiple \"mtd\" parameters may be specified.\n"
1541 		      "MTD devices may be specified by their number, name, or path to the MTD character device node.\n"
1542 		      "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n"
1543 		      "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value ("
1544 		      __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n"
1545 		      "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n"
1546 		      "\n"
1547 		      "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n"
1548 		      "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n"
1549 		      "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n"
1550 		      "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n"
1551 		      "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device).");
1552 #ifdef CONFIG_MTD_UBI_FASTMAP
1553 module_param(fm_autoconvert, bool, 0644);
1554 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap.");
1555 module_param(fm_debug, bool, 0);
1556 MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!");
1557 #endif
1558 MODULE_VERSION(__stringify(UBI_VERSION));
1559 MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1560 MODULE_AUTHOR("Artem Bityutskiy");
1561 MODULE_LICENSE("GPL");
1562