xref: /openbmc/u-boot/drivers/mtd/ubi/build.c (revision 2d92ba84)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2007
4  *
5  * SPDX-License-Identifier:	GPL-2.0+
6  *
7  * Author: Artem Bityutskiy (Битюцкий Артём),
8  *         Frank Haverkamp
9  */
10 
11 /*
12  * This file includes UBI initialization and building of UBI devices.
13  *
14  * When UBI is initialized, it attaches all the MTD devices specified as the
15  * module load parameters or the kernel boot parameters. If MTD devices were
16  * specified, UBI does not attach any MTD device, but it is possible to do
17  * later using the "UBI control device".
18  *
19  * At the moment we only attach UBI devices by scanning, which will become a
20  * bottleneck when flashes reach certain large size. Then one may improve UBI
21  * and add other methods, although it does not seem to be easy to do.
22  */
23 
24 #ifdef UBI_LINUX
25 #include <linux/err.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/stringify.h>
29 #include <linux/stat.h>
30 #include <linux/miscdevice.h>
31 #include <linux/log2.h>
32 #include <linux/kthread.h>
33 #endif
34 #include <ubi_uboot.h>
35 #include "ubi.h"
36 
37 #if (CONFIG_SYS_MALLOC_LEN < (512 << 10))
38 #error Malloc area too small for UBI, increase CONFIG_SYS_MALLOC_LEN to >= 512k
39 #endif
40 
41 /* Maximum length of the 'mtd=' parameter */
42 #define MTD_PARAM_LEN_MAX 64
43 
44 /**
45  * struct mtd_dev_param - MTD device parameter description data structure.
46  * @name: MTD device name or number string
47  * @vid_hdr_offs: VID header offset
48  */
49 struct mtd_dev_param
50 {
51 	char name[MTD_PARAM_LEN_MAX];
52 	int vid_hdr_offs;
53 };
54 
55 /* Numbers of elements set in the @mtd_dev_param array */
56 static int mtd_devs = 0;
57 
58 /* MTD devices specification parameters */
59 static struct mtd_dev_param mtd_dev_param[UBI_MAX_DEVICES];
60 
61 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
62 struct class *ubi_class;
63 
64 #ifdef UBI_LINUX
65 /* Slab cache for wear-leveling entries */
66 struct kmem_cache *ubi_wl_entry_slab;
67 
68 /* UBI control character device */
69 static struct miscdevice ubi_ctrl_cdev = {
70 	.minor = MISC_DYNAMIC_MINOR,
71 	.name = "ubi_ctrl",
72 	.fops = &ubi_ctrl_cdev_operations,
73 };
74 #endif
75 
76 /* All UBI devices in system */
77 struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
78 
79 #ifdef UBI_LINUX
80 /* Serializes UBI devices creations and removals */
81 DEFINE_MUTEX(ubi_devices_mutex);
82 
83 /* Protects @ubi_devices and @ubi->ref_count */
84 static DEFINE_SPINLOCK(ubi_devices_lock);
85 
86 /* "Show" method for files in '/<sysfs>/class/ubi/' */
87 static ssize_t ubi_version_show(struct class *class, char *buf)
88 {
89 	return sprintf(buf, "%d\n", UBI_VERSION);
90 }
91 
92 /* UBI version attribute ('/<sysfs>/class/ubi/version') */
93 static struct class_attribute ubi_version =
94 	__ATTR(version, S_IRUGO, ubi_version_show, NULL);
95 
96 static ssize_t dev_attribute_show(struct device *dev,
97 				  struct device_attribute *attr, char *buf);
98 
99 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
100 static struct device_attribute dev_eraseblock_size =
101 	__ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
102 static struct device_attribute dev_avail_eraseblocks =
103 	__ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
104 static struct device_attribute dev_total_eraseblocks =
105 	__ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
106 static struct device_attribute dev_volumes_count =
107 	__ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
108 static struct device_attribute dev_max_ec =
109 	__ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
110 static struct device_attribute dev_reserved_for_bad =
111 	__ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
112 static struct device_attribute dev_bad_peb_count =
113 	__ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
114 static struct device_attribute dev_max_vol_count =
115 	__ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
116 static struct device_attribute dev_min_io_size =
117 	__ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
118 static struct device_attribute dev_bgt_enabled =
119 	__ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
120 static struct device_attribute dev_mtd_num =
121 	__ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
122 #endif
123 
124 /**
125  * ubi_get_device - get UBI device.
126  * @ubi_num: UBI device number
127  *
128  * This function returns UBI device description object for UBI device number
129  * @ubi_num, or %NULL if the device does not exist. This function increases the
130  * device reference count to prevent removal of the device. In other words, the
131  * device cannot be removed if its reference count is not zero.
132  */
133 struct ubi_device *ubi_get_device(int ubi_num)
134 {
135 	struct ubi_device *ubi;
136 
137 	spin_lock(&ubi_devices_lock);
138 	ubi = ubi_devices[ubi_num];
139 	if (ubi) {
140 		ubi_assert(ubi->ref_count >= 0);
141 		ubi->ref_count += 1;
142 		get_device(&ubi->dev);
143 	}
144 	spin_unlock(&ubi_devices_lock);
145 
146 	return ubi;
147 }
148 
149 /**
150  * ubi_put_device - drop an UBI device reference.
151  * @ubi: UBI device description object
152  */
153 void ubi_put_device(struct ubi_device *ubi)
154 {
155 	spin_lock(&ubi_devices_lock);
156 	ubi->ref_count -= 1;
157 	put_device(&ubi->dev);
158 	spin_unlock(&ubi_devices_lock);
159 }
160 
161 /**
162  * ubi_get_by_major - get UBI device description object by character device
163  *                    major number.
164  * @major: major number
165  *
166  * This function is similar to 'ubi_get_device()', but it searches the device
167  * by its major number.
168  */
169 struct ubi_device *ubi_get_by_major(int major)
170 {
171 	int i;
172 	struct ubi_device *ubi;
173 
174 	spin_lock(&ubi_devices_lock);
175 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
176 		ubi = ubi_devices[i];
177 		if (ubi && MAJOR(ubi->cdev.dev) == major) {
178 			ubi_assert(ubi->ref_count >= 0);
179 			ubi->ref_count += 1;
180 			get_device(&ubi->dev);
181 			spin_unlock(&ubi_devices_lock);
182 			return ubi;
183 		}
184 	}
185 	spin_unlock(&ubi_devices_lock);
186 
187 	return NULL;
188 }
189 
190 /**
191  * ubi_major2num - get UBI device number by character device major number.
192  * @major: major number
193  *
194  * This function searches UBI device number object by its major number. If UBI
195  * device was not found, this function returns -ENODEV, otherwise the UBI device
196  * number is returned.
197  */
198 int ubi_major2num(int major)
199 {
200 	int i, ubi_num = -ENODEV;
201 
202 	spin_lock(&ubi_devices_lock);
203 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
204 		struct ubi_device *ubi = ubi_devices[i];
205 
206 		if (ubi && MAJOR(ubi->cdev.dev) == major) {
207 			ubi_num = ubi->ubi_num;
208 			break;
209 		}
210 	}
211 	spin_unlock(&ubi_devices_lock);
212 
213 	return ubi_num;
214 }
215 
216 #ifdef UBI_LINUX
217 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
218 static ssize_t dev_attribute_show(struct device *dev,
219 				  struct device_attribute *attr, char *buf)
220 {
221 	ssize_t ret;
222 	struct ubi_device *ubi;
223 
224 	/*
225 	 * The below code looks weird, but it actually makes sense. We get the
226 	 * UBI device reference from the contained 'struct ubi_device'. But it
227 	 * is unclear if the device was removed or not yet. Indeed, if the
228 	 * device was removed before we increased its reference count,
229 	 * 'ubi_get_device()' will return -ENODEV and we fail.
230 	 *
231 	 * Remember, 'struct ubi_device' is freed in the release function, so
232 	 * we still can use 'ubi->ubi_num'.
233 	 */
234 	ubi = container_of(dev, struct ubi_device, dev);
235 	ubi = ubi_get_device(ubi->ubi_num);
236 	if (!ubi)
237 		return -ENODEV;
238 
239 	if (attr == &dev_eraseblock_size)
240 		ret = sprintf(buf, "%d\n", ubi->leb_size);
241 	else if (attr == &dev_avail_eraseblocks)
242 		ret = sprintf(buf, "%d\n", ubi->avail_pebs);
243 	else if (attr == &dev_total_eraseblocks)
244 		ret = sprintf(buf, "%d\n", ubi->good_peb_count);
245 	else if (attr == &dev_volumes_count)
246 		ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
247 	else if (attr == &dev_max_ec)
248 		ret = sprintf(buf, "%d\n", ubi->max_ec);
249 	else if (attr == &dev_reserved_for_bad)
250 		ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
251 	else if (attr == &dev_bad_peb_count)
252 		ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
253 	else if (attr == &dev_max_vol_count)
254 		ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
255 	else if (attr == &dev_min_io_size)
256 		ret = sprintf(buf, "%d\n", ubi->min_io_size);
257 	else if (attr == &dev_bgt_enabled)
258 		ret = sprintf(buf, "%d\n", ubi->thread_enabled);
259 	else if (attr == &dev_mtd_num)
260 		ret = sprintf(buf, "%d\n", ubi->mtd->index);
261 	else
262 		ret = -EINVAL;
263 
264 	ubi_put_device(ubi);
265 	return ret;
266 }
267 
268 /* Fake "release" method for UBI devices */
269 static void dev_release(struct device *dev) { }
270 
271 /**
272  * ubi_sysfs_init - initialize sysfs for an UBI device.
273  * @ubi: UBI device description object
274  *
275  * This function returns zero in case of success and a negative error code in
276  * case of failure.
277  */
278 static int ubi_sysfs_init(struct ubi_device *ubi)
279 {
280 	int err;
281 
282 	ubi->dev.release = dev_release;
283 	ubi->dev.devt = ubi->cdev.dev;
284 	ubi->dev.class = ubi_class;
285 	sprintf(&ubi->dev.bus_id[0], UBI_NAME_STR"%d", ubi->ubi_num);
286 	err = device_register(&ubi->dev);
287 	if (err)
288 		return err;
289 
290 	err = device_create_file(&ubi->dev, &dev_eraseblock_size);
291 	if (err)
292 		return err;
293 	err = device_create_file(&ubi->dev, &dev_avail_eraseblocks);
294 	if (err)
295 		return err;
296 	err = device_create_file(&ubi->dev, &dev_total_eraseblocks);
297 	if (err)
298 		return err;
299 	err = device_create_file(&ubi->dev, &dev_volumes_count);
300 	if (err)
301 		return err;
302 	err = device_create_file(&ubi->dev, &dev_max_ec);
303 	if (err)
304 		return err;
305 	err = device_create_file(&ubi->dev, &dev_reserved_for_bad);
306 	if (err)
307 		return err;
308 	err = device_create_file(&ubi->dev, &dev_bad_peb_count);
309 	if (err)
310 		return err;
311 	err = device_create_file(&ubi->dev, &dev_max_vol_count);
312 	if (err)
313 		return err;
314 	err = device_create_file(&ubi->dev, &dev_min_io_size);
315 	if (err)
316 		return err;
317 	err = device_create_file(&ubi->dev, &dev_bgt_enabled);
318 	if (err)
319 		return err;
320 	err = device_create_file(&ubi->dev, &dev_mtd_num);
321 	return err;
322 }
323 
324 /**
325  * ubi_sysfs_close - close sysfs for an UBI device.
326  * @ubi: UBI device description object
327  */
328 static void ubi_sysfs_close(struct ubi_device *ubi)
329 {
330 	device_remove_file(&ubi->dev, &dev_mtd_num);
331 	device_remove_file(&ubi->dev, &dev_bgt_enabled);
332 	device_remove_file(&ubi->dev, &dev_min_io_size);
333 	device_remove_file(&ubi->dev, &dev_max_vol_count);
334 	device_remove_file(&ubi->dev, &dev_bad_peb_count);
335 	device_remove_file(&ubi->dev, &dev_reserved_for_bad);
336 	device_remove_file(&ubi->dev, &dev_max_ec);
337 	device_remove_file(&ubi->dev, &dev_volumes_count);
338 	device_remove_file(&ubi->dev, &dev_total_eraseblocks);
339 	device_remove_file(&ubi->dev, &dev_avail_eraseblocks);
340 	device_remove_file(&ubi->dev, &dev_eraseblock_size);
341 	device_unregister(&ubi->dev);
342 }
343 #endif
344 
345 /**
346  * kill_volumes - destroy all volumes.
347  * @ubi: UBI device description object
348  */
349 static void kill_volumes(struct ubi_device *ubi)
350 {
351 	int i;
352 
353 	for (i = 0; i < ubi->vtbl_slots; i++)
354 		if (ubi->volumes[i])
355 			ubi_free_volume(ubi, ubi->volumes[i]);
356 }
357 
358 /**
359  * uif_init - initialize user interfaces for an UBI device.
360  * @ubi: UBI device description object
361  *
362  * This function returns zero in case of success and a negative error code in
363  * case of failure.
364  */
365 static int uif_init(struct ubi_device *ubi)
366 {
367 	int i, err;
368 #ifdef UBI_LINUX
369 	dev_t dev;
370 #endif
371 
372 	sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
373 
374 	/*
375 	 * Major numbers for the UBI character devices are allocated
376 	 * dynamically. Major numbers of volume character devices are
377 	 * equivalent to ones of the corresponding UBI character device. Minor
378 	 * numbers of UBI character devices are 0, while minor numbers of
379 	 * volume character devices start from 1. Thus, we allocate one major
380 	 * number and ubi->vtbl_slots + 1 minor numbers.
381 	 */
382 	err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
383 	if (err) {
384 		ubi_err("cannot register UBI character devices");
385 		return err;
386 	}
387 
388 	ubi_assert(MINOR(dev) == 0);
389 	cdev_init(&ubi->cdev, &ubi_cdev_operations);
390 	dbg_msg("%s major is %u", ubi->ubi_name, MAJOR(dev));
391 	ubi->cdev.owner = THIS_MODULE;
392 
393 	err = cdev_add(&ubi->cdev, dev, 1);
394 	if (err) {
395 		ubi_err("cannot add character device");
396 		goto out_unreg;
397 	}
398 
399 	err = ubi_sysfs_init(ubi);
400 	if (err)
401 		goto out_sysfs;
402 
403 	for (i = 0; i < ubi->vtbl_slots; i++)
404 		if (ubi->volumes[i]) {
405 			err = ubi_add_volume(ubi, ubi->volumes[i]);
406 			if (err) {
407 				ubi_err("cannot add volume %d", i);
408 				goto out_volumes;
409 			}
410 		}
411 
412 	return 0;
413 
414 out_volumes:
415 	kill_volumes(ubi);
416 out_sysfs:
417 	ubi_sysfs_close(ubi);
418 	cdev_del(&ubi->cdev);
419 out_unreg:
420 	unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
421 	ubi_err("cannot initialize UBI %s, error %d", ubi->ubi_name, err);
422 	return err;
423 }
424 
425 /**
426  * uif_close - close user interfaces for an UBI device.
427  * @ubi: UBI device description object
428  */
429 static void uif_close(struct ubi_device *ubi)
430 {
431 	kill_volumes(ubi);
432 	ubi_sysfs_close(ubi);
433 	cdev_del(&ubi->cdev);
434 	unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
435 }
436 
437 /**
438  * attach_by_scanning - attach an MTD device using scanning method.
439  * @ubi: UBI device descriptor
440  *
441  * This function returns zero in case of success and a negative error code in
442  * case of failure.
443  *
444  * Note, currently this is the only method to attach UBI devices. Hopefully in
445  * the future we'll have more scalable attaching methods and avoid full media
446  * scanning. But even in this case scanning will be needed as a fall-back
447  * attaching method if there are some on-flash table corruptions.
448  */
449 static int attach_by_scanning(struct ubi_device *ubi)
450 {
451 	int err;
452 	struct ubi_scan_info *si;
453 
454 	si = ubi_scan(ubi);
455 	if (IS_ERR(si))
456 		return PTR_ERR(si);
457 
458 	ubi->bad_peb_count = si->bad_peb_count;
459 	ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
460 	ubi->max_ec = si->max_ec;
461 	ubi->mean_ec = si->mean_ec;
462 
463 	err = ubi_read_volume_table(ubi, si);
464 	if (err)
465 		goto out_si;
466 
467 	err = ubi_eba_init_scan(ubi, si);
468 	if (err)
469 		goto out_vtbl;
470 
471 	err = ubi_wl_init_scan(ubi, si);
472 	if (err)
473 		goto out_eba;
474 
475 	ubi_scan_destroy_si(si);
476 	return 0;
477 
478 out_eba:
479 	ubi_eba_close(ubi);
480 out_vtbl:
481 	vfree(ubi->vtbl);
482 out_si:
483 	ubi_scan_destroy_si(si);
484 	return err;
485 }
486 
487 /**
488  * io_init - initialize I/O unit for a given UBI device.
489  * @ubi: UBI device description object
490  *
491  * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
492  * assumed:
493  *   o EC header is always at offset zero - this cannot be changed;
494  *   o VID header starts just after the EC header at the closest address
495  *     aligned to @io->hdrs_min_io_size;
496  *   o data starts just after the VID header at the closest address aligned to
497  *     @io->min_io_size
498  *
499  * This function returns zero in case of success and a negative error code in
500  * case of failure.
501  */
502 static int io_init(struct ubi_device *ubi)
503 {
504 	if (ubi->mtd->numeraseregions != 0) {
505 		/*
506 		 * Some flashes have several erase regions. Different regions
507 		 * may have different eraseblock size and other
508 		 * characteristics. It looks like mostly multi-region flashes
509 		 * have one "main" region and one or more small regions to
510 		 * store boot loader code or boot parameters or whatever. I
511 		 * guess we should just pick the largest region. But this is
512 		 * not implemented.
513 		 */
514 		ubi_err("multiple regions, not implemented");
515 		return -EINVAL;
516 	}
517 
518 	if (ubi->vid_hdr_offset < 0)
519 		return -EINVAL;
520 
521 	/*
522 	 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
523 	 * physical eraseblocks maximum.
524 	 */
525 
526 	ubi->peb_size   = ubi->mtd->erasesize;
527 	ubi->peb_count  = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
528 	ubi->flash_size = ubi->mtd->size;
529 
530 	if (mtd_can_have_bb(ubi->mtd))
531 		ubi->bad_allowed = 1;
532 
533 	ubi->min_io_size = ubi->mtd->writesize;
534 	ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
535 
536 	/*
537 	 * Make sure minimal I/O unit is power of 2. Note, there is no
538 	 * fundamental reason for this assumption. It is just an optimization
539 	 * which allows us to avoid costly division operations.
540 	 */
541 	if (!is_power_of_2(ubi->min_io_size)) {
542 		ubi_err("min. I/O unit (%d) is not power of 2",
543 			ubi->min_io_size);
544 		return -EINVAL;
545 	}
546 
547 	ubi_assert(ubi->hdrs_min_io_size > 0);
548 	ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
549 	ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
550 
551 	/* Calculate default aligned sizes of EC and VID headers */
552 	ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
553 	ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
554 
555 	dbg_msg("min_io_size      %d", ubi->min_io_size);
556 	dbg_msg("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
557 	dbg_msg("ec_hdr_alsize    %d", ubi->ec_hdr_alsize);
558 	dbg_msg("vid_hdr_alsize   %d", ubi->vid_hdr_alsize);
559 
560 	if (ubi->vid_hdr_offset == 0)
561 		/* Default offset */
562 		ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
563 				      ubi->ec_hdr_alsize;
564 	else {
565 		ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
566 						~(ubi->hdrs_min_io_size - 1);
567 		ubi->vid_hdr_shift = ubi->vid_hdr_offset -
568 						ubi->vid_hdr_aloffset;
569 	}
570 
571 	/* Similar for the data offset */
572 	ubi->leb_start = ubi->vid_hdr_offset + UBI_EC_HDR_SIZE;
573 	ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
574 
575 	dbg_msg("vid_hdr_offset   %d", ubi->vid_hdr_offset);
576 	dbg_msg("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
577 	dbg_msg("vid_hdr_shift    %d", ubi->vid_hdr_shift);
578 	dbg_msg("leb_start        %d", ubi->leb_start);
579 
580 	/* The shift must be aligned to 32-bit boundary */
581 	if (ubi->vid_hdr_shift % 4) {
582 		ubi_err("unaligned VID header shift %d",
583 			ubi->vid_hdr_shift);
584 		return -EINVAL;
585 	}
586 
587 	/* Check sanity */
588 	if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
589 	    ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
590 	    ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
591 	    ubi->leb_start & (ubi->min_io_size - 1)) {
592 		ubi_err("bad VID header (%d) or data offsets (%d)",
593 			ubi->vid_hdr_offset, ubi->leb_start);
594 		return -EINVAL;
595 	}
596 
597 	/*
598 	 * It may happen that EC and VID headers are situated in one minimal
599 	 * I/O unit. In this case we can only accept this UBI image in
600 	 * read-only mode.
601 	 */
602 	if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
603 		ubi_warn("EC and VID headers are in the same minimal I/O unit, "
604 			 "switch to read-only mode");
605 		ubi->ro_mode = 1;
606 	}
607 
608 	ubi->leb_size = ubi->peb_size - ubi->leb_start;
609 
610 	if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
611 		ubi_msg("MTD device %d is write-protected, attach in "
612 			"read-only mode", ubi->mtd->index);
613 		ubi->ro_mode = 1;
614 	}
615 
616 	ubi_msg("physical eraseblock size:   %d bytes (%d KiB)",
617 		ubi->peb_size, ubi->peb_size >> 10);
618 	ubi_msg("logical eraseblock size:    %d bytes", ubi->leb_size);
619 	ubi_msg("smallest flash I/O unit:    %d", ubi->min_io_size);
620 	if (ubi->hdrs_min_io_size != ubi->min_io_size)
621 		ubi_msg("sub-page size:              %d",
622 			ubi->hdrs_min_io_size);
623 	ubi_msg("VID header offset:          %d (aligned %d)",
624 		ubi->vid_hdr_offset, ubi->vid_hdr_aloffset);
625 	ubi_msg("data offset:                %d", ubi->leb_start);
626 
627 	/*
628 	 * Note, ideally, we have to initialize ubi->bad_peb_count here. But
629 	 * unfortunately, MTD does not provide this information. We should loop
630 	 * over all physical eraseblocks and invoke mtd->block_is_bad() for
631 	 * each physical eraseblock. So, we skip ubi->bad_peb_count
632 	 * uninitialized and initialize it after scanning.
633 	 */
634 
635 	return 0;
636 }
637 
638 /**
639  * autoresize - re-size the volume which has the "auto-resize" flag set.
640  * @ubi: UBI device description object
641  * @vol_id: ID of the volume to re-size
642  *
643  * This function re-sizes the volume marked by the @UBI_VTBL_AUTORESIZE_FLG in
644  * the volume table to the largest possible size. See comments in ubi-header.h
645  * for more description of the flag. Returns zero in case of success and a
646  * negative error code in case of failure.
647  */
648 static int autoresize(struct ubi_device *ubi, int vol_id)
649 {
650 	struct ubi_volume_desc desc;
651 	struct ubi_volume *vol = ubi->volumes[vol_id];
652 	int err, old_reserved_pebs = vol->reserved_pebs;
653 
654 	/*
655 	 * Clear the auto-resize flag in the volume in-memory copy of the
656 	 * volume table, and 'ubi_resize_volume()' will propogate this change
657 	 * to the flash.
658 	 */
659 	ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
660 
661 	if (ubi->avail_pebs == 0) {
662 		struct ubi_vtbl_record vtbl_rec;
663 
664 		/*
665 		 * No avalilable PEBs to re-size the volume, clear the flag on
666 		 * flash and exit.
667 		 */
668 		memcpy(&vtbl_rec, &ubi->vtbl[vol_id],
669 		       sizeof(struct ubi_vtbl_record));
670 		err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
671 		if (err)
672 			ubi_err("cannot clean auto-resize flag for volume %d",
673 				vol_id);
674 	} else {
675 		desc.vol = vol;
676 		err = ubi_resize_volume(&desc,
677 					old_reserved_pebs + ubi->avail_pebs);
678 		if (err)
679 			ubi_err("cannot auto-resize volume %d", vol_id);
680 	}
681 
682 	if (err)
683 		return err;
684 
685 	ubi_msg("volume %d (\"%s\") re-sized from %d to %d LEBs", vol_id,
686 		vol->name, old_reserved_pebs, vol->reserved_pebs);
687 	return 0;
688 }
689 
690 /**
691  * ubi_attach_mtd_dev - attach an MTD device.
692  * @mtd_dev: MTD device description object
693  * @ubi_num: number to assign to the new UBI device
694  * @vid_hdr_offset: VID header offset
695  *
696  * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
697  * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
698  * which case this function finds a vacant device nubert and assings it
699  * automatically. Returns the new UBI device number in case of success and a
700  * negative error code in case of failure.
701  *
702  * Note, the invocations of this function has to be serialized by the
703  * @ubi_devices_mutex.
704  */
705 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, int vid_hdr_offset)
706 {
707 	struct ubi_device *ubi;
708 	int i, err;
709 
710 	/*
711 	 * Check if we already have the same MTD device attached.
712 	 *
713 	 * Note, this function assumes that UBI devices creations and deletions
714 	 * are serialized, so it does not take the &ubi_devices_lock.
715 	 */
716 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
717 		ubi = ubi_devices[i];
718 		if (ubi && mtd->index == ubi->mtd->index) {
719 			dbg_err("mtd%d is already attached to ubi%d",
720 				mtd->index, i);
721 			return -EEXIST;
722 		}
723 	}
724 
725 	/*
726 	 * Make sure this MTD device is not emulated on top of an UBI volume
727 	 * already. Well, generally this recursion works fine, but there are
728 	 * different problems like the UBI module takes a reference to itself
729 	 * by attaching (and thus, opening) the emulated MTD device. This
730 	 * results in inability to unload the module. And in general it makes
731 	 * no sense to attach emulated MTD devices, so we prohibit this.
732 	 */
733 	if (mtd->type == MTD_UBIVOLUME) {
734 		ubi_err("refuse attaching mtd%d - it is already emulated on "
735 			"top of UBI", mtd->index);
736 		return -EINVAL;
737 	}
738 
739 	if (ubi_num == UBI_DEV_NUM_AUTO) {
740 		/* Search for an empty slot in the @ubi_devices array */
741 		for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
742 			if (!ubi_devices[ubi_num])
743 				break;
744 		if (ubi_num == UBI_MAX_DEVICES) {
745 			dbg_err("only %d UBI devices may be created", UBI_MAX_DEVICES);
746 			return -ENFILE;
747 		}
748 	} else {
749 		if (ubi_num >= UBI_MAX_DEVICES)
750 			return -EINVAL;
751 
752 		/* Make sure ubi_num is not busy */
753 		if (ubi_devices[ubi_num]) {
754 			dbg_err("ubi%d already exists", ubi_num);
755 			return -EEXIST;
756 		}
757 	}
758 
759 	ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
760 	if (!ubi)
761 		return -ENOMEM;
762 
763 	ubi->mtd = mtd;
764 	ubi->ubi_num = ubi_num;
765 	ubi->vid_hdr_offset = vid_hdr_offset;
766 	ubi->autoresize_vol_id = -1;
767 
768 	mutex_init(&ubi->buf_mutex);
769 	mutex_init(&ubi->ckvol_mutex);
770 	mutex_init(&ubi->volumes_mutex);
771 	spin_lock_init(&ubi->volumes_lock);
772 
773 	ubi_msg("attaching mtd%d to ubi%d", mtd->index, ubi_num);
774 
775 	err = io_init(ubi);
776 	if (err)
777 		goto out_free;
778 
779 	err = -ENOMEM;
780 	ubi->peb_buf1 = vmalloc(ubi->peb_size);
781 	if (!ubi->peb_buf1)
782 		goto out_free;
783 
784 	ubi->peb_buf2 = vmalloc(ubi->peb_size);
785 	if (!ubi->peb_buf2)
786 		goto out_free;
787 
788 #ifdef CONFIG_MTD_UBI_DEBUG
789 	mutex_init(&ubi->dbg_buf_mutex);
790 	ubi->dbg_peb_buf = vmalloc(ubi->peb_size);
791 	if (!ubi->dbg_peb_buf)
792 		goto out_free;
793 #endif
794 
795 	err = attach_by_scanning(ubi);
796 	if (err) {
797 		dbg_err("failed to attach by scanning, error %d", err);
798 		goto out_free;
799 	}
800 
801 	if (ubi->autoresize_vol_id != -1) {
802 		err = autoresize(ubi, ubi->autoresize_vol_id);
803 		if (err)
804 			goto out_detach;
805 	}
806 
807 	err = uif_init(ubi);
808 	if (err)
809 		goto out_detach;
810 
811 	ubi->bgt_thread = kthread_create(ubi_thread, ubi, ubi->bgt_name);
812 	if (IS_ERR(ubi->bgt_thread)) {
813 		err = PTR_ERR(ubi->bgt_thread);
814 		ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name,
815 			err);
816 		goto out_uif;
817 	}
818 
819 	ubi_msg("attached mtd%d to ubi%d", mtd->index, ubi_num);
820 	ubi_msg("MTD device name:            \"%s\"", mtd->name);
821 	ubi_msg("MTD device size:            %llu MiB", ubi->flash_size >> 20);
822 	ubi_msg("number of good PEBs:        %d", ubi->good_peb_count);
823 	ubi_msg("number of bad PEBs:         %d", ubi->bad_peb_count);
824 	ubi_msg("max. allowed volumes:       %d", ubi->vtbl_slots);
825 	ubi_msg("wear-leveling threshold:    %d", CONFIG_MTD_UBI_WL_THRESHOLD);
826 	ubi_msg("number of internal volumes: %d", UBI_INT_VOL_COUNT);
827 	ubi_msg("number of user volumes:     %d",
828 		ubi->vol_count - UBI_INT_VOL_COUNT);
829 	ubi_msg("available PEBs:             %d", ubi->avail_pebs);
830 	ubi_msg("total number of reserved PEBs: %d", ubi->rsvd_pebs);
831 	ubi_msg("number of PEBs reserved for bad PEB handling: %d",
832 		ubi->beb_rsvd_pebs);
833 	ubi_msg("max/mean erase counter: %d/%d", ubi->max_ec, ubi->mean_ec);
834 
835 	/* Enable the background thread */
836 	if (!DBG_DISABLE_BGT) {
837 		ubi->thread_enabled = 1;
838 		wake_up_process(ubi->bgt_thread);
839 	}
840 
841 	ubi_devices[ubi_num] = ubi;
842 	return ubi_num;
843 
844 out_uif:
845 	uif_close(ubi);
846 out_detach:
847 	ubi_eba_close(ubi);
848 	ubi_wl_close(ubi);
849 	vfree(ubi->vtbl);
850 out_free:
851 	vfree(ubi->peb_buf1);
852 	vfree(ubi->peb_buf2);
853 #ifdef CONFIG_MTD_UBI_DEBUG
854 	vfree(ubi->dbg_peb_buf);
855 #endif
856 	kfree(ubi);
857 	return err;
858 }
859 
860 /**
861  * ubi_detach_mtd_dev - detach an MTD device.
862  * @ubi_num: UBI device number to detach from
863  * @anyway: detach MTD even if device reference count is not zero
864  *
865  * This function destroys an UBI device number @ubi_num and detaches the
866  * underlying MTD device. Returns zero in case of success and %-EBUSY if the
867  * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
868  * exist.
869  *
870  * Note, the invocations of this function has to be serialized by the
871  * @ubi_devices_mutex.
872  */
873 int ubi_detach_mtd_dev(int ubi_num, int anyway)
874 {
875 	struct ubi_device *ubi;
876 
877 	if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
878 		return -EINVAL;
879 
880 	spin_lock(&ubi_devices_lock);
881 	ubi = ubi_devices[ubi_num];
882 	if (!ubi) {
883 		spin_unlock(&ubi_devices_lock);
884 		return -EINVAL;
885 	}
886 
887 	if (ubi->ref_count) {
888 		if (!anyway) {
889 			spin_unlock(&ubi_devices_lock);
890 			return -EBUSY;
891 		}
892 		/* This may only happen if there is a bug */
893 		ubi_err("%s reference count %d, destroy anyway",
894 			ubi->ubi_name, ubi->ref_count);
895 	}
896 	ubi_devices[ubi_num] = NULL;
897 	spin_unlock(&ubi_devices_lock);
898 
899 	ubi_assert(ubi_num == ubi->ubi_num);
900 	dbg_msg("detaching mtd%d from ubi%d", ubi->mtd->index, ubi_num);
901 
902 	/*
903 	 * Before freeing anything, we have to stop the background thread to
904 	 * prevent it from doing anything on this device while we are freeing.
905 	 */
906 	if (ubi->bgt_thread)
907 		kthread_stop(ubi->bgt_thread);
908 
909 	uif_close(ubi);
910 	ubi_eba_close(ubi);
911 	ubi_wl_close(ubi);
912 	vfree(ubi->vtbl);
913 	put_mtd_device(ubi->mtd);
914 	vfree(ubi->peb_buf1);
915 	vfree(ubi->peb_buf2);
916 #ifdef CONFIG_MTD_UBI_DEBUG
917 	vfree(ubi->dbg_peb_buf);
918 #endif
919 	ubi_msg("mtd%d is detached from ubi%d", ubi->mtd->index, ubi->ubi_num);
920 	kfree(ubi);
921 	return 0;
922 }
923 
924 /**
925  * find_mtd_device - open an MTD device by its name or number.
926  * @mtd_dev: name or number of the device
927  *
928  * This function tries to open and MTD device described by @mtd_dev string,
929  * which is first treated as an ASCII number, and if it is not true, it is
930  * treated as MTD device name. Returns MTD device description object in case of
931  * success and a negative error code in case of failure.
932  */
933 static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
934 {
935 	struct mtd_info *mtd;
936 	int mtd_num;
937 	char *endp;
938 
939 	mtd_num = simple_strtoul(mtd_dev, &endp, 0);
940 	if (*endp != '\0' || mtd_dev == endp) {
941 		/*
942 		 * This does not look like an ASCII integer, probably this is
943 		 * MTD device name.
944 		 */
945 		mtd = get_mtd_device_nm(mtd_dev);
946 	} else
947 		mtd = get_mtd_device(NULL, mtd_num);
948 
949 	return mtd;
950 }
951 
952 int __init ubi_init(void)
953 {
954 	int err, i, k;
955 
956 	/* Ensure that EC and VID headers have correct size */
957 	BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
958 	BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
959 
960 	if (mtd_devs > UBI_MAX_DEVICES) {
961 		ubi_err("too many MTD devices, maximum is %d", UBI_MAX_DEVICES);
962 		return -EINVAL;
963 	}
964 
965 	/* Create base sysfs directory and sysfs files */
966 	ubi_class = class_create(THIS_MODULE, UBI_NAME_STR);
967 	if (IS_ERR(ubi_class)) {
968 		err = PTR_ERR(ubi_class);
969 		ubi_err("cannot create UBI class");
970 		goto out;
971 	}
972 
973 	err = class_create_file(ubi_class, &ubi_version);
974 	if (err) {
975 		ubi_err("cannot create sysfs file");
976 		goto out_class;
977 	}
978 
979 	err = misc_register(&ubi_ctrl_cdev);
980 	if (err) {
981 		ubi_err("cannot register device");
982 		goto out_version;
983 	}
984 
985 #ifdef UBI_LINUX
986 	ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
987 					      sizeof(struct ubi_wl_entry),
988 					      0, 0, NULL);
989 	if (!ubi_wl_entry_slab)
990 		goto out_dev_unreg;
991 #endif
992 
993 	/* Attach MTD devices */
994 	for (i = 0; i < mtd_devs; i++) {
995 		struct mtd_dev_param *p = &mtd_dev_param[i];
996 		struct mtd_info *mtd;
997 
998 		cond_resched();
999 
1000 		mtd = open_mtd_device(p->name);
1001 		if (IS_ERR(mtd)) {
1002 			err = PTR_ERR(mtd);
1003 			goto out_detach;
1004 		}
1005 
1006 		mutex_lock(&ubi_devices_mutex);
1007 		err = ubi_attach_mtd_dev(mtd, UBI_DEV_NUM_AUTO,
1008 					 p->vid_hdr_offs);
1009 		mutex_unlock(&ubi_devices_mutex);
1010 		if (err < 0) {
1011 			put_mtd_device(mtd);
1012 			ubi_err("cannot attach mtd%d", mtd->index);
1013 			goto out_detach;
1014 		}
1015 	}
1016 
1017 	return 0;
1018 
1019 out_detach:
1020 	for (k = 0; k < i; k++)
1021 		if (ubi_devices[k]) {
1022 			mutex_lock(&ubi_devices_mutex);
1023 			ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1024 			mutex_unlock(&ubi_devices_mutex);
1025 		}
1026 #ifdef UBI_LINUX
1027 	kmem_cache_destroy(ubi_wl_entry_slab);
1028 out_dev_unreg:
1029 #endif
1030 	misc_deregister(&ubi_ctrl_cdev);
1031 out_version:
1032 	class_remove_file(ubi_class, &ubi_version);
1033 out_class:
1034 	class_destroy(ubi_class);
1035 out:
1036 	mtd_devs = 0;
1037 	ubi_err("UBI error: cannot initialize UBI, error %d", err);
1038 	return err;
1039 }
1040 module_init(ubi_init);
1041 
1042 void __exit ubi_exit(void)
1043 {
1044 	int i;
1045 
1046 	for (i = 0; i < UBI_MAX_DEVICES; i++)
1047 		if (ubi_devices[i]) {
1048 			mutex_lock(&ubi_devices_mutex);
1049 			ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1050 			mutex_unlock(&ubi_devices_mutex);
1051 		}
1052 	kmem_cache_destroy(ubi_wl_entry_slab);
1053 	misc_deregister(&ubi_ctrl_cdev);
1054 	class_remove_file(ubi_class, &ubi_version);
1055 	class_destroy(ubi_class);
1056 	mtd_devs = 0;
1057 }
1058 module_exit(ubi_exit);
1059 
1060 /**
1061  * bytes_str_to_int - convert a string representing number of bytes to an
1062  * integer.
1063  * @str: the string to convert
1064  *
1065  * This function returns positive resulting integer in case of success and a
1066  * negative error code in case of failure.
1067  */
1068 static int __init bytes_str_to_int(const char *str)
1069 {
1070 	char *endp;
1071 	unsigned long result;
1072 
1073 	result = simple_strtoul(str, &endp, 0);
1074 	if (str == endp || result < 0) {
1075 		printk(KERN_ERR "UBI error: incorrect bytes count: \"%s\"\n",
1076 		       str);
1077 		return -EINVAL;
1078 	}
1079 
1080 	switch (*endp) {
1081 	case 'G':
1082 		result *= 1024;
1083 	case 'M':
1084 		result *= 1024;
1085 	case 'K':
1086 		result *= 1024;
1087 		if (endp[1] == 'i' && endp[2] == 'B')
1088 			endp += 2;
1089 	case '\0':
1090 		break;
1091 	default:
1092 		printk(KERN_ERR "UBI error: incorrect bytes count: \"%s\"\n",
1093 		       str);
1094 		return -EINVAL;
1095 	}
1096 
1097 	return result;
1098 }
1099 
1100 /**
1101  * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1102  * @val: the parameter value to parse
1103  * @kp: not used
1104  *
1105  * This function returns zero in case of success and a negative error code in
1106  * case of error.
1107  */
1108 int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1109 {
1110 	int i, len;
1111 	struct mtd_dev_param *p;
1112 	char buf[MTD_PARAM_LEN_MAX];
1113 	char *pbuf = &buf[0];
1114 	char *tokens[2] = {NULL, NULL};
1115 
1116 	if (!val)
1117 		return -EINVAL;
1118 
1119 	if (mtd_devs == UBI_MAX_DEVICES) {
1120 		printk(KERN_ERR "UBI error: too many parameters, max. is %d\n",
1121 		       UBI_MAX_DEVICES);
1122 		return -EINVAL;
1123 	}
1124 
1125 	len = strnlen(val, MTD_PARAM_LEN_MAX);
1126 	if (len == MTD_PARAM_LEN_MAX) {
1127 		printk(KERN_ERR "UBI error: parameter \"%s\" is too long, "
1128 		       "max. is %d\n", val, MTD_PARAM_LEN_MAX);
1129 		return -EINVAL;
1130 	}
1131 
1132 	if (len == 0) {
1133 		printk(KERN_WARNING "UBI warning: empty 'mtd=' parameter - "
1134 		       "ignored\n");
1135 		return 0;
1136 	}
1137 
1138 	strcpy(buf, val);
1139 
1140 	/* Get rid of the final newline */
1141 	if (buf[len - 1] == '\n')
1142 		buf[len - 1] = '\0';
1143 
1144 	for (i = 0; i < 2; i++)
1145 		tokens[i] = strsep(&pbuf, ",");
1146 
1147 	if (pbuf) {
1148 		printk(KERN_ERR "UBI error: too many arguments at \"%s\"\n",
1149 		       val);
1150 		return -EINVAL;
1151 	}
1152 
1153 	p = &mtd_dev_param[mtd_devs];
1154 	strcpy(&p->name[0], tokens[0]);
1155 
1156 	if (tokens[1])
1157 		p->vid_hdr_offs = bytes_str_to_int(tokens[1]);
1158 
1159 	if (p->vid_hdr_offs < 0)
1160 		return p->vid_hdr_offs;
1161 
1162 	mtd_devs += 1;
1163 	return 0;
1164 }
1165 
1166 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000);
1167 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: "
1168 		      "mtd=<name|num>[,<vid_hdr_offs>].\n"
1169 		      "Multiple \"mtd\" parameters may be specified.\n"
1170 		      "MTD devices may be specified by their number or name.\n"
1171 		      "Optional \"vid_hdr_offs\" parameter specifies UBI VID "
1172 		      "header position and data starting position to be used "
1173 		      "by UBI.\n"
1174 		      "Example: mtd=content,1984 mtd=4 - attach MTD device"
1175 		      "with name \"content\" using VID header offset 1984, and "
1176 		      "MTD device number 4 with default VID header offset.");
1177 
1178 MODULE_VERSION(__stringify(UBI_VERSION));
1179 MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1180 MODULE_AUTHOR("Artem Bityutskiy");
1181 MODULE_LICENSE("GPL");
1182