1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * 4 * SPDX-License-Identifier: GPL-2.0+ 5 * 6 * Author: Artem Bityutskiy (Битюцкий Артём) 7 */ 8 9 /* 10 * UBI attaching sub-system. 11 * 12 * This sub-system is responsible for attaching MTD devices and it also 13 * implements flash media scanning. 14 * 15 * The attaching information is represented by a &struct ubi_attach_info' 16 * object. Information about volumes is represented by &struct ubi_ainf_volume 17 * objects which are kept in volume RB-tree with root at the @volumes field. 18 * The RB-tree is indexed by the volume ID. 19 * 20 * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These 21 * objects are kept in per-volume RB-trees with the root at the corresponding 22 * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of 23 * per-volume objects and each of these objects is the root of RB-tree of 24 * per-LEB objects. 25 * 26 * Corrupted physical eraseblocks are put to the @corr list, free physical 27 * eraseblocks are put to the @free list and the physical eraseblock to be 28 * erased are put to the @erase list. 29 * 30 * About corruptions 31 * ~~~~~~~~~~~~~~~~~ 32 * 33 * UBI protects EC and VID headers with CRC-32 checksums, so it can detect 34 * whether the headers are corrupted or not. Sometimes UBI also protects the 35 * data with CRC-32, e.g., when it executes the atomic LEB change operation, or 36 * when it moves the contents of a PEB for wear-leveling purposes. 37 * 38 * UBI tries to distinguish between 2 types of corruptions. 39 * 40 * 1. Corruptions caused by power cuts. These are expected corruptions and UBI 41 * tries to handle them gracefully, without printing too many warnings and 42 * error messages. The idea is that we do not lose important data in these 43 * cases - we may lose only the data which were being written to the media just 44 * before the power cut happened, and the upper layers (e.g., UBIFS) are 45 * supposed to handle such data losses (e.g., by using the FS journal). 46 * 47 * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like 48 * the reason is a power cut, UBI puts this PEB to the @erase list, and all 49 * PEBs in the @erase list are scheduled for erasure later. 50 * 51 * 2. Unexpected corruptions which are not caused by power cuts. During 52 * attaching, such PEBs are put to the @corr list and UBI preserves them. 53 * Obviously, this lessens the amount of available PEBs, and if at some point 54 * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs 55 * about such PEBs every time the MTD device is attached. 56 * 57 * However, it is difficult to reliably distinguish between these types of 58 * corruptions and UBI's strategy is as follows (in case of attaching by 59 * scanning). UBI assumes corruption type 2 if the VID header is corrupted and 60 * the data area does not contain all 0xFFs, and there were no bit-flips or 61 * integrity errors (e.g., ECC errors in case of NAND) while reading the data 62 * area. Otherwise UBI assumes corruption type 1. So the decision criteria 63 * are as follows. 64 * o If the data area contains only 0xFFs, there are no data, and it is safe 65 * to just erase this PEB - this is corruption type 1. 66 * o If the data area has bit-flips or data integrity errors (ECC errors on 67 * NAND), it is probably a PEB which was being erased when power cut 68 * happened, so this is corruption type 1. However, this is just a guess, 69 * which might be wrong. 70 * o Otherwise this is corruption type 2. 71 */ 72 73 #ifndef __UBOOT__ 74 #include <linux/err.h> 75 #include <linux/slab.h> 76 #include <linux/crc32.h> 77 #include <linux/random.h> 78 #else 79 #include <div64.h> 80 #include <linux/err.h> 81 #endif 82 83 #include <linux/math64.h> 84 85 #include <ubi_uboot.h> 86 #include "ubi.h" 87 88 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai); 89 90 /* Temporary variables used during scanning */ 91 static struct ubi_ec_hdr *ech; 92 static struct ubi_vid_hdr *vidh; 93 94 /** 95 * add_to_list - add physical eraseblock to a list. 96 * @ai: attaching information 97 * @pnum: physical eraseblock number to add 98 * @vol_id: the last used volume id for the PEB 99 * @lnum: the last used LEB number for the PEB 100 * @ec: erase counter of the physical eraseblock 101 * @to_head: if not zero, add to the head of the list 102 * @list: the list to add to 103 * 104 * This function allocates a 'struct ubi_ainf_peb' object for physical 105 * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists. 106 * It stores the @lnum and @vol_id alongside, which can both be 107 * %UBI_UNKNOWN if they are not available, not readable, or not assigned. 108 * If @to_head is not zero, PEB will be added to the head of the list, which 109 * basically means it will be processed first later. E.g., we add corrupted 110 * PEBs (corrupted due to power cuts) to the head of the erase list to make 111 * sure we erase them first and get rid of corruptions ASAP. This function 112 * returns zero in case of success and a negative error code in case of 113 * failure. 114 */ 115 static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id, 116 int lnum, int ec, int to_head, struct list_head *list) 117 { 118 struct ubi_ainf_peb *aeb; 119 120 if (list == &ai->free) { 121 dbg_bld("add to free: PEB %d, EC %d", pnum, ec); 122 } else if (list == &ai->erase) { 123 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec); 124 } else if (list == &ai->alien) { 125 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec); 126 ai->alien_peb_count += 1; 127 } else 128 BUG(); 129 130 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL); 131 if (!aeb) 132 return -ENOMEM; 133 134 aeb->pnum = pnum; 135 aeb->vol_id = vol_id; 136 aeb->lnum = lnum; 137 aeb->ec = ec; 138 if (to_head) 139 list_add(&aeb->u.list, list); 140 else 141 list_add_tail(&aeb->u.list, list); 142 return 0; 143 } 144 145 /** 146 * add_corrupted - add a corrupted physical eraseblock. 147 * @ai: attaching information 148 * @pnum: physical eraseblock number to add 149 * @ec: erase counter of the physical eraseblock 150 * 151 * This function allocates a 'struct ubi_ainf_peb' object for a corrupted 152 * physical eraseblock @pnum and adds it to the 'corr' list. The corruption 153 * was presumably not caused by a power cut. Returns zero in case of success 154 * and a negative error code in case of failure. 155 */ 156 static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec) 157 { 158 struct ubi_ainf_peb *aeb; 159 160 dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec); 161 162 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL); 163 if (!aeb) 164 return -ENOMEM; 165 166 ai->corr_peb_count += 1; 167 aeb->pnum = pnum; 168 aeb->ec = ec; 169 list_add(&aeb->u.list, &ai->corr); 170 return 0; 171 } 172 173 /** 174 * validate_vid_hdr - check volume identifier header. 175 * @ubi: UBI device description object 176 * @vid_hdr: the volume identifier header to check 177 * @av: information about the volume this logical eraseblock belongs to 178 * @pnum: physical eraseblock number the VID header came from 179 * 180 * This function checks that data stored in @vid_hdr is consistent. Returns 181 * non-zero if an inconsistency was found and zero if not. 182 * 183 * Note, UBI does sanity check of everything it reads from the flash media. 184 * Most of the checks are done in the I/O sub-system. Here we check that the 185 * information in the VID header is consistent to the information in other VID 186 * headers of the same volume. 187 */ 188 static int validate_vid_hdr(const struct ubi_device *ubi, 189 const struct ubi_vid_hdr *vid_hdr, 190 const struct ubi_ainf_volume *av, int pnum) 191 { 192 int vol_type = vid_hdr->vol_type; 193 int vol_id = be32_to_cpu(vid_hdr->vol_id); 194 int used_ebs = be32_to_cpu(vid_hdr->used_ebs); 195 int data_pad = be32_to_cpu(vid_hdr->data_pad); 196 197 if (av->leb_count != 0) { 198 int av_vol_type; 199 200 /* 201 * This is not the first logical eraseblock belonging to this 202 * volume. Ensure that the data in its VID header is consistent 203 * to the data in previous logical eraseblock headers. 204 */ 205 206 if (vol_id != av->vol_id) { 207 ubi_err(ubi, "inconsistent vol_id"); 208 goto bad; 209 } 210 211 if (av->vol_type == UBI_STATIC_VOLUME) 212 av_vol_type = UBI_VID_STATIC; 213 else 214 av_vol_type = UBI_VID_DYNAMIC; 215 216 if (vol_type != av_vol_type) { 217 ubi_err(ubi, "inconsistent vol_type"); 218 goto bad; 219 } 220 221 if (used_ebs != av->used_ebs) { 222 ubi_err(ubi, "inconsistent used_ebs"); 223 goto bad; 224 } 225 226 if (data_pad != av->data_pad) { 227 ubi_err(ubi, "inconsistent data_pad"); 228 goto bad; 229 } 230 } 231 232 return 0; 233 234 bad: 235 ubi_err(ubi, "inconsistent VID header at PEB %d", pnum); 236 ubi_dump_vid_hdr(vid_hdr); 237 ubi_dump_av(av); 238 return -EINVAL; 239 } 240 241 /** 242 * add_volume - add volume to the attaching information. 243 * @ai: attaching information 244 * @vol_id: ID of the volume to add 245 * @pnum: physical eraseblock number 246 * @vid_hdr: volume identifier header 247 * 248 * If the volume corresponding to the @vid_hdr logical eraseblock is already 249 * present in the attaching information, this function does nothing. Otherwise 250 * it adds corresponding volume to the attaching information. Returns a pointer 251 * to the allocated "av" object in case of success and a negative error code in 252 * case of failure. 253 */ 254 static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai, 255 int vol_id, int pnum, 256 const struct ubi_vid_hdr *vid_hdr) 257 { 258 struct ubi_ainf_volume *av; 259 struct rb_node **p = &ai->volumes.rb_node, *parent = NULL; 260 261 ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id)); 262 263 /* Walk the volume RB-tree to look if this volume is already present */ 264 while (*p) { 265 parent = *p; 266 av = rb_entry(parent, struct ubi_ainf_volume, rb); 267 268 if (vol_id == av->vol_id) 269 return av; 270 271 if (vol_id > av->vol_id) 272 p = &(*p)->rb_left; 273 else 274 p = &(*p)->rb_right; 275 } 276 277 /* The volume is absent - add it */ 278 av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL); 279 if (!av) 280 return ERR_PTR(-ENOMEM); 281 282 av->highest_lnum = av->leb_count = 0; 283 av->vol_id = vol_id; 284 av->root = RB_ROOT; 285 av->used_ebs = be32_to_cpu(vid_hdr->used_ebs); 286 av->data_pad = be32_to_cpu(vid_hdr->data_pad); 287 av->compat = vid_hdr->compat; 288 av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME 289 : UBI_STATIC_VOLUME; 290 if (vol_id > ai->highest_vol_id) 291 ai->highest_vol_id = vol_id; 292 293 rb_link_node(&av->rb, parent, p); 294 rb_insert_color(&av->rb, &ai->volumes); 295 ai->vols_found += 1; 296 dbg_bld("added volume %d", vol_id); 297 return av; 298 } 299 300 /** 301 * ubi_compare_lebs - find out which logical eraseblock is newer. 302 * @ubi: UBI device description object 303 * @aeb: first logical eraseblock to compare 304 * @pnum: physical eraseblock number of the second logical eraseblock to 305 * compare 306 * @vid_hdr: volume identifier header of the second logical eraseblock 307 * 308 * This function compares 2 copies of a LEB and informs which one is newer. In 309 * case of success this function returns a positive value, in case of failure, a 310 * negative error code is returned. The success return codes use the following 311 * bits: 312 * o bit 0 is cleared: the first PEB (described by @aeb) is newer than the 313 * second PEB (described by @pnum and @vid_hdr); 314 * o bit 0 is set: the second PEB is newer; 315 * o bit 1 is cleared: no bit-flips were detected in the newer LEB; 316 * o bit 1 is set: bit-flips were detected in the newer LEB; 317 * o bit 2 is cleared: the older LEB is not corrupted; 318 * o bit 2 is set: the older LEB is corrupted. 319 */ 320 int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb, 321 int pnum, const struct ubi_vid_hdr *vid_hdr) 322 { 323 int len, err, second_is_newer, bitflips = 0, corrupted = 0; 324 uint32_t data_crc, crc; 325 struct ubi_vid_hdr *vh = NULL; 326 unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum); 327 328 if (sqnum2 == aeb->sqnum) { 329 /* 330 * This must be a really ancient UBI image which has been 331 * created before sequence numbers support has been added. At 332 * that times we used 32-bit LEB versions stored in logical 333 * eraseblocks. That was before UBI got into mainline. We do not 334 * support these images anymore. Well, those images still work, 335 * but only if no unclean reboots happened. 336 */ 337 ubi_err(ubi, "unsupported on-flash UBI format"); 338 return -EINVAL; 339 } 340 341 /* Obviously the LEB with lower sequence counter is older */ 342 second_is_newer = (sqnum2 > aeb->sqnum); 343 344 /* 345 * Now we know which copy is newer. If the copy flag of the PEB with 346 * newer version is not set, then we just return, otherwise we have to 347 * check data CRC. For the second PEB we already have the VID header, 348 * for the first one - we'll need to re-read it from flash. 349 * 350 * Note: this may be optimized so that we wouldn't read twice. 351 */ 352 353 if (second_is_newer) { 354 if (!vid_hdr->copy_flag) { 355 /* It is not a copy, so it is newer */ 356 dbg_bld("second PEB %d is newer, copy_flag is unset", 357 pnum); 358 return 1; 359 } 360 } else { 361 if (!aeb->copy_flag) { 362 /* It is not a copy, so it is newer */ 363 dbg_bld("first PEB %d is newer, copy_flag is unset", 364 pnum); 365 return bitflips << 1; 366 } 367 368 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); 369 if (!vh) 370 return -ENOMEM; 371 372 pnum = aeb->pnum; 373 err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0); 374 if (err) { 375 if (err == UBI_IO_BITFLIPS) 376 bitflips = 1; 377 else { 378 ubi_err(ubi, "VID of PEB %d header is bad, but it was OK earlier, err %d", 379 pnum, err); 380 if (err > 0) 381 err = -EIO; 382 383 goto out_free_vidh; 384 } 385 } 386 387 vid_hdr = vh; 388 } 389 390 /* Read the data of the copy and check the CRC */ 391 392 len = be32_to_cpu(vid_hdr->data_size); 393 394 mutex_lock(&ubi->buf_mutex); 395 err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, len); 396 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) 397 goto out_unlock; 398 399 data_crc = be32_to_cpu(vid_hdr->data_crc); 400 crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, len); 401 if (crc != data_crc) { 402 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x", 403 pnum, crc, data_crc); 404 corrupted = 1; 405 bitflips = 0; 406 second_is_newer = !second_is_newer; 407 } else { 408 dbg_bld("PEB %d CRC is OK", pnum); 409 bitflips |= !!err; 410 } 411 mutex_unlock(&ubi->buf_mutex); 412 413 ubi_free_vid_hdr(ubi, vh); 414 415 if (second_is_newer) 416 dbg_bld("second PEB %d is newer, copy_flag is set", pnum); 417 else 418 dbg_bld("first PEB %d is newer, copy_flag is set", pnum); 419 420 return second_is_newer | (bitflips << 1) | (corrupted << 2); 421 422 out_unlock: 423 mutex_unlock(&ubi->buf_mutex); 424 out_free_vidh: 425 ubi_free_vid_hdr(ubi, vh); 426 return err; 427 } 428 429 /** 430 * ubi_add_to_av - add used physical eraseblock to the attaching information. 431 * @ubi: UBI device description object 432 * @ai: attaching information 433 * @pnum: the physical eraseblock number 434 * @ec: erase counter 435 * @vid_hdr: the volume identifier header 436 * @bitflips: if bit-flips were detected when this physical eraseblock was read 437 * 438 * This function adds information about a used physical eraseblock to the 439 * 'used' tree of the corresponding volume. The function is rather complex 440 * because it has to handle cases when this is not the first physical 441 * eraseblock belonging to the same logical eraseblock, and the newer one has 442 * to be picked, while the older one has to be dropped. This function returns 443 * zero in case of success and a negative error code in case of failure. 444 */ 445 int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum, 446 int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips) 447 { 448 int err, vol_id, lnum; 449 unsigned long long sqnum; 450 struct ubi_ainf_volume *av; 451 struct ubi_ainf_peb *aeb; 452 struct rb_node **p, *parent = NULL; 453 454 vol_id = be32_to_cpu(vid_hdr->vol_id); 455 lnum = be32_to_cpu(vid_hdr->lnum); 456 sqnum = be64_to_cpu(vid_hdr->sqnum); 457 458 dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d", 459 pnum, vol_id, lnum, ec, sqnum, bitflips); 460 461 av = add_volume(ai, vol_id, pnum, vid_hdr); 462 if (IS_ERR(av)) 463 return PTR_ERR(av); 464 465 if (ai->max_sqnum < sqnum) 466 ai->max_sqnum = sqnum; 467 468 /* 469 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look 470 * if this is the first instance of this logical eraseblock or not. 471 */ 472 p = &av->root.rb_node; 473 while (*p) { 474 int cmp_res; 475 476 parent = *p; 477 aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb); 478 if (lnum != aeb->lnum) { 479 if (lnum < aeb->lnum) 480 p = &(*p)->rb_left; 481 else 482 p = &(*p)->rb_right; 483 continue; 484 } 485 486 /* 487 * There is already a physical eraseblock describing the same 488 * logical eraseblock present. 489 */ 490 491 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d", 492 aeb->pnum, aeb->sqnum, aeb->ec); 493 494 /* 495 * Make sure that the logical eraseblocks have different 496 * sequence numbers. Otherwise the image is bad. 497 * 498 * However, if the sequence number is zero, we assume it must 499 * be an ancient UBI image from the era when UBI did not have 500 * sequence numbers. We still can attach these images, unless 501 * there is a need to distinguish between old and new 502 * eraseblocks, in which case we'll refuse the image in 503 * 'ubi_compare_lebs()'. In other words, we attach old clean 504 * images, but refuse attaching old images with duplicated 505 * logical eraseblocks because there was an unclean reboot. 506 */ 507 if (aeb->sqnum == sqnum && sqnum != 0) { 508 ubi_err(ubi, "two LEBs with same sequence number %llu", 509 sqnum); 510 ubi_dump_aeb(aeb, 0); 511 ubi_dump_vid_hdr(vid_hdr); 512 return -EINVAL; 513 } 514 515 /* 516 * Now we have to drop the older one and preserve the newer 517 * one. 518 */ 519 cmp_res = ubi_compare_lebs(ubi, aeb, pnum, vid_hdr); 520 if (cmp_res < 0) 521 return cmp_res; 522 523 if (cmp_res & 1) { 524 /* 525 * This logical eraseblock is newer than the one 526 * found earlier. 527 */ 528 err = validate_vid_hdr(ubi, vid_hdr, av, pnum); 529 if (err) 530 return err; 531 532 err = add_to_list(ai, aeb->pnum, aeb->vol_id, 533 aeb->lnum, aeb->ec, cmp_res & 4, 534 &ai->erase); 535 if (err) 536 return err; 537 538 aeb->ec = ec; 539 aeb->pnum = pnum; 540 aeb->vol_id = vol_id; 541 aeb->lnum = lnum; 542 aeb->scrub = ((cmp_res & 2) || bitflips); 543 aeb->copy_flag = vid_hdr->copy_flag; 544 aeb->sqnum = sqnum; 545 546 if (av->highest_lnum == lnum) 547 av->last_data_size = 548 be32_to_cpu(vid_hdr->data_size); 549 550 return 0; 551 } else { 552 /* 553 * This logical eraseblock is older than the one found 554 * previously. 555 */ 556 return add_to_list(ai, pnum, vol_id, lnum, ec, 557 cmp_res & 4, &ai->erase); 558 } 559 } 560 561 /* 562 * We've met this logical eraseblock for the first time, add it to the 563 * attaching information. 564 */ 565 566 err = validate_vid_hdr(ubi, vid_hdr, av, pnum); 567 if (err) 568 return err; 569 570 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL); 571 if (!aeb) 572 return -ENOMEM; 573 574 aeb->ec = ec; 575 aeb->pnum = pnum; 576 aeb->vol_id = vol_id; 577 aeb->lnum = lnum; 578 aeb->scrub = bitflips; 579 aeb->copy_flag = vid_hdr->copy_flag; 580 aeb->sqnum = sqnum; 581 582 if (av->highest_lnum <= lnum) { 583 av->highest_lnum = lnum; 584 av->last_data_size = be32_to_cpu(vid_hdr->data_size); 585 } 586 587 av->leb_count += 1; 588 rb_link_node(&aeb->u.rb, parent, p); 589 rb_insert_color(&aeb->u.rb, &av->root); 590 return 0; 591 } 592 593 /** 594 * ubi_find_av - find volume in the attaching information. 595 * @ai: attaching information 596 * @vol_id: the requested volume ID 597 * 598 * This function returns a pointer to the volume description or %NULL if there 599 * are no data about this volume in the attaching information. 600 */ 601 struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai, 602 int vol_id) 603 { 604 struct ubi_ainf_volume *av; 605 struct rb_node *p = ai->volumes.rb_node; 606 607 while (p) { 608 av = rb_entry(p, struct ubi_ainf_volume, rb); 609 610 if (vol_id == av->vol_id) 611 return av; 612 613 if (vol_id > av->vol_id) 614 p = p->rb_left; 615 else 616 p = p->rb_right; 617 } 618 619 return NULL; 620 } 621 622 /** 623 * ubi_remove_av - delete attaching information about a volume. 624 * @ai: attaching information 625 * @av: the volume attaching information to delete 626 */ 627 void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av) 628 { 629 struct rb_node *rb; 630 struct ubi_ainf_peb *aeb; 631 632 dbg_bld("remove attaching information about volume %d", av->vol_id); 633 634 while ((rb = rb_first(&av->root))) { 635 aeb = rb_entry(rb, struct ubi_ainf_peb, u.rb); 636 rb_erase(&aeb->u.rb, &av->root); 637 list_add_tail(&aeb->u.list, &ai->erase); 638 } 639 640 rb_erase(&av->rb, &ai->volumes); 641 kfree(av); 642 ai->vols_found -= 1; 643 } 644 645 /** 646 * early_erase_peb - erase a physical eraseblock. 647 * @ubi: UBI device description object 648 * @ai: attaching information 649 * @pnum: physical eraseblock number to erase; 650 * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown) 651 * 652 * This function erases physical eraseblock 'pnum', and writes the erase 653 * counter header to it. This function should only be used on UBI device 654 * initialization stages, when the EBA sub-system had not been yet initialized. 655 * This function returns zero in case of success and a negative error code in 656 * case of failure. 657 */ 658 static int early_erase_peb(struct ubi_device *ubi, 659 const struct ubi_attach_info *ai, int pnum, int ec) 660 { 661 int err; 662 struct ubi_ec_hdr *ec_hdr; 663 664 if ((long long)ec >= UBI_MAX_ERASECOUNTER) { 665 /* 666 * Erase counter overflow. Upgrade UBI and use 64-bit 667 * erase counters internally. 668 */ 669 ubi_err(ubi, "erase counter overflow at PEB %d, EC %d", 670 pnum, ec); 671 return -EINVAL; 672 } 673 674 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); 675 if (!ec_hdr) 676 return -ENOMEM; 677 678 ec_hdr->ec = cpu_to_be64(ec); 679 680 err = ubi_io_sync_erase(ubi, pnum, 0); 681 if (err < 0) 682 goto out_free; 683 684 err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr); 685 686 out_free: 687 kfree(ec_hdr); 688 return err; 689 } 690 691 /** 692 * ubi_early_get_peb - get a free physical eraseblock. 693 * @ubi: UBI device description object 694 * @ai: attaching information 695 * 696 * This function returns a free physical eraseblock. It is supposed to be 697 * called on the UBI initialization stages when the wear-leveling sub-system is 698 * not initialized yet. This function picks a physical eraseblocks from one of 699 * the lists, writes the EC header if it is needed, and removes it from the 700 * list. 701 * 702 * This function returns a pointer to the "aeb" of the found free PEB in case 703 * of success and an error code in case of failure. 704 */ 705 struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi, 706 struct ubi_attach_info *ai) 707 { 708 int err = 0; 709 struct ubi_ainf_peb *aeb, *tmp_aeb; 710 711 if (!list_empty(&ai->free)) { 712 aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list); 713 list_del(&aeb->u.list); 714 dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec); 715 return aeb; 716 } 717 718 /* 719 * We try to erase the first physical eraseblock from the erase list 720 * and pick it if we succeed, or try to erase the next one if not. And 721 * so forth. We don't want to take care about bad eraseblocks here - 722 * they'll be handled later. 723 */ 724 list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) { 725 if (aeb->ec == UBI_UNKNOWN) 726 aeb->ec = ai->mean_ec; 727 728 err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1); 729 if (err) 730 continue; 731 732 aeb->ec += 1; 733 list_del(&aeb->u.list); 734 dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec); 735 return aeb; 736 } 737 738 ubi_err(ubi, "no free eraseblocks"); 739 return ERR_PTR(-ENOSPC); 740 } 741 742 /** 743 * check_corruption - check the data area of PEB. 744 * @ubi: UBI device description object 745 * @vid_hdr: the (corrupted) VID header of this PEB 746 * @pnum: the physical eraseblock number to check 747 * 748 * This is a helper function which is used to distinguish between VID header 749 * corruptions caused by power cuts and other reasons. If the PEB contains only 750 * 0xFF bytes in the data area, the VID header is most probably corrupted 751 * because of a power cut (%0 is returned in this case). Otherwise, it was 752 * probably corrupted for some other reasons (%1 is returned in this case). A 753 * negative error code is returned if a read error occurred. 754 * 755 * If the corruption reason was a power cut, UBI can safely erase this PEB. 756 * Otherwise, it should preserve it to avoid possibly destroying important 757 * information. 758 */ 759 static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr, 760 int pnum) 761 { 762 int err; 763 764 mutex_lock(&ubi->buf_mutex); 765 memset(ubi->peb_buf, 0x00, ubi->leb_size); 766 767 err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start, 768 ubi->leb_size); 769 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) { 770 /* 771 * Bit-flips or integrity errors while reading the data area. 772 * It is difficult to say for sure what type of corruption is 773 * this, but presumably a power cut happened while this PEB was 774 * erased, so it became unstable and corrupted, and should be 775 * erased. 776 */ 777 err = 0; 778 goto out_unlock; 779 } 780 781 if (err) 782 goto out_unlock; 783 784 if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size)) 785 goto out_unlock; 786 787 ubi_err(ubi, "PEB %d contains corrupted VID header, and the data does not contain all 0xFF", 788 pnum); 789 ubi_err(ubi, "this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection"); 790 ubi_dump_vid_hdr(vid_hdr); 791 pr_err("hexdump of PEB %d offset %d, length %d", 792 pnum, ubi->leb_start, ubi->leb_size); 793 ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 794 ubi->peb_buf, ubi->leb_size, 1); 795 err = 1; 796 797 out_unlock: 798 mutex_unlock(&ubi->buf_mutex); 799 return err; 800 } 801 802 /** 803 * scan_peb - scan and process UBI headers of a PEB. 804 * @ubi: UBI device description object 805 * @ai: attaching information 806 * @pnum: the physical eraseblock number 807 * @vid: The volume ID of the found volume will be stored in this pointer 808 * @sqnum: The sqnum of the found volume will be stored in this pointer 809 * 810 * This function reads UBI headers of PEB @pnum, checks them, and adds 811 * information about this PEB to the corresponding list or RB-tree in the 812 * "attaching info" structure. Returns zero if the physical eraseblock was 813 * successfully handled and a negative error code in case of failure. 814 */ 815 static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai, 816 int pnum, int *vid, unsigned long long *sqnum) 817 { 818 long long uninitialized_var(ec); 819 int err, bitflips = 0, vol_id = -1, ec_err = 0; 820 821 dbg_bld("scan PEB %d", pnum); 822 823 /* Skip bad physical eraseblocks */ 824 err = ubi_io_is_bad(ubi, pnum); 825 if (err < 0) 826 return err; 827 else if (err) { 828 ai->bad_peb_count += 1; 829 return 0; 830 } 831 832 err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0); 833 if (err < 0) 834 return err; 835 switch (err) { 836 case 0: 837 break; 838 case UBI_IO_BITFLIPS: 839 bitflips = 1; 840 break; 841 case UBI_IO_FF: 842 ai->empty_peb_count += 1; 843 return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN, 844 UBI_UNKNOWN, 0, &ai->erase); 845 case UBI_IO_FF_BITFLIPS: 846 ai->empty_peb_count += 1; 847 return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN, 848 UBI_UNKNOWN, 1, &ai->erase); 849 case UBI_IO_BAD_HDR_EBADMSG: 850 case UBI_IO_BAD_HDR: 851 /* 852 * We have to also look at the VID header, possibly it is not 853 * corrupted. Set %bitflips flag in order to make this PEB be 854 * moved and EC be re-created. 855 */ 856 ec_err = err; 857 ec = UBI_UNKNOWN; 858 bitflips = 1; 859 break; 860 default: 861 ubi_err(ubi, "'ubi_io_read_ec_hdr()' returned unknown code %d", 862 err); 863 return -EINVAL; 864 } 865 866 if (!ec_err) { 867 int image_seq; 868 869 /* Make sure UBI version is OK */ 870 if (ech->version != UBI_VERSION) { 871 ubi_err(ubi, "this UBI version is %d, image version is %d", 872 UBI_VERSION, (int)ech->version); 873 return -EINVAL; 874 } 875 876 ec = be64_to_cpu(ech->ec); 877 if (ec > UBI_MAX_ERASECOUNTER) { 878 /* 879 * Erase counter overflow. The EC headers have 64 bits 880 * reserved, but we anyway make use of only 31 bit 881 * values, as this seems to be enough for any existing 882 * flash. Upgrade UBI and use 64-bit erase counters 883 * internally. 884 */ 885 ubi_err(ubi, "erase counter overflow, max is %d", 886 UBI_MAX_ERASECOUNTER); 887 ubi_dump_ec_hdr(ech); 888 return -EINVAL; 889 } 890 891 /* 892 * Make sure that all PEBs have the same image sequence number. 893 * This allows us to detect situations when users flash UBI 894 * images incorrectly, so that the flash has the new UBI image 895 * and leftovers from the old one. This feature was added 896 * relatively recently, and the sequence number was always 897 * zero, because old UBI implementations always set it to zero. 898 * For this reasons, we do not panic if some PEBs have zero 899 * sequence number, while other PEBs have non-zero sequence 900 * number. 901 */ 902 image_seq = be32_to_cpu(ech->image_seq); 903 if (!ubi->image_seq) 904 ubi->image_seq = image_seq; 905 if (image_seq && ubi->image_seq != image_seq) { 906 ubi_err(ubi, "bad image sequence number %d in PEB %d, expected %d", 907 image_seq, pnum, ubi->image_seq); 908 ubi_dump_ec_hdr(ech); 909 return -EINVAL; 910 } 911 } 912 913 /* OK, we've done with the EC header, let's look at the VID header */ 914 915 err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0); 916 if (err < 0) 917 return err; 918 switch (err) { 919 case 0: 920 break; 921 case UBI_IO_BITFLIPS: 922 bitflips = 1; 923 break; 924 case UBI_IO_BAD_HDR_EBADMSG: 925 if (ec_err == UBI_IO_BAD_HDR_EBADMSG) 926 /* 927 * Both EC and VID headers are corrupted and were read 928 * with data integrity error, probably this is a bad 929 * PEB, bit it is not marked as bad yet. This may also 930 * be a result of power cut during erasure. 931 */ 932 ai->maybe_bad_peb_count += 1; 933 case UBI_IO_BAD_HDR: 934 if (ec_err) 935 /* 936 * Both headers are corrupted. There is a possibility 937 * that this a valid UBI PEB which has corresponding 938 * LEB, but the headers are corrupted. However, it is 939 * impossible to distinguish it from a PEB which just 940 * contains garbage because of a power cut during erase 941 * operation. So we just schedule this PEB for erasure. 942 * 943 * Besides, in case of NOR flash, we deliberately 944 * corrupt both headers because NOR flash erasure is 945 * slow and can start from the end. 946 */ 947 err = 0; 948 else 949 /* 950 * The EC was OK, but the VID header is corrupted. We 951 * have to check what is in the data area. 952 */ 953 err = check_corruption(ubi, vidh, pnum); 954 955 if (err < 0) 956 return err; 957 else if (!err) 958 /* This corruption is caused by a power cut */ 959 err = add_to_list(ai, pnum, UBI_UNKNOWN, 960 UBI_UNKNOWN, ec, 1, &ai->erase); 961 else 962 /* This is an unexpected corruption */ 963 err = add_corrupted(ai, pnum, ec); 964 if (err) 965 return err; 966 goto adjust_mean_ec; 967 case UBI_IO_FF_BITFLIPS: 968 err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN, 969 ec, 1, &ai->erase); 970 if (err) 971 return err; 972 goto adjust_mean_ec; 973 case UBI_IO_FF: 974 if (ec_err || bitflips) 975 err = add_to_list(ai, pnum, UBI_UNKNOWN, 976 UBI_UNKNOWN, ec, 1, &ai->erase); 977 else 978 err = add_to_list(ai, pnum, UBI_UNKNOWN, 979 UBI_UNKNOWN, ec, 0, &ai->free); 980 if (err) 981 return err; 982 goto adjust_mean_ec; 983 default: 984 ubi_err(ubi, "'ubi_io_read_vid_hdr()' returned unknown code %d", 985 err); 986 return -EINVAL; 987 } 988 989 vol_id = be32_to_cpu(vidh->vol_id); 990 if (vid) 991 *vid = vol_id; 992 if (sqnum) 993 *sqnum = be64_to_cpu(vidh->sqnum); 994 if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) { 995 int lnum = be32_to_cpu(vidh->lnum); 996 997 /* Unsupported internal volume */ 998 switch (vidh->compat) { 999 case UBI_COMPAT_DELETE: 1000 if (vol_id != UBI_FM_SB_VOLUME_ID 1001 && vol_id != UBI_FM_DATA_VOLUME_ID) { 1002 ubi_msg(ubi, "\"delete\" compatible internal volume %d:%d found, will remove it", 1003 vol_id, lnum); 1004 } 1005 err = add_to_list(ai, pnum, vol_id, lnum, 1006 ec, 1, &ai->erase); 1007 if (err) 1008 return err; 1009 return 0; 1010 1011 case UBI_COMPAT_RO: 1012 ubi_msg(ubi, "read-only compatible internal volume %d:%d found, switch to read-only mode", 1013 vol_id, lnum); 1014 ubi->ro_mode = 1; 1015 break; 1016 1017 case UBI_COMPAT_PRESERVE: 1018 ubi_msg(ubi, "\"preserve\" compatible internal volume %d:%d found", 1019 vol_id, lnum); 1020 err = add_to_list(ai, pnum, vol_id, lnum, 1021 ec, 0, &ai->alien); 1022 if (err) 1023 return err; 1024 return 0; 1025 1026 case UBI_COMPAT_REJECT: 1027 ubi_err(ubi, "incompatible internal volume %d:%d found", 1028 vol_id, lnum); 1029 return -EINVAL; 1030 } 1031 } 1032 1033 if (ec_err) 1034 ubi_warn(ubi, "valid VID header but corrupted EC header at PEB %d", 1035 pnum); 1036 err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips); 1037 if (err) 1038 return err; 1039 1040 adjust_mean_ec: 1041 if (!ec_err) { 1042 ai->ec_sum += ec; 1043 ai->ec_count += 1; 1044 if (ec > ai->max_ec) 1045 ai->max_ec = ec; 1046 if (ec < ai->min_ec) 1047 ai->min_ec = ec; 1048 } 1049 1050 return 0; 1051 } 1052 1053 /** 1054 * late_analysis - analyze the overall situation with PEB. 1055 * @ubi: UBI device description object 1056 * @ai: attaching information 1057 * 1058 * This is a helper function which takes a look what PEBs we have after we 1059 * gather information about all of them ("ai" is compete). It decides whether 1060 * the flash is empty and should be formatted of whether there are too many 1061 * corrupted PEBs and we should not attach this MTD device. Returns zero if we 1062 * should proceed with attaching the MTD device, and %-EINVAL if we should not. 1063 */ 1064 static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai) 1065 { 1066 struct ubi_ainf_peb *aeb; 1067 int max_corr, peb_count; 1068 1069 peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count; 1070 max_corr = peb_count / 20 ?: 8; 1071 1072 /* 1073 * Few corrupted PEBs is not a problem and may be just a result of 1074 * unclean reboots. However, many of them may indicate some problems 1075 * with the flash HW or driver. 1076 */ 1077 if (ai->corr_peb_count) { 1078 ubi_err(ubi, "%d PEBs are corrupted and preserved", 1079 ai->corr_peb_count); 1080 pr_err("Corrupted PEBs are:"); 1081 list_for_each_entry(aeb, &ai->corr, u.list) 1082 pr_cont(" %d", aeb->pnum); 1083 pr_cont("\n"); 1084 1085 /* 1086 * If too many PEBs are corrupted, we refuse attaching, 1087 * otherwise, only print a warning. 1088 */ 1089 if (ai->corr_peb_count >= max_corr) { 1090 ubi_err(ubi, "too many corrupted PEBs, refusing"); 1091 return -EINVAL; 1092 } 1093 } 1094 1095 if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) { 1096 /* 1097 * All PEBs are empty, or almost all - a couple PEBs look like 1098 * they may be bad PEBs which were not marked as bad yet. 1099 * 1100 * This piece of code basically tries to distinguish between 1101 * the following situations: 1102 * 1103 * 1. Flash is empty, but there are few bad PEBs, which are not 1104 * marked as bad so far, and which were read with error. We 1105 * want to go ahead and format this flash. While formatting, 1106 * the faulty PEBs will probably be marked as bad. 1107 * 1108 * 2. Flash contains non-UBI data and we do not want to format 1109 * it and destroy possibly important information. 1110 */ 1111 if (ai->maybe_bad_peb_count <= 2) { 1112 ai->is_empty = 1; 1113 ubi_msg(ubi, "empty MTD device detected"); 1114 get_random_bytes(&ubi->image_seq, 1115 sizeof(ubi->image_seq)); 1116 } else { 1117 ubi_err(ubi, "MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it"); 1118 return -EINVAL; 1119 } 1120 1121 } 1122 1123 return 0; 1124 } 1125 1126 /** 1127 * destroy_av - free volume attaching information. 1128 * @av: volume attaching information 1129 * @ai: attaching information 1130 * 1131 * This function destroys the volume attaching information. 1132 */ 1133 static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av) 1134 { 1135 struct ubi_ainf_peb *aeb; 1136 struct rb_node *this = av->root.rb_node; 1137 1138 while (this) { 1139 if (this->rb_left) 1140 this = this->rb_left; 1141 else if (this->rb_right) 1142 this = this->rb_right; 1143 else { 1144 aeb = rb_entry(this, struct ubi_ainf_peb, u.rb); 1145 this = rb_parent(this); 1146 if (this) { 1147 if (this->rb_left == &aeb->u.rb) 1148 this->rb_left = NULL; 1149 else 1150 this->rb_right = NULL; 1151 } 1152 1153 kmem_cache_free(ai->aeb_slab_cache, aeb); 1154 } 1155 } 1156 kfree(av); 1157 } 1158 1159 /** 1160 * destroy_ai - destroy attaching information. 1161 * @ai: attaching information 1162 */ 1163 static void destroy_ai(struct ubi_attach_info *ai) 1164 { 1165 struct ubi_ainf_peb *aeb, *aeb_tmp; 1166 struct ubi_ainf_volume *av; 1167 struct rb_node *rb; 1168 1169 list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) { 1170 list_del(&aeb->u.list); 1171 kmem_cache_free(ai->aeb_slab_cache, aeb); 1172 } 1173 list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) { 1174 list_del(&aeb->u.list); 1175 kmem_cache_free(ai->aeb_slab_cache, aeb); 1176 } 1177 list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) { 1178 list_del(&aeb->u.list); 1179 kmem_cache_free(ai->aeb_slab_cache, aeb); 1180 } 1181 list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) { 1182 list_del(&aeb->u.list); 1183 kmem_cache_free(ai->aeb_slab_cache, aeb); 1184 } 1185 1186 /* Destroy the volume RB-tree */ 1187 rb = ai->volumes.rb_node; 1188 while (rb) { 1189 if (rb->rb_left) 1190 rb = rb->rb_left; 1191 else if (rb->rb_right) 1192 rb = rb->rb_right; 1193 else { 1194 av = rb_entry(rb, struct ubi_ainf_volume, rb); 1195 1196 rb = rb_parent(rb); 1197 if (rb) { 1198 if (rb->rb_left == &av->rb) 1199 rb->rb_left = NULL; 1200 else 1201 rb->rb_right = NULL; 1202 } 1203 1204 destroy_av(ai, av); 1205 } 1206 } 1207 1208 kmem_cache_destroy(ai->aeb_slab_cache); 1209 1210 kfree(ai); 1211 } 1212 1213 /** 1214 * scan_all - scan entire MTD device. 1215 * @ubi: UBI device description object 1216 * @ai: attach info object 1217 * @start: start scanning at this PEB 1218 * 1219 * This function does full scanning of an MTD device and returns complete 1220 * information about it in form of a "struct ubi_attach_info" object. In case 1221 * of failure, an error code is returned. 1222 */ 1223 static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai, 1224 int start) 1225 { 1226 int err, pnum; 1227 struct rb_node *rb1, *rb2; 1228 struct ubi_ainf_volume *av; 1229 struct ubi_ainf_peb *aeb; 1230 1231 err = -ENOMEM; 1232 1233 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); 1234 if (!ech) 1235 return err; 1236 1237 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); 1238 if (!vidh) 1239 goto out_ech; 1240 1241 for (pnum = start; pnum < ubi->peb_count; pnum++) { 1242 cond_resched(); 1243 1244 dbg_gen("process PEB %d", pnum); 1245 err = scan_peb(ubi, ai, pnum, NULL, NULL); 1246 if (err < 0) 1247 goto out_vidh; 1248 } 1249 1250 ubi_msg(ubi, "scanning is finished"); 1251 1252 /* Calculate mean erase counter */ 1253 if (ai->ec_count) 1254 ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count); 1255 1256 err = late_analysis(ubi, ai); 1257 if (err) 1258 goto out_vidh; 1259 1260 /* 1261 * In case of unknown erase counter we use the mean erase counter 1262 * value. 1263 */ 1264 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { 1265 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) 1266 if (aeb->ec == UBI_UNKNOWN) 1267 aeb->ec = ai->mean_ec; 1268 } 1269 1270 list_for_each_entry(aeb, &ai->free, u.list) { 1271 if (aeb->ec == UBI_UNKNOWN) 1272 aeb->ec = ai->mean_ec; 1273 } 1274 1275 list_for_each_entry(aeb, &ai->corr, u.list) 1276 if (aeb->ec == UBI_UNKNOWN) 1277 aeb->ec = ai->mean_ec; 1278 1279 list_for_each_entry(aeb, &ai->erase, u.list) 1280 if (aeb->ec == UBI_UNKNOWN) 1281 aeb->ec = ai->mean_ec; 1282 1283 err = self_check_ai(ubi, ai); 1284 if (err) 1285 goto out_vidh; 1286 1287 ubi_free_vid_hdr(ubi, vidh); 1288 kfree(ech); 1289 1290 return 0; 1291 1292 out_vidh: 1293 ubi_free_vid_hdr(ubi, vidh); 1294 out_ech: 1295 kfree(ech); 1296 return err; 1297 } 1298 1299 static struct ubi_attach_info *alloc_ai(void) 1300 { 1301 struct ubi_attach_info *ai; 1302 1303 ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL); 1304 if (!ai) 1305 return ai; 1306 1307 INIT_LIST_HEAD(&ai->corr); 1308 INIT_LIST_HEAD(&ai->free); 1309 INIT_LIST_HEAD(&ai->erase); 1310 INIT_LIST_HEAD(&ai->alien); 1311 ai->volumes = RB_ROOT; 1312 ai->aeb_slab_cache = kmem_cache_create("ubi_aeb_slab_cache", 1313 sizeof(struct ubi_ainf_peb), 1314 0, 0, NULL); 1315 if (!ai->aeb_slab_cache) { 1316 kfree(ai); 1317 ai = NULL; 1318 } 1319 1320 return ai; 1321 } 1322 1323 #ifdef CONFIG_MTD_UBI_FASTMAP 1324 1325 /** 1326 * scan_fastmap - try to find a fastmap and attach from it. 1327 * @ubi: UBI device description object 1328 * @ai: attach info object 1329 * 1330 * Returns 0 on success, negative return values indicate an internal 1331 * error. 1332 * UBI_NO_FASTMAP denotes that no fastmap was found. 1333 * UBI_BAD_FASTMAP denotes that the found fastmap was invalid. 1334 */ 1335 static int scan_fast(struct ubi_device *ubi, struct ubi_attach_info **ai) 1336 { 1337 int err, pnum, fm_anchor = -1; 1338 unsigned long long max_sqnum = 0; 1339 1340 err = -ENOMEM; 1341 1342 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); 1343 if (!ech) 1344 goto out; 1345 1346 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); 1347 if (!vidh) 1348 goto out_ech; 1349 1350 for (pnum = 0; pnum < UBI_FM_MAX_START; pnum++) { 1351 int vol_id = -1; 1352 unsigned long long sqnum = -1; 1353 cond_resched(); 1354 1355 dbg_gen("process PEB %d", pnum); 1356 err = scan_peb(ubi, *ai, pnum, &vol_id, &sqnum); 1357 if (err < 0) 1358 goto out_vidh; 1359 1360 if (vol_id == UBI_FM_SB_VOLUME_ID && sqnum > max_sqnum) { 1361 max_sqnum = sqnum; 1362 fm_anchor = pnum; 1363 } 1364 } 1365 1366 ubi_free_vid_hdr(ubi, vidh); 1367 kfree(ech); 1368 1369 if (fm_anchor < 0) 1370 return UBI_NO_FASTMAP; 1371 1372 destroy_ai(*ai); 1373 *ai = alloc_ai(); 1374 if (!*ai) 1375 return -ENOMEM; 1376 1377 return ubi_scan_fastmap(ubi, *ai, fm_anchor); 1378 1379 out_vidh: 1380 ubi_free_vid_hdr(ubi, vidh); 1381 out_ech: 1382 kfree(ech); 1383 out: 1384 return err; 1385 } 1386 1387 #endif 1388 1389 /** 1390 * ubi_attach - attach an MTD device. 1391 * @ubi: UBI device descriptor 1392 * @force_scan: if set to non-zero attach by scanning 1393 * 1394 * This function returns zero in case of success and a negative error code in 1395 * case of failure. 1396 */ 1397 int ubi_attach(struct ubi_device *ubi, int force_scan) 1398 { 1399 int err; 1400 struct ubi_attach_info *ai; 1401 1402 ai = alloc_ai(); 1403 if (!ai) 1404 return -ENOMEM; 1405 1406 #ifdef CONFIG_MTD_UBI_FASTMAP 1407 /* On small flash devices we disable fastmap in any case. */ 1408 if ((int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) <= UBI_FM_MAX_START) { 1409 ubi->fm_disabled = 1; 1410 force_scan = 1; 1411 } 1412 1413 if (force_scan) 1414 err = scan_all(ubi, ai, 0); 1415 else { 1416 err = scan_fast(ubi, &ai); 1417 if (err > 0 || mtd_is_eccerr(err)) { 1418 if (err != UBI_NO_FASTMAP) { 1419 destroy_ai(ai); 1420 ai = alloc_ai(); 1421 if (!ai) 1422 return -ENOMEM; 1423 1424 err = scan_all(ubi, ai, 0); 1425 } else { 1426 err = scan_all(ubi, ai, UBI_FM_MAX_START); 1427 } 1428 } 1429 } 1430 #else 1431 err = scan_all(ubi, ai, 0); 1432 #endif 1433 if (err) 1434 goto out_ai; 1435 1436 ubi->bad_peb_count = ai->bad_peb_count; 1437 ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count; 1438 ubi->corr_peb_count = ai->corr_peb_count; 1439 ubi->max_ec = ai->max_ec; 1440 ubi->mean_ec = ai->mean_ec; 1441 dbg_gen("max. sequence number: %llu", ai->max_sqnum); 1442 1443 err = ubi_read_volume_table(ubi, ai); 1444 if (err) 1445 goto out_ai; 1446 1447 err = ubi_wl_init(ubi, ai); 1448 if (err) 1449 goto out_vtbl; 1450 1451 err = ubi_eba_init(ubi, ai); 1452 if (err) 1453 goto out_wl; 1454 1455 #ifdef CONFIG_MTD_UBI_FASTMAP 1456 if (ubi->fm && ubi_dbg_chk_fastmap(ubi)) { 1457 struct ubi_attach_info *scan_ai; 1458 1459 scan_ai = alloc_ai(); 1460 if (!scan_ai) { 1461 err = -ENOMEM; 1462 goto out_wl; 1463 } 1464 1465 err = scan_all(ubi, scan_ai, 0); 1466 if (err) { 1467 destroy_ai(scan_ai); 1468 goto out_wl; 1469 } 1470 1471 err = self_check_eba(ubi, ai, scan_ai); 1472 destroy_ai(scan_ai); 1473 1474 if (err) 1475 goto out_wl; 1476 } 1477 #endif 1478 1479 destroy_ai(ai); 1480 return 0; 1481 1482 out_wl: 1483 ubi_wl_close(ubi); 1484 out_vtbl: 1485 ubi_free_internal_volumes(ubi); 1486 vfree(ubi->vtbl); 1487 out_ai: 1488 destroy_ai(ai); 1489 return err; 1490 } 1491 1492 /** 1493 * self_check_ai - check the attaching information. 1494 * @ubi: UBI device description object 1495 * @ai: attaching information 1496 * 1497 * This function returns zero if the attaching information is all right, and a 1498 * negative error code if not or if an error occurred. 1499 */ 1500 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai) 1501 { 1502 int pnum, err, vols_found = 0; 1503 struct rb_node *rb1, *rb2; 1504 struct ubi_ainf_volume *av; 1505 struct ubi_ainf_peb *aeb, *last_aeb; 1506 uint8_t *buf; 1507 1508 if (!ubi_dbg_chk_gen(ubi)) 1509 return 0; 1510 1511 /* 1512 * At first, check that attaching information is OK. 1513 */ 1514 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { 1515 int leb_count = 0; 1516 1517 cond_resched(); 1518 1519 vols_found += 1; 1520 1521 if (ai->is_empty) { 1522 ubi_err(ubi, "bad is_empty flag"); 1523 goto bad_av; 1524 } 1525 1526 if (av->vol_id < 0 || av->highest_lnum < 0 || 1527 av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 || 1528 av->data_pad < 0 || av->last_data_size < 0) { 1529 ubi_err(ubi, "negative values"); 1530 goto bad_av; 1531 } 1532 1533 if (av->vol_id >= UBI_MAX_VOLUMES && 1534 av->vol_id < UBI_INTERNAL_VOL_START) { 1535 ubi_err(ubi, "bad vol_id"); 1536 goto bad_av; 1537 } 1538 1539 if (av->vol_id > ai->highest_vol_id) { 1540 ubi_err(ubi, "highest_vol_id is %d, but vol_id %d is there", 1541 ai->highest_vol_id, av->vol_id); 1542 goto out; 1543 } 1544 1545 if (av->vol_type != UBI_DYNAMIC_VOLUME && 1546 av->vol_type != UBI_STATIC_VOLUME) { 1547 ubi_err(ubi, "bad vol_type"); 1548 goto bad_av; 1549 } 1550 1551 if (av->data_pad > ubi->leb_size / 2) { 1552 ubi_err(ubi, "bad data_pad"); 1553 goto bad_av; 1554 } 1555 1556 last_aeb = NULL; 1557 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { 1558 cond_resched(); 1559 1560 last_aeb = aeb; 1561 leb_count += 1; 1562 1563 if (aeb->pnum < 0 || aeb->ec < 0) { 1564 ubi_err(ubi, "negative values"); 1565 goto bad_aeb; 1566 } 1567 1568 if (aeb->ec < ai->min_ec) { 1569 ubi_err(ubi, "bad ai->min_ec (%d), %d found", 1570 ai->min_ec, aeb->ec); 1571 goto bad_aeb; 1572 } 1573 1574 if (aeb->ec > ai->max_ec) { 1575 ubi_err(ubi, "bad ai->max_ec (%d), %d found", 1576 ai->max_ec, aeb->ec); 1577 goto bad_aeb; 1578 } 1579 1580 if (aeb->pnum >= ubi->peb_count) { 1581 ubi_err(ubi, "too high PEB number %d, total PEBs %d", 1582 aeb->pnum, ubi->peb_count); 1583 goto bad_aeb; 1584 } 1585 1586 if (av->vol_type == UBI_STATIC_VOLUME) { 1587 if (aeb->lnum >= av->used_ebs) { 1588 ubi_err(ubi, "bad lnum or used_ebs"); 1589 goto bad_aeb; 1590 } 1591 } else { 1592 if (av->used_ebs != 0) { 1593 ubi_err(ubi, "non-zero used_ebs"); 1594 goto bad_aeb; 1595 } 1596 } 1597 1598 if (aeb->lnum > av->highest_lnum) { 1599 ubi_err(ubi, "incorrect highest_lnum or lnum"); 1600 goto bad_aeb; 1601 } 1602 } 1603 1604 if (av->leb_count != leb_count) { 1605 ubi_err(ubi, "bad leb_count, %d objects in the tree", 1606 leb_count); 1607 goto bad_av; 1608 } 1609 1610 if (!last_aeb) 1611 continue; 1612 1613 aeb = last_aeb; 1614 1615 if (aeb->lnum != av->highest_lnum) { 1616 ubi_err(ubi, "bad highest_lnum"); 1617 goto bad_aeb; 1618 } 1619 } 1620 1621 if (vols_found != ai->vols_found) { 1622 ubi_err(ubi, "bad ai->vols_found %d, should be %d", 1623 ai->vols_found, vols_found); 1624 goto out; 1625 } 1626 1627 /* Check that attaching information is correct */ 1628 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { 1629 last_aeb = NULL; 1630 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { 1631 int vol_type; 1632 1633 cond_resched(); 1634 1635 last_aeb = aeb; 1636 1637 err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidh, 1); 1638 if (err && err != UBI_IO_BITFLIPS) { 1639 ubi_err(ubi, "VID header is not OK (%d)", 1640 err); 1641 if (err > 0) 1642 err = -EIO; 1643 return err; 1644 } 1645 1646 vol_type = vidh->vol_type == UBI_VID_DYNAMIC ? 1647 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME; 1648 if (av->vol_type != vol_type) { 1649 ubi_err(ubi, "bad vol_type"); 1650 goto bad_vid_hdr; 1651 } 1652 1653 if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) { 1654 ubi_err(ubi, "bad sqnum %llu", aeb->sqnum); 1655 goto bad_vid_hdr; 1656 } 1657 1658 if (av->vol_id != be32_to_cpu(vidh->vol_id)) { 1659 ubi_err(ubi, "bad vol_id %d", av->vol_id); 1660 goto bad_vid_hdr; 1661 } 1662 1663 if (av->compat != vidh->compat) { 1664 ubi_err(ubi, "bad compat %d", vidh->compat); 1665 goto bad_vid_hdr; 1666 } 1667 1668 if (aeb->lnum != be32_to_cpu(vidh->lnum)) { 1669 ubi_err(ubi, "bad lnum %d", aeb->lnum); 1670 goto bad_vid_hdr; 1671 } 1672 1673 if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) { 1674 ubi_err(ubi, "bad used_ebs %d", av->used_ebs); 1675 goto bad_vid_hdr; 1676 } 1677 1678 if (av->data_pad != be32_to_cpu(vidh->data_pad)) { 1679 ubi_err(ubi, "bad data_pad %d", av->data_pad); 1680 goto bad_vid_hdr; 1681 } 1682 } 1683 1684 if (!last_aeb) 1685 continue; 1686 1687 if (av->highest_lnum != be32_to_cpu(vidh->lnum)) { 1688 ubi_err(ubi, "bad highest_lnum %d", av->highest_lnum); 1689 goto bad_vid_hdr; 1690 } 1691 1692 if (av->last_data_size != be32_to_cpu(vidh->data_size)) { 1693 ubi_err(ubi, "bad last_data_size %d", 1694 av->last_data_size); 1695 goto bad_vid_hdr; 1696 } 1697 } 1698 1699 /* 1700 * Make sure that all the physical eraseblocks are in one of the lists 1701 * or trees. 1702 */ 1703 buf = kzalloc(ubi->peb_count, GFP_KERNEL); 1704 if (!buf) 1705 return -ENOMEM; 1706 1707 for (pnum = 0; pnum < ubi->peb_count; pnum++) { 1708 err = ubi_io_is_bad(ubi, pnum); 1709 if (err < 0) { 1710 kfree(buf); 1711 return err; 1712 } else if (err) 1713 buf[pnum] = 1; 1714 } 1715 1716 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) 1717 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) 1718 buf[aeb->pnum] = 1; 1719 1720 list_for_each_entry(aeb, &ai->free, u.list) 1721 buf[aeb->pnum] = 1; 1722 1723 list_for_each_entry(aeb, &ai->corr, u.list) 1724 buf[aeb->pnum] = 1; 1725 1726 list_for_each_entry(aeb, &ai->erase, u.list) 1727 buf[aeb->pnum] = 1; 1728 1729 list_for_each_entry(aeb, &ai->alien, u.list) 1730 buf[aeb->pnum] = 1; 1731 1732 err = 0; 1733 for (pnum = 0; pnum < ubi->peb_count; pnum++) 1734 if (!buf[pnum]) { 1735 ubi_err(ubi, "PEB %d is not referred", pnum); 1736 err = 1; 1737 } 1738 1739 kfree(buf); 1740 if (err) 1741 goto out; 1742 return 0; 1743 1744 bad_aeb: 1745 ubi_err(ubi, "bad attaching information about LEB %d", aeb->lnum); 1746 ubi_dump_aeb(aeb, 0); 1747 ubi_dump_av(av); 1748 goto out; 1749 1750 bad_av: 1751 ubi_err(ubi, "bad attaching information about volume %d", av->vol_id); 1752 ubi_dump_av(av); 1753 goto out; 1754 1755 bad_vid_hdr: 1756 ubi_err(ubi, "bad attaching information about volume %d", av->vol_id); 1757 ubi_dump_av(av); 1758 ubi_dump_vid_hdr(vidh); 1759 1760 out: 1761 dump_stack(); 1762 return -EINVAL; 1763 } 1764