1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * Copyright (c) Nokia Corporation, 2007 4 * 5 * SPDX-License-Identifier: GPL-2.0+ 6 * 7 * Author: Artem Bityutskiy (Битюцкий Артём), 8 * Frank Haverkamp 9 */ 10 11 /* 12 * This file includes UBI initialization and building of UBI devices. 13 * 14 * When UBI is initialized, it attaches all the MTD devices specified as the 15 * module load parameters or the kernel boot parameters. If MTD devices were 16 * specified, UBI does not attach any MTD device, but it is possible to do 17 * later using the "UBI control device". 18 */ 19 20 #ifndef __UBOOT__ 21 #include <linux/module.h> 22 #include <linux/moduleparam.h> 23 #include <linux/stringify.h> 24 #include <linux/namei.h> 25 #include <linux/stat.h> 26 #include <linux/miscdevice.h> 27 #include <linux/log2.h> 28 #include <linux/kthread.h> 29 #include <linux/kernel.h> 30 #include <linux/slab.h> 31 #include <linux/major.h> 32 #else 33 #include <linux/bug.h> 34 #include <linux/log2.h> 35 #endif 36 #include <linux/err.h> 37 #include <ubi_uboot.h> 38 #include <linux/mtd/partitions.h> 39 40 #include "ubi.h" 41 42 /* Maximum length of the 'mtd=' parameter */ 43 #define MTD_PARAM_LEN_MAX 64 44 45 /* Maximum number of comma-separated items in the 'mtd=' parameter */ 46 #define MTD_PARAM_MAX_COUNT 4 47 48 /* Maximum value for the number of bad PEBs per 1024 PEBs */ 49 #define MAX_MTD_UBI_BEB_LIMIT 768 50 51 #ifdef CONFIG_MTD_UBI_MODULE 52 #define ubi_is_module() 1 53 #else 54 #define ubi_is_module() 0 55 #endif 56 57 #if (CONFIG_SYS_MALLOC_LEN < (512 << 10)) 58 #error Malloc area too small for UBI, increase CONFIG_SYS_MALLOC_LEN to >= 512k 59 #endif 60 61 /** 62 * struct mtd_dev_param - MTD device parameter description data structure. 63 * @name: MTD character device node path, MTD device name, or MTD device number 64 * string 65 * @vid_hdr_offs: VID header offset 66 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs 67 */ 68 struct mtd_dev_param { 69 char name[MTD_PARAM_LEN_MAX]; 70 int ubi_num; 71 int vid_hdr_offs; 72 int max_beb_per1024; 73 }; 74 75 /* Numbers of elements set in the @mtd_dev_param array */ 76 static int __initdata mtd_devs; 77 78 /* MTD devices specification parameters */ 79 static struct mtd_dev_param __initdata mtd_dev_param[UBI_MAX_DEVICES]; 80 #ifndef __UBOOT__ 81 #ifdef CONFIG_MTD_UBI_FASTMAP 82 /* UBI module parameter to enable fastmap automatically on non-fastmap images */ 83 static bool fm_autoconvert; 84 static bool fm_debug; 85 #endif 86 #else 87 #ifdef CONFIG_MTD_UBI_FASTMAP 88 #if !defined(CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT) 89 #define CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT 0 90 #endif 91 static bool fm_autoconvert = CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT; 92 #if !defined(CONFIG_MTD_UBI_FM_DEBUG) 93 #define CONFIG_MTD_UBI_FM_DEBUG 0 94 #endif 95 static bool fm_debug = CONFIG_MTD_UBI_FM_DEBUG; 96 #endif 97 #endif 98 99 /* Slab cache for wear-leveling entries */ 100 struct kmem_cache *ubi_wl_entry_slab; 101 102 #ifndef __UBOOT__ 103 /* UBI control character device */ 104 static struct miscdevice ubi_ctrl_cdev = { 105 .minor = MISC_DYNAMIC_MINOR, 106 .name = "ubi_ctrl", 107 .fops = &ubi_ctrl_cdev_operations, 108 }; 109 #endif 110 111 /* All UBI devices in system */ 112 #ifndef __UBOOT__ 113 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES]; 114 #else 115 struct ubi_device *ubi_devices[UBI_MAX_DEVICES]; 116 #endif 117 118 #ifndef __UBOOT__ 119 /* Serializes UBI devices creations and removals */ 120 DEFINE_MUTEX(ubi_devices_mutex); 121 122 /* Protects @ubi_devices and @ubi->ref_count */ 123 static DEFINE_SPINLOCK(ubi_devices_lock); 124 125 /* "Show" method for files in '/<sysfs>/class/ubi/' */ 126 static ssize_t ubi_version_show(struct class *class, 127 struct class_attribute *attr, char *buf) 128 { 129 return sprintf(buf, "%d\n", UBI_VERSION); 130 } 131 132 /* UBI version attribute ('/<sysfs>/class/ubi/version') */ 133 static struct class_attribute ubi_class_attrs[] = { 134 __ATTR(version, S_IRUGO, ubi_version_show, NULL), 135 __ATTR_NULL 136 }; 137 138 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */ 139 struct class ubi_class = { 140 .name = UBI_NAME_STR, 141 .owner = THIS_MODULE, 142 .class_attrs = ubi_class_attrs, 143 }; 144 145 static ssize_t dev_attribute_show(struct device *dev, 146 struct device_attribute *attr, char *buf); 147 148 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */ 149 static struct device_attribute dev_eraseblock_size = 150 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL); 151 static struct device_attribute dev_avail_eraseblocks = 152 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 153 static struct device_attribute dev_total_eraseblocks = 154 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 155 static struct device_attribute dev_volumes_count = 156 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL); 157 static struct device_attribute dev_max_ec = 158 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL); 159 static struct device_attribute dev_reserved_for_bad = 160 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL); 161 static struct device_attribute dev_bad_peb_count = 162 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL); 163 static struct device_attribute dev_max_vol_count = 164 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL); 165 static struct device_attribute dev_min_io_size = 166 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL); 167 static struct device_attribute dev_bgt_enabled = 168 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL); 169 static struct device_attribute dev_mtd_num = 170 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL); 171 #endif 172 173 /** 174 * ubi_volume_notify - send a volume change notification. 175 * @ubi: UBI device description object 176 * @vol: volume description object of the changed volume 177 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 178 * 179 * This is a helper function which notifies all subscribers about a volume 180 * change event (creation, removal, re-sizing, re-naming, updating). Returns 181 * zero in case of success and a negative error code in case of failure. 182 */ 183 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype) 184 { 185 int ret; 186 struct ubi_notification nt; 187 188 ubi_do_get_device_info(ubi, &nt.di); 189 ubi_do_get_volume_info(ubi, vol, &nt.vi); 190 191 switch (ntype) { 192 case UBI_VOLUME_ADDED: 193 case UBI_VOLUME_REMOVED: 194 case UBI_VOLUME_RESIZED: 195 case UBI_VOLUME_RENAMED: 196 ret = ubi_update_fastmap(ubi); 197 if (ret) 198 ubi_msg(ubi, "Unable to write a new fastmap: %i", ret); 199 } 200 201 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt); 202 } 203 204 /** 205 * ubi_notify_all - send a notification to all volumes. 206 * @ubi: UBI device description object 207 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 208 * @nb: the notifier to call 209 * 210 * This function walks all volumes of UBI device @ubi and sends the @ntype 211 * notification for each volume. If @nb is %NULL, then all registered notifiers 212 * are called, otherwise only the @nb notifier is called. Returns the number of 213 * sent notifications. 214 */ 215 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb) 216 { 217 struct ubi_notification nt; 218 int i, count = 0; 219 #ifndef __UBOOT__ 220 int ret; 221 #endif 222 223 ubi_do_get_device_info(ubi, &nt.di); 224 225 mutex_lock(&ubi->device_mutex); 226 for (i = 0; i < ubi->vtbl_slots; i++) { 227 /* 228 * Since the @ubi->device is locked, and we are not going to 229 * change @ubi->volumes, we do not have to lock 230 * @ubi->volumes_lock. 231 */ 232 if (!ubi->volumes[i]) 233 continue; 234 235 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi); 236 #ifndef __UBOOT__ 237 if (nb) 238 nb->notifier_call(nb, ntype, &nt); 239 else 240 ret = blocking_notifier_call_chain(&ubi_notifiers, ntype, 241 &nt); 242 #endif 243 count += 1; 244 } 245 mutex_unlock(&ubi->device_mutex); 246 247 return count; 248 } 249 250 /** 251 * ubi_enumerate_volumes - send "add" notification for all existing volumes. 252 * @nb: the notifier to call 253 * 254 * This function walks all UBI devices and volumes and sends the 255 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all 256 * registered notifiers are called, otherwise only the @nb notifier is called. 257 * Returns the number of sent notifications. 258 */ 259 int ubi_enumerate_volumes(struct notifier_block *nb) 260 { 261 int i, count = 0; 262 263 /* 264 * Since the @ubi_devices_mutex is locked, and we are not going to 265 * change @ubi_devices, we do not have to lock @ubi_devices_lock. 266 */ 267 for (i = 0; i < UBI_MAX_DEVICES; i++) { 268 struct ubi_device *ubi = ubi_devices[i]; 269 270 if (!ubi) 271 continue; 272 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb); 273 } 274 275 return count; 276 } 277 278 /** 279 * ubi_get_device - get UBI device. 280 * @ubi_num: UBI device number 281 * 282 * This function returns UBI device description object for UBI device number 283 * @ubi_num, or %NULL if the device does not exist. This function increases the 284 * device reference count to prevent removal of the device. In other words, the 285 * device cannot be removed if its reference count is not zero. 286 */ 287 struct ubi_device *ubi_get_device(int ubi_num) 288 { 289 struct ubi_device *ubi; 290 291 spin_lock(&ubi_devices_lock); 292 ubi = ubi_devices[ubi_num]; 293 if (ubi) { 294 ubi_assert(ubi->ref_count >= 0); 295 ubi->ref_count += 1; 296 get_device(&ubi->dev); 297 } 298 spin_unlock(&ubi_devices_lock); 299 300 return ubi; 301 } 302 303 /** 304 * ubi_put_device - drop an UBI device reference. 305 * @ubi: UBI device description object 306 */ 307 void ubi_put_device(struct ubi_device *ubi) 308 { 309 spin_lock(&ubi_devices_lock); 310 ubi->ref_count -= 1; 311 put_device(&ubi->dev); 312 spin_unlock(&ubi_devices_lock); 313 } 314 315 /** 316 * ubi_get_by_major - get UBI device by character device major number. 317 * @major: major number 318 * 319 * This function is similar to 'ubi_get_device()', but it searches the device 320 * by its major number. 321 */ 322 struct ubi_device *ubi_get_by_major(int major) 323 { 324 int i; 325 struct ubi_device *ubi; 326 327 spin_lock(&ubi_devices_lock); 328 for (i = 0; i < UBI_MAX_DEVICES; i++) { 329 ubi = ubi_devices[i]; 330 if (ubi && MAJOR(ubi->cdev.dev) == major) { 331 ubi_assert(ubi->ref_count >= 0); 332 ubi->ref_count += 1; 333 get_device(&ubi->dev); 334 spin_unlock(&ubi_devices_lock); 335 return ubi; 336 } 337 } 338 spin_unlock(&ubi_devices_lock); 339 340 return NULL; 341 } 342 343 /** 344 * ubi_major2num - get UBI device number by character device major number. 345 * @major: major number 346 * 347 * This function searches UBI device number object by its major number. If UBI 348 * device was not found, this function returns -ENODEV, otherwise the UBI device 349 * number is returned. 350 */ 351 int ubi_major2num(int major) 352 { 353 int i, ubi_num = -ENODEV; 354 355 spin_lock(&ubi_devices_lock); 356 for (i = 0; i < UBI_MAX_DEVICES; i++) { 357 struct ubi_device *ubi = ubi_devices[i]; 358 359 if (ubi && MAJOR(ubi->cdev.dev) == major) { 360 ubi_num = ubi->ubi_num; 361 break; 362 } 363 } 364 spin_unlock(&ubi_devices_lock); 365 366 return ubi_num; 367 } 368 369 #ifndef __UBOOT__ 370 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */ 371 static ssize_t dev_attribute_show(struct device *dev, 372 struct device_attribute *attr, char *buf) 373 { 374 ssize_t ret; 375 struct ubi_device *ubi; 376 377 /* 378 * The below code looks weird, but it actually makes sense. We get the 379 * UBI device reference from the contained 'struct ubi_device'. But it 380 * is unclear if the device was removed or not yet. Indeed, if the 381 * device was removed before we increased its reference count, 382 * 'ubi_get_device()' will return -ENODEV and we fail. 383 * 384 * Remember, 'struct ubi_device' is freed in the release function, so 385 * we still can use 'ubi->ubi_num'. 386 */ 387 ubi = container_of(dev, struct ubi_device, dev); 388 ubi = ubi_get_device(ubi->ubi_num); 389 if (!ubi) 390 return -ENODEV; 391 392 if (attr == &dev_eraseblock_size) 393 ret = sprintf(buf, "%d\n", ubi->leb_size); 394 else if (attr == &dev_avail_eraseblocks) 395 ret = sprintf(buf, "%d\n", ubi->avail_pebs); 396 else if (attr == &dev_total_eraseblocks) 397 ret = sprintf(buf, "%d\n", ubi->good_peb_count); 398 else if (attr == &dev_volumes_count) 399 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT); 400 else if (attr == &dev_max_ec) 401 ret = sprintf(buf, "%d\n", ubi->max_ec); 402 else if (attr == &dev_reserved_for_bad) 403 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs); 404 else if (attr == &dev_bad_peb_count) 405 ret = sprintf(buf, "%d\n", ubi->bad_peb_count); 406 else if (attr == &dev_max_vol_count) 407 ret = sprintf(buf, "%d\n", ubi->vtbl_slots); 408 else if (attr == &dev_min_io_size) 409 ret = sprintf(buf, "%d\n", ubi->min_io_size); 410 else if (attr == &dev_bgt_enabled) 411 ret = sprintf(buf, "%d\n", ubi->thread_enabled); 412 else if (attr == &dev_mtd_num) 413 ret = sprintf(buf, "%d\n", ubi->mtd->index); 414 else 415 ret = -EINVAL; 416 417 ubi_put_device(ubi); 418 return ret; 419 } 420 421 static struct attribute *ubi_dev_attrs[] = { 422 &dev_eraseblock_size.attr, 423 &dev_avail_eraseblocks.attr, 424 &dev_total_eraseblocks.attr, 425 &dev_volumes_count.attr, 426 &dev_max_ec.attr, 427 &dev_reserved_for_bad.attr, 428 &dev_bad_peb_count.attr, 429 &dev_max_vol_count.attr, 430 &dev_min_io_size.attr, 431 &dev_bgt_enabled.attr, 432 &dev_mtd_num.attr, 433 NULL 434 }; 435 ATTRIBUTE_GROUPS(ubi_dev); 436 437 static void dev_release(struct device *dev) 438 { 439 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev); 440 441 kfree(ubi); 442 } 443 444 /** 445 * ubi_sysfs_init - initialize sysfs for an UBI device. 446 * @ubi: UBI device description object 447 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was 448 * taken 449 * 450 * This function returns zero in case of success and a negative error code in 451 * case of failure. 452 */ 453 static int ubi_sysfs_init(struct ubi_device *ubi, int *ref) 454 { 455 int err; 456 457 ubi->dev.release = dev_release; 458 ubi->dev.devt = ubi->cdev.dev; 459 ubi->dev.class = &ubi_class; 460 ubi->dev.groups = ubi_dev_groups; 461 dev_set_name(&ubi->dev, UBI_NAME_STR"%d", ubi->ubi_num); 462 err = device_register(&ubi->dev); 463 if (err) 464 return err; 465 466 *ref = 1; 467 return 0; 468 } 469 470 /** 471 * ubi_sysfs_close - close sysfs for an UBI device. 472 * @ubi: UBI device description object 473 */ 474 static void ubi_sysfs_close(struct ubi_device *ubi) 475 { 476 device_unregister(&ubi->dev); 477 } 478 #endif 479 480 /** 481 * kill_volumes - destroy all user volumes. 482 * @ubi: UBI device description object 483 */ 484 static void kill_volumes(struct ubi_device *ubi) 485 { 486 int i; 487 488 for (i = 0; i < ubi->vtbl_slots; i++) 489 if (ubi->volumes[i]) 490 ubi_free_volume(ubi, ubi->volumes[i]); 491 } 492 493 /** 494 * uif_init - initialize user interfaces for an UBI device. 495 * @ubi: UBI device description object 496 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was 497 * taken, otherwise set to %0 498 * 499 * This function initializes various user interfaces for an UBI device. If the 500 * initialization fails at an early stage, this function frees all the 501 * resources it allocated, returns an error, and @ref is set to %0. However, 502 * if the initialization fails after the UBI device was registered in the 503 * driver core subsystem, this function takes a reference to @ubi->dev, because 504 * otherwise the release function ('dev_release()') would free whole @ubi 505 * object. The @ref argument is set to %1 in this case. The caller has to put 506 * this reference. 507 * 508 * This function returns zero in case of success and a negative error code in 509 * case of failure. 510 */ 511 static int uif_init(struct ubi_device *ubi, int *ref) 512 { 513 int i, err; 514 #ifndef __UBOOT__ 515 dev_t dev; 516 #endif 517 518 *ref = 0; 519 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num); 520 521 /* 522 * Major numbers for the UBI character devices are allocated 523 * dynamically. Major numbers of volume character devices are 524 * equivalent to ones of the corresponding UBI character device. Minor 525 * numbers of UBI character devices are 0, while minor numbers of 526 * volume character devices start from 1. Thus, we allocate one major 527 * number and ubi->vtbl_slots + 1 minor numbers. 528 */ 529 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name); 530 if (err) { 531 ubi_err(ubi, "cannot register UBI character devices"); 532 return err; 533 } 534 535 ubi_assert(MINOR(dev) == 0); 536 cdev_init(&ubi->cdev, &ubi_cdev_operations); 537 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev)); 538 ubi->cdev.owner = THIS_MODULE; 539 540 err = cdev_add(&ubi->cdev, dev, 1); 541 if (err) { 542 ubi_err(ubi, "cannot add character device"); 543 goto out_unreg; 544 } 545 546 err = ubi_sysfs_init(ubi, ref); 547 if (err) 548 goto out_sysfs; 549 550 for (i = 0; i < ubi->vtbl_slots; i++) 551 if (ubi->volumes[i]) { 552 err = ubi_add_volume(ubi, ubi->volumes[i]); 553 if (err) { 554 ubi_err(ubi, "cannot add volume %d", i); 555 goto out_volumes; 556 } 557 } 558 559 return 0; 560 561 out_volumes: 562 kill_volumes(ubi); 563 out_sysfs: 564 if (*ref) 565 get_device(&ubi->dev); 566 ubi_sysfs_close(ubi); 567 cdev_del(&ubi->cdev); 568 out_unreg: 569 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 570 ubi_err(ubi, "cannot initialize UBI %s, error %d", 571 ubi->ubi_name, err); 572 return err; 573 } 574 575 /** 576 * uif_close - close user interfaces for an UBI device. 577 * @ubi: UBI device description object 578 * 579 * Note, since this function un-registers UBI volume device objects (@vol->dev), 580 * the memory allocated voe the volumes is freed as well (in the release 581 * function). 582 */ 583 static void uif_close(struct ubi_device *ubi) 584 { 585 kill_volumes(ubi); 586 ubi_sysfs_close(ubi); 587 cdev_del(&ubi->cdev); 588 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 589 } 590 591 /** 592 * ubi_free_internal_volumes - free internal volumes. 593 * @ubi: UBI device description object 594 */ 595 void ubi_free_internal_volumes(struct ubi_device *ubi) 596 { 597 int i; 598 599 for (i = ubi->vtbl_slots; 600 i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { 601 kfree(ubi->volumes[i]->eba_tbl); 602 kfree(ubi->volumes[i]); 603 } 604 } 605 606 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024) 607 { 608 int limit, device_pebs; 609 uint64_t device_size; 610 611 if (!max_beb_per1024) 612 return 0; 613 614 /* 615 * Here we are using size of the entire flash chip and 616 * not just the MTD partition size because the maximum 617 * number of bad eraseblocks is a percentage of the 618 * whole device and bad eraseblocks are not fairly 619 * distributed over the flash chip. So the worst case 620 * is that all the bad eraseblocks of the chip are in 621 * the MTD partition we are attaching (ubi->mtd). 622 */ 623 device_size = mtd_get_device_size(ubi->mtd); 624 device_pebs = mtd_div_by_eb(device_size, ubi->mtd); 625 limit = mult_frac(device_pebs, max_beb_per1024, 1024); 626 627 /* Round it up */ 628 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs) 629 limit += 1; 630 631 return limit; 632 } 633 634 /** 635 * io_init - initialize I/O sub-system for a given UBI device. 636 * @ubi: UBI device description object 637 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 638 * 639 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are 640 * assumed: 641 * o EC header is always at offset zero - this cannot be changed; 642 * o VID header starts just after the EC header at the closest address 643 * aligned to @io->hdrs_min_io_size; 644 * o data starts just after the VID header at the closest address aligned to 645 * @io->min_io_size 646 * 647 * This function returns zero in case of success and a negative error code in 648 * case of failure. 649 */ 650 static int io_init(struct ubi_device *ubi, int max_beb_per1024) 651 { 652 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb)); 653 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry)); 654 655 if (ubi->mtd->numeraseregions != 0) { 656 /* 657 * Some flashes have several erase regions. Different regions 658 * may have different eraseblock size and other 659 * characteristics. It looks like mostly multi-region flashes 660 * have one "main" region and one or more small regions to 661 * store boot loader code or boot parameters or whatever. I 662 * guess we should just pick the largest region. But this is 663 * not implemented. 664 */ 665 ubi_err(ubi, "multiple regions, not implemented"); 666 return -EINVAL; 667 } 668 669 if (ubi->vid_hdr_offset < 0) 670 return -EINVAL; 671 672 /* 673 * Note, in this implementation we support MTD devices with 0x7FFFFFFF 674 * physical eraseblocks maximum. 675 */ 676 677 ubi->peb_size = ubi->mtd->erasesize; 678 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd); 679 ubi->flash_size = ubi->mtd->size; 680 681 if (mtd_can_have_bb(ubi->mtd)) { 682 ubi->bad_allowed = 1; 683 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024); 684 } 685 686 if (ubi->mtd->type == MTD_NORFLASH) { 687 ubi_assert(ubi->mtd->writesize == 1); 688 ubi->nor_flash = 1; 689 } 690 691 ubi->min_io_size = ubi->mtd->writesize; 692 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft; 693 694 /* 695 * Make sure minimal I/O unit is power of 2. Note, there is no 696 * fundamental reason for this assumption. It is just an optimization 697 * which allows us to avoid costly division operations. 698 */ 699 if (!is_power_of_2(ubi->min_io_size)) { 700 ubi_err(ubi, "min. I/O unit (%d) is not power of 2", 701 ubi->min_io_size); 702 return -EINVAL; 703 } 704 705 ubi_assert(ubi->hdrs_min_io_size > 0); 706 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size); 707 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0); 708 709 ubi->max_write_size = ubi->mtd->writebufsize; 710 /* 711 * Maximum write size has to be greater or equivalent to min. I/O 712 * size, and be multiple of min. I/O size. 713 */ 714 if (ubi->max_write_size < ubi->min_io_size || 715 ubi->max_write_size % ubi->min_io_size || 716 !is_power_of_2(ubi->max_write_size)) { 717 ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit", 718 ubi->max_write_size, ubi->min_io_size); 719 return -EINVAL; 720 } 721 722 /* Calculate default aligned sizes of EC and VID headers */ 723 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size); 724 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size); 725 726 dbg_gen("min_io_size %d", ubi->min_io_size); 727 dbg_gen("max_write_size %d", ubi->max_write_size); 728 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size); 729 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize); 730 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize); 731 732 if (ubi->vid_hdr_offset == 0) 733 /* Default offset */ 734 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset = 735 ubi->ec_hdr_alsize; 736 else { 737 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset & 738 ~(ubi->hdrs_min_io_size - 1); 739 ubi->vid_hdr_shift = ubi->vid_hdr_offset - 740 ubi->vid_hdr_aloffset; 741 } 742 743 /* Similar for the data offset */ 744 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE; 745 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size); 746 747 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset); 748 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset); 749 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift); 750 dbg_gen("leb_start %d", ubi->leb_start); 751 752 /* The shift must be aligned to 32-bit boundary */ 753 if (ubi->vid_hdr_shift % 4) { 754 ubi_err(ubi, "unaligned VID header shift %d", 755 ubi->vid_hdr_shift); 756 return -EINVAL; 757 } 758 759 /* Check sanity */ 760 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE || 761 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE || 762 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE || 763 ubi->leb_start & (ubi->min_io_size - 1)) { 764 ubi_err(ubi, "bad VID header (%d) or data offsets (%d)", 765 ubi->vid_hdr_offset, ubi->leb_start); 766 return -EINVAL; 767 } 768 769 /* 770 * Set maximum amount of physical erroneous eraseblocks to be 10%. 771 * Erroneous PEB are those which have read errors. 772 */ 773 ubi->max_erroneous = ubi->peb_count / 10; 774 if (ubi->max_erroneous < 16) 775 ubi->max_erroneous = 16; 776 dbg_gen("max_erroneous %d", ubi->max_erroneous); 777 778 /* 779 * It may happen that EC and VID headers are situated in one minimal 780 * I/O unit. In this case we can only accept this UBI image in 781 * read-only mode. 782 */ 783 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) { 784 ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode"); 785 ubi->ro_mode = 1; 786 } 787 788 ubi->leb_size = ubi->peb_size - ubi->leb_start; 789 790 if (!(ubi->mtd->flags & MTD_WRITEABLE)) { 791 ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode", 792 ubi->mtd->index); 793 ubi->ro_mode = 1; 794 } 795 796 /* 797 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But 798 * unfortunately, MTD does not provide this information. We should loop 799 * over all physical eraseblocks and invoke mtd->block_is_bad() for 800 * each physical eraseblock. So, we leave @ubi->bad_peb_count 801 * uninitialized so far. 802 */ 803 804 return 0; 805 } 806 807 /** 808 * autoresize - re-size the volume which has the "auto-resize" flag set. 809 * @ubi: UBI device description object 810 * @vol_id: ID of the volume to re-size 811 * 812 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in 813 * the volume table to the largest possible size. See comments in ubi-header.h 814 * for more description of the flag. Returns zero in case of success and a 815 * negative error code in case of failure. 816 */ 817 static int autoresize(struct ubi_device *ubi, int vol_id) 818 { 819 struct ubi_volume_desc desc; 820 struct ubi_volume *vol = ubi->volumes[vol_id]; 821 int err, old_reserved_pebs = vol->reserved_pebs; 822 823 if (ubi->ro_mode) { 824 ubi_warn(ubi, "skip auto-resize because of R/O mode"); 825 return 0; 826 } 827 828 /* 829 * Clear the auto-resize flag in the volume in-memory copy of the 830 * volume table, and 'ubi_resize_volume()' will propagate this change 831 * to the flash. 832 */ 833 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG; 834 835 if (ubi->avail_pebs == 0) { 836 struct ubi_vtbl_record vtbl_rec; 837 838 /* 839 * No available PEBs to re-size the volume, clear the flag on 840 * flash and exit. 841 */ 842 vtbl_rec = ubi->vtbl[vol_id]; 843 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec); 844 if (err) 845 ubi_err(ubi, "cannot clean auto-resize flag for volume %d", 846 vol_id); 847 } else { 848 desc.vol = vol; 849 err = ubi_resize_volume(&desc, 850 old_reserved_pebs + ubi->avail_pebs); 851 if (err) 852 ubi_err(ubi, "cannot auto-resize volume %d", 853 vol_id); 854 } 855 856 if (err) 857 return err; 858 859 ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs", 860 vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs); 861 return 0; 862 } 863 864 /** 865 * ubi_attach_mtd_dev - attach an MTD device. 866 * @mtd: MTD device description object 867 * @ubi_num: number to assign to the new UBI device 868 * @vid_hdr_offset: VID header offset 869 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 870 * 871 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number 872 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in 873 * which case this function finds a vacant device number and assigns it 874 * automatically. Returns the new UBI device number in case of success and a 875 * negative error code in case of failure. 876 * 877 * Note, the invocations of this function has to be serialized by the 878 * @ubi_devices_mutex. 879 */ 880 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, 881 int vid_hdr_offset, int max_beb_per1024) 882 { 883 struct ubi_device *ubi; 884 int i, err, ref = 0; 885 886 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT) 887 return -EINVAL; 888 889 if (!max_beb_per1024) 890 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT; 891 892 /* 893 * Check if we already have the same MTD device attached. 894 * 895 * Note, this function assumes that UBI devices creations and deletions 896 * are serialized, so it does not take the &ubi_devices_lock. 897 */ 898 for (i = 0; i < UBI_MAX_DEVICES; i++) { 899 ubi = ubi_devices[i]; 900 if (ubi && mtd->index == ubi->mtd->index) { 901 ubi_err(ubi, "mtd%d is already attached to ubi%d", 902 mtd->index, i); 903 return -EEXIST; 904 } 905 } 906 907 /* 908 * Make sure this MTD device is not emulated on top of an UBI volume 909 * already. Well, generally this recursion works fine, but there are 910 * different problems like the UBI module takes a reference to itself 911 * by attaching (and thus, opening) the emulated MTD device. This 912 * results in inability to unload the module. And in general it makes 913 * no sense to attach emulated MTD devices, so we prohibit this. 914 */ 915 if (mtd->type == MTD_UBIVOLUME) { 916 ubi_err(ubi, "refuse attaching mtd%d - it is already emulated on top of UBI", 917 mtd->index); 918 return -EINVAL; 919 } 920 921 if (ubi_num == UBI_DEV_NUM_AUTO) { 922 /* Search for an empty slot in the @ubi_devices array */ 923 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++) 924 if (!ubi_devices[ubi_num]) 925 break; 926 if (ubi_num == UBI_MAX_DEVICES) { 927 ubi_err(ubi, "only %d UBI devices may be created", 928 UBI_MAX_DEVICES); 929 return -ENFILE; 930 } 931 } else { 932 if (ubi_num >= UBI_MAX_DEVICES) 933 return -EINVAL; 934 935 /* Make sure ubi_num is not busy */ 936 if (ubi_devices[ubi_num]) { 937 ubi_err(ubi, "already exists"); 938 return -EEXIST; 939 } 940 } 941 942 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL); 943 if (!ubi) 944 return -ENOMEM; 945 946 ubi->mtd = mtd; 947 ubi->ubi_num = ubi_num; 948 ubi->vid_hdr_offset = vid_hdr_offset; 949 ubi->autoresize_vol_id = -1; 950 951 #ifdef CONFIG_MTD_UBI_FASTMAP 952 ubi->fm_pool.used = ubi->fm_pool.size = 0; 953 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0; 954 955 /* 956 * fm_pool.max_size is 5% of the total number of PEBs but it's also 957 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE. 958 */ 959 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size, 960 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE); 961 ubi->fm_pool.max_size = max(ubi->fm_pool.max_size, 962 UBI_FM_MIN_POOL_SIZE); 963 964 ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2; 965 ubi->fm_disabled = !fm_autoconvert; 966 if (fm_debug) 967 ubi_enable_dbg_chk_fastmap(ubi); 968 969 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) 970 <= UBI_FM_MAX_START) { 971 ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.", 972 UBI_FM_MAX_START); 973 ubi->fm_disabled = 1; 974 } 975 976 ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size); 977 ubi_msg(ubi, "default fastmap WL pool size: %d", 978 ubi->fm_wl_pool.max_size); 979 #else 980 ubi->fm_disabled = 1; 981 #endif 982 mutex_init(&ubi->buf_mutex); 983 mutex_init(&ubi->ckvol_mutex); 984 mutex_init(&ubi->device_mutex); 985 spin_lock_init(&ubi->volumes_lock); 986 init_rwsem(&ubi->fm_protect); 987 init_rwsem(&ubi->fm_eba_sem); 988 989 ubi_msg(ubi, "attaching mtd%d", mtd->index); 990 991 err = io_init(ubi, max_beb_per1024); 992 if (err) 993 goto out_free; 994 995 err = -ENOMEM; 996 ubi->peb_buf = vmalloc(ubi->peb_size); 997 if (!ubi->peb_buf) 998 goto out_free; 999 1000 #ifdef CONFIG_MTD_UBI_FASTMAP 1001 ubi->fm_size = ubi_calc_fm_size(ubi); 1002 ubi->fm_buf = vzalloc(ubi->fm_size); 1003 if (!ubi->fm_buf) 1004 goto out_free; 1005 #endif 1006 err = ubi_attach(ubi, 0); 1007 if (err) { 1008 ubi_err(ubi, "failed to attach mtd%d, error %d", 1009 mtd->index, err); 1010 goto out_free; 1011 } 1012 1013 if (ubi->autoresize_vol_id != -1) { 1014 err = autoresize(ubi, ubi->autoresize_vol_id); 1015 if (err) 1016 goto out_detach; 1017 } 1018 1019 err = uif_init(ubi, &ref); 1020 if (err) 1021 goto out_detach; 1022 1023 err = ubi_debugfs_init_dev(ubi); 1024 if (err) 1025 goto out_uif; 1026 1027 ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name); 1028 if (IS_ERR(ubi->bgt_thread)) { 1029 err = PTR_ERR(ubi->bgt_thread); 1030 ubi_err(ubi, "cannot spawn \"%s\", error %d", 1031 ubi->bgt_name, err); 1032 goto out_debugfs; 1033 } 1034 1035 ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)", 1036 mtd->index, mtd->name, ubi->flash_size >> 20); 1037 ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes", 1038 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size); 1039 ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d", 1040 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size); 1041 ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d", 1042 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start); 1043 ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d", 1044 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count); 1045 ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d", 1046 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT, 1047 ubi->vtbl_slots); 1048 ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u", 1049 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD, 1050 ubi->image_seq); 1051 ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d", 1052 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs); 1053 1054 /* 1055 * The below lock makes sure we do not race with 'ubi_thread()' which 1056 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up. 1057 */ 1058 spin_lock(&ubi->wl_lock); 1059 ubi->thread_enabled = 1; 1060 #ifndef __UBOOT__ 1061 wake_up_process(ubi->bgt_thread); 1062 #else 1063 ubi_do_worker(ubi); 1064 #endif 1065 1066 spin_unlock(&ubi->wl_lock); 1067 1068 ubi_devices[ubi_num] = ubi; 1069 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL); 1070 return ubi_num; 1071 1072 out_debugfs: 1073 ubi_debugfs_exit_dev(ubi); 1074 out_uif: 1075 get_device(&ubi->dev); 1076 ubi_assert(ref); 1077 uif_close(ubi); 1078 out_detach: 1079 ubi_wl_close(ubi); 1080 ubi_free_internal_volumes(ubi); 1081 vfree(ubi->vtbl); 1082 out_free: 1083 vfree(ubi->peb_buf); 1084 vfree(ubi->fm_buf); 1085 if (ref) 1086 put_device(&ubi->dev); 1087 else 1088 kfree(ubi); 1089 return err; 1090 } 1091 1092 /** 1093 * ubi_detach_mtd_dev - detach an MTD device. 1094 * @ubi_num: UBI device number to detach from 1095 * @anyway: detach MTD even if device reference count is not zero 1096 * 1097 * This function destroys an UBI device number @ubi_num and detaches the 1098 * underlying MTD device. Returns zero in case of success and %-EBUSY if the 1099 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not 1100 * exist. 1101 * 1102 * Note, the invocations of this function has to be serialized by the 1103 * @ubi_devices_mutex. 1104 */ 1105 int ubi_detach_mtd_dev(int ubi_num, int anyway) 1106 { 1107 struct ubi_device *ubi; 1108 1109 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES) 1110 return -EINVAL; 1111 1112 ubi = ubi_get_device(ubi_num); 1113 if (!ubi) 1114 return -EINVAL; 1115 1116 spin_lock(&ubi_devices_lock); 1117 put_device(&ubi->dev); 1118 ubi->ref_count -= 1; 1119 if (ubi->ref_count) { 1120 if (!anyway) { 1121 spin_unlock(&ubi_devices_lock); 1122 return -EBUSY; 1123 } 1124 /* This may only happen if there is a bug */ 1125 ubi_err(ubi, "%s reference count %d, destroy anyway", 1126 ubi->ubi_name, ubi->ref_count); 1127 } 1128 ubi_devices[ubi_num] = NULL; 1129 spin_unlock(&ubi_devices_lock); 1130 1131 ubi_assert(ubi_num == ubi->ubi_num); 1132 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL); 1133 ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index); 1134 #ifdef CONFIG_MTD_UBI_FASTMAP 1135 /* If we don't write a new fastmap at detach time we lose all 1136 * EC updates that have been made since the last written fastmap. 1137 * In case of fastmap debugging we omit the update to simulate an 1138 * unclean shutdown. */ 1139 if (!ubi_dbg_chk_fastmap(ubi)) 1140 ubi_update_fastmap(ubi); 1141 #endif 1142 /* 1143 * Before freeing anything, we have to stop the background thread to 1144 * prevent it from doing anything on this device while we are freeing. 1145 */ 1146 if (ubi->bgt_thread) 1147 kthread_stop(ubi->bgt_thread); 1148 1149 /* 1150 * Get a reference to the device in order to prevent 'dev_release()' 1151 * from freeing the @ubi object. 1152 */ 1153 get_device(&ubi->dev); 1154 1155 ubi_debugfs_exit_dev(ubi); 1156 uif_close(ubi); 1157 1158 ubi_wl_close(ubi); 1159 ubi_free_internal_volumes(ubi); 1160 vfree(ubi->vtbl); 1161 put_mtd_device(ubi->mtd); 1162 vfree(ubi->peb_buf); 1163 vfree(ubi->fm_buf); 1164 ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index); 1165 put_device(&ubi->dev); 1166 return 0; 1167 } 1168 1169 #ifndef __UBOOT__ 1170 /** 1171 * open_mtd_by_chdev - open an MTD device by its character device node path. 1172 * @mtd_dev: MTD character device node path 1173 * 1174 * This helper function opens an MTD device by its character node device path. 1175 * Returns MTD device description object in case of success and a negative 1176 * error code in case of failure. 1177 */ 1178 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev) 1179 { 1180 int err, major, minor, mode; 1181 struct path path; 1182 1183 /* Probably this is an MTD character device node path */ 1184 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path); 1185 if (err) 1186 return ERR_PTR(err); 1187 1188 /* MTD device number is defined by the major / minor numbers */ 1189 major = imajor(d_backing_inode(path.dentry)); 1190 minor = iminor(d_backing_inode(path.dentry)); 1191 mode = d_backing_inode(path.dentry)->i_mode; 1192 path_put(&path); 1193 if (major != MTD_CHAR_MAJOR || !S_ISCHR(mode)) 1194 return ERR_PTR(-EINVAL); 1195 1196 if (minor & 1) 1197 /* 1198 * Just do not think the "/dev/mtdrX" devices support is need, 1199 * so do not support them to avoid doing extra work. 1200 */ 1201 return ERR_PTR(-EINVAL); 1202 1203 return get_mtd_device(NULL, minor / 2); 1204 } 1205 #endif 1206 1207 /** 1208 * open_mtd_device - open MTD device by name, character device path, or number. 1209 * @mtd_dev: name, character device node path, or MTD device device number 1210 * 1211 * This function tries to open and MTD device described by @mtd_dev string, 1212 * which is first treated as ASCII MTD device number, and if it is not true, it 1213 * is treated as MTD device name, and if that is also not true, it is treated 1214 * as MTD character device node path. Returns MTD device description object in 1215 * case of success and a negative error code in case of failure. 1216 */ 1217 static struct mtd_info * __init open_mtd_device(const char *mtd_dev) 1218 { 1219 struct mtd_info *mtd; 1220 int mtd_num; 1221 char *endp; 1222 1223 mtd_num = simple_strtoul(mtd_dev, &endp, 0); 1224 if (*endp != '\0' || mtd_dev == endp) { 1225 /* 1226 * This does not look like an ASCII integer, probably this is 1227 * MTD device name. 1228 */ 1229 mtd = get_mtd_device_nm(mtd_dev); 1230 #ifndef __UBOOT__ 1231 if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV) 1232 /* Probably this is an MTD character device node path */ 1233 mtd = open_mtd_by_chdev(mtd_dev); 1234 #endif 1235 } else 1236 mtd = get_mtd_device(NULL, mtd_num); 1237 1238 return mtd; 1239 } 1240 1241 #ifndef __UBOOT__ 1242 static int __init ubi_init(void) 1243 #else 1244 int ubi_init(void) 1245 #endif 1246 { 1247 int err, i, k; 1248 1249 /* Ensure that EC and VID headers have correct size */ 1250 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64); 1251 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64); 1252 1253 if (mtd_devs > UBI_MAX_DEVICES) { 1254 pr_err("UBI error: too many MTD devices, maximum is %d", 1255 UBI_MAX_DEVICES); 1256 return -EINVAL; 1257 } 1258 1259 /* Create base sysfs directory and sysfs files */ 1260 err = class_register(&ubi_class); 1261 if (err < 0) 1262 return err; 1263 1264 err = misc_register(&ubi_ctrl_cdev); 1265 if (err) { 1266 pr_err("UBI error: cannot register device"); 1267 goto out; 1268 } 1269 1270 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab", 1271 sizeof(struct ubi_wl_entry), 1272 0, 0, NULL); 1273 if (!ubi_wl_entry_slab) { 1274 err = -ENOMEM; 1275 goto out_dev_unreg; 1276 } 1277 1278 err = ubi_debugfs_init(); 1279 if (err) 1280 goto out_slab; 1281 1282 1283 /* Attach MTD devices */ 1284 for (i = 0; i < mtd_devs; i++) { 1285 struct mtd_dev_param *p = &mtd_dev_param[i]; 1286 struct mtd_info *mtd; 1287 1288 cond_resched(); 1289 1290 mtd = open_mtd_device(p->name); 1291 if (IS_ERR(mtd)) { 1292 err = PTR_ERR(mtd); 1293 pr_err("UBI error: cannot open mtd %s, error %d", 1294 p->name, err); 1295 /* See comment below re-ubi_is_module(). */ 1296 if (ubi_is_module()) 1297 goto out_detach; 1298 continue; 1299 } 1300 1301 mutex_lock(&ubi_devices_mutex); 1302 err = ubi_attach_mtd_dev(mtd, p->ubi_num, 1303 p->vid_hdr_offs, p->max_beb_per1024); 1304 mutex_unlock(&ubi_devices_mutex); 1305 if (err < 0) { 1306 pr_err("UBI error: cannot attach mtd%d", 1307 mtd->index); 1308 put_mtd_device(mtd); 1309 1310 /* 1311 * Originally UBI stopped initializing on any error. 1312 * However, later on it was found out that this 1313 * behavior is not very good when UBI is compiled into 1314 * the kernel and the MTD devices to attach are passed 1315 * through the command line. Indeed, UBI failure 1316 * stopped whole boot sequence. 1317 * 1318 * To fix this, we changed the behavior for the 1319 * non-module case, but preserved the old behavior for 1320 * the module case, just for compatibility. This is a 1321 * little inconsistent, though. 1322 */ 1323 if (ubi_is_module()) 1324 goto out_detach; 1325 } 1326 } 1327 1328 err = ubiblock_init(); 1329 if (err) { 1330 pr_err("UBI error: block: cannot initialize, error %d", err); 1331 1332 /* See comment above re-ubi_is_module(). */ 1333 if (ubi_is_module()) 1334 goto out_detach; 1335 } 1336 1337 return 0; 1338 1339 out_detach: 1340 for (k = 0; k < i; k++) 1341 if (ubi_devices[k]) { 1342 mutex_lock(&ubi_devices_mutex); 1343 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1); 1344 mutex_unlock(&ubi_devices_mutex); 1345 } 1346 ubi_debugfs_exit(); 1347 out_slab: 1348 kmem_cache_destroy(ubi_wl_entry_slab); 1349 out_dev_unreg: 1350 misc_deregister(&ubi_ctrl_cdev); 1351 out: 1352 #ifdef __UBOOT__ 1353 /* Reset any globals that the driver depends on being zeroed */ 1354 mtd_devs = 0; 1355 #endif 1356 class_unregister(&ubi_class); 1357 pr_err("UBI error: cannot initialize UBI, error %d", err); 1358 return err; 1359 } 1360 late_initcall(ubi_init); 1361 1362 #ifndef __UBOOT__ 1363 static void __exit ubi_exit(void) 1364 #else 1365 void ubi_exit(void) 1366 #endif 1367 { 1368 int i; 1369 1370 ubiblock_exit(); 1371 1372 for (i = 0; i < UBI_MAX_DEVICES; i++) 1373 if (ubi_devices[i]) { 1374 mutex_lock(&ubi_devices_mutex); 1375 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1); 1376 mutex_unlock(&ubi_devices_mutex); 1377 } 1378 ubi_debugfs_exit(); 1379 kmem_cache_destroy(ubi_wl_entry_slab); 1380 misc_deregister(&ubi_ctrl_cdev); 1381 class_unregister(&ubi_class); 1382 #ifdef __UBOOT__ 1383 /* Reset any globals that the driver depends on being zeroed */ 1384 mtd_devs = 0; 1385 #endif 1386 } 1387 module_exit(ubi_exit); 1388 1389 /** 1390 * bytes_str_to_int - convert a number of bytes string into an integer. 1391 * @str: the string to convert 1392 * 1393 * This function returns positive resulting integer in case of success and a 1394 * negative error code in case of failure. 1395 */ 1396 static int __init bytes_str_to_int(const char *str) 1397 { 1398 char *endp; 1399 unsigned long result; 1400 1401 result = simple_strtoul(str, &endp, 0); 1402 if (str == endp || result >= INT_MAX) { 1403 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str); 1404 return -EINVAL; 1405 } 1406 1407 switch (*endp) { 1408 case 'G': 1409 result *= 1024; 1410 case 'M': 1411 result *= 1024; 1412 case 'K': 1413 result *= 1024; 1414 if (endp[1] == 'i' && endp[2] == 'B') 1415 endp += 2; 1416 case '\0': 1417 break; 1418 default: 1419 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str); 1420 return -EINVAL; 1421 } 1422 1423 return result; 1424 } 1425 1426 int kstrtoint(const char *s, unsigned int base, int *res) 1427 { 1428 unsigned long long tmp; 1429 1430 tmp = simple_strtoull(s, NULL, base); 1431 if (tmp != (unsigned long long)(int)tmp) 1432 return -ERANGE; 1433 1434 return (int)tmp; 1435 } 1436 1437 /** 1438 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter. 1439 * @val: the parameter value to parse 1440 * @kp: not used 1441 * 1442 * This function returns zero in case of success and a negative error code in 1443 * case of error. 1444 */ 1445 #ifndef __UBOOT__ 1446 static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp) 1447 #else 1448 int ubi_mtd_param_parse(const char *val, struct kernel_param *kp) 1449 #endif 1450 { 1451 int i, len; 1452 struct mtd_dev_param *p; 1453 char buf[MTD_PARAM_LEN_MAX]; 1454 char *pbuf = &buf[0]; 1455 char *tokens[MTD_PARAM_MAX_COUNT], *token; 1456 1457 if (!val) 1458 return -EINVAL; 1459 1460 if (mtd_devs == UBI_MAX_DEVICES) { 1461 pr_err("UBI error: too many parameters, max. is %d\n", 1462 UBI_MAX_DEVICES); 1463 return -EINVAL; 1464 } 1465 1466 len = strnlen(val, MTD_PARAM_LEN_MAX); 1467 if (len == MTD_PARAM_LEN_MAX) { 1468 pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n", 1469 val, MTD_PARAM_LEN_MAX); 1470 return -EINVAL; 1471 } 1472 1473 if (len == 0) { 1474 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n"); 1475 return 0; 1476 } 1477 1478 strcpy(buf, val); 1479 1480 /* Get rid of the final newline */ 1481 if (buf[len - 1] == '\n') 1482 buf[len - 1] = '\0'; 1483 1484 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++) 1485 tokens[i] = strsep(&pbuf, ","); 1486 1487 if (pbuf) { 1488 pr_err("UBI error: too many arguments at \"%s\"\n", val); 1489 return -EINVAL; 1490 } 1491 1492 p = &mtd_dev_param[mtd_devs]; 1493 strcpy(&p->name[0], tokens[0]); 1494 1495 token = tokens[1]; 1496 if (token) { 1497 p->vid_hdr_offs = bytes_str_to_int(token); 1498 1499 if (p->vid_hdr_offs < 0) 1500 return p->vid_hdr_offs; 1501 } 1502 1503 token = tokens[2]; 1504 if (token) { 1505 int err = kstrtoint(token, 10, &p->max_beb_per1024); 1506 1507 if (err) { 1508 pr_err("UBI error: bad value for max_beb_per1024 parameter: %s", 1509 token); 1510 return -EINVAL; 1511 } 1512 } 1513 1514 token = tokens[3]; 1515 if (token) { 1516 int err = kstrtoint(token, 10, &p->ubi_num); 1517 1518 if (err) { 1519 pr_err("UBI error: bad value for ubi_num parameter: %s", 1520 token); 1521 return -EINVAL; 1522 } 1523 } else 1524 p->ubi_num = UBI_DEV_NUM_AUTO; 1525 1526 mtd_devs += 1; 1527 return 0; 1528 } 1529 1530 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000); 1531 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n" 1532 "Multiple \"mtd\" parameters may be specified.\n" 1533 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n" 1534 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n" 1535 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value (" 1536 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n" 1537 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n" 1538 "\n" 1539 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n" 1540 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n" 1541 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n" 1542 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n" 1543 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device)."); 1544 #ifdef CONFIG_MTD_UBI_FASTMAP 1545 module_param(fm_autoconvert, bool, 0644); 1546 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap."); 1547 module_param(fm_debug, bool, 0); 1548 MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!"); 1549 #endif 1550 MODULE_VERSION(__stringify(UBI_VERSION)); 1551 MODULE_DESCRIPTION("UBI - Unsorted Block Images"); 1552 MODULE_AUTHOR("Artem Bityutskiy"); 1553 MODULE_LICENSE("GPL"); 1554