xref: /openbmc/u-boot/drivers/mtd/ubi/build.c (revision 72df68cc)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2007
4  *
5  * SPDX-License-Identifier:	GPL-2.0+
6  *
7  * Author: Artem Bityutskiy (Битюцкий Артём),
8  *         Frank Haverkamp
9  */
10 
11 /*
12  * This file includes UBI initialization and building of UBI devices.
13  *
14  * When UBI is initialized, it attaches all the MTD devices specified as the
15  * module load parameters or the kernel boot parameters. If MTD devices were
16  * specified, UBI does not attach any MTD device, but it is possible to do
17  * later using the "UBI control device".
18  */
19 
20 #define __UBOOT__
21 #ifndef __UBOOT__
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/stringify.h>
25 #include <linux/namei.h>
26 #include <linux/stat.h>
27 #include <linux/miscdevice.h>
28 #include <linux/log2.h>
29 #include <linux/kthread.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/major.h>
33 #else
34 #include <linux/compat.h>
35 #endif
36 #include <linux/err.h>
37 #include <ubi_uboot.h>
38 #include <linux/mtd/partitions.h>
39 
40 #include "ubi.h"
41 
42 /* Maximum length of the 'mtd=' parameter */
43 #define MTD_PARAM_LEN_MAX 64
44 
45 /* Maximum number of comma-separated items in the 'mtd=' parameter */
46 #define MTD_PARAM_MAX_COUNT 4
47 
48 /* Maximum value for the number of bad PEBs per 1024 PEBs */
49 #define MAX_MTD_UBI_BEB_LIMIT 768
50 
51 #ifdef CONFIG_MTD_UBI_MODULE
52 #define ubi_is_module() 1
53 #else
54 #define ubi_is_module() 0
55 #endif
56 
57 #if (CONFIG_SYS_MALLOC_LEN < (512 << 10))
58 #error Malloc area too small for UBI, increase CONFIG_SYS_MALLOC_LEN to >= 512k
59 #endif
60 
61 /**
62  * struct mtd_dev_param - MTD device parameter description data structure.
63  * @name: MTD character device node path, MTD device name, or MTD device number
64  *        string
65  * @vid_hdr_offs: VID header offset
66  * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs
67  */
68 struct mtd_dev_param {
69 	char name[MTD_PARAM_LEN_MAX];
70 	int ubi_num;
71 	int vid_hdr_offs;
72 	int max_beb_per1024;
73 };
74 
75 /* Numbers of elements set in the @mtd_dev_param array */
76 static int __initdata mtd_devs;
77 
78 /* MTD devices specification parameters */
79 static struct mtd_dev_param __initdata mtd_dev_param[UBI_MAX_DEVICES];
80 #ifndef __UBOOT__
81 #ifdef CONFIG_MTD_UBI_FASTMAP
82 /* UBI module parameter to enable fastmap automatically on non-fastmap images */
83 static bool fm_autoconvert;
84 #endif
85 #else
86 #ifdef CONFIG_MTD_UBI_FASTMAP
87 #if !defined(CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT)
88 #define CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT 0
89 #endif
90 static bool fm_autoconvert = CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT;
91 #endif
92 #endif
93 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
94 struct class *ubi_class;
95 
96 /* Slab cache for wear-leveling entries */
97 struct kmem_cache *ubi_wl_entry_slab;
98 
99 #ifndef __UBOOT__
100 /* UBI control character device */
101 static struct miscdevice ubi_ctrl_cdev = {
102 	.minor = MISC_DYNAMIC_MINOR,
103 	.name = "ubi_ctrl",
104 	.fops = &ubi_ctrl_cdev_operations,
105 };
106 #endif
107 
108 /* All UBI devices in system */
109 #ifndef __UBOOT__
110 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
111 #else
112 struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
113 #endif
114 
115 #ifndef __UBOOT__
116 /* Serializes UBI devices creations and removals */
117 DEFINE_MUTEX(ubi_devices_mutex);
118 
119 /* Protects @ubi_devices and @ubi->ref_count */
120 static DEFINE_SPINLOCK(ubi_devices_lock);
121 
122 /* "Show" method for files in '/<sysfs>/class/ubi/' */
123 static ssize_t ubi_version_show(struct class *class,
124 				struct class_attribute *attr, char *buf)
125 {
126 	return sprintf(buf, "%d\n", UBI_VERSION);
127 }
128 
129 /* UBI version attribute ('/<sysfs>/class/ubi/version') */
130 static struct class_attribute ubi_version =
131 	__ATTR(version, S_IRUGO, ubi_version_show, NULL);
132 
133 static ssize_t dev_attribute_show(struct device *dev,
134 				  struct device_attribute *attr, char *buf);
135 
136 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
137 static struct device_attribute dev_eraseblock_size =
138 	__ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
139 static struct device_attribute dev_avail_eraseblocks =
140 	__ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
141 static struct device_attribute dev_total_eraseblocks =
142 	__ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
143 static struct device_attribute dev_volumes_count =
144 	__ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
145 static struct device_attribute dev_max_ec =
146 	__ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
147 static struct device_attribute dev_reserved_for_bad =
148 	__ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
149 static struct device_attribute dev_bad_peb_count =
150 	__ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
151 static struct device_attribute dev_max_vol_count =
152 	__ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
153 static struct device_attribute dev_min_io_size =
154 	__ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
155 static struct device_attribute dev_bgt_enabled =
156 	__ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
157 static struct device_attribute dev_mtd_num =
158 	__ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
159 #endif
160 
161 /**
162  * ubi_volume_notify - send a volume change notification.
163  * @ubi: UBI device description object
164  * @vol: volume description object of the changed volume
165  * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
166  *
167  * This is a helper function which notifies all subscribers about a volume
168  * change event (creation, removal, re-sizing, re-naming, updating). Returns
169  * zero in case of success and a negative error code in case of failure.
170  */
171 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
172 {
173 	struct ubi_notification nt;
174 
175 	ubi_do_get_device_info(ubi, &nt.di);
176 	ubi_do_get_volume_info(ubi, vol, &nt.vi);
177 
178 #ifdef CONFIG_MTD_UBI_FASTMAP
179 	switch (ntype) {
180 	case UBI_VOLUME_ADDED:
181 	case UBI_VOLUME_REMOVED:
182 	case UBI_VOLUME_RESIZED:
183 	case UBI_VOLUME_RENAMED:
184 		if (ubi_update_fastmap(ubi)) {
185 			ubi_err("Unable to update fastmap!");
186 			ubi_ro_mode(ubi);
187 		}
188 	}
189 #endif
190 	return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
191 }
192 
193 /**
194  * ubi_notify_all - send a notification to all volumes.
195  * @ubi: UBI device description object
196  * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
197  * @nb: the notifier to call
198  *
199  * This function walks all volumes of UBI device @ubi and sends the @ntype
200  * notification for each volume. If @nb is %NULL, then all registered notifiers
201  * are called, otherwise only the @nb notifier is called. Returns the number of
202  * sent notifications.
203  */
204 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
205 {
206 	struct ubi_notification nt;
207 	int i, count = 0;
208 #ifndef __UBOOT__
209 	int ret;
210 #endif
211 
212 	ubi_do_get_device_info(ubi, &nt.di);
213 
214 	mutex_lock(&ubi->device_mutex);
215 	for (i = 0; i < ubi->vtbl_slots; i++) {
216 		/*
217 		 * Since the @ubi->device is locked, and we are not going to
218 		 * change @ubi->volumes, we do not have to lock
219 		 * @ubi->volumes_lock.
220 		 */
221 		if (!ubi->volumes[i])
222 			continue;
223 
224 		ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
225 #ifndef __UBOOT__
226 		if (nb)
227 			nb->notifier_call(nb, ntype, &nt);
228 		else
229 			ret = blocking_notifier_call_chain(&ubi_notifiers, ntype,
230 						     &nt);
231 #endif
232 		count += 1;
233 	}
234 	mutex_unlock(&ubi->device_mutex);
235 
236 	return count;
237 }
238 
239 /**
240  * ubi_enumerate_volumes - send "add" notification for all existing volumes.
241  * @nb: the notifier to call
242  *
243  * This function walks all UBI devices and volumes and sends the
244  * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
245  * registered notifiers are called, otherwise only the @nb notifier is called.
246  * Returns the number of sent notifications.
247  */
248 int ubi_enumerate_volumes(struct notifier_block *nb)
249 {
250 	int i, count = 0;
251 
252 	/*
253 	 * Since the @ubi_devices_mutex is locked, and we are not going to
254 	 * change @ubi_devices, we do not have to lock @ubi_devices_lock.
255 	 */
256 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
257 		struct ubi_device *ubi = ubi_devices[i];
258 
259 		if (!ubi)
260 			continue;
261 		count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
262 	}
263 
264 	return count;
265 }
266 
267 /**
268  * ubi_get_device - get UBI device.
269  * @ubi_num: UBI device number
270  *
271  * This function returns UBI device description object for UBI device number
272  * @ubi_num, or %NULL if the device does not exist. This function increases the
273  * device reference count to prevent removal of the device. In other words, the
274  * device cannot be removed if its reference count is not zero.
275  */
276 struct ubi_device *ubi_get_device(int ubi_num)
277 {
278 	struct ubi_device *ubi;
279 
280 	spin_lock(&ubi_devices_lock);
281 	ubi = ubi_devices[ubi_num];
282 	if (ubi) {
283 		ubi_assert(ubi->ref_count >= 0);
284 		ubi->ref_count += 1;
285 		get_device(&ubi->dev);
286 	}
287 	spin_unlock(&ubi_devices_lock);
288 
289 	return ubi;
290 }
291 
292 /**
293  * ubi_put_device - drop an UBI device reference.
294  * @ubi: UBI device description object
295  */
296 void ubi_put_device(struct ubi_device *ubi)
297 {
298 	spin_lock(&ubi_devices_lock);
299 	ubi->ref_count -= 1;
300 	put_device(&ubi->dev);
301 	spin_unlock(&ubi_devices_lock);
302 }
303 
304 /**
305  * ubi_get_by_major - get UBI device by character device major number.
306  * @major: major number
307  *
308  * This function is similar to 'ubi_get_device()', but it searches the device
309  * by its major number.
310  */
311 struct ubi_device *ubi_get_by_major(int major)
312 {
313 	int i;
314 	struct ubi_device *ubi;
315 
316 	spin_lock(&ubi_devices_lock);
317 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
318 		ubi = ubi_devices[i];
319 		if (ubi && MAJOR(ubi->cdev.dev) == major) {
320 			ubi_assert(ubi->ref_count >= 0);
321 			ubi->ref_count += 1;
322 			get_device(&ubi->dev);
323 			spin_unlock(&ubi_devices_lock);
324 			return ubi;
325 		}
326 	}
327 	spin_unlock(&ubi_devices_lock);
328 
329 	return NULL;
330 }
331 
332 /**
333  * ubi_major2num - get UBI device number by character device major number.
334  * @major: major number
335  *
336  * This function searches UBI device number object by its major number. If UBI
337  * device was not found, this function returns -ENODEV, otherwise the UBI device
338  * number is returned.
339  */
340 int ubi_major2num(int major)
341 {
342 	int i, ubi_num = -ENODEV;
343 
344 	spin_lock(&ubi_devices_lock);
345 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
346 		struct ubi_device *ubi = ubi_devices[i];
347 
348 		if (ubi && MAJOR(ubi->cdev.dev) == major) {
349 			ubi_num = ubi->ubi_num;
350 			break;
351 		}
352 	}
353 	spin_unlock(&ubi_devices_lock);
354 
355 	return ubi_num;
356 }
357 
358 #ifndef __UBOOT__
359 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
360 static ssize_t dev_attribute_show(struct device *dev,
361 				  struct device_attribute *attr, char *buf)
362 {
363 	ssize_t ret;
364 	struct ubi_device *ubi;
365 
366 	/*
367 	 * The below code looks weird, but it actually makes sense. We get the
368 	 * UBI device reference from the contained 'struct ubi_device'. But it
369 	 * is unclear if the device was removed or not yet. Indeed, if the
370 	 * device was removed before we increased its reference count,
371 	 * 'ubi_get_device()' will return -ENODEV and we fail.
372 	 *
373 	 * Remember, 'struct ubi_device' is freed in the release function, so
374 	 * we still can use 'ubi->ubi_num'.
375 	 */
376 	ubi = container_of(dev, struct ubi_device, dev);
377 	ubi = ubi_get_device(ubi->ubi_num);
378 	if (!ubi)
379 		return -ENODEV;
380 
381 	if (attr == &dev_eraseblock_size)
382 		ret = sprintf(buf, "%d\n", ubi->leb_size);
383 	else if (attr == &dev_avail_eraseblocks)
384 		ret = sprintf(buf, "%d\n", ubi->avail_pebs);
385 	else if (attr == &dev_total_eraseblocks)
386 		ret = sprintf(buf, "%d\n", ubi->good_peb_count);
387 	else if (attr == &dev_volumes_count)
388 		ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
389 	else if (attr == &dev_max_ec)
390 		ret = sprintf(buf, "%d\n", ubi->max_ec);
391 	else if (attr == &dev_reserved_for_bad)
392 		ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
393 	else if (attr == &dev_bad_peb_count)
394 		ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
395 	else if (attr == &dev_max_vol_count)
396 		ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
397 	else if (attr == &dev_min_io_size)
398 		ret = sprintf(buf, "%d\n", ubi->min_io_size);
399 	else if (attr == &dev_bgt_enabled)
400 		ret = sprintf(buf, "%d\n", ubi->thread_enabled);
401 	else if (attr == &dev_mtd_num)
402 		ret = sprintf(buf, "%d\n", ubi->mtd->index);
403 	else
404 		ret = -EINVAL;
405 
406 	ubi_put_device(ubi);
407 	return ret;
408 }
409 
410 static void dev_release(struct device *dev)
411 {
412 	struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
413 
414 	kfree(ubi);
415 }
416 
417 /**
418  * ubi_sysfs_init - initialize sysfs for an UBI device.
419  * @ubi: UBI device description object
420  * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
421  *       taken
422  *
423  * This function returns zero in case of success and a negative error code in
424  * case of failure.
425  */
426 static int ubi_sysfs_init(struct ubi_device *ubi, int *ref)
427 {
428 	int err;
429 
430 	ubi->dev.release = dev_release;
431 	ubi->dev.devt = ubi->cdev.dev;
432 	ubi->dev.class = ubi_class;
433 	dev_set_name(&ubi->dev, UBI_NAME_STR"%d", ubi->ubi_num);
434 	err = device_register(&ubi->dev);
435 	if (err)
436 		return err;
437 
438 	*ref = 1;
439 	err = device_create_file(&ubi->dev, &dev_eraseblock_size);
440 	if (err)
441 		return err;
442 	err = device_create_file(&ubi->dev, &dev_avail_eraseblocks);
443 	if (err)
444 		return err;
445 	err = device_create_file(&ubi->dev, &dev_total_eraseblocks);
446 	if (err)
447 		return err;
448 	err = device_create_file(&ubi->dev, &dev_volumes_count);
449 	if (err)
450 		return err;
451 	err = device_create_file(&ubi->dev, &dev_max_ec);
452 	if (err)
453 		return err;
454 	err = device_create_file(&ubi->dev, &dev_reserved_for_bad);
455 	if (err)
456 		return err;
457 	err = device_create_file(&ubi->dev, &dev_bad_peb_count);
458 	if (err)
459 		return err;
460 	err = device_create_file(&ubi->dev, &dev_max_vol_count);
461 	if (err)
462 		return err;
463 	err = device_create_file(&ubi->dev, &dev_min_io_size);
464 	if (err)
465 		return err;
466 	err = device_create_file(&ubi->dev, &dev_bgt_enabled);
467 	if (err)
468 		return err;
469 	err = device_create_file(&ubi->dev, &dev_mtd_num);
470 	return err;
471 }
472 
473 /**
474  * ubi_sysfs_close - close sysfs for an UBI device.
475  * @ubi: UBI device description object
476  */
477 static void ubi_sysfs_close(struct ubi_device *ubi)
478 {
479 	device_remove_file(&ubi->dev, &dev_mtd_num);
480 	device_remove_file(&ubi->dev, &dev_bgt_enabled);
481 	device_remove_file(&ubi->dev, &dev_min_io_size);
482 	device_remove_file(&ubi->dev, &dev_max_vol_count);
483 	device_remove_file(&ubi->dev, &dev_bad_peb_count);
484 	device_remove_file(&ubi->dev, &dev_reserved_for_bad);
485 	device_remove_file(&ubi->dev, &dev_max_ec);
486 	device_remove_file(&ubi->dev, &dev_volumes_count);
487 	device_remove_file(&ubi->dev, &dev_total_eraseblocks);
488 	device_remove_file(&ubi->dev, &dev_avail_eraseblocks);
489 	device_remove_file(&ubi->dev, &dev_eraseblock_size);
490 	device_unregister(&ubi->dev);
491 }
492 #endif
493 
494 /**
495  * kill_volumes - destroy all user volumes.
496  * @ubi: UBI device description object
497  */
498 static void kill_volumes(struct ubi_device *ubi)
499 {
500 	int i;
501 
502 	for (i = 0; i < ubi->vtbl_slots; i++)
503 		if (ubi->volumes[i])
504 			ubi_free_volume(ubi, ubi->volumes[i]);
505 }
506 
507 /**
508  * uif_init - initialize user interfaces for an UBI device.
509  * @ubi: UBI device description object
510  * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
511  *       taken, otherwise set to %0
512  *
513  * This function initializes various user interfaces for an UBI device. If the
514  * initialization fails at an early stage, this function frees all the
515  * resources it allocated, returns an error, and @ref is set to %0. However,
516  * if the initialization fails after the UBI device was registered in the
517  * driver core subsystem, this function takes a reference to @ubi->dev, because
518  * otherwise the release function ('dev_release()') would free whole @ubi
519  * object. The @ref argument is set to %1 in this case. The caller has to put
520  * this reference.
521  *
522  * This function returns zero in case of success and a negative error code in
523  * case of failure.
524  */
525 static int uif_init(struct ubi_device *ubi, int *ref)
526 {
527 	int i, err;
528 #ifndef __UBOOT__
529 	dev_t dev;
530 #endif
531 
532 	*ref = 0;
533 	sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
534 
535 	/*
536 	 * Major numbers for the UBI character devices are allocated
537 	 * dynamically. Major numbers of volume character devices are
538 	 * equivalent to ones of the corresponding UBI character device. Minor
539 	 * numbers of UBI character devices are 0, while minor numbers of
540 	 * volume character devices start from 1. Thus, we allocate one major
541 	 * number and ubi->vtbl_slots + 1 minor numbers.
542 	 */
543 	err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
544 	if (err) {
545 		ubi_err("cannot register UBI character devices");
546 		return err;
547 	}
548 
549 	ubi_assert(MINOR(dev) == 0);
550 	cdev_init(&ubi->cdev, &ubi_cdev_operations);
551 	dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
552 	ubi->cdev.owner = THIS_MODULE;
553 
554 	err = cdev_add(&ubi->cdev, dev, 1);
555 	if (err) {
556 		ubi_err("cannot add character device");
557 		goto out_unreg;
558 	}
559 
560 	err = ubi_sysfs_init(ubi, ref);
561 	if (err)
562 		goto out_sysfs;
563 
564 	for (i = 0; i < ubi->vtbl_slots; i++)
565 		if (ubi->volumes[i]) {
566 			err = ubi_add_volume(ubi, ubi->volumes[i]);
567 			if (err) {
568 				ubi_err("cannot add volume %d", i);
569 				goto out_volumes;
570 			}
571 		}
572 
573 	return 0;
574 
575 out_volumes:
576 	kill_volumes(ubi);
577 out_sysfs:
578 	if (*ref)
579 		get_device(&ubi->dev);
580 	ubi_sysfs_close(ubi);
581 	cdev_del(&ubi->cdev);
582 out_unreg:
583 	unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
584 	ubi_err("cannot initialize UBI %s, error %d", ubi->ubi_name, err);
585 	return err;
586 }
587 
588 /**
589  * uif_close - close user interfaces for an UBI device.
590  * @ubi: UBI device description object
591  *
592  * Note, since this function un-registers UBI volume device objects (@vol->dev),
593  * the memory allocated voe the volumes is freed as well (in the release
594  * function).
595  */
596 static void uif_close(struct ubi_device *ubi)
597 {
598 	kill_volumes(ubi);
599 	ubi_sysfs_close(ubi);
600 	cdev_del(&ubi->cdev);
601 	unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
602 }
603 
604 /**
605  * ubi_free_internal_volumes - free internal volumes.
606  * @ubi: UBI device description object
607  */
608 void ubi_free_internal_volumes(struct ubi_device *ubi)
609 {
610 	int i;
611 
612 	for (i = ubi->vtbl_slots;
613 	     i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
614 		kfree(ubi->volumes[i]->eba_tbl);
615 		kfree(ubi->volumes[i]);
616 	}
617 }
618 
619 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024)
620 {
621 	int limit, device_pebs;
622 	uint64_t device_size;
623 
624 	if (!max_beb_per1024)
625 		return 0;
626 
627 	/*
628 	 * Here we are using size of the entire flash chip and
629 	 * not just the MTD partition size because the maximum
630 	 * number of bad eraseblocks is a percentage of the
631 	 * whole device and bad eraseblocks are not fairly
632 	 * distributed over the flash chip. So the worst case
633 	 * is that all the bad eraseblocks of the chip are in
634 	 * the MTD partition we are attaching (ubi->mtd).
635 	 */
636 	device_size = mtd_get_device_size(ubi->mtd);
637 	device_pebs = mtd_div_by_eb(device_size, ubi->mtd);
638 	limit = mult_frac(device_pebs, max_beb_per1024, 1024);
639 
640 	/* Round it up */
641 	if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs)
642 		limit += 1;
643 
644 	return limit;
645 }
646 
647 /**
648  * io_init - initialize I/O sub-system for a given UBI device.
649  * @ubi: UBI device description object
650  * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
651  *
652  * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
653  * assumed:
654  *   o EC header is always at offset zero - this cannot be changed;
655  *   o VID header starts just after the EC header at the closest address
656  *     aligned to @io->hdrs_min_io_size;
657  *   o data starts just after the VID header at the closest address aligned to
658  *     @io->min_io_size
659  *
660  * This function returns zero in case of success and a negative error code in
661  * case of failure.
662  */
663 static int io_init(struct ubi_device *ubi, int max_beb_per1024)
664 {
665 	dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb));
666 	dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
667 
668 	if (ubi->mtd->numeraseregions != 0) {
669 		/*
670 		 * Some flashes have several erase regions. Different regions
671 		 * may have different eraseblock size and other
672 		 * characteristics. It looks like mostly multi-region flashes
673 		 * have one "main" region and one or more small regions to
674 		 * store boot loader code or boot parameters or whatever. I
675 		 * guess we should just pick the largest region. But this is
676 		 * not implemented.
677 		 */
678 		ubi_err("multiple regions, not implemented");
679 		return -EINVAL;
680 	}
681 
682 	if (ubi->vid_hdr_offset < 0)
683 		return -EINVAL;
684 
685 	/*
686 	 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
687 	 * physical eraseblocks maximum.
688 	 */
689 
690 	ubi->peb_size   = ubi->mtd->erasesize;
691 	ubi->peb_count  = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
692 	ubi->flash_size = ubi->mtd->size;
693 
694 	if (mtd_can_have_bb(ubi->mtd)) {
695 		ubi->bad_allowed = 1;
696 		ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024);
697 	}
698 
699 	if (ubi->mtd->type == MTD_NORFLASH) {
700 		ubi_assert(ubi->mtd->writesize == 1);
701 		ubi->nor_flash = 1;
702 	}
703 
704 	ubi->min_io_size = ubi->mtd->writesize;
705 	ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
706 
707 	/*
708 	 * Make sure minimal I/O unit is power of 2. Note, there is no
709 	 * fundamental reason for this assumption. It is just an optimization
710 	 * which allows us to avoid costly division operations.
711 	 */
712 	if (!is_power_of_2(ubi->min_io_size)) {
713 		ubi_err("min. I/O unit (%d) is not power of 2",
714 			ubi->min_io_size);
715 		return -EINVAL;
716 	}
717 
718 	ubi_assert(ubi->hdrs_min_io_size > 0);
719 	ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
720 	ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
721 
722 	ubi->max_write_size = ubi->mtd->writebufsize;
723 	/*
724 	 * Maximum write size has to be greater or equivalent to min. I/O
725 	 * size, and be multiple of min. I/O size.
726 	 */
727 	if (ubi->max_write_size < ubi->min_io_size ||
728 	    ubi->max_write_size % ubi->min_io_size ||
729 	    !is_power_of_2(ubi->max_write_size)) {
730 		ubi_err("bad write buffer size %d for %d min. I/O unit",
731 			ubi->max_write_size, ubi->min_io_size);
732 		return -EINVAL;
733 	}
734 
735 	/* Calculate default aligned sizes of EC and VID headers */
736 	ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
737 	ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
738 
739 	dbg_gen("min_io_size      %d", ubi->min_io_size);
740 	dbg_gen("max_write_size   %d", ubi->max_write_size);
741 	dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
742 	dbg_gen("ec_hdr_alsize    %d", ubi->ec_hdr_alsize);
743 	dbg_gen("vid_hdr_alsize   %d", ubi->vid_hdr_alsize);
744 
745 	if (ubi->vid_hdr_offset == 0)
746 		/* Default offset */
747 		ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
748 				      ubi->ec_hdr_alsize;
749 	else {
750 		ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
751 						~(ubi->hdrs_min_io_size - 1);
752 		ubi->vid_hdr_shift = ubi->vid_hdr_offset -
753 						ubi->vid_hdr_aloffset;
754 	}
755 
756 	/* Similar for the data offset */
757 	ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
758 	ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
759 
760 	dbg_gen("vid_hdr_offset   %d", ubi->vid_hdr_offset);
761 	dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
762 	dbg_gen("vid_hdr_shift    %d", ubi->vid_hdr_shift);
763 	dbg_gen("leb_start        %d", ubi->leb_start);
764 
765 	/* The shift must be aligned to 32-bit boundary */
766 	if (ubi->vid_hdr_shift % 4) {
767 		ubi_err("unaligned VID header shift %d",
768 			ubi->vid_hdr_shift);
769 		return -EINVAL;
770 	}
771 
772 	/* Check sanity */
773 	if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
774 	    ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
775 	    ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
776 	    ubi->leb_start & (ubi->min_io_size - 1)) {
777 		ubi_err("bad VID header (%d) or data offsets (%d)",
778 			ubi->vid_hdr_offset, ubi->leb_start);
779 		return -EINVAL;
780 	}
781 
782 	/*
783 	 * Set maximum amount of physical erroneous eraseblocks to be 10%.
784 	 * Erroneous PEB are those which have read errors.
785 	 */
786 	ubi->max_erroneous = ubi->peb_count / 10;
787 	if (ubi->max_erroneous < 16)
788 		ubi->max_erroneous = 16;
789 	dbg_gen("max_erroneous    %d", ubi->max_erroneous);
790 
791 	/*
792 	 * It may happen that EC and VID headers are situated in one minimal
793 	 * I/O unit. In this case we can only accept this UBI image in
794 	 * read-only mode.
795 	 */
796 	if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
797 		ubi_warn("EC and VID headers are in the same minimal I/O unit, switch to read-only mode");
798 		ubi->ro_mode = 1;
799 	}
800 
801 	ubi->leb_size = ubi->peb_size - ubi->leb_start;
802 
803 	if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
804 		ubi_msg("MTD device %d is write-protected, attach in read-only mode",
805 			ubi->mtd->index);
806 		ubi->ro_mode = 1;
807 	}
808 
809 	/*
810 	 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
811 	 * unfortunately, MTD does not provide this information. We should loop
812 	 * over all physical eraseblocks and invoke mtd->block_is_bad() for
813 	 * each physical eraseblock. So, we leave @ubi->bad_peb_count
814 	 * uninitialized so far.
815 	 */
816 
817 	return 0;
818 }
819 
820 /**
821  * autoresize - re-size the volume which has the "auto-resize" flag set.
822  * @ubi: UBI device description object
823  * @vol_id: ID of the volume to re-size
824  *
825  * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
826  * the volume table to the largest possible size. See comments in ubi-header.h
827  * for more description of the flag. Returns zero in case of success and a
828  * negative error code in case of failure.
829  */
830 static int autoresize(struct ubi_device *ubi, int vol_id)
831 {
832 	struct ubi_volume_desc desc;
833 	struct ubi_volume *vol = ubi->volumes[vol_id];
834 	int err, old_reserved_pebs = vol->reserved_pebs;
835 
836 	if (ubi->ro_mode) {
837 		ubi_warn("skip auto-resize because of R/O mode");
838 		return 0;
839 	}
840 
841 	/*
842 	 * Clear the auto-resize flag in the volume in-memory copy of the
843 	 * volume table, and 'ubi_resize_volume()' will propagate this change
844 	 * to the flash.
845 	 */
846 	ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
847 
848 	if (ubi->avail_pebs == 0) {
849 		struct ubi_vtbl_record vtbl_rec;
850 
851 		/*
852 		 * No available PEBs to re-size the volume, clear the flag on
853 		 * flash and exit.
854 		 */
855 		vtbl_rec = ubi->vtbl[vol_id];
856 		err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
857 		if (err)
858 			ubi_err("cannot clean auto-resize flag for volume %d",
859 				vol_id);
860 	} else {
861 		desc.vol = vol;
862 		err = ubi_resize_volume(&desc,
863 					old_reserved_pebs + ubi->avail_pebs);
864 		if (err)
865 			ubi_err("cannot auto-resize volume %d", vol_id);
866 	}
867 
868 	if (err)
869 		return err;
870 
871 	ubi_msg("volume %d (\"%s\") re-sized from %d to %d LEBs", vol_id,
872 		vol->name, old_reserved_pebs, vol->reserved_pebs);
873 	return 0;
874 }
875 
876 /**
877  * ubi_attach_mtd_dev - attach an MTD device.
878  * @mtd: MTD device description object
879  * @ubi_num: number to assign to the new UBI device
880  * @vid_hdr_offset: VID header offset
881  * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
882  *
883  * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
884  * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
885  * which case this function finds a vacant device number and assigns it
886  * automatically. Returns the new UBI device number in case of success and a
887  * negative error code in case of failure.
888  *
889  * Note, the invocations of this function has to be serialized by the
890  * @ubi_devices_mutex.
891  */
892 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num,
893 		       int vid_hdr_offset, int max_beb_per1024)
894 {
895 	struct ubi_device *ubi;
896 	int i, err, ref = 0;
897 
898 	if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT)
899 		return -EINVAL;
900 
901 	if (!max_beb_per1024)
902 		max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT;
903 
904 	/*
905 	 * Check if we already have the same MTD device attached.
906 	 *
907 	 * Note, this function assumes that UBI devices creations and deletions
908 	 * are serialized, so it does not take the &ubi_devices_lock.
909 	 */
910 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
911 		ubi = ubi_devices[i];
912 		if (ubi && mtd->index == ubi->mtd->index) {
913 			ubi_err("mtd%d is already attached to ubi%d",
914 				mtd->index, i);
915 			return -EEXIST;
916 		}
917 	}
918 
919 	/*
920 	 * Make sure this MTD device is not emulated on top of an UBI volume
921 	 * already. Well, generally this recursion works fine, but there are
922 	 * different problems like the UBI module takes a reference to itself
923 	 * by attaching (and thus, opening) the emulated MTD device. This
924 	 * results in inability to unload the module. And in general it makes
925 	 * no sense to attach emulated MTD devices, so we prohibit this.
926 	 */
927 	if (mtd->type == MTD_UBIVOLUME) {
928 		ubi_err("refuse attaching mtd%d - it is already emulated on top of UBI",
929 			mtd->index);
930 		return -EINVAL;
931 	}
932 
933 	if (ubi_num == UBI_DEV_NUM_AUTO) {
934 		/* Search for an empty slot in the @ubi_devices array */
935 		for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
936 			if (!ubi_devices[ubi_num])
937 				break;
938 		if (ubi_num == UBI_MAX_DEVICES) {
939 			ubi_err("only %d UBI devices may be created",
940 				UBI_MAX_DEVICES);
941 			return -ENFILE;
942 		}
943 	} else {
944 		if (ubi_num >= UBI_MAX_DEVICES)
945 			return -EINVAL;
946 
947 		/* Make sure ubi_num is not busy */
948 		if (ubi_devices[ubi_num]) {
949 			ubi_err("ubi%d already exists", ubi_num);
950 			return -EEXIST;
951 		}
952 	}
953 
954 	ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
955 	if (!ubi)
956 		return -ENOMEM;
957 
958 	ubi->mtd = mtd;
959 	ubi->ubi_num = ubi_num;
960 	ubi->vid_hdr_offset = vid_hdr_offset;
961 	ubi->autoresize_vol_id = -1;
962 
963 #ifdef CONFIG_MTD_UBI_FASTMAP
964 	ubi->fm_pool.used = ubi->fm_pool.size = 0;
965 	ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0;
966 
967 	/*
968 	 * fm_pool.max_size is 5% of the total number of PEBs but it's also
969 	 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE.
970 	 */
971 	ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size,
972 		ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE);
973 	if (ubi->fm_pool.max_size < UBI_FM_MIN_POOL_SIZE)
974 		ubi->fm_pool.max_size = UBI_FM_MIN_POOL_SIZE;
975 
976 	ubi->fm_wl_pool.max_size = UBI_FM_WL_POOL_SIZE;
977 	ubi->fm_disabled = !fm_autoconvert;
978 
979 	if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd)
980 	    <= UBI_FM_MAX_START) {
981 		ubi_err("More than %i PEBs are needed for fastmap, sorry.",
982 			UBI_FM_MAX_START);
983 		ubi->fm_disabled = 1;
984 	}
985 
986 	ubi_msg("default fastmap pool size: %d", ubi->fm_pool.max_size);
987 	ubi_msg("default fastmap WL pool size: %d", ubi->fm_wl_pool.max_size);
988 #else
989 	ubi->fm_disabled = 1;
990 #endif
991 	mutex_init(&ubi->buf_mutex);
992 	mutex_init(&ubi->ckvol_mutex);
993 	mutex_init(&ubi->device_mutex);
994 	spin_lock_init(&ubi->volumes_lock);
995 	mutex_init(&ubi->fm_mutex);
996 	init_rwsem(&ubi->fm_sem);
997 
998 	ubi_msg("attaching mtd%d to ubi%d", mtd->index, ubi_num);
999 
1000 	err = io_init(ubi, max_beb_per1024);
1001 	if (err)
1002 		goto out_free;
1003 
1004 	err = -ENOMEM;
1005 	ubi->peb_buf = vmalloc(ubi->peb_size);
1006 	if (!ubi->peb_buf)
1007 		goto out_free;
1008 
1009 #ifdef CONFIG_MTD_UBI_FASTMAP
1010 	ubi->fm_size = ubi_calc_fm_size(ubi);
1011 	ubi->fm_buf = vzalloc(ubi->fm_size);
1012 	if (!ubi->fm_buf)
1013 		goto out_free;
1014 #endif
1015 	err = ubi_attach(ubi, 0);
1016 	if (err) {
1017 		ubi_err("failed to attach mtd%d, error %d", mtd->index, err);
1018 		goto out_free;
1019 	}
1020 
1021 	if (ubi->autoresize_vol_id != -1) {
1022 		err = autoresize(ubi, ubi->autoresize_vol_id);
1023 		if (err)
1024 			goto out_detach;
1025 	}
1026 
1027 	err = uif_init(ubi, &ref);
1028 	if (err)
1029 		goto out_detach;
1030 
1031 	err = ubi_debugfs_init_dev(ubi);
1032 	if (err)
1033 		goto out_uif;
1034 
1035 	ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name);
1036 	if (IS_ERR(ubi->bgt_thread)) {
1037 		err = PTR_ERR(ubi->bgt_thread);
1038 		ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name,
1039 			err);
1040 		goto out_debugfs;
1041 	}
1042 
1043 	ubi_msg("attached mtd%d (name \"%s\", size %llu MiB) to ubi%d",
1044 		mtd->index, mtd->name, ubi->flash_size >> 20, ubi_num);
1045 	ubi_msg("PEB size: %d bytes (%d KiB), LEB size: %d bytes",
1046 		ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size);
1047 	ubi_msg("min./max. I/O unit sizes: %d/%d, sub-page size %d",
1048 		ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size);
1049 	ubi_msg("VID header offset: %d (aligned %d), data offset: %d",
1050 		ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start);
1051 	ubi_msg("good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d",
1052 		ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count);
1053 	ubi_msg("user volume: %d, internal volumes: %d, max. volumes count: %d",
1054 		ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT,
1055 		ubi->vtbl_slots);
1056 	ubi_msg("max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u",
1057 		ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD,
1058 		ubi->image_seq);
1059 	ubi_msg("available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d",
1060 		ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs);
1061 
1062 	/*
1063 	 * The below lock makes sure we do not race with 'ubi_thread()' which
1064 	 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1065 	 */
1066 	spin_lock(&ubi->wl_lock);
1067 	ubi->thread_enabled = 1;
1068 	wake_up_process(ubi->bgt_thread);
1069 	spin_unlock(&ubi->wl_lock);
1070 
1071 	ubi_devices[ubi_num] = ubi;
1072 	ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1073 	return ubi_num;
1074 
1075 out_debugfs:
1076 	ubi_debugfs_exit_dev(ubi);
1077 out_uif:
1078 	get_device(&ubi->dev);
1079 	ubi_assert(ref);
1080 	uif_close(ubi);
1081 out_detach:
1082 	ubi_wl_close(ubi);
1083 	ubi_free_internal_volumes(ubi);
1084 	vfree(ubi->vtbl);
1085 out_free:
1086 	vfree(ubi->peb_buf);
1087 	vfree(ubi->fm_buf);
1088 	if (ref)
1089 		put_device(&ubi->dev);
1090 	else
1091 		kfree(ubi);
1092 	return err;
1093 }
1094 
1095 /**
1096  * ubi_detach_mtd_dev - detach an MTD device.
1097  * @ubi_num: UBI device number to detach from
1098  * @anyway: detach MTD even if device reference count is not zero
1099  *
1100  * This function destroys an UBI device number @ubi_num and detaches the
1101  * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1102  * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1103  * exist.
1104  *
1105  * Note, the invocations of this function has to be serialized by the
1106  * @ubi_devices_mutex.
1107  */
1108 int ubi_detach_mtd_dev(int ubi_num, int anyway)
1109 {
1110 	struct ubi_device *ubi;
1111 
1112 	if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1113 		return -EINVAL;
1114 
1115 	ubi = ubi_get_device(ubi_num);
1116 	if (!ubi)
1117 		return -EINVAL;
1118 
1119 	spin_lock(&ubi_devices_lock);
1120 	put_device(&ubi->dev);
1121 	ubi->ref_count -= 1;
1122 	if (ubi->ref_count) {
1123 		if (!anyway) {
1124 			spin_unlock(&ubi_devices_lock);
1125 			return -EBUSY;
1126 		}
1127 		/* This may only happen if there is a bug */
1128 		ubi_err("%s reference count %d, destroy anyway",
1129 			ubi->ubi_name, ubi->ref_count);
1130 	}
1131 	ubi_devices[ubi_num] = NULL;
1132 	spin_unlock(&ubi_devices_lock);
1133 
1134 	ubi_assert(ubi_num == ubi->ubi_num);
1135 	ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1136 	ubi_msg("detaching mtd%d from ubi%d", ubi->mtd->index, ubi_num);
1137 #ifdef CONFIG_MTD_UBI_FASTMAP
1138 	/* If we don't write a new fastmap at detach time we lose all
1139 	 * EC updates that have been made since the last written fastmap. */
1140 	ubi_update_fastmap(ubi);
1141 #endif
1142 	/*
1143 	 * Before freeing anything, we have to stop the background thread to
1144 	 * prevent it from doing anything on this device while we are freeing.
1145 	 */
1146 	if (ubi->bgt_thread)
1147 		kthread_stop(ubi->bgt_thread);
1148 
1149 	/*
1150 	 * Get a reference to the device in order to prevent 'dev_release()'
1151 	 * from freeing the @ubi object.
1152 	 */
1153 	get_device(&ubi->dev);
1154 
1155 	ubi_debugfs_exit_dev(ubi);
1156 	uif_close(ubi);
1157 
1158 	ubi_wl_close(ubi);
1159 	ubi_free_internal_volumes(ubi);
1160 	vfree(ubi->vtbl);
1161 	put_mtd_device(ubi->mtd);
1162 	vfree(ubi->peb_buf);
1163 	vfree(ubi->fm_buf);
1164 	ubi_msg("mtd%d is detached from ubi%d", ubi->mtd->index, ubi->ubi_num);
1165 	put_device(&ubi->dev);
1166 	return 0;
1167 }
1168 
1169 #ifndef __UBOOT__
1170 /**
1171  * open_mtd_by_chdev - open an MTD device by its character device node path.
1172  * @mtd_dev: MTD character device node path
1173  *
1174  * This helper function opens an MTD device by its character node device path.
1175  * Returns MTD device description object in case of success and a negative
1176  * error code in case of failure.
1177  */
1178 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1179 {
1180 	int err, major, minor, mode;
1181 	struct path path;
1182 
1183 	/* Probably this is an MTD character device node path */
1184 	err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1185 	if (err)
1186 		return ERR_PTR(err);
1187 
1188 	/* MTD device number is defined by the major / minor numbers */
1189 	major = imajor(path.dentry->d_inode);
1190 	minor = iminor(path.dentry->d_inode);
1191 	mode = path.dentry->d_inode->i_mode;
1192 	path_put(&path);
1193 	if (major != MTD_CHAR_MAJOR || !S_ISCHR(mode))
1194 		return ERR_PTR(-EINVAL);
1195 
1196 	if (minor & 1)
1197 		/*
1198 		 * Just do not think the "/dev/mtdrX" devices support is need,
1199 		 * so do not support them to avoid doing extra work.
1200 		 */
1201 		return ERR_PTR(-EINVAL);
1202 
1203 	return get_mtd_device(NULL, minor / 2);
1204 }
1205 #endif
1206 
1207 /**
1208  * open_mtd_device - open MTD device by name, character device path, or number.
1209  * @mtd_dev: name, character device node path, or MTD device device number
1210  *
1211  * This function tries to open and MTD device described by @mtd_dev string,
1212  * which is first treated as ASCII MTD device number, and if it is not true, it
1213  * is treated as MTD device name, and if that is also not true, it is treated
1214  * as MTD character device node path. Returns MTD device description object in
1215  * case of success and a negative error code in case of failure.
1216  */
1217 static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1218 {
1219 	struct mtd_info *mtd;
1220 	int mtd_num;
1221 	char *endp;
1222 
1223 	mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1224 	if (*endp != '\0' || mtd_dev == endp) {
1225 		/*
1226 		 * This does not look like an ASCII integer, probably this is
1227 		 * MTD device name.
1228 		 */
1229 		mtd = get_mtd_device_nm(mtd_dev);
1230 #ifndef __UBOOT__
1231 		if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV)
1232 			/* Probably this is an MTD character device node path */
1233 			mtd = open_mtd_by_chdev(mtd_dev);
1234 #endif
1235 	} else
1236 		mtd = get_mtd_device(NULL, mtd_num);
1237 
1238 	return mtd;
1239 }
1240 
1241 #ifndef __UBOOT__
1242 static int __init ubi_init(void)
1243 #else
1244 int ubi_init(void)
1245 #endif
1246 {
1247 	int err, i, k;
1248 
1249 	/* Ensure that EC and VID headers have correct size */
1250 	BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1251 	BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1252 
1253 	if (mtd_devs > UBI_MAX_DEVICES) {
1254 		ubi_err("too many MTD devices, maximum is %d", UBI_MAX_DEVICES);
1255 		return -EINVAL;
1256 	}
1257 
1258 	/* Create base sysfs directory and sysfs files */
1259 	ubi_class = class_create(THIS_MODULE, UBI_NAME_STR);
1260 	if (IS_ERR(ubi_class)) {
1261 		err = PTR_ERR(ubi_class);
1262 		ubi_err("cannot create UBI class");
1263 		goto out;
1264 	}
1265 
1266 	err = class_create_file(ubi_class, &ubi_version);
1267 	if (err) {
1268 		ubi_err("cannot create sysfs file");
1269 		goto out_class;
1270 	}
1271 
1272 	err = misc_register(&ubi_ctrl_cdev);
1273 	if (err) {
1274 		ubi_err("cannot register device");
1275 		goto out_version;
1276 	}
1277 
1278 	ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1279 					      sizeof(struct ubi_wl_entry),
1280 					      0, 0, NULL);
1281 	if (!ubi_wl_entry_slab) {
1282 		err = -ENOMEM;
1283 		goto out_dev_unreg;
1284 	}
1285 
1286 	err = ubi_debugfs_init();
1287 	if (err)
1288 		goto out_slab;
1289 
1290 
1291 	/* Attach MTD devices */
1292 	for (i = 0; i < mtd_devs; i++) {
1293 		struct mtd_dev_param *p = &mtd_dev_param[i];
1294 		struct mtd_info *mtd;
1295 
1296 		cond_resched();
1297 
1298 		mtd = open_mtd_device(p->name);
1299 		if (IS_ERR(mtd)) {
1300 			err = PTR_ERR(mtd);
1301 			ubi_err("cannot open mtd %s, error %d", p->name, err);
1302 			/* See comment below re-ubi_is_module(). */
1303 			if (ubi_is_module())
1304 				goto out_detach;
1305 			continue;
1306 		}
1307 
1308 		mutex_lock(&ubi_devices_mutex);
1309 		err = ubi_attach_mtd_dev(mtd, p->ubi_num,
1310 					 p->vid_hdr_offs, p->max_beb_per1024);
1311 		mutex_unlock(&ubi_devices_mutex);
1312 		if (err < 0) {
1313 			ubi_err("cannot attach mtd%d", mtd->index);
1314 			put_mtd_device(mtd);
1315 
1316 			/*
1317 			 * Originally UBI stopped initializing on any error.
1318 			 * However, later on it was found out that this
1319 			 * behavior is not very good when UBI is compiled into
1320 			 * the kernel and the MTD devices to attach are passed
1321 			 * through the command line. Indeed, UBI failure
1322 			 * stopped whole boot sequence.
1323 			 *
1324 			 * To fix this, we changed the behavior for the
1325 			 * non-module case, but preserved the old behavior for
1326 			 * the module case, just for compatibility. This is a
1327 			 * little inconsistent, though.
1328 			 */
1329 			if (ubi_is_module())
1330 				goto out_detach;
1331 		}
1332 	}
1333 
1334 	err = ubiblock_init();
1335 	if (err) {
1336 		ubi_err("block: cannot initialize, error %d", err);
1337 
1338 		/* See comment above re-ubi_is_module(). */
1339 		if (ubi_is_module())
1340 			goto out_detach;
1341 	}
1342 
1343 	return 0;
1344 
1345 out_detach:
1346 	for (k = 0; k < i; k++)
1347 		if (ubi_devices[k]) {
1348 			mutex_lock(&ubi_devices_mutex);
1349 			ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1350 			mutex_unlock(&ubi_devices_mutex);
1351 		}
1352 	ubi_debugfs_exit();
1353 out_slab:
1354 	kmem_cache_destroy(ubi_wl_entry_slab);
1355 out_dev_unreg:
1356 	misc_deregister(&ubi_ctrl_cdev);
1357 out_version:
1358 	class_remove_file(ubi_class, &ubi_version);
1359 out_class:
1360 	class_destroy(ubi_class);
1361 out:
1362 	ubi_err("cannot initialize UBI, error %d", err);
1363 	return err;
1364 }
1365 late_initcall(ubi_init);
1366 
1367 #ifndef __UBOOT__
1368 static void __exit ubi_exit(void)
1369 #else
1370 void ubi_exit(void)
1371 #endif
1372 {
1373 	int i;
1374 
1375 	ubiblock_exit();
1376 
1377 	for (i = 0; i < UBI_MAX_DEVICES; i++)
1378 		if (ubi_devices[i]) {
1379 			mutex_lock(&ubi_devices_mutex);
1380 			ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1381 			mutex_unlock(&ubi_devices_mutex);
1382 		}
1383 	ubi_debugfs_exit();
1384 	kmem_cache_destroy(ubi_wl_entry_slab);
1385 	misc_deregister(&ubi_ctrl_cdev);
1386 	class_remove_file(ubi_class, &ubi_version);
1387 	class_destroy(ubi_class);
1388 }
1389 module_exit(ubi_exit);
1390 
1391 /**
1392  * bytes_str_to_int - convert a number of bytes string into an integer.
1393  * @str: the string to convert
1394  *
1395  * This function returns positive resulting integer in case of success and a
1396  * negative error code in case of failure.
1397  */
1398 static int __init bytes_str_to_int(const char *str)
1399 {
1400 	char *endp;
1401 	unsigned long result;
1402 
1403 	result = simple_strtoul(str, &endp, 0);
1404 	if (str == endp || result >= INT_MAX) {
1405 		ubi_err("incorrect bytes count: \"%s\"\n", str);
1406 		return -EINVAL;
1407 	}
1408 
1409 	switch (*endp) {
1410 	case 'G':
1411 		result *= 1024;
1412 	case 'M':
1413 		result *= 1024;
1414 	case 'K':
1415 		result *= 1024;
1416 		if (endp[1] == 'i' && endp[2] == 'B')
1417 			endp += 2;
1418 	case '\0':
1419 		break;
1420 	default:
1421 		ubi_err("incorrect bytes count: \"%s\"\n", str);
1422 		return -EINVAL;
1423 	}
1424 
1425 	return result;
1426 }
1427 
1428 int kstrtoint(const char *s, unsigned int base, int *res)
1429 {
1430 	unsigned long long tmp;
1431 
1432 	tmp = simple_strtoull(s, NULL, base);
1433 	if (tmp != (unsigned long long)(int)tmp)
1434 		return -ERANGE;
1435 
1436 	return (int)tmp;
1437 }
1438 
1439 /**
1440  * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1441  * @val: the parameter value to parse
1442  * @kp: not used
1443  *
1444  * This function returns zero in case of success and a negative error code in
1445  * case of error.
1446  */
1447 #ifndef __UBOOT__
1448 static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1449 #else
1450 int ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1451 #endif
1452 {
1453 	int i, len;
1454 	struct mtd_dev_param *p;
1455 	char buf[MTD_PARAM_LEN_MAX];
1456 	char *pbuf = &buf[0];
1457 	char *tokens[MTD_PARAM_MAX_COUNT], *token;
1458 
1459 	if (!val)
1460 		return -EINVAL;
1461 
1462 	if (mtd_devs == UBI_MAX_DEVICES) {
1463 		ubi_err("too many parameters, max. is %d\n",
1464 			UBI_MAX_DEVICES);
1465 		return -EINVAL;
1466 	}
1467 
1468 	len = strnlen(val, MTD_PARAM_LEN_MAX);
1469 	if (len == MTD_PARAM_LEN_MAX) {
1470 		ubi_err("parameter \"%s\" is too long, max. is %d\n",
1471 			val, MTD_PARAM_LEN_MAX);
1472 		return -EINVAL;
1473 	}
1474 
1475 	if (len == 0) {
1476 		pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n");
1477 		return 0;
1478 	}
1479 
1480 	strcpy(buf, val);
1481 
1482 	/* Get rid of the final newline */
1483 	if (buf[len - 1] == '\n')
1484 		buf[len - 1] = '\0';
1485 
1486 	for (i = 0; i < MTD_PARAM_MAX_COUNT; i++)
1487 		tokens[i] = strsep(&pbuf, ",");
1488 
1489 	if (pbuf) {
1490 		ubi_err("too many arguments at \"%s\"\n", val);
1491 		return -EINVAL;
1492 	}
1493 
1494 	p = &mtd_dev_param[mtd_devs];
1495 	strcpy(&p->name[0], tokens[0]);
1496 
1497 	token = tokens[1];
1498 	if (token) {
1499 		p->vid_hdr_offs = bytes_str_to_int(token);
1500 
1501 		if (p->vid_hdr_offs < 0)
1502 			return p->vid_hdr_offs;
1503 	}
1504 
1505 	token = tokens[2];
1506 	if (token) {
1507 		int err = kstrtoint(token, 10, &p->max_beb_per1024);
1508 
1509 		if (err) {
1510 			ubi_err("bad value for max_beb_per1024 parameter: %s",
1511 				token);
1512 			return -EINVAL;
1513 		}
1514 	}
1515 
1516 	token = tokens[3];
1517 	if (token) {
1518 		int err = kstrtoint(token, 10, &p->ubi_num);
1519 
1520 		if (err) {
1521 			ubi_err("bad value for ubi_num parameter: %s", token);
1522 			return -EINVAL;
1523 		}
1524 	} else
1525 		p->ubi_num = UBI_DEV_NUM_AUTO;
1526 
1527 	mtd_devs += 1;
1528 	return 0;
1529 }
1530 
1531 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000);
1532 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n"
1533 		      "Multiple \"mtd\" parameters may be specified.\n"
1534 		      "MTD devices may be specified by their number, name, or path to the MTD character device node.\n"
1535 		      "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n"
1536 		      "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value ("
1537 		      __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n"
1538 		      "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n"
1539 		      "\n"
1540 		      "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n"
1541 		      "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n"
1542 		      "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n"
1543 		      "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n"
1544 		      "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device).");
1545 #ifdef CONFIG_MTD_UBI_FASTMAP
1546 module_param(fm_autoconvert, bool, 0644);
1547 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap.");
1548 #endif
1549 MODULE_VERSION(__stringify(UBI_VERSION));
1550 MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1551 MODULE_AUTHOR("Artem Bityutskiy");
1552 MODULE_LICENSE("GPL");
1553