xref: /openbmc/u-boot/drivers/mtd/ubi/attach.c (revision 47539e23)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * SPDX-License-Identifier:	GPL-2.0+
5  *
6  * Author: Artem Bityutskiy (Битюцкий Артём)
7  */
8 
9 /*
10  * UBI attaching sub-system.
11  *
12  * This sub-system is responsible for attaching MTD devices and it also
13  * implements flash media scanning.
14  *
15  * The attaching information is represented by a &struct ubi_attach_info'
16  * object. Information about volumes is represented by &struct ubi_ainf_volume
17  * objects which are kept in volume RB-tree with root at the @volumes field.
18  * The RB-tree is indexed by the volume ID.
19  *
20  * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These
21  * objects are kept in per-volume RB-trees with the root at the corresponding
22  * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of
23  * per-volume objects and each of these objects is the root of RB-tree of
24  * per-LEB objects.
25  *
26  * Corrupted physical eraseblocks are put to the @corr list, free physical
27  * eraseblocks are put to the @free list and the physical eraseblock to be
28  * erased are put to the @erase list.
29  *
30  * About corruptions
31  * ~~~~~~~~~~~~~~~~~
32  *
33  * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
34  * whether the headers are corrupted or not. Sometimes UBI also protects the
35  * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
36  * when it moves the contents of a PEB for wear-leveling purposes.
37  *
38  * UBI tries to distinguish between 2 types of corruptions.
39  *
40  * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
41  * tries to handle them gracefully, without printing too many warnings and
42  * error messages. The idea is that we do not lose important data in these
43  * cases - we may lose only the data which were being written to the media just
44  * before the power cut happened, and the upper layers (e.g., UBIFS) are
45  * supposed to handle such data losses (e.g., by using the FS journal).
46  *
47  * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
48  * the reason is a power cut, UBI puts this PEB to the @erase list, and all
49  * PEBs in the @erase list are scheduled for erasure later.
50  *
51  * 2. Unexpected corruptions which are not caused by power cuts. During
52  * attaching, such PEBs are put to the @corr list and UBI preserves them.
53  * Obviously, this lessens the amount of available PEBs, and if at some  point
54  * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
55  * about such PEBs every time the MTD device is attached.
56  *
57  * However, it is difficult to reliably distinguish between these types of
58  * corruptions and UBI's strategy is as follows (in case of attaching by
59  * scanning). UBI assumes corruption type 2 if the VID header is corrupted and
60  * the data area does not contain all 0xFFs, and there were no bit-flips or
61  * integrity errors (e.g., ECC errors in case of NAND) while reading the data
62  * area.  Otherwise UBI assumes corruption type 1. So the decision criteria
63  * are as follows.
64  *   o If the data area contains only 0xFFs, there are no data, and it is safe
65  *     to just erase this PEB - this is corruption type 1.
66  *   o If the data area has bit-flips or data integrity errors (ECC errors on
67  *     NAND), it is probably a PEB which was being erased when power cut
68  *     happened, so this is corruption type 1. However, this is just a guess,
69  *     which might be wrong.
70  *   o Otherwise this is corruption type 2.
71  */
72 
73 #define __UBOOT__
74 #ifndef __UBOOT__
75 #include <linux/err.h>
76 #include <linux/slab.h>
77 #include <linux/crc32.h>
78 #include <linux/random.h>
79 #else
80 #include <div64.h>
81 #include <linux/err.h>
82 #endif
83 
84 #include <linux/math64.h>
85 
86 #include <ubi_uboot.h>
87 #include "ubi.h"
88 
89 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai);
90 
91 /* Temporary variables used during scanning */
92 static struct ubi_ec_hdr *ech;
93 static struct ubi_vid_hdr *vidh;
94 
95 /**
96  * add_to_list - add physical eraseblock to a list.
97  * @ai: attaching information
98  * @pnum: physical eraseblock number to add
99  * @vol_id: the last used volume id for the PEB
100  * @lnum: the last used LEB number for the PEB
101  * @ec: erase counter of the physical eraseblock
102  * @to_head: if not zero, add to the head of the list
103  * @list: the list to add to
104  *
105  * This function allocates a 'struct ubi_ainf_peb' object for physical
106  * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists.
107  * It stores the @lnum and @vol_id alongside, which can both be
108  * %UBI_UNKNOWN if they are not available, not readable, or not assigned.
109  * If @to_head is not zero, PEB will be added to the head of the list, which
110  * basically means it will be processed first later. E.g., we add corrupted
111  * PEBs (corrupted due to power cuts) to the head of the erase list to make
112  * sure we erase them first and get rid of corruptions ASAP. This function
113  * returns zero in case of success and a negative error code in case of
114  * failure.
115  */
116 static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id,
117 		       int lnum, int ec, int to_head, struct list_head *list)
118 {
119 	struct ubi_ainf_peb *aeb;
120 
121 	if (list == &ai->free) {
122 		dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
123 	} else if (list == &ai->erase) {
124 		dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
125 	} else if (list == &ai->alien) {
126 		dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
127 		ai->alien_peb_count += 1;
128 	} else
129 		BUG();
130 
131 	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
132 	if (!aeb)
133 		return -ENOMEM;
134 
135 	aeb->pnum = pnum;
136 	aeb->vol_id = vol_id;
137 	aeb->lnum = lnum;
138 	aeb->ec = ec;
139 	if (to_head)
140 		list_add(&aeb->u.list, list);
141 	else
142 		list_add_tail(&aeb->u.list, list);
143 	return 0;
144 }
145 
146 /**
147  * add_corrupted - add a corrupted physical eraseblock.
148  * @ai: attaching information
149  * @pnum: physical eraseblock number to add
150  * @ec: erase counter of the physical eraseblock
151  *
152  * This function allocates a 'struct ubi_ainf_peb' object for a corrupted
153  * physical eraseblock @pnum and adds it to the 'corr' list.  The corruption
154  * was presumably not caused by a power cut. Returns zero in case of success
155  * and a negative error code in case of failure.
156  */
157 static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec)
158 {
159 	struct ubi_ainf_peb *aeb;
160 
161 	dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
162 
163 	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
164 	if (!aeb)
165 		return -ENOMEM;
166 
167 	ai->corr_peb_count += 1;
168 	aeb->pnum = pnum;
169 	aeb->ec = ec;
170 	list_add(&aeb->u.list, &ai->corr);
171 	return 0;
172 }
173 
174 /**
175  * validate_vid_hdr - check volume identifier header.
176  * @vid_hdr: the volume identifier header to check
177  * @av: information about the volume this logical eraseblock belongs to
178  * @pnum: physical eraseblock number the VID header came from
179  *
180  * This function checks that data stored in @vid_hdr is consistent. Returns
181  * non-zero if an inconsistency was found and zero if not.
182  *
183  * Note, UBI does sanity check of everything it reads from the flash media.
184  * Most of the checks are done in the I/O sub-system. Here we check that the
185  * information in the VID header is consistent to the information in other VID
186  * headers of the same volume.
187  */
188 static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
189 			    const struct ubi_ainf_volume *av, int pnum)
190 {
191 	int vol_type = vid_hdr->vol_type;
192 	int vol_id = be32_to_cpu(vid_hdr->vol_id);
193 	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
194 	int data_pad = be32_to_cpu(vid_hdr->data_pad);
195 
196 	if (av->leb_count != 0) {
197 		int av_vol_type;
198 
199 		/*
200 		 * This is not the first logical eraseblock belonging to this
201 		 * volume. Ensure that the data in its VID header is consistent
202 		 * to the data in previous logical eraseblock headers.
203 		 */
204 
205 		if (vol_id != av->vol_id) {
206 			ubi_err("inconsistent vol_id");
207 			goto bad;
208 		}
209 
210 		if (av->vol_type == UBI_STATIC_VOLUME)
211 			av_vol_type = UBI_VID_STATIC;
212 		else
213 			av_vol_type = UBI_VID_DYNAMIC;
214 
215 		if (vol_type != av_vol_type) {
216 			ubi_err("inconsistent vol_type");
217 			goto bad;
218 		}
219 
220 		if (used_ebs != av->used_ebs) {
221 			ubi_err("inconsistent used_ebs");
222 			goto bad;
223 		}
224 
225 		if (data_pad != av->data_pad) {
226 			ubi_err("inconsistent data_pad");
227 			goto bad;
228 		}
229 	}
230 
231 	return 0;
232 
233 bad:
234 	ubi_err("inconsistent VID header at PEB %d", pnum);
235 	ubi_dump_vid_hdr(vid_hdr);
236 	ubi_dump_av(av);
237 	return -EINVAL;
238 }
239 
240 /**
241  * add_volume - add volume to the attaching information.
242  * @ai: attaching information
243  * @vol_id: ID of the volume to add
244  * @pnum: physical eraseblock number
245  * @vid_hdr: volume identifier header
246  *
247  * If the volume corresponding to the @vid_hdr logical eraseblock is already
248  * present in the attaching information, this function does nothing. Otherwise
249  * it adds corresponding volume to the attaching information. Returns a pointer
250  * to the allocated "av" object in case of success and a negative error code in
251  * case of failure.
252  */
253 static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai,
254 					  int vol_id, int pnum,
255 					  const struct ubi_vid_hdr *vid_hdr)
256 {
257 	struct ubi_ainf_volume *av;
258 	struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
259 
260 	ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
261 
262 	/* Walk the volume RB-tree to look if this volume is already present */
263 	while (*p) {
264 		parent = *p;
265 		av = rb_entry(parent, struct ubi_ainf_volume, rb);
266 
267 		if (vol_id == av->vol_id)
268 			return av;
269 
270 		if (vol_id > av->vol_id)
271 			p = &(*p)->rb_left;
272 		else
273 			p = &(*p)->rb_right;
274 	}
275 
276 	/* The volume is absent - add it */
277 	av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL);
278 	if (!av)
279 		return ERR_PTR(-ENOMEM);
280 
281 	av->highest_lnum = av->leb_count = 0;
282 	av->vol_id = vol_id;
283 	av->root = RB_ROOT;
284 	av->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
285 	av->data_pad = be32_to_cpu(vid_hdr->data_pad);
286 	av->compat = vid_hdr->compat;
287 	av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
288 							    : UBI_STATIC_VOLUME;
289 	if (vol_id > ai->highest_vol_id)
290 		ai->highest_vol_id = vol_id;
291 
292 	rb_link_node(&av->rb, parent, p);
293 	rb_insert_color(&av->rb, &ai->volumes);
294 	ai->vols_found += 1;
295 	dbg_bld("added volume %d", vol_id);
296 	return av;
297 }
298 
299 /**
300  * ubi_compare_lebs - find out which logical eraseblock is newer.
301  * @ubi: UBI device description object
302  * @aeb: first logical eraseblock to compare
303  * @pnum: physical eraseblock number of the second logical eraseblock to
304  * compare
305  * @vid_hdr: volume identifier header of the second logical eraseblock
306  *
307  * This function compares 2 copies of a LEB and informs which one is newer. In
308  * case of success this function returns a positive value, in case of failure, a
309  * negative error code is returned. The success return codes use the following
310  * bits:
311  *     o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
312  *       second PEB (described by @pnum and @vid_hdr);
313  *     o bit 0 is set: the second PEB is newer;
314  *     o bit 1 is cleared: no bit-flips were detected in the newer LEB;
315  *     o bit 1 is set: bit-flips were detected in the newer LEB;
316  *     o bit 2 is cleared: the older LEB is not corrupted;
317  *     o bit 2 is set: the older LEB is corrupted.
318  */
319 int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb,
320 			int pnum, const struct ubi_vid_hdr *vid_hdr)
321 {
322 	int len, err, second_is_newer, bitflips = 0, corrupted = 0;
323 	uint32_t data_crc, crc;
324 	struct ubi_vid_hdr *vh = NULL;
325 	unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
326 
327 	if (sqnum2 == aeb->sqnum) {
328 		/*
329 		 * This must be a really ancient UBI image which has been
330 		 * created before sequence numbers support has been added. At
331 		 * that times we used 32-bit LEB versions stored in logical
332 		 * eraseblocks. That was before UBI got into mainline. We do not
333 		 * support these images anymore. Well, those images still work,
334 		 * but only if no unclean reboots happened.
335 		 */
336 		ubi_err("unsupported on-flash UBI format");
337 		return -EINVAL;
338 	}
339 
340 	/* Obviously the LEB with lower sequence counter is older */
341 	second_is_newer = (sqnum2 > aeb->sqnum);
342 
343 	/*
344 	 * Now we know which copy is newer. If the copy flag of the PEB with
345 	 * newer version is not set, then we just return, otherwise we have to
346 	 * check data CRC. For the second PEB we already have the VID header,
347 	 * for the first one - we'll need to re-read it from flash.
348 	 *
349 	 * Note: this may be optimized so that we wouldn't read twice.
350 	 */
351 
352 	if (second_is_newer) {
353 		if (!vid_hdr->copy_flag) {
354 			/* It is not a copy, so it is newer */
355 			dbg_bld("second PEB %d is newer, copy_flag is unset",
356 				pnum);
357 			return 1;
358 		}
359 	} else {
360 		if (!aeb->copy_flag) {
361 			/* It is not a copy, so it is newer */
362 			dbg_bld("first PEB %d is newer, copy_flag is unset",
363 				pnum);
364 			return bitflips << 1;
365 		}
366 
367 		vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
368 		if (!vh)
369 			return -ENOMEM;
370 
371 		pnum = aeb->pnum;
372 		err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
373 		if (err) {
374 			if (err == UBI_IO_BITFLIPS)
375 				bitflips = 1;
376 			else {
377 				ubi_err("VID of PEB %d header is bad, but it was OK earlier, err %d",
378 					pnum, err);
379 				if (err > 0)
380 					err = -EIO;
381 
382 				goto out_free_vidh;
383 			}
384 		}
385 
386 		vid_hdr = vh;
387 	}
388 
389 	/* Read the data of the copy and check the CRC */
390 
391 	len = be32_to_cpu(vid_hdr->data_size);
392 
393 	mutex_lock(&ubi->buf_mutex);
394 	err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, len);
395 	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
396 		goto out_unlock;
397 
398 	data_crc = be32_to_cpu(vid_hdr->data_crc);
399 	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, len);
400 	if (crc != data_crc) {
401 		dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
402 			pnum, crc, data_crc);
403 		corrupted = 1;
404 		bitflips = 0;
405 		second_is_newer = !second_is_newer;
406 	} else {
407 		dbg_bld("PEB %d CRC is OK", pnum);
408 		bitflips = !!err;
409 	}
410 	mutex_unlock(&ubi->buf_mutex);
411 
412 	ubi_free_vid_hdr(ubi, vh);
413 
414 	if (second_is_newer)
415 		dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
416 	else
417 		dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
418 
419 	return second_is_newer | (bitflips << 1) | (corrupted << 2);
420 
421 out_unlock:
422 	mutex_unlock(&ubi->buf_mutex);
423 out_free_vidh:
424 	ubi_free_vid_hdr(ubi, vh);
425 	return err;
426 }
427 
428 /**
429  * ubi_add_to_av - add used physical eraseblock to the attaching information.
430  * @ubi: UBI device description object
431  * @ai: attaching information
432  * @pnum: the physical eraseblock number
433  * @ec: erase counter
434  * @vid_hdr: the volume identifier header
435  * @bitflips: if bit-flips were detected when this physical eraseblock was read
436  *
437  * This function adds information about a used physical eraseblock to the
438  * 'used' tree of the corresponding volume. The function is rather complex
439  * because it has to handle cases when this is not the first physical
440  * eraseblock belonging to the same logical eraseblock, and the newer one has
441  * to be picked, while the older one has to be dropped. This function returns
442  * zero in case of success and a negative error code in case of failure.
443  */
444 int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum,
445 		  int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips)
446 {
447 	int err, vol_id, lnum;
448 	unsigned long long sqnum;
449 	struct ubi_ainf_volume *av;
450 	struct ubi_ainf_peb *aeb;
451 	struct rb_node **p, *parent = NULL;
452 
453 	vol_id = be32_to_cpu(vid_hdr->vol_id);
454 	lnum = be32_to_cpu(vid_hdr->lnum);
455 	sqnum = be64_to_cpu(vid_hdr->sqnum);
456 
457 	dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
458 		pnum, vol_id, lnum, ec, sqnum, bitflips);
459 
460 	av = add_volume(ai, vol_id, pnum, vid_hdr);
461 	if (IS_ERR(av))
462 		return PTR_ERR(av);
463 
464 	if (ai->max_sqnum < sqnum)
465 		ai->max_sqnum = sqnum;
466 
467 	/*
468 	 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
469 	 * if this is the first instance of this logical eraseblock or not.
470 	 */
471 	p = &av->root.rb_node;
472 	while (*p) {
473 		int cmp_res;
474 
475 		parent = *p;
476 		aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
477 		if (lnum != aeb->lnum) {
478 			if (lnum < aeb->lnum)
479 				p = &(*p)->rb_left;
480 			else
481 				p = &(*p)->rb_right;
482 			continue;
483 		}
484 
485 		/*
486 		 * There is already a physical eraseblock describing the same
487 		 * logical eraseblock present.
488 		 */
489 
490 		dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
491 			aeb->pnum, aeb->sqnum, aeb->ec);
492 
493 		/*
494 		 * Make sure that the logical eraseblocks have different
495 		 * sequence numbers. Otherwise the image is bad.
496 		 *
497 		 * However, if the sequence number is zero, we assume it must
498 		 * be an ancient UBI image from the era when UBI did not have
499 		 * sequence numbers. We still can attach these images, unless
500 		 * there is a need to distinguish between old and new
501 		 * eraseblocks, in which case we'll refuse the image in
502 		 * 'ubi_compare_lebs()'. In other words, we attach old clean
503 		 * images, but refuse attaching old images with duplicated
504 		 * logical eraseblocks because there was an unclean reboot.
505 		 */
506 		if (aeb->sqnum == sqnum && sqnum != 0) {
507 			ubi_err("two LEBs with same sequence number %llu",
508 				sqnum);
509 			ubi_dump_aeb(aeb, 0);
510 			ubi_dump_vid_hdr(vid_hdr);
511 			return -EINVAL;
512 		}
513 
514 		/*
515 		 * Now we have to drop the older one and preserve the newer
516 		 * one.
517 		 */
518 		cmp_res = ubi_compare_lebs(ubi, aeb, pnum, vid_hdr);
519 		if (cmp_res < 0)
520 			return cmp_res;
521 
522 		if (cmp_res & 1) {
523 			/*
524 			 * This logical eraseblock is newer than the one
525 			 * found earlier.
526 			 */
527 			err = validate_vid_hdr(vid_hdr, av, pnum);
528 			if (err)
529 				return err;
530 
531 			err = add_to_list(ai, aeb->pnum, aeb->vol_id,
532 					  aeb->lnum, aeb->ec, cmp_res & 4,
533 					  &ai->erase);
534 			if (err)
535 				return err;
536 
537 			aeb->ec = ec;
538 			aeb->pnum = pnum;
539 			aeb->vol_id = vol_id;
540 			aeb->lnum = lnum;
541 			aeb->scrub = ((cmp_res & 2) || bitflips);
542 			aeb->copy_flag = vid_hdr->copy_flag;
543 			aeb->sqnum = sqnum;
544 
545 			if (av->highest_lnum == lnum)
546 				av->last_data_size =
547 					be32_to_cpu(vid_hdr->data_size);
548 
549 			return 0;
550 		} else {
551 			/*
552 			 * This logical eraseblock is older than the one found
553 			 * previously.
554 			 */
555 			return add_to_list(ai, pnum, vol_id, lnum, ec,
556 					   cmp_res & 4, &ai->erase);
557 		}
558 	}
559 
560 	/*
561 	 * We've met this logical eraseblock for the first time, add it to the
562 	 * attaching information.
563 	 */
564 
565 	err = validate_vid_hdr(vid_hdr, av, pnum);
566 	if (err)
567 		return err;
568 
569 	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
570 	if (!aeb)
571 		return -ENOMEM;
572 
573 	aeb->ec = ec;
574 	aeb->pnum = pnum;
575 	aeb->vol_id = vol_id;
576 	aeb->lnum = lnum;
577 	aeb->scrub = bitflips;
578 	aeb->copy_flag = vid_hdr->copy_flag;
579 	aeb->sqnum = sqnum;
580 
581 	if (av->highest_lnum <= lnum) {
582 		av->highest_lnum = lnum;
583 		av->last_data_size = be32_to_cpu(vid_hdr->data_size);
584 	}
585 
586 	av->leb_count += 1;
587 	rb_link_node(&aeb->u.rb, parent, p);
588 	rb_insert_color(&aeb->u.rb, &av->root);
589 	return 0;
590 }
591 
592 /**
593  * ubi_find_av - find volume in the attaching information.
594  * @ai: attaching information
595  * @vol_id: the requested volume ID
596  *
597  * This function returns a pointer to the volume description or %NULL if there
598  * are no data about this volume in the attaching information.
599  */
600 struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai,
601 				    int vol_id)
602 {
603 	struct ubi_ainf_volume *av;
604 	struct rb_node *p = ai->volumes.rb_node;
605 
606 	while (p) {
607 		av = rb_entry(p, struct ubi_ainf_volume, rb);
608 
609 		if (vol_id == av->vol_id)
610 			return av;
611 
612 		if (vol_id > av->vol_id)
613 			p = p->rb_left;
614 		else
615 			p = p->rb_right;
616 	}
617 
618 	return NULL;
619 }
620 
621 /**
622  * ubi_remove_av - delete attaching information about a volume.
623  * @ai: attaching information
624  * @av: the volume attaching information to delete
625  */
626 void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
627 {
628 	struct rb_node *rb;
629 	struct ubi_ainf_peb *aeb;
630 
631 	dbg_bld("remove attaching information about volume %d", av->vol_id);
632 
633 	while ((rb = rb_first(&av->root))) {
634 		aeb = rb_entry(rb, struct ubi_ainf_peb, u.rb);
635 		rb_erase(&aeb->u.rb, &av->root);
636 		list_add_tail(&aeb->u.list, &ai->erase);
637 	}
638 
639 	rb_erase(&av->rb, &ai->volumes);
640 	kfree(av);
641 	ai->vols_found -= 1;
642 }
643 
644 /**
645  * early_erase_peb - erase a physical eraseblock.
646  * @ubi: UBI device description object
647  * @ai: attaching information
648  * @pnum: physical eraseblock number to erase;
649  * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown)
650  *
651  * This function erases physical eraseblock 'pnum', and writes the erase
652  * counter header to it. This function should only be used on UBI device
653  * initialization stages, when the EBA sub-system had not been yet initialized.
654  * This function returns zero in case of success and a negative error code in
655  * case of failure.
656  */
657 static int early_erase_peb(struct ubi_device *ubi,
658 			   const struct ubi_attach_info *ai, int pnum, int ec)
659 {
660 	int err;
661 	struct ubi_ec_hdr *ec_hdr;
662 
663 	if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
664 		/*
665 		 * Erase counter overflow. Upgrade UBI and use 64-bit
666 		 * erase counters internally.
667 		 */
668 		ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
669 		return -EINVAL;
670 	}
671 
672 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
673 	if (!ec_hdr)
674 		return -ENOMEM;
675 
676 	ec_hdr->ec = cpu_to_be64(ec);
677 
678 	err = ubi_io_sync_erase(ubi, pnum, 0);
679 	if (err < 0)
680 		goto out_free;
681 
682 	err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
683 
684 out_free:
685 	kfree(ec_hdr);
686 	return err;
687 }
688 
689 /**
690  * ubi_early_get_peb - get a free physical eraseblock.
691  * @ubi: UBI device description object
692  * @ai: attaching information
693  *
694  * This function returns a free physical eraseblock. It is supposed to be
695  * called on the UBI initialization stages when the wear-leveling sub-system is
696  * not initialized yet. This function picks a physical eraseblocks from one of
697  * the lists, writes the EC header if it is needed, and removes it from the
698  * list.
699  *
700  * This function returns a pointer to the "aeb" of the found free PEB in case
701  * of success and an error code in case of failure.
702  */
703 struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi,
704 				       struct ubi_attach_info *ai)
705 {
706 	int err = 0;
707 	struct ubi_ainf_peb *aeb, *tmp_aeb;
708 
709 	if (!list_empty(&ai->free)) {
710 		aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list);
711 		list_del(&aeb->u.list);
712 		dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec);
713 		return aeb;
714 	}
715 
716 	/*
717 	 * We try to erase the first physical eraseblock from the erase list
718 	 * and pick it if we succeed, or try to erase the next one if not. And
719 	 * so forth. We don't want to take care about bad eraseblocks here -
720 	 * they'll be handled later.
721 	 */
722 	list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) {
723 		if (aeb->ec == UBI_UNKNOWN)
724 			aeb->ec = ai->mean_ec;
725 
726 		err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1);
727 		if (err)
728 			continue;
729 
730 		aeb->ec += 1;
731 		list_del(&aeb->u.list);
732 		dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec);
733 		return aeb;
734 	}
735 
736 	ubi_err("no free eraseblocks");
737 	return ERR_PTR(-ENOSPC);
738 }
739 
740 /**
741  * check_corruption - check the data area of PEB.
742  * @ubi: UBI device description object
743  * @vid_hdr: the (corrupted) VID header of this PEB
744  * @pnum: the physical eraseblock number to check
745  *
746  * This is a helper function which is used to distinguish between VID header
747  * corruptions caused by power cuts and other reasons. If the PEB contains only
748  * 0xFF bytes in the data area, the VID header is most probably corrupted
749  * because of a power cut (%0 is returned in this case). Otherwise, it was
750  * probably corrupted for some other reasons (%1 is returned in this case). A
751  * negative error code is returned if a read error occurred.
752  *
753  * If the corruption reason was a power cut, UBI can safely erase this PEB.
754  * Otherwise, it should preserve it to avoid possibly destroying important
755  * information.
756  */
757 static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
758 			    int pnum)
759 {
760 	int err;
761 
762 	mutex_lock(&ubi->buf_mutex);
763 	memset(ubi->peb_buf, 0x00, ubi->leb_size);
764 
765 	err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start,
766 			  ubi->leb_size);
767 	if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
768 		/*
769 		 * Bit-flips or integrity errors while reading the data area.
770 		 * It is difficult to say for sure what type of corruption is
771 		 * this, but presumably a power cut happened while this PEB was
772 		 * erased, so it became unstable and corrupted, and should be
773 		 * erased.
774 		 */
775 		err = 0;
776 		goto out_unlock;
777 	}
778 
779 	if (err)
780 		goto out_unlock;
781 
782 	if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size))
783 		goto out_unlock;
784 
785 	ubi_err("PEB %d contains corrupted VID header, and the data does not contain all 0xFF",
786 		pnum);
787 	ubi_err("this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection");
788 	ubi_dump_vid_hdr(vid_hdr);
789 	pr_err("hexdump of PEB %d offset %d, length %d",
790 	       pnum, ubi->leb_start, ubi->leb_size);
791 	ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
792 			       ubi->peb_buf, ubi->leb_size, 1);
793 	err = 1;
794 
795 out_unlock:
796 	mutex_unlock(&ubi->buf_mutex);
797 	return err;
798 }
799 
800 /**
801  * scan_peb - scan and process UBI headers of a PEB.
802  * @ubi: UBI device description object
803  * @ai: attaching information
804  * @pnum: the physical eraseblock number
805  * @vid: The volume ID of the found volume will be stored in this pointer
806  * @sqnum: The sqnum of the found volume will be stored in this pointer
807  *
808  * This function reads UBI headers of PEB @pnum, checks them, and adds
809  * information about this PEB to the corresponding list or RB-tree in the
810  * "attaching info" structure. Returns zero if the physical eraseblock was
811  * successfully handled and a negative error code in case of failure.
812  */
813 static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai,
814 		    int pnum, int *vid, unsigned long long *sqnum)
815 {
816 	long long uninitialized_var(ec);
817 	int err, bitflips = 0, vol_id = -1, ec_err = 0;
818 
819 	dbg_bld("scan PEB %d", pnum);
820 
821 	/* Skip bad physical eraseblocks */
822 	err = ubi_io_is_bad(ubi, pnum);
823 	if (err < 0)
824 		return err;
825 	else if (err) {
826 		ai->bad_peb_count += 1;
827 		return 0;
828 	}
829 
830 	err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
831 	if (err < 0)
832 		return err;
833 	switch (err) {
834 	case 0:
835 		break;
836 	case UBI_IO_BITFLIPS:
837 		bitflips = 1;
838 		break;
839 	case UBI_IO_FF:
840 		ai->empty_peb_count += 1;
841 		return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
842 				   UBI_UNKNOWN, 0, &ai->erase);
843 	case UBI_IO_FF_BITFLIPS:
844 		ai->empty_peb_count += 1;
845 		return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
846 				   UBI_UNKNOWN, 1, &ai->erase);
847 	case UBI_IO_BAD_HDR_EBADMSG:
848 	case UBI_IO_BAD_HDR:
849 		/*
850 		 * We have to also look at the VID header, possibly it is not
851 		 * corrupted. Set %bitflips flag in order to make this PEB be
852 		 * moved and EC be re-created.
853 		 */
854 		ec_err = err;
855 		ec = UBI_UNKNOWN;
856 		bitflips = 1;
857 		break;
858 	default:
859 		ubi_err("'ubi_io_read_ec_hdr()' returned unknown code %d", err);
860 		return -EINVAL;
861 	}
862 
863 	if (!ec_err) {
864 		int image_seq;
865 
866 		/* Make sure UBI version is OK */
867 		if (ech->version != UBI_VERSION) {
868 			ubi_err("this UBI version is %d, image version is %d",
869 				UBI_VERSION, (int)ech->version);
870 			return -EINVAL;
871 		}
872 
873 		ec = be64_to_cpu(ech->ec);
874 		if (ec > UBI_MAX_ERASECOUNTER) {
875 			/*
876 			 * Erase counter overflow. The EC headers have 64 bits
877 			 * reserved, but we anyway make use of only 31 bit
878 			 * values, as this seems to be enough for any existing
879 			 * flash. Upgrade UBI and use 64-bit erase counters
880 			 * internally.
881 			 */
882 			ubi_err("erase counter overflow, max is %d",
883 				UBI_MAX_ERASECOUNTER);
884 			ubi_dump_ec_hdr(ech);
885 			return -EINVAL;
886 		}
887 
888 		/*
889 		 * Make sure that all PEBs have the same image sequence number.
890 		 * This allows us to detect situations when users flash UBI
891 		 * images incorrectly, so that the flash has the new UBI image
892 		 * and leftovers from the old one. This feature was added
893 		 * relatively recently, and the sequence number was always
894 		 * zero, because old UBI implementations always set it to zero.
895 		 * For this reasons, we do not panic if some PEBs have zero
896 		 * sequence number, while other PEBs have non-zero sequence
897 		 * number.
898 		 */
899 		image_seq = be32_to_cpu(ech->image_seq);
900 		if (!ubi->image_seq)
901 			ubi->image_seq = image_seq;
902 		if (image_seq && ubi->image_seq != image_seq) {
903 			ubi_err("bad image sequence number %d in PEB %d, expected %d",
904 				image_seq, pnum, ubi->image_seq);
905 			ubi_dump_ec_hdr(ech);
906 			return -EINVAL;
907 		}
908 	}
909 
910 	/* OK, we've done with the EC header, let's look at the VID header */
911 
912 	err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
913 	if (err < 0)
914 		return err;
915 	switch (err) {
916 	case 0:
917 		break;
918 	case UBI_IO_BITFLIPS:
919 		bitflips = 1;
920 		break;
921 	case UBI_IO_BAD_HDR_EBADMSG:
922 		if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
923 			/*
924 			 * Both EC and VID headers are corrupted and were read
925 			 * with data integrity error, probably this is a bad
926 			 * PEB, bit it is not marked as bad yet. This may also
927 			 * be a result of power cut during erasure.
928 			 */
929 			ai->maybe_bad_peb_count += 1;
930 	case UBI_IO_BAD_HDR:
931 		if (ec_err)
932 			/*
933 			 * Both headers are corrupted. There is a possibility
934 			 * that this a valid UBI PEB which has corresponding
935 			 * LEB, but the headers are corrupted. However, it is
936 			 * impossible to distinguish it from a PEB which just
937 			 * contains garbage because of a power cut during erase
938 			 * operation. So we just schedule this PEB for erasure.
939 			 *
940 			 * Besides, in case of NOR flash, we deliberately
941 			 * corrupt both headers because NOR flash erasure is
942 			 * slow and can start from the end.
943 			 */
944 			err = 0;
945 		else
946 			/*
947 			 * The EC was OK, but the VID header is corrupted. We
948 			 * have to check what is in the data area.
949 			 */
950 			err = check_corruption(ubi, vidh, pnum);
951 
952 		if (err < 0)
953 			return err;
954 		else if (!err)
955 			/* This corruption is caused by a power cut */
956 			err = add_to_list(ai, pnum, UBI_UNKNOWN,
957 					  UBI_UNKNOWN, ec, 1, &ai->erase);
958 		else
959 			/* This is an unexpected corruption */
960 			err = add_corrupted(ai, pnum, ec);
961 		if (err)
962 			return err;
963 		goto adjust_mean_ec;
964 	case UBI_IO_FF_BITFLIPS:
965 		err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
966 				  ec, 1, &ai->erase);
967 		if (err)
968 			return err;
969 		goto adjust_mean_ec;
970 	case UBI_IO_FF:
971 		if (ec_err || bitflips)
972 			err = add_to_list(ai, pnum, UBI_UNKNOWN,
973 					  UBI_UNKNOWN, ec, 1, &ai->erase);
974 		else
975 			err = add_to_list(ai, pnum, UBI_UNKNOWN,
976 					  UBI_UNKNOWN, ec, 0, &ai->free);
977 		if (err)
978 			return err;
979 		goto adjust_mean_ec;
980 	default:
981 		ubi_err("'ubi_io_read_vid_hdr()' returned unknown code %d",
982 			err);
983 		return -EINVAL;
984 	}
985 
986 	vol_id = be32_to_cpu(vidh->vol_id);
987 	if (vid)
988 		*vid = vol_id;
989 	if (sqnum)
990 		*sqnum = be64_to_cpu(vidh->sqnum);
991 	if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
992 		int lnum = be32_to_cpu(vidh->lnum);
993 
994 		/* Unsupported internal volume */
995 		switch (vidh->compat) {
996 		case UBI_COMPAT_DELETE:
997 			if (vol_id != UBI_FM_SB_VOLUME_ID
998 			    && vol_id != UBI_FM_DATA_VOLUME_ID) {
999 				ubi_msg("\"delete\" compatible internal volume %d:%d found, will remove it",
1000 					vol_id, lnum);
1001 			}
1002 			err = add_to_list(ai, pnum, vol_id, lnum,
1003 					  ec, 1, &ai->erase);
1004 			if (err)
1005 				return err;
1006 			return 0;
1007 
1008 		case UBI_COMPAT_RO:
1009 			ubi_msg("read-only compatible internal volume %d:%d found, switch to read-only mode",
1010 				vol_id, lnum);
1011 			ubi->ro_mode = 1;
1012 			break;
1013 
1014 		case UBI_COMPAT_PRESERVE:
1015 			ubi_msg("\"preserve\" compatible internal volume %d:%d found",
1016 				vol_id, lnum);
1017 			err = add_to_list(ai, pnum, vol_id, lnum,
1018 					  ec, 0, &ai->alien);
1019 			if (err)
1020 				return err;
1021 			return 0;
1022 
1023 		case UBI_COMPAT_REJECT:
1024 			ubi_err("incompatible internal volume %d:%d found",
1025 				vol_id, lnum);
1026 			return -EINVAL;
1027 		}
1028 	}
1029 
1030 	if (ec_err)
1031 		ubi_warn("valid VID header but corrupted EC header at PEB %d",
1032 			 pnum);
1033 	err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips);
1034 	if (err)
1035 		return err;
1036 
1037 adjust_mean_ec:
1038 	if (!ec_err) {
1039 		ai->ec_sum += ec;
1040 		ai->ec_count += 1;
1041 		if (ec > ai->max_ec)
1042 			ai->max_ec = ec;
1043 		if (ec < ai->min_ec)
1044 			ai->min_ec = ec;
1045 	}
1046 
1047 	return 0;
1048 }
1049 
1050 /**
1051  * late_analysis - analyze the overall situation with PEB.
1052  * @ubi: UBI device description object
1053  * @ai: attaching information
1054  *
1055  * This is a helper function which takes a look what PEBs we have after we
1056  * gather information about all of them ("ai" is compete). It decides whether
1057  * the flash is empty and should be formatted of whether there are too many
1058  * corrupted PEBs and we should not attach this MTD device. Returns zero if we
1059  * should proceed with attaching the MTD device, and %-EINVAL if we should not.
1060  */
1061 static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai)
1062 {
1063 	struct ubi_ainf_peb *aeb;
1064 	int max_corr, peb_count;
1065 
1066 	peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count;
1067 	max_corr = peb_count / 20 ?: 8;
1068 
1069 	/*
1070 	 * Few corrupted PEBs is not a problem and may be just a result of
1071 	 * unclean reboots. However, many of them may indicate some problems
1072 	 * with the flash HW or driver.
1073 	 */
1074 	if (ai->corr_peb_count) {
1075 		ubi_err("%d PEBs are corrupted and preserved",
1076 			ai->corr_peb_count);
1077 		pr_err("Corrupted PEBs are:");
1078 		list_for_each_entry(aeb, &ai->corr, u.list)
1079 			pr_cont(" %d", aeb->pnum);
1080 		pr_cont("\n");
1081 
1082 		/*
1083 		 * If too many PEBs are corrupted, we refuse attaching,
1084 		 * otherwise, only print a warning.
1085 		 */
1086 		if (ai->corr_peb_count >= max_corr) {
1087 			ubi_err("too many corrupted PEBs, refusing");
1088 			return -EINVAL;
1089 		}
1090 	}
1091 
1092 	if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) {
1093 		/*
1094 		 * All PEBs are empty, or almost all - a couple PEBs look like
1095 		 * they may be bad PEBs which were not marked as bad yet.
1096 		 *
1097 		 * This piece of code basically tries to distinguish between
1098 		 * the following situations:
1099 		 *
1100 		 * 1. Flash is empty, but there are few bad PEBs, which are not
1101 		 *    marked as bad so far, and which were read with error. We
1102 		 *    want to go ahead and format this flash. While formatting,
1103 		 *    the faulty PEBs will probably be marked as bad.
1104 		 *
1105 		 * 2. Flash contains non-UBI data and we do not want to format
1106 		 *    it and destroy possibly important information.
1107 		 */
1108 		if (ai->maybe_bad_peb_count <= 2) {
1109 			ai->is_empty = 1;
1110 			ubi_msg("empty MTD device detected");
1111 			get_random_bytes(&ubi->image_seq,
1112 					 sizeof(ubi->image_seq));
1113 		} else {
1114 			ubi_err("MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it");
1115 			return -EINVAL;
1116 		}
1117 
1118 	}
1119 
1120 	return 0;
1121 }
1122 
1123 /**
1124  * destroy_av - free volume attaching information.
1125  * @av: volume attaching information
1126  * @ai: attaching information
1127  *
1128  * This function destroys the volume attaching information.
1129  */
1130 static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
1131 {
1132 	struct ubi_ainf_peb *aeb;
1133 	struct rb_node *this = av->root.rb_node;
1134 
1135 	while (this) {
1136 		if (this->rb_left)
1137 			this = this->rb_left;
1138 		else if (this->rb_right)
1139 			this = this->rb_right;
1140 		else {
1141 			aeb = rb_entry(this, struct ubi_ainf_peb, u.rb);
1142 			this = rb_parent(this);
1143 			if (this) {
1144 				if (this->rb_left == &aeb->u.rb)
1145 					this->rb_left = NULL;
1146 				else
1147 					this->rb_right = NULL;
1148 			}
1149 
1150 			kmem_cache_free(ai->aeb_slab_cache, aeb);
1151 		}
1152 	}
1153 	kfree(av);
1154 }
1155 
1156 /**
1157  * destroy_ai - destroy attaching information.
1158  * @ai: attaching information
1159  */
1160 static void destroy_ai(struct ubi_attach_info *ai)
1161 {
1162 	struct ubi_ainf_peb *aeb, *aeb_tmp;
1163 	struct ubi_ainf_volume *av;
1164 	struct rb_node *rb;
1165 
1166 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) {
1167 		list_del(&aeb->u.list);
1168 		kmem_cache_free(ai->aeb_slab_cache, aeb);
1169 	}
1170 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) {
1171 		list_del(&aeb->u.list);
1172 		kmem_cache_free(ai->aeb_slab_cache, aeb);
1173 	}
1174 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) {
1175 		list_del(&aeb->u.list);
1176 		kmem_cache_free(ai->aeb_slab_cache, aeb);
1177 	}
1178 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) {
1179 		list_del(&aeb->u.list);
1180 		kmem_cache_free(ai->aeb_slab_cache, aeb);
1181 	}
1182 
1183 	/* Destroy the volume RB-tree */
1184 	rb = ai->volumes.rb_node;
1185 	while (rb) {
1186 		if (rb->rb_left)
1187 			rb = rb->rb_left;
1188 		else if (rb->rb_right)
1189 			rb = rb->rb_right;
1190 		else {
1191 			av = rb_entry(rb, struct ubi_ainf_volume, rb);
1192 
1193 			rb = rb_parent(rb);
1194 			if (rb) {
1195 				if (rb->rb_left == &av->rb)
1196 					rb->rb_left = NULL;
1197 				else
1198 					rb->rb_right = NULL;
1199 			}
1200 
1201 			destroy_av(ai, av);
1202 		}
1203 	}
1204 
1205 	if (ai->aeb_slab_cache)
1206 		kmem_cache_destroy(ai->aeb_slab_cache);
1207 
1208 	kfree(ai);
1209 }
1210 
1211 /**
1212  * scan_all - scan entire MTD device.
1213  * @ubi: UBI device description object
1214  * @ai: attach info object
1215  * @start: start scanning at this PEB
1216  *
1217  * This function does full scanning of an MTD device and returns complete
1218  * information about it in form of a "struct ubi_attach_info" object. In case
1219  * of failure, an error code is returned.
1220  */
1221 static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai,
1222 		    int start)
1223 {
1224 	int err, pnum;
1225 	struct rb_node *rb1, *rb2;
1226 	struct ubi_ainf_volume *av;
1227 	struct ubi_ainf_peb *aeb;
1228 
1229 	err = -ENOMEM;
1230 
1231 	ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1232 	if (!ech)
1233 		return err;
1234 
1235 	vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1236 	if (!vidh)
1237 		goto out_ech;
1238 
1239 	for (pnum = start; pnum < ubi->peb_count; pnum++) {
1240 		cond_resched();
1241 
1242 		dbg_gen("process PEB %d", pnum);
1243 		err = scan_peb(ubi, ai, pnum, NULL, NULL);
1244 		if (err < 0)
1245 			goto out_vidh;
1246 	}
1247 
1248 	ubi_msg("scanning is finished");
1249 
1250 	/* Calculate mean erase counter */
1251 	if (ai->ec_count)
1252 		ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
1253 
1254 	err = late_analysis(ubi, ai);
1255 	if (err)
1256 		goto out_vidh;
1257 
1258 	/*
1259 	 * In case of unknown erase counter we use the mean erase counter
1260 	 * value.
1261 	 */
1262 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1263 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1264 			if (aeb->ec == UBI_UNKNOWN)
1265 				aeb->ec = ai->mean_ec;
1266 	}
1267 
1268 	list_for_each_entry(aeb, &ai->free, u.list) {
1269 		if (aeb->ec == UBI_UNKNOWN)
1270 			aeb->ec = ai->mean_ec;
1271 	}
1272 
1273 	list_for_each_entry(aeb, &ai->corr, u.list)
1274 		if (aeb->ec == UBI_UNKNOWN)
1275 			aeb->ec = ai->mean_ec;
1276 
1277 	list_for_each_entry(aeb, &ai->erase, u.list)
1278 		if (aeb->ec == UBI_UNKNOWN)
1279 			aeb->ec = ai->mean_ec;
1280 
1281 	err = self_check_ai(ubi, ai);
1282 	if (err)
1283 		goto out_vidh;
1284 
1285 	ubi_free_vid_hdr(ubi, vidh);
1286 	kfree(ech);
1287 
1288 	return 0;
1289 
1290 out_vidh:
1291 	ubi_free_vid_hdr(ubi, vidh);
1292 out_ech:
1293 	kfree(ech);
1294 	return err;
1295 }
1296 
1297 #ifdef CONFIG_MTD_UBI_FASTMAP
1298 
1299 /**
1300  * scan_fastmap - try to find a fastmap and attach from it.
1301  * @ubi: UBI device description object
1302  * @ai: attach info object
1303  *
1304  * Returns 0 on success, negative return values indicate an internal
1305  * error.
1306  * UBI_NO_FASTMAP denotes that no fastmap was found.
1307  * UBI_BAD_FASTMAP denotes that the found fastmap was invalid.
1308  */
1309 static int scan_fast(struct ubi_device *ubi, struct ubi_attach_info *ai)
1310 {
1311 	int err, pnum, fm_anchor = -1;
1312 	unsigned long long max_sqnum = 0;
1313 
1314 	err = -ENOMEM;
1315 
1316 	ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1317 	if (!ech)
1318 		goto out;
1319 
1320 	vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1321 	if (!vidh)
1322 		goto out_ech;
1323 
1324 	for (pnum = 0; pnum < UBI_FM_MAX_START; pnum++) {
1325 		int vol_id = -1;
1326 		unsigned long long sqnum = -1;
1327 		cond_resched();
1328 
1329 		dbg_gen("process PEB %d", pnum);
1330 		err = scan_peb(ubi, ai, pnum, &vol_id, &sqnum);
1331 		if (err < 0)
1332 			goto out_vidh;
1333 
1334 		if (vol_id == UBI_FM_SB_VOLUME_ID && sqnum > max_sqnum) {
1335 			max_sqnum = sqnum;
1336 			fm_anchor = pnum;
1337 		}
1338 	}
1339 
1340 	ubi_free_vid_hdr(ubi, vidh);
1341 	kfree(ech);
1342 
1343 	if (fm_anchor < 0)
1344 		return UBI_NO_FASTMAP;
1345 
1346 	return ubi_scan_fastmap(ubi, ai, fm_anchor);
1347 
1348 out_vidh:
1349 	ubi_free_vid_hdr(ubi, vidh);
1350 out_ech:
1351 	kfree(ech);
1352 out:
1353 	return err;
1354 }
1355 
1356 #endif
1357 
1358 static struct ubi_attach_info *alloc_ai(const char *slab_name)
1359 {
1360 	struct ubi_attach_info *ai;
1361 
1362 	ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL);
1363 	if (!ai)
1364 		return ai;
1365 
1366 	INIT_LIST_HEAD(&ai->corr);
1367 	INIT_LIST_HEAD(&ai->free);
1368 	INIT_LIST_HEAD(&ai->erase);
1369 	INIT_LIST_HEAD(&ai->alien);
1370 	ai->volumes = RB_ROOT;
1371 	ai->aeb_slab_cache = kmem_cache_create(slab_name,
1372 					       sizeof(struct ubi_ainf_peb),
1373 					       0, 0, NULL);
1374 	if (!ai->aeb_slab_cache) {
1375 		kfree(ai);
1376 		ai = NULL;
1377 	}
1378 
1379 	return ai;
1380 }
1381 
1382 /**
1383  * ubi_attach - attach an MTD device.
1384  * @ubi: UBI device descriptor
1385  * @force_scan: if set to non-zero attach by scanning
1386  *
1387  * This function returns zero in case of success and a negative error code in
1388  * case of failure.
1389  */
1390 int ubi_attach(struct ubi_device *ubi, int force_scan)
1391 {
1392 	int err;
1393 	struct ubi_attach_info *ai;
1394 
1395 	ai = alloc_ai("ubi_aeb_slab_cache");
1396 	if (!ai)
1397 		return -ENOMEM;
1398 
1399 #ifdef CONFIG_MTD_UBI_FASTMAP
1400 	/* On small flash devices we disable fastmap in any case. */
1401 	if ((int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) <= UBI_FM_MAX_START) {
1402 		ubi->fm_disabled = 1;
1403 		force_scan = 1;
1404 	}
1405 
1406 	if (force_scan)
1407 		err = scan_all(ubi, ai, 0);
1408 	else {
1409 		err = scan_fast(ubi, ai);
1410 		if (err > 0) {
1411 			if (err != UBI_NO_FASTMAP) {
1412 				destroy_ai(ai);
1413 				ai = alloc_ai("ubi_aeb_slab_cache2");
1414 				if (!ai)
1415 					return -ENOMEM;
1416 
1417 				err = scan_all(ubi, ai, 0);
1418 			} else {
1419 				err = scan_all(ubi, ai, UBI_FM_MAX_START);
1420 			}
1421 		}
1422 	}
1423 #else
1424 	err = scan_all(ubi, ai, 0);
1425 #endif
1426 	if (err)
1427 		goto out_ai;
1428 
1429 	ubi->bad_peb_count = ai->bad_peb_count;
1430 	ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
1431 	ubi->corr_peb_count = ai->corr_peb_count;
1432 	ubi->max_ec = ai->max_ec;
1433 	ubi->mean_ec = ai->mean_ec;
1434 	dbg_gen("max. sequence number:       %llu", ai->max_sqnum);
1435 
1436 	err = ubi_read_volume_table(ubi, ai);
1437 	if (err)
1438 		goto out_ai;
1439 
1440 	err = ubi_wl_init(ubi, ai);
1441 	if (err)
1442 		goto out_vtbl;
1443 
1444 	err = ubi_eba_init(ubi, ai);
1445 	if (err)
1446 		goto out_wl;
1447 
1448 #ifdef CONFIG_MTD_UBI_FASTMAP
1449 	if (ubi->fm && ubi_dbg_chk_gen(ubi)) {
1450 		struct ubi_attach_info *scan_ai;
1451 
1452 		scan_ai = alloc_ai("ubi_ckh_aeb_slab_cache");
1453 		if (!scan_ai) {
1454 			err = -ENOMEM;
1455 			goto out_wl;
1456 		}
1457 
1458 		err = scan_all(ubi, scan_ai, 0);
1459 		if (err) {
1460 			destroy_ai(scan_ai);
1461 			goto out_wl;
1462 		}
1463 
1464 		err = self_check_eba(ubi, ai, scan_ai);
1465 		destroy_ai(scan_ai);
1466 
1467 		if (err)
1468 			goto out_wl;
1469 	}
1470 #endif
1471 
1472 	destroy_ai(ai);
1473 	return 0;
1474 
1475 out_wl:
1476 	ubi_wl_close(ubi);
1477 out_vtbl:
1478 	ubi_free_internal_volumes(ubi);
1479 	vfree(ubi->vtbl);
1480 out_ai:
1481 	destroy_ai(ai);
1482 	return err;
1483 }
1484 
1485 /**
1486  * self_check_ai - check the attaching information.
1487  * @ubi: UBI device description object
1488  * @ai: attaching information
1489  *
1490  * This function returns zero if the attaching information is all right, and a
1491  * negative error code if not or if an error occurred.
1492  */
1493 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai)
1494 {
1495 	int pnum, err, vols_found = 0;
1496 	struct rb_node *rb1, *rb2;
1497 	struct ubi_ainf_volume *av;
1498 	struct ubi_ainf_peb *aeb, *last_aeb;
1499 	uint8_t *buf;
1500 
1501 	if (!ubi_dbg_chk_gen(ubi))
1502 		return 0;
1503 
1504 	/*
1505 	 * At first, check that attaching information is OK.
1506 	 */
1507 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1508 		int leb_count = 0;
1509 
1510 		cond_resched();
1511 
1512 		vols_found += 1;
1513 
1514 		if (ai->is_empty) {
1515 			ubi_err("bad is_empty flag");
1516 			goto bad_av;
1517 		}
1518 
1519 		if (av->vol_id < 0 || av->highest_lnum < 0 ||
1520 		    av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 ||
1521 		    av->data_pad < 0 || av->last_data_size < 0) {
1522 			ubi_err("negative values");
1523 			goto bad_av;
1524 		}
1525 
1526 		if (av->vol_id >= UBI_MAX_VOLUMES &&
1527 		    av->vol_id < UBI_INTERNAL_VOL_START) {
1528 			ubi_err("bad vol_id");
1529 			goto bad_av;
1530 		}
1531 
1532 		if (av->vol_id > ai->highest_vol_id) {
1533 			ubi_err("highest_vol_id is %d, but vol_id %d is there",
1534 				ai->highest_vol_id, av->vol_id);
1535 			goto out;
1536 		}
1537 
1538 		if (av->vol_type != UBI_DYNAMIC_VOLUME &&
1539 		    av->vol_type != UBI_STATIC_VOLUME) {
1540 			ubi_err("bad vol_type");
1541 			goto bad_av;
1542 		}
1543 
1544 		if (av->data_pad > ubi->leb_size / 2) {
1545 			ubi_err("bad data_pad");
1546 			goto bad_av;
1547 		}
1548 
1549 		last_aeb = NULL;
1550 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1551 			cond_resched();
1552 
1553 			last_aeb = aeb;
1554 			leb_count += 1;
1555 
1556 			if (aeb->pnum < 0 || aeb->ec < 0) {
1557 				ubi_err("negative values");
1558 				goto bad_aeb;
1559 			}
1560 
1561 			if (aeb->ec < ai->min_ec) {
1562 				ubi_err("bad ai->min_ec (%d), %d found",
1563 					ai->min_ec, aeb->ec);
1564 				goto bad_aeb;
1565 			}
1566 
1567 			if (aeb->ec > ai->max_ec) {
1568 				ubi_err("bad ai->max_ec (%d), %d found",
1569 					ai->max_ec, aeb->ec);
1570 				goto bad_aeb;
1571 			}
1572 
1573 			if (aeb->pnum >= ubi->peb_count) {
1574 				ubi_err("too high PEB number %d, total PEBs %d",
1575 					aeb->pnum, ubi->peb_count);
1576 				goto bad_aeb;
1577 			}
1578 
1579 			if (av->vol_type == UBI_STATIC_VOLUME) {
1580 				if (aeb->lnum >= av->used_ebs) {
1581 					ubi_err("bad lnum or used_ebs");
1582 					goto bad_aeb;
1583 				}
1584 			} else {
1585 				if (av->used_ebs != 0) {
1586 					ubi_err("non-zero used_ebs");
1587 					goto bad_aeb;
1588 				}
1589 			}
1590 
1591 			if (aeb->lnum > av->highest_lnum) {
1592 				ubi_err("incorrect highest_lnum or lnum");
1593 				goto bad_aeb;
1594 			}
1595 		}
1596 
1597 		if (av->leb_count != leb_count) {
1598 			ubi_err("bad leb_count, %d objects in the tree",
1599 				leb_count);
1600 			goto bad_av;
1601 		}
1602 
1603 		if (!last_aeb)
1604 			continue;
1605 
1606 		aeb = last_aeb;
1607 
1608 		if (aeb->lnum != av->highest_lnum) {
1609 			ubi_err("bad highest_lnum");
1610 			goto bad_aeb;
1611 		}
1612 	}
1613 
1614 	if (vols_found != ai->vols_found) {
1615 		ubi_err("bad ai->vols_found %d, should be %d",
1616 			ai->vols_found, vols_found);
1617 		goto out;
1618 	}
1619 
1620 	/* Check that attaching information is correct */
1621 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1622 		last_aeb = NULL;
1623 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1624 			int vol_type;
1625 
1626 			cond_resched();
1627 
1628 			last_aeb = aeb;
1629 
1630 			err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidh, 1);
1631 			if (err && err != UBI_IO_BITFLIPS) {
1632 				ubi_err("VID header is not OK (%d)", err);
1633 				if (err > 0)
1634 					err = -EIO;
1635 				return err;
1636 			}
1637 
1638 			vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1639 				   UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1640 			if (av->vol_type != vol_type) {
1641 				ubi_err("bad vol_type");
1642 				goto bad_vid_hdr;
1643 			}
1644 
1645 			if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) {
1646 				ubi_err("bad sqnum %llu", aeb->sqnum);
1647 				goto bad_vid_hdr;
1648 			}
1649 
1650 			if (av->vol_id != be32_to_cpu(vidh->vol_id)) {
1651 				ubi_err("bad vol_id %d", av->vol_id);
1652 				goto bad_vid_hdr;
1653 			}
1654 
1655 			if (av->compat != vidh->compat) {
1656 				ubi_err("bad compat %d", vidh->compat);
1657 				goto bad_vid_hdr;
1658 			}
1659 
1660 			if (aeb->lnum != be32_to_cpu(vidh->lnum)) {
1661 				ubi_err("bad lnum %d", aeb->lnum);
1662 				goto bad_vid_hdr;
1663 			}
1664 
1665 			if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1666 				ubi_err("bad used_ebs %d", av->used_ebs);
1667 				goto bad_vid_hdr;
1668 			}
1669 
1670 			if (av->data_pad != be32_to_cpu(vidh->data_pad)) {
1671 				ubi_err("bad data_pad %d", av->data_pad);
1672 				goto bad_vid_hdr;
1673 			}
1674 		}
1675 
1676 		if (!last_aeb)
1677 			continue;
1678 
1679 		if (av->highest_lnum != be32_to_cpu(vidh->lnum)) {
1680 			ubi_err("bad highest_lnum %d", av->highest_lnum);
1681 			goto bad_vid_hdr;
1682 		}
1683 
1684 		if (av->last_data_size != be32_to_cpu(vidh->data_size)) {
1685 			ubi_err("bad last_data_size %d", av->last_data_size);
1686 			goto bad_vid_hdr;
1687 		}
1688 	}
1689 
1690 	/*
1691 	 * Make sure that all the physical eraseblocks are in one of the lists
1692 	 * or trees.
1693 	 */
1694 	buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1695 	if (!buf)
1696 		return -ENOMEM;
1697 
1698 	for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1699 		err = ubi_io_is_bad(ubi, pnum);
1700 		if (err < 0) {
1701 			kfree(buf);
1702 			return err;
1703 		} else if (err)
1704 			buf[pnum] = 1;
1705 	}
1706 
1707 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
1708 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1709 			buf[aeb->pnum] = 1;
1710 
1711 	list_for_each_entry(aeb, &ai->free, u.list)
1712 		buf[aeb->pnum] = 1;
1713 
1714 	list_for_each_entry(aeb, &ai->corr, u.list)
1715 		buf[aeb->pnum] = 1;
1716 
1717 	list_for_each_entry(aeb, &ai->erase, u.list)
1718 		buf[aeb->pnum] = 1;
1719 
1720 	list_for_each_entry(aeb, &ai->alien, u.list)
1721 		buf[aeb->pnum] = 1;
1722 
1723 	err = 0;
1724 	for (pnum = 0; pnum < ubi->peb_count; pnum++)
1725 		if (!buf[pnum]) {
1726 			ubi_err("PEB %d is not referred", pnum);
1727 			err = 1;
1728 		}
1729 
1730 	kfree(buf);
1731 	if (err)
1732 		goto out;
1733 	return 0;
1734 
1735 bad_aeb:
1736 	ubi_err("bad attaching information about LEB %d", aeb->lnum);
1737 	ubi_dump_aeb(aeb, 0);
1738 	ubi_dump_av(av);
1739 	goto out;
1740 
1741 bad_av:
1742 	ubi_err("bad attaching information about volume %d", av->vol_id);
1743 	ubi_dump_av(av);
1744 	goto out;
1745 
1746 bad_vid_hdr:
1747 	ubi_err("bad attaching information about volume %d", av->vol_id);
1748 	ubi_dump_av(av);
1749 	ubi_dump_vid_hdr(vidh);
1750 
1751 out:
1752 	dump_stack();
1753 	return -EINVAL;
1754 }
1755