xref: /openbmc/u-boot/drivers/mtd/ubi/attach.c (revision 2e07c249a67e055db294818ff063d502d15db0f8)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * SPDX-License-Identifier:	GPL-2.0+
5  *
6  * Author: Artem Bityutskiy (Битюцкий Артём)
7  */
8 
9 /*
10  * UBI attaching sub-system.
11  *
12  * This sub-system is responsible for attaching MTD devices and it also
13  * implements flash media scanning.
14  *
15  * The attaching information is represented by a &struct ubi_attach_info'
16  * object. Information about volumes is represented by &struct ubi_ainf_volume
17  * objects which are kept in volume RB-tree with root at the @volumes field.
18  * The RB-tree is indexed by the volume ID.
19  *
20  * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These
21  * objects are kept in per-volume RB-trees with the root at the corresponding
22  * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of
23  * per-volume objects and each of these objects is the root of RB-tree of
24  * per-LEB objects.
25  *
26  * Corrupted physical eraseblocks are put to the @corr list, free physical
27  * eraseblocks are put to the @free list and the physical eraseblock to be
28  * erased are put to the @erase list.
29  *
30  * About corruptions
31  * ~~~~~~~~~~~~~~~~~
32  *
33  * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
34  * whether the headers are corrupted or not. Sometimes UBI also protects the
35  * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
36  * when it moves the contents of a PEB for wear-leveling purposes.
37  *
38  * UBI tries to distinguish between 2 types of corruptions.
39  *
40  * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
41  * tries to handle them gracefully, without printing too many warnings and
42  * error messages. The idea is that we do not lose important data in these
43  * cases - we may lose only the data which were being written to the media just
44  * before the power cut happened, and the upper layers (e.g., UBIFS) are
45  * supposed to handle such data losses (e.g., by using the FS journal).
46  *
47  * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
48  * the reason is a power cut, UBI puts this PEB to the @erase list, and all
49  * PEBs in the @erase list are scheduled for erasure later.
50  *
51  * 2. Unexpected corruptions which are not caused by power cuts. During
52  * attaching, such PEBs are put to the @corr list and UBI preserves them.
53  * Obviously, this lessens the amount of available PEBs, and if at some  point
54  * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
55  * about such PEBs every time the MTD device is attached.
56  *
57  * However, it is difficult to reliably distinguish between these types of
58  * corruptions and UBI's strategy is as follows (in case of attaching by
59  * scanning). UBI assumes corruption type 2 if the VID header is corrupted and
60  * the data area does not contain all 0xFFs, and there were no bit-flips or
61  * integrity errors (e.g., ECC errors in case of NAND) while reading the data
62  * area.  Otherwise UBI assumes corruption type 1. So the decision criteria
63  * are as follows.
64  *   o If the data area contains only 0xFFs, there are no data, and it is safe
65  *     to just erase this PEB - this is corruption type 1.
66  *   o If the data area has bit-flips or data integrity errors (ECC errors on
67  *     NAND), it is probably a PEB which was being erased when power cut
68  *     happened, so this is corruption type 1. However, this is just a guess,
69  *     which might be wrong.
70  *   o Otherwise this is corruption type 2.
71  */
72 
73 #ifndef __UBOOT__
74 #include <linux/err.h>
75 #include <linux/slab.h>
76 #include <linux/crc32.h>
77 #include <linux/random.h>
78 #else
79 #include <div64.h>
80 #include <linux/err.h>
81 #endif
82 
83 #include <linux/math64.h>
84 
85 #include <ubi_uboot.h>
86 #include "ubi.h"
87 
88 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai);
89 
90 /* Temporary variables used during scanning */
91 static struct ubi_ec_hdr *ech;
92 static struct ubi_vid_hdr *vidh;
93 
94 /**
95  * add_to_list - add physical eraseblock to a list.
96  * @ai: attaching information
97  * @pnum: physical eraseblock number to add
98  * @vol_id: the last used volume id for the PEB
99  * @lnum: the last used LEB number for the PEB
100  * @ec: erase counter of the physical eraseblock
101  * @to_head: if not zero, add to the head of the list
102  * @list: the list to add to
103  *
104  * This function allocates a 'struct ubi_ainf_peb' object for physical
105  * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists.
106  * It stores the @lnum and @vol_id alongside, which can both be
107  * %UBI_UNKNOWN if they are not available, not readable, or not assigned.
108  * If @to_head is not zero, PEB will be added to the head of the list, which
109  * basically means it will be processed first later. E.g., we add corrupted
110  * PEBs (corrupted due to power cuts) to the head of the erase list to make
111  * sure we erase them first and get rid of corruptions ASAP. This function
112  * returns zero in case of success and a negative error code in case of
113  * failure.
114  */
115 static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id,
116 		       int lnum, int ec, int to_head, struct list_head *list)
117 {
118 	struct ubi_ainf_peb *aeb;
119 
120 	if (list == &ai->free) {
121 		dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
122 	} else if (list == &ai->erase) {
123 		dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
124 	} else if (list == &ai->alien) {
125 		dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
126 		ai->alien_peb_count += 1;
127 	} else
128 		BUG();
129 
130 	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
131 	if (!aeb)
132 		return -ENOMEM;
133 
134 	aeb->pnum = pnum;
135 	aeb->vol_id = vol_id;
136 	aeb->lnum = lnum;
137 	aeb->ec = ec;
138 	if (to_head)
139 		list_add(&aeb->u.list, list);
140 	else
141 		list_add_tail(&aeb->u.list, list);
142 	return 0;
143 }
144 
145 /**
146  * add_corrupted - add a corrupted physical eraseblock.
147  * @ai: attaching information
148  * @pnum: physical eraseblock number to add
149  * @ec: erase counter of the physical eraseblock
150  *
151  * This function allocates a 'struct ubi_ainf_peb' object for a corrupted
152  * physical eraseblock @pnum and adds it to the 'corr' list.  The corruption
153  * was presumably not caused by a power cut. Returns zero in case of success
154  * and a negative error code in case of failure.
155  */
156 static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec)
157 {
158 	struct ubi_ainf_peb *aeb;
159 
160 	dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
161 
162 	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
163 	if (!aeb)
164 		return -ENOMEM;
165 
166 	ai->corr_peb_count += 1;
167 	aeb->pnum = pnum;
168 	aeb->ec = ec;
169 	list_add(&aeb->u.list, &ai->corr);
170 	return 0;
171 }
172 
173 /**
174  * validate_vid_hdr - check volume identifier header.
175  * @vid_hdr: the volume identifier header to check
176  * @av: information about the volume this logical eraseblock belongs to
177  * @pnum: physical eraseblock number the VID header came from
178  *
179  * This function checks that data stored in @vid_hdr is consistent. Returns
180  * non-zero if an inconsistency was found and zero if not.
181  *
182  * Note, UBI does sanity check of everything it reads from the flash media.
183  * Most of the checks are done in the I/O sub-system. Here we check that the
184  * information in the VID header is consistent to the information in other VID
185  * headers of the same volume.
186  */
187 static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
188 			    const struct ubi_ainf_volume *av, int pnum)
189 {
190 	int vol_type = vid_hdr->vol_type;
191 	int vol_id = be32_to_cpu(vid_hdr->vol_id);
192 	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
193 	int data_pad = be32_to_cpu(vid_hdr->data_pad);
194 
195 	if (av->leb_count != 0) {
196 		int av_vol_type;
197 
198 		/*
199 		 * This is not the first logical eraseblock belonging to this
200 		 * volume. Ensure that the data in its VID header is consistent
201 		 * to the data in previous logical eraseblock headers.
202 		 */
203 
204 		if (vol_id != av->vol_id) {
205 			ubi_err("inconsistent vol_id");
206 			goto bad;
207 		}
208 
209 		if (av->vol_type == UBI_STATIC_VOLUME)
210 			av_vol_type = UBI_VID_STATIC;
211 		else
212 			av_vol_type = UBI_VID_DYNAMIC;
213 
214 		if (vol_type != av_vol_type) {
215 			ubi_err("inconsistent vol_type");
216 			goto bad;
217 		}
218 
219 		if (used_ebs != av->used_ebs) {
220 			ubi_err("inconsistent used_ebs");
221 			goto bad;
222 		}
223 
224 		if (data_pad != av->data_pad) {
225 			ubi_err("inconsistent data_pad");
226 			goto bad;
227 		}
228 	}
229 
230 	return 0;
231 
232 bad:
233 	ubi_err("inconsistent VID header at PEB %d", pnum);
234 	ubi_dump_vid_hdr(vid_hdr);
235 	ubi_dump_av(av);
236 	return -EINVAL;
237 }
238 
239 /**
240  * add_volume - add volume to the attaching information.
241  * @ai: attaching information
242  * @vol_id: ID of the volume to add
243  * @pnum: physical eraseblock number
244  * @vid_hdr: volume identifier header
245  *
246  * If the volume corresponding to the @vid_hdr logical eraseblock is already
247  * present in the attaching information, this function does nothing. Otherwise
248  * it adds corresponding volume to the attaching information. Returns a pointer
249  * to the allocated "av" object in case of success and a negative error code in
250  * case of failure.
251  */
252 static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai,
253 					  int vol_id, int pnum,
254 					  const struct ubi_vid_hdr *vid_hdr)
255 {
256 	struct ubi_ainf_volume *av;
257 	struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
258 
259 	ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
260 
261 	/* Walk the volume RB-tree to look if this volume is already present */
262 	while (*p) {
263 		parent = *p;
264 		av = rb_entry(parent, struct ubi_ainf_volume, rb);
265 
266 		if (vol_id == av->vol_id)
267 			return av;
268 
269 		if (vol_id > av->vol_id)
270 			p = &(*p)->rb_left;
271 		else
272 			p = &(*p)->rb_right;
273 	}
274 
275 	/* The volume is absent - add it */
276 	av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL);
277 	if (!av)
278 		return ERR_PTR(-ENOMEM);
279 
280 	av->highest_lnum = av->leb_count = 0;
281 	av->vol_id = vol_id;
282 	av->root = RB_ROOT;
283 	av->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
284 	av->data_pad = be32_to_cpu(vid_hdr->data_pad);
285 	av->compat = vid_hdr->compat;
286 	av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
287 							    : UBI_STATIC_VOLUME;
288 	if (vol_id > ai->highest_vol_id)
289 		ai->highest_vol_id = vol_id;
290 
291 	rb_link_node(&av->rb, parent, p);
292 	rb_insert_color(&av->rb, &ai->volumes);
293 	ai->vols_found += 1;
294 	dbg_bld("added volume %d", vol_id);
295 	return av;
296 }
297 
298 /**
299  * ubi_compare_lebs - find out which logical eraseblock is newer.
300  * @ubi: UBI device description object
301  * @aeb: first logical eraseblock to compare
302  * @pnum: physical eraseblock number of the second logical eraseblock to
303  * compare
304  * @vid_hdr: volume identifier header of the second logical eraseblock
305  *
306  * This function compares 2 copies of a LEB and informs which one is newer. In
307  * case of success this function returns a positive value, in case of failure, a
308  * negative error code is returned. The success return codes use the following
309  * bits:
310  *     o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
311  *       second PEB (described by @pnum and @vid_hdr);
312  *     o bit 0 is set: the second PEB is newer;
313  *     o bit 1 is cleared: no bit-flips were detected in the newer LEB;
314  *     o bit 1 is set: bit-flips were detected in the newer LEB;
315  *     o bit 2 is cleared: the older LEB is not corrupted;
316  *     o bit 2 is set: the older LEB is corrupted.
317  */
318 int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb,
319 			int pnum, const struct ubi_vid_hdr *vid_hdr)
320 {
321 	int len, err, second_is_newer, bitflips = 0, corrupted = 0;
322 	uint32_t data_crc, crc;
323 	struct ubi_vid_hdr *vh = NULL;
324 	unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
325 
326 	if (sqnum2 == aeb->sqnum) {
327 		/*
328 		 * This must be a really ancient UBI image which has been
329 		 * created before sequence numbers support has been added. At
330 		 * that times we used 32-bit LEB versions stored in logical
331 		 * eraseblocks. That was before UBI got into mainline. We do not
332 		 * support these images anymore. Well, those images still work,
333 		 * but only if no unclean reboots happened.
334 		 */
335 		ubi_err("unsupported on-flash UBI format");
336 		return -EINVAL;
337 	}
338 
339 	/* Obviously the LEB with lower sequence counter is older */
340 	second_is_newer = (sqnum2 > aeb->sqnum);
341 
342 	/*
343 	 * Now we know which copy is newer. If the copy flag of the PEB with
344 	 * newer version is not set, then we just return, otherwise we have to
345 	 * check data CRC. For the second PEB we already have the VID header,
346 	 * for the first one - we'll need to re-read it from flash.
347 	 *
348 	 * Note: this may be optimized so that we wouldn't read twice.
349 	 */
350 
351 	if (second_is_newer) {
352 		if (!vid_hdr->copy_flag) {
353 			/* It is not a copy, so it is newer */
354 			dbg_bld("second PEB %d is newer, copy_flag is unset",
355 				pnum);
356 			return 1;
357 		}
358 	} else {
359 		if (!aeb->copy_flag) {
360 			/* It is not a copy, so it is newer */
361 			dbg_bld("first PEB %d is newer, copy_flag is unset",
362 				pnum);
363 			return bitflips << 1;
364 		}
365 
366 		vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
367 		if (!vh)
368 			return -ENOMEM;
369 
370 		pnum = aeb->pnum;
371 		err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
372 		if (err) {
373 			if (err == UBI_IO_BITFLIPS)
374 				bitflips = 1;
375 			else {
376 				ubi_err("VID of PEB %d header is bad, but it was OK earlier, err %d",
377 					pnum, err);
378 				if (err > 0)
379 					err = -EIO;
380 
381 				goto out_free_vidh;
382 			}
383 		}
384 
385 		vid_hdr = vh;
386 	}
387 
388 	/* Read the data of the copy and check the CRC */
389 
390 	len = be32_to_cpu(vid_hdr->data_size);
391 
392 	mutex_lock(&ubi->buf_mutex);
393 	err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, len);
394 	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
395 		goto out_unlock;
396 
397 	data_crc = be32_to_cpu(vid_hdr->data_crc);
398 	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, len);
399 	if (crc != data_crc) {
400 		dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
401 			pnum, crc, data_crc);
402 		corrupted = 1;
403 		bitflips = 0;
404 		second_is_newer = !second_is_newer;
405 	} else {
406 		dbg_bld("PEB %d CRC is OK", pnum);
407 		bitflips = !!err;
408 	}
409 	mutex_unlock(&ubi->buf_mutex);
410 
411 	ubi_free_vid_hdr(ubi, vh);
412 
413 	if (second_is_newer)
414 		dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
415 	else
416 		dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
417 
418 	return second_is_newer | (bitflips << 1) | (corrupted << 2);
419 
420 out_unlock:
421 	mutex_unlock(&ubi->buf_mutex);
422 out_free_vidh:
423 	ubi_free_vid_hdr(ubi, vh);
424 	return err;
425 }
426 
427 /**
428  * ubi_add_to_av - add used physical eraseblock to the attaching information.
429  * @ubi: UBI device description object
430  * @ai: attaching information
431  * @pnum: the physical eraseblock number
432  * @ec: erase counter
433  * @vid_hdr: the volume identifier header
434  * @bitflips: if bit-flips were detected when this physical eraseblock was read
435  *
436  * This function adds information about a used physical eraseblock to the
437  * 'used' tree of the corresponding volume. The function is rather complex
438  * because it has to handle cases when this is not the first physical
439  * eraseblock belonging to the same logical eraseblock, and the newer one has
440  * to be picked, while the older one has to be dropped. This function returns
441  * zero in case of success and a negative error code in case of failure.
442  */
443 int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum,
444 		  int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips)
445 {
446 	int err, vol_id, lnum;
447 	unsigned long long sqnum;
448 	struct ubi_ainf_volume *av;
449 	struct ubi_ainf_peb *aeb;
450 	struct rb_node **p, *parent = NULL;
451 
452 	vol_id = be32_to_cpu(vid_hdr->vol_id);
453 	lnum = be32_to_cpu(vid_hdr->lnum);
454 	sqnum = be64_to_cpu(vid_hdr->sqnum);
455 
456 	dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
457 		pnum, vol_id, lnum, ec, sqnum, bitflips);
458 
459 	av = add_volume(ai, vol_id, pnum, vid_hdr);
460 	if (IS_ERR(av))
461 		return PTR_ERR(av);
462 
463 	if (ai->max_sqnum < sqnum)
464 		ai->max_sqnum = sqnum;
465 
466 	/*
467 	 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
468 	 * if this is the first instance of this logical eraseblock or not.
469 	 */
470 	p = &av->root.rb_node;
471 	while (*p) {
472 		int cmp_res;
473 
474 		parent = *p;
475 		aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
476 		if (lnum != aeb->lnum) {
477 			if (lnum < aeb->lnum)
478 				p = &(*p)->rb_left;
479 			else
480 				p = &(*p)->rb_right;
481 			continue;
482 		}
483 
484 		/*
485 		 * There is already a physical eraseblock describing the same
486 		 * logical eraseblock present.
487 		 */
488 
489 		dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
490 			aeb->pnum, aeb->sqnum, aeb->ec);
491 
492 		/*
493 		 * Make sure that the logical eraseblocks have different
494 		 * sequence numbers. Otherwise the image is bad.
495 		 *
496 		 * However, if the sequence number is zero, we assume it must
497 		 * be an ancient UBI image from the era when UBI did not have
498 		 * sequence numbers. We still can attach these images, unless
499 		 * there is a need to distinguish between old and new
500 		 * eraseblocks, in which case we'll refuse the image in
501 		 * 'ubi_compare_lebs()'. In other words, we attach old clean
502 		 * images, but refuse attaching old images with duplicated
503 		 * logical eraseblocks because there was an unclean reboot.
504 		 */
505 		if (aeb->sqnum == sqnum && sqnum != 0) {
506 			ubi_err("two LEBs with same sequence number %llu",
507 				sqnum);
508 			ubi_dump_aeb(aeb, 0);
509 			ubi_dump_vid_hdr(vid_hdr);
510 			return -EINVAL;
511 		}
512 
513 		/*
514 		 * Now we have to drop the older one and preserve the newer
515 		 * one.
516 		 */
517 		cmp_res = ubi_compare_lebs(ubi, aeb, pnum, vid_hdr);
518 		if (cmp_res < 0)
519 			return cmp_res;
520 
521 		if (cmp_res & 1) {
522 			/*
523 			 * This logical eraseblock is newer than the one
524 			 * found earlier.
525 			 */
526 			err = validate_vid_hdr(vid_hdr, av, pnum);
527 			if (err)
528 				return err;
529 
530 			err = add_to_list(ai, aeb->pnum, aeb->vol_id,
531 					  aeb->lnum, aeb->ec, cmp_res & 4,
532 					  &ai->erase);
533 			if (err)
534 				return err;
535 
536 			aeb->ec = ec;
537 			aeb->pnum = pnum;
538 			aeb->vol_id = vol_id;
539 			aeb->lnum = lnum;
540 			aeb->scrub = ((cmp_res & 2) || bitflips);
541 			aeb->copy_flag = vid_hdr->copy_flag;
542 			aeb->sqnum = sqnum;
543 
544 			if (av->highest_lnum == lnum)
545 				av->last_data_size =
546 					be32_to_cpu(vid_hdr->data_size);
547 
548 			return 0;
549 		} else {
550 			/*
551 			 * This logical eraseblock is older than the one found
552 			 * previously.
553 			 */
554 			return add_to_list(ai, pnum, vol_id, lnum, ec,
555 					   cmp_res & 4, &ai->erase);
556 		}
557 	}
558 
559 	/*
560 	 * We've met this logical eraseblock for the first time, add it to the
561 	 * attaching information.
562 	 */
563 
564 	err = validate_vid_hdr(vid_hdr, av, pnum);
565 	if (err)
566 		return err;
567 
568 	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
569 	if (!aeb)
570 		return -ENOMEM;
571 
572 	aeb->ec = ec;
573 	aeb->pnum = pnum;
574 	aeb->vol_id = vol_id;
575 	aeb->lnum = lnum;
576 	aeb->scrub = bitflips;
577 	aeb->copy_flag = vid_hdr->copy_flag;
578 	aeb->sqnum = sqnum;
579 
580 	if (av->highest_lnum <= lnum) {
581 		av->highest_lnum = lnum;
582 		av->last_data_size = be32_to_cpu(vid_hdr->data_size);
583 	}
584 
585 	av->leb_count += 1;
586 	rb_link_node(&aeb->u.rb, parent, p);
587 	rb_insert_color(&aeb->u.rb, &av->root);
588 	return 0;
589 }
590 
591 /**
592  * ubi_find_av - find volume in the attaching information.
593  * @ai: attaching information
594  * @vol_id: the requested volume ID
595  *
596  * This function returns a pointer to the volume description or %NULL if there
597  * are no data about this volume in the attaching information.
598  */
599 struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai,
600 				    int vol_id)
601 {
602 	struct ubi_ainf_volume *av;
603 	struct rb_node *p = ai->volumes.rb_node;
604 
605 	while (p) {
606 		av = rb_entry(p, struct ubi_ainf_volume, rb);
607 
608 		if (vol_id == av->vol_id)
609 			return av;
610 
611 		if (vol_id > av->vol_id)
612 			p = p->rb_left;
613 		else
614 			p = p->rb_right;
615 	}
616 
617 	return NULL;
618 }
619 
620 /**
621  * ubi_remove_av - delete attaching information about a volume.
622  * @ai: attaching information
623  * @av: the volume attaching information to delete
624  */
625 void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
626 {
627 	struct rb_node *rb;
628 	struct ubi_ainf_peb *aeb;
629 
630 	dbg_bld("remove attaching information about volume %d", av->vol_id);
631 
632 	while ((rb = rb_first(&av->root))) {
633 		aeb = rb_entry(rb, struct ubi_ainf_peb, u.rb);
634 		rb_erase(&aeb->u.rb, &av->root);
635 		list_add_tail(&aeb->u.list, &ai->erase);
636 	}
637 
638 	rb_erase(&av->rb, &ai->volumes);
639 	kfree(av);
640 	ai->vols_found -= 1;
641 }
642 
643 /**
644  * early_erase_peb - erase a physical eraseblock.
645  * @ubi: UBI device description object
646  * @ai: attaching information
647  * @pnum: physical eraseblock number to erase;
648  * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown)
649  *
650  * This function erases physical eraseblock 'pnum', and writes the erase
651  * counter header to it. This function should only be used on UBI device
652  * initialization stages, when the EBA sub-system had not been yet initialized.
653  * This function returns zero in case of success and a negative error code in
654  * case of failure.
655  */
656 static int early_erase_peb(struct ubi_device *ubi,
657 			   const struct ubi_attach_info *ai, int pnum, int ec)
658 {
659 	int err;
660 	struct ubi_ec_hdr *ec_hdr;
661 
662 	if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
663 		/*
664 		 * Erase counter overflow. Upgrade UBI and use 64-bit
665 		 * erase counters internally.
666 		 */
667 		ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
668 		return -EINVAL;
669 	}
670 
671 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
672 	if (!ec_hdr)
673 		return -ENOMEM;
674 
675 	ec_hdr->ec = cpu_to_be64(ec);
676 
677 	err = ubi_io_sync_erase(ubi, pnum, 0);
678 	if (err < 0)
679 		goto out_free;
680 
681 	err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
682 
683 out_free:
684 	kfree(ec_hdr);
685 	return err;
686 }
687 
688 /**
689  * ubi_early_get_peb - get a free physical eraseblock.
690  * @ubi: UBI device description object
691  * @ai: attaching information
692  *
693  * This function returns a free physical eraseblock. It is supposed to be
694  * called on the UBI initialization stages when the wear-leveling sub-system is
695  * not initialized yet. This function picks a physical eraseblocks from one of
696  * the lists, writes the EC header if it is needed, and removes it from the
697  * list.
698  *
699  * This function returns a pointer to the "aeb" of the found free PEB in case
700  * of success and an error code in case of failure.
701  */
702 struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi,
703 				       struct ubi_attach_info *ai)
704 {
705 	int err = 0;
706 	struct ubi_ainf_peb *aeb, *tmp_aeb;
707 
708 	if (!list_empty(&ai->free)) {
709 		aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list);
710 		list_del(&aeb->u.list);
711 		dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec);
712 		return aeb;
713 	}
714 
715 	/*
716 	 * We try to erase the first physical eraseblock from the erase list
717 	 * and pick it if we succeed, or try to erase the next one if not. And
718 	 * so forth. We don't want to take care about bad eraseblocks here -
719 	 * they'll be handled later.
720 	 */
721 	list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) {
722 		if (aeb->ec == UBI_UNKNOWN)
723 			aeb->ec = ai->mean_ec;
724 
725 		err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1);
726 		if (err)
727 			continue;
728 
729 		aeb->ec += 1;
730 		list_del(&aeb->u.list);
731 		dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec);
732 		return aeb;
733 	}
734 
735 	ubi_err("no free eraseblocks");
736 	return ERR_PTR(-ENOSPC);
737 }
738 
739 /**
740  * check_corruption - check the data area of PEB.
741  * @ubi: UBI device description object
742  * @vid_hdr: the (corrupted) VID header of this PEB
743  * @pnum: the physical eraseblock number to check
744  *
745  * This is a helper function which is used to distinguish between VID header
746  * corruptions caused by power cuts and other reasons. If the PEB contains only
747  * 0xFF bytes in the data area, the VID header is most probably corrupted
748  * because of a power cut (%0 is returned in this case). Otherwise, it was
749  * probably corrupted for some other reasons (%1 is returned in this case). A
750  * negative error code is returned if a read error occurred.
751  *
752  * If the corruption reason was a power cut, UBI can safely erase this PEB.
753  * Otherwise, it should preserve it to avoid possibly destroying important
754  * information.
755  */
756 static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
757 			    int pnum)
758 {
759 	int err;
760 
761 	mutex_lock(&ubi->buf_mutex);
762 	memset(ubi->peb_buf, 0x00, ubi->leb_size);
763 
764 	err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start,
765 			  ubi->leb_size);
766 	if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
767 		/*
768 		 * Bit-flips or integrity errors while reading the data area.
769 		 * It is difficult to say for sure what type of corruption is
770 		 * this, but presumably a power cut happened while this PEB was
771 		 * erased, so it became unstable and corrupted, and should be
772 		 * erased.
773 		 */
774 		err = 0;
775 		goto out_unlock;
776 	}
777 
778 	if (err)
779 		goto out_unlock;
780 
781 	if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size))
782 		goto out_unlock;
783 
784 	ubi_err("PEB %d contains corrupted VID header, and the data does not contain all 0xFF",
785 		pnum);
786 	ubi_err("this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection");
787 	ubi_dump_vid_hdr(vid_hdr);
788 	pr_err("hexdump of PEB %d offset %d, length %d",
789 	       pnum, ubi->leb_start, ubi->leb_size);
790 	ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
791 			       ubi->peb_buf, ubi->leb_size, 1);
792 	err = 1;
793 
794 out_unlock:
795 	mutex_unlock(&ubi->buf_mutex);
796 	return err;
797 }
798 
799 /**
800  * scan_peb - scan and process UBI headers of a PEB.
801  * @ubi: UBI device description object
802  * @ai: attaching information
803  * @pnum: the physical eraseblock number
804  * @vid: The volume ID of the found volume will be stored in this pointer
805  * @sqnum: The sqnum of the found volume will be stored in this pointer
806  *
807  * This function reads UBI headers of PEB @pnum, checks them, and adds
808  * information about this PEB to the corresponding list or RB-tree in the
809  * "attaching info" structure. Returns zero if the physical eraseblock was
810  * successfully handled and a negative error code in case of failure.
811  */
812 static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai,
813 		    int pnum, int *vid, unsigned long long *sqnum)
814 {
815 	long long uninitialized_var(ec);
816 	int err, bitflips = 0, vol_id = -1, ec_err = 0;
817 
818 	dbg_bld("scan PEB %d", pnum);
819 
820 	/* Skip bad physical eraseblocks */
821 	err = ubi_io_is_bad(ubi, pnum);
822 	if (err < 0)
823 		return err;
824 	else if (err) {
825 		ai->bad_peb_count += 1;
826 		return 0;
827 	}
828 
829 	err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
830 	if (err < 0)
831 		return err;
832 	switch (err) {
833 	case 0:
834 		break;
835 	case UBI_IO_BITFLIPS:
836 		bitflips = 1;
837 		break;
838 	case UBI_IO_FF:
839 		ai->empty_peb_count += 1;
840 		return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
841 				   UBI_UNKNOWN, 0, &ai->erase);
842 	case UBI_IO_FF_BITFLIPS:
843 		ai->empty_peb_count += 1;
844 		return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
845 				   UBI_UNKNOWN, 1, &ai->erase);
846 	case UBI_IO_BAD_HDR_EBADMSG:
847 	case UBI_IO_BAD_HDR:
848 		/*
849 		 * We have to also look at the VID header, possibly it is not
850 		 * corrupted. Set %bitflips flag in order to make this PEB be
851 		 * moved and EC be re-created.
852 		 */
853 		ec_err = err;
854 		ec = UBI_UNKNOWN;
855 		bitflips = 1;
856 		break;
857 	default:
858 		ubi_err("'ubi_io_read_ec_hdr()' returned unknown code %d", err);
859 		return -EINVAL;
860 	}
861 
862 	if (!ec_err) {
863 		int image_seq;
864 
865 		/* Make sure UBI version is OK */
866 		if (ech->version != UBI_VERSION) {
867 			ubi_err("this UBI version is %d, image version is %d",
868 				UBI_VERSION, (int)ech->version);
869 			return -EINVAL;
870 		}
871 
872 		ec = be64_to_cpu(ech->ec);
873 		if (ec > UBI_MAX_ERASECOUNTER) {
874 			/*
875 			 * Erase counter overflow. The EC headers have 64 bits
876 			 * reserved, but we anyway make use of only 31 bit
877 			 * values, as this seems to be enough for any existing
878 			 * flash. Upgrade UBI and use 64-bit erase counters
879 			 * internally.
880 			 */
881 			ubi_err("erase counter overflow, max is %d",
882 				UBI_MAX_ERASECOUNTER);
883 			ubi_dump_ec_hdr(ech);
884 			return -EINVAL;
885 		}
886 
887 		/*
888 		 * Make sure that all PEBs have the same image sequence number.
889 		 * This allows us to detect situations when users flash UBI
890 		 * images incorrectly, so that the flash has the new UBI image
891 		 * and leftovers from the old one. This feature was added
892 		 * relatively recently, and the sequence number was always
893 		 * zero, because old UBI implementations always set it to zero.
894 		 * For this reasons, we do not panic if some PEBs have zero
895 		 * sequence number, while other PEBs have non-zero sequence
896 		 * number.
897 		 */
898 		image_seq = be32_to_cpu(ech->image_seq);
899 		if (!ubi->image_seq)
900 			ubi->image_seq = image_seq;
901 		if (image_seq && ubi->image_seq != image_seq) {
902 			ubi_err("bad image sequence number %d in PEB %d, expected %d",
903 				image_seq, pnum, ubi->image_seq);
904 			ubi_dump_ec_hdr(ech);
905 			return -EINVAL;
906 		}
907 	}
908 
909 	/* OK, we've done with the EC header, let's look at the VID header */
910 
911 	err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
912 	if (err < 0)
913 		return err;
914 	switch (err) {
915 	case 0:
916 		break;
917 	case UBI_IO_BITFLIPS:
918 		bitflips = 1;
919 		break;
920 	case UBI_IO_BAD_HDR_EBADMSG:
921 		if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
922 			/*
923 			 * Both EC and VID headers are corrupted and were read
924 			 * with data integrity error, probably this is a bad
925 			 * PEB, bit it is not marked as bad yet. This may also
926 			 * be a result of power cut during erasure.
927 			 */
928 			ai->maybe_bad_peb_count += 1;
929 	case UBI_IO_BAD_HDR:
930 		if (ec_err)
931 			/*
932 			 * Both headers are corrupted. There is a possibility
933 			 * that this a valid UBI PEB which has corresponding
934 			 * LEB, but the headers are corrupted. However, it is
935 			 * impossible to distinguish it from a PEB which just
936 			 * contains garbage because of a power cut during erase
937 			 * operation. So we just schedule this PEB for erasure.
938 			 *
939 			 * Besides, in case of NOR flash, we deliberately
940 			 * corrupt both headers because NOR flash erasure is
941 			 * slow and can start from the end.
942 			 */
943 			err = 0;
944 		else
945 			/*
946 			 * The EC was OK, but the VID header is corrupted. We
947 			 * have to check what is in the data area.
948 			 */
949 			err = check_corruption(ubi, vidh, pnum);
950 
951 		if (err < 0)
952 			return err;
953 		else if (!err)
954 			/* This corruption is caused by a power cut */
955 			err = add_to_list(ai, pnum, UBI_UNKNOWN,
956 					  UBI_UNKNOWN, ec, 1, &ai->erase);
957 		else
958 			/* This is an unexpected corruption */
959 			err = add_corrupted(ai, pnum, ec);
960 		if (err)
961 			return err;
962 		goto adjust_mean_ec;
963 	case UBI_IO_FF_BITFLIPS:
964 		err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
965 				  ec, 1, &ai->erase);
966 		if (err)
967 			return err;
968 		goto adjust_mean_ec;
969 	case UBI_IO_FF:
970 		if (ec_err || bitflips)
971 			err = add_to_list(ai, pnum, UBI_UNKNOWN,
972 					  UBI_UNKNOWN, ec, 1, &ai->erase);
973 		else
974 			err = add_to_list(ai, pnum, UBI_UNKNOWN,
975 					  UBI_UNKNOWN, ec, 0, &ai->free);
976 		if (err)
977 			return err;
978 		goto adjust_mean_ec;
979 	default:
980 		ubi_err("'ubi_io_read_vid_hdr()' returned unknown code %d",
981 			err);
982 		return -EINVAL;
983 	}
984 
985 	vol_id = be32_to_cpu(vidh->vol_id);
986 	if (vid)
987 		*vid = vol_id;
988 	if (sqnum)
989 		*sqnum = be64_to_cpu(vidh->sqnum);
990 	if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
991 		int lnum = be32_to_cpu(vidh->lnum);
992 
993 		/* Unsupported internal volume */
994 		switch (vidh->compat) {
995 		case UBI_COMPAT_DELETE:
996 			if (vol_id != UBI_FM_SB_VOLUME_ID
997 			    && vol_id != UBI_FM_DATA_VOLUME_ID) {
998 				ubi_msg("\"delete\" compatible internal volume %d:%d found, will remove it",
999 					vol_id, lnum);
1000 			}
1001 			err = add_to_list(ai, pnum, vol_id, lnum,
1002 					  ec, 1, &ai->erase);
1003 			if (err)
1004 				return err;
1005 			return 0;
1006 
1007 		case UBI_COMPAT_RO:
1008 			ubi_msg("read-only compatible internal volume %d:%d found, switch to read-only mode",
1009 				vol_id, lnum);
1010 			ubi->ro_mode = 1;
1011 			break;
1012 
1013 		case UBI_COMPAT_PRESERVE:
1014 			ubi_msg("\"preserve\" compatible internal volume %d:%d found",
1015 				vol_id, lnum);
1016 			err = add_to_list(ai, pnum, vol_id, lnum,
1017 					  ec, 0, &ai->alien);
1018 			if (err)
1019 				return err;
1020 			return 0;
1021 
1022 		case UBI_COMPAT_REJECT:
1023 			ubi_err("incompatible internal volume %d:%d found",
1024 				vol_id, lnum);
1025 			return -EINVAL;
1026 		}
1027 	}
1028 
1029 	if (ec_err)
1030 		ubi_warn("valid VID header but corrupted EC header at PEB %d",
1031 			 pnum);
1032 	err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips);
1033 	if (err)
1034 		return err;
1035 
1036 adjust_mean_ec:
1037 	if (!ec_err) {
1038 		ai->ec_sum += ec;
1039 		ai->ec_count += 1;
1040 		if (ec > ai->max_ec)
1041 			ai->max_ec = ec;
1042 		if (ec < ai->min_ec)
1043 			ai->min_ec = ec;
1044 	}
1045 
1046 	return 0;
1047 }
1048 
1049 /**
1050  * late_analysis - analyze the overall situation with PEB.
1051  * @ubi: UBI device description object
1052  * @ai: attaching information
1053  *
1054  * This is a helper function which takes a look what PEBs we have after we
1055  * gather information about all of them ("ai" is compete). It decides whether
1056  * the flash is empty and should be formatted of whether there are too many
1057  * corrupted PEBs and we should not attach this MTD device. Returns zero if we
1058  * should proceed with attaching the MTD device, and %-EINVAL if we should not.
1059  */
1060 static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai)
1061 {
1062 	struct ubi_ainf_peb *aeb;
1063 	int max_corr, peb_count;
1064 
1065 	peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count;
1066 	max_corr = peb_count / 20 ?: 8;
1067 
1068 	/*
1069 	 * Few corrupted PEBs is not a problem and may be just a result of
1070 	 * unclean reboots. However, many of them may indicate some problems
1071 	 * with the flash HW or driver.
1072 	 */
1073 	if (ai->corr_peb_count) {
1074 		ubi_err("%d PEBs are corrupted and preserved",
1075 			ai->corr_peb_count);
1076 		pr_err("Corrupted PEBs are:");
1077 		list_for_each_entry(aeb, &ai->corr, u.list)
1078 			pr_cont(" %d", aeb->pnum);
1079 		pr_cont("\n");
1080 
1081 		/*
1082 		 * If too many PEBs are corrupted, we refuse attaching,
1083 		 * otherwise, only print a warning.
1084 		 */
1085 		if (ai->corr_peb_count >= max_corr) {
1086 			ubi_err("too many corrupted PEBs, refusing");
1087 			return -EINVAL;
1088 		}
1089 	}
1090 
1091 	if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) {
1092 		/*
1093 		 * All PEBs are empty, or almost all - a couple PEBs look like
1094 		 * they may be bad PEBs which were not marked as bad yet.
1095 		 *
1096 		 * This piece of code basically tries to distinguish between
1097 		 * the following situations:
1098 		 *
1099 		 * 1. Flash is empty, but there are few bad PEBs, which are not
1100 		 *    marked as bad so far, and which were read with error. We
1101 		 *    want to go ahead and format this flash. While formatting,
1102 		 *    the faulty PEBs will probably be marked as bad.
1103 		 *
1104 		 * 2. Flash contains non-UBI data and we do not want to format
1105 		 *    it and destroy possibly important information.
1106 		 */
1107 		if (ai->maybe_bad_peb_count <= 2) {
1108 			ai->is_empty = 1;
1109 			ubi_msg("empty MTD device detected");
1110 			get_random_bytes(&ubi->image_seq,
1111 					 sizeof(ubi->image_seq));
1112 		} else {
1113 			ubi_err("MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it");
1114 			return -EINVAL;
1115 		}
1116 
1117 	}
1118 
1119 	return 0;
1120 }
1121 
1122 /**
1123  * destroy_av - free volume attaching information.
1124  * @av: volume attaching information
1125  * @ai: attaching information
1126  *
1127  * This function destroys the volume attaching information.
1128  */
1129 static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
1130 {
1131 	struct ubi_ainf_peb *aeb;
1132 	struct rb_node *this = av->root.rb_node;
1133 
1134 	while (this) {
1135 		if (this->rb_left)
1136 			this = this->rb_left;
1137 		else if (this->rb_right)
1138 			this = this->rb_right;
1139 		else {
1140 			aeb = rb_entry(this, struct ubi_ainf_peb, u.rb);
1141 			this = rb_parent(this);
1142 			if (this) {
1143 				if (this->rb_left == &aeb->u.rb)
1144 					this->rb_left = NULL;
1145 				else
1146 					this->rb_right = NULL;
1147 			}
1148 
1149 			kmem_cache_free(ai->aeb_slab_cache, aeb);
1150 		}
1151 	}
1152 	kfree(av);
1153 }
1154 
1155 /**
1156  * destroy_ai - destroy attaching information.
1157  * @ai: attaching information
1158  */
1159 static void destroy_ai(struct ubi_attach_info *ai)
1160 {
1161 	struct ubi_ainf_peb *aeb, *aeb_tmp;
1162 	struct ubi_ainf_volume *av;
1163 	struct rb_node *rb;
1164 
1165 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) {
1166 		list_del(&aeb->u.list);
1167 		kmem_cache_free(ai->aeb_slab_cache, aeb);
1168 	}
1169 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) {
1170 		list_del(&aeb->u.list);
1171 		kmem_cache_free(ai->aeb_slab_cache, aeb);
1172 	}
1173 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) {
1174 		list_del(&aeb->u.list);
1175 		kmem_cache_free(ai->aeb_slab_cache, aeb);
1176 	}
1177 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) {
1178 		list_del(&aeb->u.list);
1179 		kmem_cache_free(ai->aeb_slab_cache, aeb);
1180 	}
1181 
1182 	/* Destroy the volume RB-tree */
1183 	rb = ai->volumes.rb_node;
1184 	while (rb) {
1185 		if (rb->rb_left)
1186 			rb = rb->rb_left;
1187 		else if (rb->rb_right)
1188 			rb = rb->rb_right;
1189 		else {
1190 			av = rb_entry(rb, struct ubi_ainf_volume, rb);
1191 
1192 			rb = rb_parent(rb);
1193 			if (rb) {
1194 				if (rb->rb_left == &av->rb)
1195 					rb->rb_left = NULL;
1196 				else
1197 					rb->rb_right = NULL;
1198 			}
1199 
1200 			destroy_av(ai, av);
1201 		}
1202 	}
1203 
1204 	if (ai->aeb_slab_cache)
1205 		kmem_cache_destroy(ai->aeb_slab_cache);
1206 
1207 	kfree(ai);
1208 }
1209 
1210 /**
1211  * scan_all - scan entire MTD device.
1212  * @ubi: UBI device description object
1213  * @ai: attach info object
1214  * @start: start scanning at this PEB
1215  *
1216  * This function does full scanning of an MTD device and returns complete
1217  * information about it in form of a "struct ubi_attach_info" object. In case
1218  * of failure, an error code is returned.
1219  */
1220 static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai,
1221 		    int start)
1222 {
1223 	int err, pnum;
1224 	struct rb_node *rb1, *rb2;
1225 	struct ubi_ainf_volume *av;
1226 	struct ubi_ainf_peb *aeb;
1227 
1228 	err = -ENOMEM;
1229 
1230 	ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1231 	if (!ech)
1232 		return err;
1233 
1234 	vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1235 	if (!vidh)
1236 		goto out_ech;
1237 
1238 	for (pnum = start; pnum < ubi->peb_count; pnum++) {
1239 		cond_resched();
1240 
1241 		dbg_gen("process PEB %d", pnum);
1242 		err = scan_peb(ubi, ai, pnum, NULL, NULL);
1243 		if (err < 0)
1244 			goto out_vidh;
1245 	}
1246 
1247 	ubi_msg("scanning is finished");
1248 
1249 	/* Calculate mean erase counter */
1250 	if (ai->ec_count)
1251 		ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
1252 
1253 	err = late_analysis(ubi, ai);
1254 	if (err)
1255 		goto out_vidh;
1256 
1257 	/*
1258 	 * In case of unknown erase counter we use the mean erase counter
1259 	 * value.
1260 	 */
1261 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1262 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1263 			if (aeb->ec == UBI_UNKNOWN)
1264 				aeb->ec = ai->mean_ec;
1265 	}
1266 
1267 	list_for_each_entry(aeb, &ai->free, u.list) {
1268 		if (aeb->ec == UBI_UNKNOWN)
1269 			aeb->ec = ai->mean_ec;
1270 	}
1271 
1272 	list_for_each_entry(aeb, &ai->corr, u.list)
1273 		if (aeb->ec == UBI_UNKNOWN)
1274 			aeb->ec = ai->mean_ec;
1275 
1276 	list_for_each_entry(aeb, &ai->erase, u.list)
1277 		if (aeb->ec == UBI_UNKNOWN)
1278 			aeb->ec = ai->mean_ec;
1279 
1280 	err = self_check_ai(ubi, ai);
1281 	if (err)
1282 		goto out_vidh;
1283 
1284 	ubi_free_vid_hdr(ubi, vidh);
1285 	kfree(ech);
1286 
1287 	return 0;
1288 
1289 out_vidh:
1290 	ubi_free_vid_hdr(ubi, vidh);
1291 out_ech:
1292 	kfree(ech);
1293 	return err;
1294 }
1295 
1296 #ifdef CONFIG_MTD_UBI_FASTMAP
1297 
1298 /**
1299  * scan_fastmap - try to find a fastmap and attach from it.
1300  * @ubi: UBI device description object
1301  * @ai: attach info object
1302  *
1303  * Returns 0 on success, negative return values indicate an internal
1304  * error.
1305  * UBI_NO_FASTMAP denotes that no fastmap was found.
1306  * UBI_BAD_FASTMAP denotes that the found fastmap was invalid.
1307  */
1308 static int scan_fast(struct ubi_device *ubi, struct ubi_attach_info *ai)
1309 {
1310 	int err, pnum, fm_anchor = -1;
1311 	unsigned long long max_sqnum = 0;
1312 
1313 	err = -ENOMEM;
1314 
1315 	ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1316 	if (!ech)
1317 		goto out;
1318 
1319 	vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1320 	if (!vidh)
1321 		goto out_ech;
1322 
1323 	for (pnum = 0; pnum < UBI_FM_MAX_START; pnum++) {
1324 		int vol_id = -1;
1325 		unsigned long long sqnum = -1;
1326 		cond_resched();
1327 
1328 		dbg_gen("process PEB %d", pnum);
1329 		err = scan_peb(ubi, ai, pnum, &vol_id, &sqnum);
1330 		if (err < 0)
1331 			goto out_vidh;
1332 
1333 		if (vol_id == UBI_FM_SB_VOLUME_ID && sqnum > max_sqnum) {
1334 			max_sqnum = sqnum;
1335 			fm_anchor = pnum;
1336 		}
1337 	}
1338 
1339 	ubi_free_vid_hdr(ubi, vidh);
1340 	kfree(ech);
1341 
1342 	if (fm_anchor < 0)
1343 		return UBI_NO_FASTMAP;
1344 
1345 	return ubi_scan_fastmap(ubi, ai, fm_anchor);
1346 
1347 out_vidh:
1348 	ubi_free_vid_hdr(ubi, vidh);
1349 out_ech:
1350 	kfree(ech);
1351 out:
1352 	return err;
1353 }
1354 
1355 #endif
1356 
1357 static struct ubi_attach_info *alloc_ai(const char *slab_name)
1358 {
1359 	struct ubi_attach_info *ai;
1360 
1361 	ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL);
1362 	if (!ai)
1363 		return ai;
1364 
1365 	INIT_LIST_HEAD(&ai->corr);
1366 	INIT_LIST_HEAD(&ai->free);
1367 	INIT_LIST_HEAD(&ai->erase);
1368 	INIT_LIST_HEAD(&ai->alien);
1369 	ai->volumes = RB_ROOT;
1370 	ai->aeb_slab_cache = kmem_cache_create(slab_name,
1371 					       sizeof(struct ubi_ainf_peb),
1372 					       0, 0, NULL);
1373 	if (!ai->aeb_slab_cache) {
1374 		kfree(ai);
1375 		ai = NULL;
1376 	}
1377 
1378 	return ai;
1379 }
1380 
1381 /**
1382  * ubi_attach - attach an MTD device.
1383  * @ubi: UBI device descriptor
1384  * @force_scan: if set to non-zero attach by scanning
1385  *
1386  * This function returns zero in case of success and a negative error code in
1387  * case of failure.
1388  */
1389 int ubi_attach(struct ubi_device *ubi, int force_scan)
1390 {
1391 	int err;
1392 	struct ubi_attach_info *ai;
1393 
1394 	ai = alloc_ai("ubi_aeb_slab_cache");
1395 	if (!ai)
1396 		return -ENOMEM;
1397 
1398 #ifdef CONFIG_MTD_UBI_FASTMAP
1399 	/* On small flash devices we disable fastmap in any case. */
1400 	if ((int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) <= UBI_FM_MAX_START) {
1401 		ubi->fm_disabled = 1;
1402 		force_scan = 1;
1403 	}
1404 
1405 	if (force_scan)
1406 		err = scan_all(ubi, ai, 0);
1407 	else {
1408 		err = scan_fast(ubi, ai);
1409 		if (err > 0) {
1410 			if (err != UBI_NO_FASTMAP) {
1411 				destroy_ai(ai);
1412 				ai = alloc_ai("ubi_aeb_slab_cache2");
1413 				if (!ai)
1414 					return -ENOMEM;
1415 
1416 				err = scan_all(ubi, ai, 0);
1417 			} else {
1418 				err = scan_all(ubi, ai, UBI_FM_MAX_START);
1419 			}
1420 		}
1421 	}
1422 #else
1423 	err = scan_all(ubi, ai, 0);
1424 #endif
1425 	if (err)
1426 		goto out_ai;
1427 
1428 	ubi->bad_peb_count = ai->bad_peb_count;
1429 	ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
1430 	ubi->corr_peb_count = ai->corr_peb_count;
1431 	ubi->max_ec = ai->max_ec;
1432 	ubi->mean_ec = ai->mean_ec;
1433 	dbg_gen("max. sequence number:       %llu", ai->max_sqnum);
1434 
1435 	err = ubi_read_volume_table(ubi, ai);
1436 	if (err)
1437 		goto out_ai;
1438 
1439 	err = ubi_wl_init(ubi, ai);
1440 	if (err)
1441 		goto out_vtbl;
1442 
1443 	err = ubi_eba_init(ubi, ai);
1444 	if (err)
1445 		goto out_wl;
1446 
1447 #ifdef CONFIG_MTD_UBI_FASTMAP
1448 	if (ubi->fm && ubi_dbg_chk_gen(ubi)) {
1449 		struct ubi_attach_info *scan_ai;
1450 
1451 		scan_ai = alloc_ai("ubi_ckh_aeb_slab_cache");
1452 		if (!scan_ai) {
1453 			err = -ENOMEM;
1454 			goto out_wl;
1455 		}
1456 
1457 		err = scan_all(ubi, scan_ai, 0);
1458 		if (err) {
1459 			destroy_ai(scan_ai);
1460 			goto out_wl;
1461 		}
1462 
1463 		err = self_check_eba(ubi, ai, scan_ai);
1464 		destroy_ai(scan_ai);
1465 
1466 		if (err)
1467 			goto out_wl;
1468 	}
1469 #endif
1470 
1471 	destroy_ai(ai);
1472 	return 0;
1473 
1474 out_wl:
1475 	ubi_wl_close(ubi);
1476 out_vtbl:
1477 	ubi_free_internal_volumes(ubi);
1478 	vfree(ubi->vtbl);
1479 out_ai:
1480 	destroy_ai(ai);
1481 	return err;
1482 }
1483 
1484 /**
1485  * self_check_ai - check the attaching information.
1486  * @ubi: UBI device description object
1487  * @ai: attaching information
1488  *
1489  * This function returns zero if the attaching information is all right, and a
1490  * negative error code if not or if an error occurred.
1491  */
1492 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai)
1493 {
1494 	int pnum, err, vols_found = 0;
1495 	struct rb_node *rb1, *rb2;
1496 	struct ubi_ainf_volume *av;
1497 	struct ubi_ainf_peb *aeb, *last_aeb;
1498 	uint8_t *buf;
1499 
1500 	if (!ubi_dbg_chk_gen(ubi))
1501 		return 0;
1502 
1503 	/*
1504 	 * At first, check that attaching information is OK.
1505 	 */
1506 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1507 		int leb_count = 0;
1508 
1509 		cond_resched();
1510 
1511 		vols_found += 1;
1512 
1513 		if (ai->is_empty) {
1514 			ubi_err("bad is_empty flag");
1515 			goto bad_av;
1516 		}
1517 
1518 		if (av->vol_id < 0 || av->highest_lnum < 0 ||
1519 		    av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 ||
1520 		    av->data_pad < 0 || av->last_data_size < 0) {
1521 			ubi_err("negative values");
1522 			goto bad_av;
1523 		}
1524 
1525 		if (av->vol_id >= UBI_MAX_VOLUMES &&
1526 		    av->vol_id < UBI_INTERNAL_VOL_START) {
1527 			ubi_err("bad vol_id");
1528 			goto bad_av;
1529 		}
1530 
1531 		if (av->vol_id > ai->highest_vol_id) {
1532 			ubi_err("highest_vol_id is %d, but vol_id %d is there",
1533 				ai->highest_vol_id, av->vol_id);
1534 			goto out;
1535 		}
1536 
1537 		if (av->vol_type != UBI_DYNAMIC_VOLUME &&
1538 		    av->vol_type != UBI_STATIC_VOLUME) {
1539 			ubi_err("bad vol_type");
1540 			goto bad_av;
1541 		}
1542 
1543 		if (av->data_pad > ubi->leb_size / 2) {
1544 			ubi_err("bad data_pad");
1545 			goto bad_av;
1546 		}
1547 
1548 		last_aeb = NULL;
1549 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1550 			cond_resched();
1551 
1552 			last_aeb = aeb;
1553 			leb_count += 1;
1554 
1555 			if (aeb->pnum < 0 || aeb->ec < 0) {
1556 				ubi_err("negative values");
1557 				goto bad_aeb;
1558 			}
1559 
1560 			if (aeb->ec < ai->min_ec) {
1561 				ubi_err("bad ai->min_ec (%d), %d found",
1562 					ai->min_ec, aeb->ec);
1563 				goto bad_aeb;
1564 			}
1565 
1566 			if (aeb->ec > ai->max_ec) {
1567 				ubi_err("bad ai->max_ec (%d), %d found",
1568 					ai->max_ec, aeb->ec);
1569 				goto bad_aeb;
1570 			}
1571 
1572 			if (aeb->pnum >= ubi->peb_count) {
1573 				ubi_err("too high PEB number %d, total PEBs %d",
1574 					aeb->pnum, ubi->peb_count);
1575 				goto bad_aeb;
1576 			}
1577 
1578 			if (av->vol_type == UBI_STATIC_VOLUME) {
1579 				if (aeb->lnum >= av->used_ebs) {
1580 					ubi_err("bad lnum or used_ebs");
1581 					goto bad_aeb;
1582 				}
1583 			} else {
1584 				if (av->used_ebs != 0) {
1585 					ubi_err("non-zero used_ebs");
1586 					goto bad_aeb;
1587 				}
1588 			}
1589 
1590 			if (aeb->lnum > av->highest_lnum) {
1591 				ubi_err("incorrect highest_lnum or lnum");
1592 				goto bad_aeb;
1593 			}
1594 		}
1595 
1596 		if (av->leb_count != leb_count) {
1597 			ubi_err("bad leb_count, %d objects in the tree",
1598 				leb_count);
1599 			goto bad_av;
1600 		}
1601 
1602 		if (!last_aeb)
1603 			continue;
1604 
1605 		aeb = last_aeb;
1606 
1607 		if (aeb->lnum != av->highest_lnum) {
1608 			ubi_err("bad highest_lnum");
1609 			goto bad_aeb;
1610 		}
1611 	}
1612 
1613 	if (vols_found != ai->vols_found) {
1614 		ubi_err("bad ai->vols_found %d, should be %d",
1615 			ai->vols_found, vols_found);
1616 		goto out;
1617 	}
1618 
1619 	/* Check that attaching information is correct */
1620 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1621 		last_aeb = NULL;
1622 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1623 			int vol_type;
1624 
1625 			cond_resched();
1626 
1627 			last_aeb = aeb;
1628 
1629 			err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidh, 1);
1630 			if (err && err != UBI_IO_BITFLIPS) {
1631 				ubi_err("VID header is not OK (%d)", err);
1632 				if (err > 0)
1633 					err = -EIO;
1634 				return err;
1635 			}
1636 
1637 			vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1638 				   UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1639 			if (av->vol_type != vol_type) {
1640 				ubi_err("bad vol_type");
1641 				goto bad_vid_hdr;
1642 			}
1643 
1644 			if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) {
1645 				ubi_err("bad sqnum %llu", aeb->sqnum);
1646 				goto bad_vid_hdr;
1647 			}
1648 
1649 			if (av->vol_id != be32_to_cpu(vidh->vol_id)) {
1650 				ubi_err("bad vol_id %d", av->vol_id);
1651 				goto bad_vid_hdr;
1652 			}
1653 
1654 			if (av->compat != vidh->compat) {
1655 				ubi_err("bad compat %d", vidh->compat);
1656 				goto bad_vid_hdr;
1657 			}
1658 
1659 			if (aeb->lnum != be32_to_cpu(vidh->lnum)) {
1660 				ubi_err("bad lnum %d", aeb->lnum);
1661 				goto bad_vid_hdr;
1662 			}
1663 
1664 			if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1665 				ubi_err("bad used_ebs %d", av->used_ebs);
1666 				goto bad_vid_hdr;
1667 			}
1668 
1669 			if (av->data_pad != be32_to_cpu(vidh->data_pad)) {
1670 				ubi_err("bad data_pad %d", av->data_pad);
1671 				goto bad_vid_hdr;
1672 			}
1673 		}
1674 
1675 		if (!last_aeb)
1676 			continue;
1677 
1678 		if (av->highest_lnum != be32_to_cpu(vidh->lnum)) {
1679 			ubi_err("bad highest_lnum %d", av->highest_lnum);
1680 			goto bad_vid_hdr;
1681 		}
1682 
1683 		if (av->last_data_size != be32_to_cpu(vidh->data_size)) {
1684 			ubi_err("bad last_data_size %d", av->last_data_size);
1685 			goto bad_vid_hdr;
1686 		}
1687 	}
1688 
1689 	/*
1690 	 * Make sure that all the physical eraseblocks are in one of the lists
1691 	 * or trees.
1692 	 */
1693 	buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1694 	if (!buf)
1695 		return -ENOMEM;
1696 
1697 	for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1698 		err = ubi_io_is_bad(ubi, pnum);
1699 		if (err < 0) {
1700 			kfree(buf);
1701 			return err;
1702 		} else if (err)
1703 			buf[pnum] = 1;
1704 	}
1705 
1706 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
1707 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1708 			buf[aeb->pnum] = 1;
1709 
1710 	list_for_each_entry(aeb, &ai->free, u.list)
1711 		buf[aeb->pnum] = 1;
1712 
1713 	list_for_each_entry(aeb, &ai->corr, u.list)
1714 		buf[aeb->pnum] = 1;
1715 
1716 	list_for_each_entry(aeb, &ai->erase, u.list)
1717 		buf[aeb->pnum] = 1;
1718 
1719 	list_for_each_entry(aeb, &ai->alien, u.list)
1720 		buf[aeb->pnum] = 1;
1721 
1722 	err = 0;
1723 	for (pnum = 0; pnum < ubi->peb_count; pnum++)
1724 		if (!buf[pnum]) {
1725 			ubi_err("PEB %d is not referred", pnum);
1726 			err = 1;
1727 		}
1728 
1729 	kfree(buf);
1730 	if (err)
1731 		goto out;
1732 	return 0;
1733 
1734 bad_aeb:
1735 	ubi_err("bad attaching information about LEB %d", aeb->lnum);
1736 	ubi_dump_aeb(aeb, 0);
1737 	ubi_dump_av(av);
1738 	goto out;
1739 
1740 bad_av:
1741 	ubi_err("bad attaching information about volume %d", av->vol_id);
1742 	ubi_dump_av(av);
1743 	goto out;
1744 
1745 bad_vid_hdr:
1746 	ubi_err("bad attaching information about volume %d", av->vol_id);
1747 	ubi_dump_av(av);
1748 	ubi_dump_vid_hdr(vidh);
1749 
1750 out:
1751 	dump_stack();
1752 	return -EINVAL;
1753 }
1754