1 /* 2 * Simulate a SPI flash 3 * 4 * Copyright (c) 2011-2013 The Chromium OS Authors. 5 * See file CREDITS for list of people who contributed to this 6 * project. 7 * 8 * Licensed under the GPL-2 or later. 9 */ 10 11 #include <common.h> 12 #include <dm.h> 13 #include <malloc.h> 14 #include <spi.h> 15 #include <os.h> 16 17 #include <spi_flash.h> 18 #include "sf_internal.h" 19 20 #include <asm/getopt.h> 21 #include <asm/spi.h> 22 #include <asm/state.h> 23 #include <dm/device-internal.h> 24 #include <dm/lists.h> 25 #include <dm/uclass-internal.h> 26 27 DECLARE_GLOBAL_DATA_PTR; 28 29 /* 30 * The different states that our SPI flash transitions between. 31 * We need to keep track of this across multiple xfer calls since 32 * the SPI bus could possibly call down into us multiple times. 33 */ 34 enum sandbox_sf_state { 35 SF_CMD, /* default state -- we're awaiting a command */ 36 SF_ID, /* read the flash's (jedec) ID code */ 37 SF_ADDR, /* processing the offset in the flash to read/etc... */ 38 SF_READ, /* reading data from the flash */ 39 SF_WRITE, /* writing data to the flash, i.e. page programming */ 40 SF_ERASE, /* erase the flash */ 41 SF_READ_STATUS, /* read the flash's status register */ 42 SF_READ_STATUS1, /* read the flash's status register upper 8 bits*/ 43 SF_WRITE_STATUS, /* write the flash's status register */ 44 }; 45 46 static const char *sandbox_sf_state_name(enum sandbox_sf_state state) 47 { 48 static const char * const states[] = { 49 "CMD", "ID", "ADDR", "READ", "WRITE", "ERASE", "READ_STATUS", 50 "READ_STATUS1", "WRITE_STATUS", 51 }; 52 return states[state]; 53 } 54 55 /* Bits for the status register */ 56 #define STAT_WIP (1 << 0) 57 #define STAT_WEL (1 << 1) 58 59 /* Assume all SPI flashes have 3 byte addresses since they do atm */ 60 #define SF_ADDR_LEN 3 61 62 #define IDCODE_LEN 3 63 64 /* Used to quickly bulk erase backing store */ 65 static u8 sandbox_sf_0xff[0x1000]; 66 67 /* Internal state data for each SPI flash */ 68 struct sandbox_spi_flash { 69 unsigned int cs; /* Chip select we are attached to */ 70 /* 71 * As we receive data over the SPI bus, our flash transitions 72 * between states. For example, we start off in the SF_CMD 73 * state where the first byte tells us what operation to perform 74 * (such as read or write the flash). But the operation itself 75 * can go through a few states such as first reading in the 76 * offset in the flash to perform the requested operation. 77 * Thus "state" stores the exact state that our machine is in 78 * while "cmd" stores the overall command we're processing. 79 */ 80 enum sandbox_sf_state state; 81 uint cmd; 82 /* Erase size of current erase command */ 83 uint erase_size; 84 /* Current position in the flash; used when reading/writing/etc... */ 85 uint off; 86 /* How many address bytes we've consumed */ 87 uint addr_bytes, pad_addr_bytes; 88 /* The current flash status (see STAT_XXX defines above) */ 89 u16 status; 90 /* Data describing the flash we're emulating */ 91 const struct spi_flash_params *data; 92 /* The file on disk to serv up data from */ 93 int fd; 94 }; 95 96 struct sandbox_spi_flash_plat_data { 97 const char *filename; 98 const char *device_name; 99 int bus; 100 int cs; 101 }; 102 103 /** 104 * This is a very strange probe function. If it has platform data (which may 105 * have come from the device tree) then this function gets the filename and 106 * device type from there. Failing that it looks at the command line 107 * parameter. 108 */ 109 static int sandbox_sf_probe(struct udevice *dev) 110 { 111 /* spec = idcode:file */ 112 struct sandbox_spi_flash *sbsf = dev_get_priv(dev); 113 const char *file; 114 size_t len, idname_len; 115 const struct spi_flash_params *data; 116 struct sandbox_spi_flash_plat_data *pdata = dev_get_platdata(dev); 117 struct sandbox_state *state = state_get_current(); 118 struct udevice *bus = dev->parent; 119 const char *spec = NULL; 120 int ret = 0; 121 int cs = -1; 122 int i; 123 124 debug("%s: bus %d, looking for emul=%p: ", __func__, bus->seq, dev); 125 if (bus->seq >= 0 && bus->seq < CONFIG_SANDBOX_SPI_MAX_BUS) { 126 for (i = 0; i < CONFIG_SANDBOX_SPI_MAX_CS; i++) { 127 if (state->spi[bus->seq][i].emul == dev) 128 cs = i; 129 } 130 } 131 if (cs == -1) { 132 printf("Error: Unknown chip select for device '%s'", 133 dev->name); 134 return -EINVAL; 135 } 136 debug("found at cs %d\n", cs); 137 138 if (!pdata->filename) { 139 struct sandbox_state *state = state_get_current(); 140 141 assert(bus->seq != -1); 142 if (bus->seq < CONFIG_SANDBOX_SPI_MAX_BUS) 143 spec = state->spi[bus->seq][cs].spec; 144 if (!spec) { 145 ret = -ENOENT; 146 goto error; 147 } 148 149 file = strchr(spec, ':'); 150 if (!file) { 151 printf("sandbox_sf: unable to parse file\n"); 152 ret = -EINVAL; 153 goto error; 154 } 155 idname_len = file - spec; 156 pdata->filename = file + 1; 157 pdata->device_name = spec; 158 ++file; 159 } else { 160 spec = strchr(pdata->device_name, ','); 161 if (spec) 162 spec++; 163 else 164 spec = pdata->device_name; 165 idname_len = strlen(spec); 166 } 167 debug("%s: device='%s'\n", __func__, spec); 168 169 for (data = spi_flash_params_table; data->name; data++) { 170 len = strlen(data->name); 171 if (idname_len != len) 172 continue; 173 if (!strncasecmp(spec, data->name, len)) 174 break; 175 } 176 if (!data->name) { 177 printf("sandbox_sf: unknown flash '%*s'\n", (int)idname_len, 178 spec); 179 ret = -EINVAL; 180 goto error; 181 } 182 183 if (sandbox_sf_0xff[0] == 0x00) 184 memset(sandbox_sf_0xff, 0xff, sizeof(sandbox_sf_0xff)); 185 186 sbsf->fd = os_open(pdata->filename, 02); 187 if (sbsf->fd == -1) { 188 free(sbsf); 189 printf("sandbox_sf: unable to open file '%s'\n", 190 pdata->filename); 191 ret = -EIO; 192 goto error; 193 } 194 195 sbsf->data = data; 196 sbsf->cs = cs; 197 198 return 0; 199 200 error: 201 debug("%s: Got error %d\n", __func__, ret); 202 return ret; 203 } 204 205 static int sandbox_sf_remove(struct udevice *dev) 206 { 207 struct sandbox_spi_flash *sbsf = dev_get_priv(dev); 208 209 os_close(sbsf->fd); 210 211 return 0; 212 } 213 214 static void sandbox_sf_cs_activate(struct udevice *dev) 215 { 216 struct sandbox_spi_flash *sbsf = dev_get_priv(dev); 217 218 debug("sandbox_sf: CS activated; state is fresh!\n"); 219 220 /* CS is asserted, so reset state */ 221 sbsf->off = 0; 222 sbsf->addr_bytes = 0; 223 sbsf->pad_addr_bytes = 0; 224 sbsf->state = SF_CMD; 225 sbsf->cmd = SF_CMD; 226 } 227 228 static void sandbox_sf_cs_deactivate(struct udevice *dev) 229 { 230 debug("sandbox_sf: CS deactivated; cmd done processing!\n"); 231 } 232 233 /* 234 * There are times when the data lines are allowed to tristate. What 235 * is actually sensed on the line depends on the hardware. It could 236 * always be 0xFF/0x00 (if there are pull ups/downs), or things could 237 * float and so we'd get garbage back. This func encapsulates that 238 * scenario so we can worry about the details here. 239 */ 240 static void sandbox_spi_tristate(u8 *buf, uint len) 241 { 242 /* XXX: make this into a user config option ? */ 243 memset(buf, 0xff, len); 244 } 245 246 /* Figure out what command this stream is telling us to do */ 247 static int sandbox_sf_process_cmd(struct sandbox_spi_flash *sbsf, const u8 *rx, 248 u8 *tx) 249 { 250 enum sandbox_sf_state oldstate = sbsf->state; 251 252 /* We need to output a byte for the cmd byte we just ate */ 253 if (tx) 254 sandbox_spi_tristate(tx, 1); 255 256 sbsf->cmd = rx[0]; 257 switch (sbsf->cmd) { 258 case CMD_READ_ID: 259 sbsf->state = SF_ID; 260 sbsf->cmd = SF_ID; 261 break; 262 case CMD_READ_ARRAY_FAST: 263 sbsf->pad_addr_bytes = 1; 264 case CMD_READ_ARRAY_SLOW: 265 case CMD_PAGE_PROGRAM: 266 sbsf->state = SF_ADDR; 267 break; 268 case CMD_WRITE_DISABLE: 269 debug(" write disabled\n"); 270 sbsf->status &= ~STAT_WEL; 271 break; 272 case CMD_READ_STATUS: 273 sbsf->state = SF_READ_STATUS; 274 break; 275 case CMD_READ_STATUS1: 276 sbsf->state = SF_READ_STATUS1; 277 break; 278 case CMD_WRITE_ENABLE: 279 debug(" write enabled\n"); 280 sbsf->status |= STAT_WEL; 281 break; 282 case CMD_WRITE_STATUS: 283 sbsf->state = SF_WRITE_STATUS; 284 break; 285 default: { 286 int flags = sbsf->data->flags; 287 288 /* we only support erase here */ 289 if (sbsf->cmd == CMD_ERASE_CHIP) { 290 sbsf->erase_size = sbsf->data->sector_size * 291 sbsf->data->nr_sectors; 292 } else if (sbsf->cmd == CMD_ERASE_4K && (flags & SECT_4K)) { 293 sbsf->erase_size = 4 << 10; 294 } else if (sbsf->cmd == CMD_ERASE_32K && (flags & SECT_32K)) { 295 sbsf->erase_size = 32 << 10; 296 } else if (sbsf->cmd == CMD_ERASE_64K && 297 !(flags & (SECT_4K | SECT_32K))) { 298 sbsf->erase_size = 64 << 10; 299 } else { 300 debug(" cmd unknown: %#x\n", sbsf->cmd); 301 return -EIO; 302 } 303 sbsf->state = SF_ADDR; 304 break; 305 } 306 } 307 308 if (oldstate != sbsf->state) 309 debug(" cmd: transition to %s state\n", 310 sandbox_sf_state_name(sbsf->state)); 311 312 return 0; 313 } 314 315 int sandbox_erase_part(struct sandbox_spi_flash *sbsf, int size) 316 { 317 int todo; 318 int ret; 319 320 while (size > 0) { 321 todo = min(size, (int)sizeof(sandbox_sf_0xff)); 322 ret = os_write(sbsf->fd, sandbox_sf_0xff, todo); 323 if (ret != todo) 324 return ret; 325 size -= todo; 326 } 327 328 return 0; 329 } 330 331 static int sandbox_sf_xfer(struct udevice *dev, unsigned int bitlen, 332 const void *rxp, void *txp, unsigned long flags) 333 { 334 struct sandbox_spi_flash *sbsf = dev_get_priv(dev); 335 const uint8_t *rx = rxp; 336 uint8_t *tx = txp; 337 uint cnt, pos = 0; 338 int bytes = bitlen / 8; 339 int ret; 340 341 debug("sandbox_sf: state:%x(%s) bytes:%u\n", sbsf->state, 342 sandbox_sf_state_name(sbsf->state), bytes); 343 344 if ((flags & SPI_XFER_BEGIN)) 345 sandbox_sf_cs_activate(dev); 346 347 if (sbsf->state == SF_CMD) { 348 /* Figure out the initial state */ 349 ret = sandbox_sf_process_cmd(sbsf, rx, tx); 350 if (ret) 351 return ret; 352 ++pos; 353 } 354 355 /* Process the remaining data */ 356 while (pos < bytes) { 357 switch (sbsf->state) { 358 case SF_ID: { 359 u8 id; 360 361 debug(" id: off:%u tx:", sbsf->off); 362 if (sbsf->off < IDCODE_LEN) { 363 /* Extract correct byte from ID 0x00aabbcc */ 364 id = sbsf->data->jedec >> 365 (8 * (IDCODE_LEN - 1 - sbsf->off)); 366 } else { 367 id = 0; 368 } 369 debug("%d %02x\n", sbsf->off, id); 370 tx[pos++] = id; 371 ++sbsf->off; 372 break; 373 } 374 case SF_ADDR: 375 debug(" addr: bytes:%u rx:%02x ", sbsf->addr_bytes, 376 rx[pos]); 377 378 if (sbsf->addr_bytes++ < SF_ADDR_LEN) 379 sbsf->off = (sbsf->off << 8) | rx[pos]; 380 debug("addr:%06x\n", sbsf->off); 381 382 if (tx) 383 sandbox_spi_tristate(&tx[pos], 1); 384 pos++; 385 386 /* See if we're done processing */ 387 if (sbsf->addr_bytes < 388 SF_ADDR_LEN + sbsf->pad_addr_bytes) 389 break; 390 391 /* Next state! */ 392 if (os_lseek(sbsf->fd, sbsf->off, OS_SEEK_SET) < 0) { 393 puts("sandbox_sf: os_lseek() failed"); 394 return -EIO; 395 } 396 switch (sbsf->cmd) { 397 case CMD_READ_ARRAY_FAST: 398 case CMD_READ_ARRAY_SLOW: 399 sbsf->state = SF_READ; 400 break; 401 case CMD_PAGE_PROGRAM: 402 sbsf->state = SF_WRITE; 403 break; 404 default: 405 /* assume erase state ... */ 406 sbsf->state = SF_ERASE; 407 goto case_sf_erase; 408 } 409 debug(" cmd: transition to %s state\n", 410 sandbox_sf_state_name(sbsf->state)); 411 break; 412 case SF_READ: 413 /* 414 * XXX: need to handle exotic behavior: 415 * - reading past end of device 416 */ 417 418 cnt = bytes - pos; 419 debug(" tx: read(%u)\n", cnt); 420 assert(tx); 421 ret = os_read(sbsf->fd, tx + pos, cnt); 422 if (ret < 0) { 423 puts("sandbox_sf: os_read() failed\n"); 424 return -EIO; 425 } 426 pos += ret; 427 break; 428 case SF_READ_STATUS: 429 debug(" read status: %#x\n", sbsf->status); 430 cnt = bytes - pos; 431 memset(tx + pos, sbsf->status, cnt); 432 pos += cnt; 433 break; 434 case SF_READ_STATUS1: 435 debug(" read status: %#x\n", sbsf->status); 436 cnt = bytes - pos; 437 memset(tx + pos, sbsf->status >> 8, cnt); 438 pos += cnt; 439 break; 440 case SF_WRITE_STATUS: 441 debug(" write status: %#x (ignored)\n", rx[pos]); 442 pos = bytes; 443 break; 444 case SF_WRITE: 445 /* 446 * XXX: need to handle exotic behavior: 447 * - unaligned addresses 448 * - more than a page (256) worth of data 449 * - reading past end of device 450 */ 451 if (!(sbsf->status & STAT_WEL)) { 452 puts("sandbox_sf: write enable not set before write\n"); 453 goto done; 454 } 455 456 cnt = bytes - pos; 457 debug(" rx: write(%u)\n", cnt); 458 if (tx) 459 sandbox_spi_tristate(&tx[pos], cnt); 460 ret = os_write(sbsf->fd, rx + pos, cnt); 461 if (ret < 0) { 462 puts("sandbox_spi: os_write() failed\n"); 463 return -EIO; 464 } 465 pos += ret; 466 sbsf->status &= ~STAT_WEL; 467 break; 468 case SF_ERASE: 469 case_sf_erase: { 470 if (!(sbsf->status & STAT_WEL)) { 471 puts("sandbox_sf: write enable not set before erase\n"); 472 goto done; 473 } 474 475 /* verify address is aligned */ 476 if (sbsf->off & (sbsf->erase_size - 1)) { 477 debug(" sector erase: cmd:%#x needs align:%#x, but we got %#x\n", 478 sbsf->cmd, sbsf->erase_size, 479 sbsf->off); 480 sbsf->status &= ~STAT_WEL; 481 goto done; 482 } 483 484 debug(" sector erase addr: %u, size: %u\n", sbsf->off, 485 sbsf->erase_size); 486 487 cnt = bytes - pos; 488 if (tx) 489 sandbox_spi_tristate(&tx[pos], cnt); 490 pos += cnt; 491 492 /* 493 * TODO(vapier@gentoo.org): latch WIP in status, and 494 * delay before clearing it ? 495 */ 496 ret = sandbox_erase_part(sbsf, sbsf->erase_size); 497 sbsf->status &= ~STAT_WEL; 498 if (ret) { 499 debug("sandbox_sf: Erase failed\n"); 500 goto done; 501 } 502 goto done; 503 } 504 default: 505 debug(" ??? no idea what to do ???\n"); 506 goto done; 507 } 508 } 509 510 done: 511 if (flags & SPI_XFER_END) 512 sandbox_sf_cs_deactivate(dev); 513 return pos == bytes ? 0 : -EIO; 514 } 515 516 int sandbox_sf_ofdata_to_platdata(struct udevice *dev) 517 { 518 struct sandbox_spi_flash_plat_data *pdata = dev_get_platdata(dev); 519 const void *blob = gd->fdt_blob; 520 int node = dev->of_offset; 521 522 pdata->filename = fdt_getprop(blob, node, "sandbox,filename", NULL); 523 pdata->device_name = fdt_getprop(blob, node, "compatible", NULL); 524 if (!pdata->filename || !pdata->device_name) { 525 debug("%s: Missing properties, filename=%s, device_name=%s\n", 526 __func__, pdata->filename, pdata->device_name); 527 return -EINVAL; 528 } 529 530 return 0; 531 } 532 533 static const struct dm_spi_emul_ops sandbox_sf_emul_ops = { 534 .xfer = sandbox_sf_xfer, 535 }; 536 537 #ifdef CONFIG_SPI_FLASH 538 static int sandbox_cmdline_cb_spi_sf(struct sandbox_state *state, 539 const char *arg) 540 { 541 unsigned long bus, cs; 542 const char *spec = sandbox_spi_parse_spec(arg, &bus, &cs); 543 544 if (!spec) 545 return 1; 546 547 /* 548 * It is safe to not make a copy of 'spec' because it comes from the 549 * command line. 550 * 551 * TODO(sjg@chromium.org): It would be nice if we could parse the 552 * spec here, but the problem is that no U-Boot init has been done 553 * yet. Perhaps we can figure something out. 554 */ 555 state->spi[bus][cs].spec = spec; 556 return 0; 557 } 558 SANDBOX_CMDLINE_OPT(spi_sf, 1, "connect a SPI flash: <bus>:<cs>:<id>:<file>"); 559 560 int sandbox_sf_bind_emul(struct sandbox_state *state, int busnum, int cs, 561 struct udevice *bus, int of_offset, const char *spec) 562 { 563 struct udevice *emul; 564 char name[20], *str; 565 struct driver *drv; 566 int ret; 567 568 /* now the emulator */ 569 strncpy(name, spec, sizeof(name) - 6); 570 name[sizeof(name) - 6] = '\0'; 571 strcat(name, "-emul"); 572 str = strdup(name); 573 if (!str) 574 return -ENOMEM; 575 drv = lists_driver_lookup_name("sandbox_sf_emul"); 576 if (!drv) { 577 puts("Cannot find sandbox_sf_emul driver\n"); 578 return -ENOENT; 579 } 580 ret = device_bind(bus, drv, str, NULL, of_offset, &emul); 581 if (ret) { 582 printf("Cannot create emul device for spec '%s' (err=%d)\n", 583 spec, ret); 584 return ret; 585 } 586 state->spi[busnum][cs].emul = emul; 587 588 return 0; 589 } 590 591 void sandbox_sf_unbind_emul(struct sandbox_state *state, int busnum, int cs) 592 { 593 struct udevice *dev; 594 595 dev = state->spi[busnum][cs].emul; 596 device_remove(dev); 597 device_unbind(dev); 598 state->spi[busnum][cs].emul = NULL; 599 } 600 601 static int sandbox_sf_bind_bus_cs(struct sandbox_state *state, int busnum, 602 int cs, const char *spec) 603 { 604 struct udevice *bus, *slave; 605 int ret; 606 607 ret = uclass_find_device_by_seq(UCLASS_SPI, busnum, true, &bus); 608 if (ret) { 609 printf("Invalid bus %d for spec '%s' (err=%d)\n", busnum, 610 spec, ret); 611 return ret; 612 } 613 ret = spi_find_chip_select(bus, cs, &slave); 614 if (!ret) { 615 printf("Chip select %d already exists for spec '%s'\n", cs, 616 spec); 617 return -EEXIST; 618 } 619 620 ret = device_bind_driver(bus, "spi_flash_std", spec, &slave); 621 if (ret) 622 return ret; 623 624 return sandbox_sf_bind_emul(state, busnum, cs, bus, -1, spec); 625 } 626 627 int sandbox_spi_get_emul(struct sandbox_state *state, 628 struct udevice *bus, struct udevice *slave, 629 struct udevice **emulp) 630 { 631 struct sandbox_spi_info *info; 632 int busnum = bus->seq; 633 int cs = spi_chip_select(slave); 634 int ret; 635 636 info = &state->spi[busnum][cs]; 637 if (!info->emul) { 638 /* Use the same device tree node as the SPI flash device */ 639 debug("%s: busnum=%u, cs=%u: binding SPI flash emulation: ", 640 __func__, busnum, cs); 641 ret = sandbox_sf_bind_emul(state, busnum, cs, bus, 642 slave->of_offset, slave->name); 643 if (ret) { 644 debug("failed (err=%d)\n", ret); 645 return ret; 646 } 647 debug("OK\n"); 648 } 649 *emulp = info->emul; 650 651 return 0; 652 } 653 654 int dm_scan_other(bool pre_reloc_only) 655 { 656 struct sandbox_state *state = state_get_current(); 657 int busnum, cs; 658 659 if (pre_reloc_only) 660 return 0; 661 for (busnum = 0; busnum < CONFIG_SANDBOX_SPI_MAX_BUS; busnum++) { 662 for (cs = 0; cs < CONFIG_SANDBOX_SPI_MAX_CS; cs++) { 663 const char *spec = state->spi[busnum][cs].spec; 664 int ret; 665 666 if (spec) { 667 ret = sandbox_sf_bind_bus_cs(state, busnum, 668 cs, spec); 669 if (ret) { 670 debug("%s: Bind failed for bus %d, cs %d\n", 671 __func__, busnum, cs); 672 return ret; 673 } 674 } 675 } 676 } 677 678 return 0; 679 } 680 #endif 681 682 static const struct udevice_id sandbox_sf_ids[] = { 683 { .compatible = "sandbox,spi-flash" }, 684 { } 685 }; 686 687 U_BOOT_DRIVER(sandbox_sf_emul) = { 688 .name = "sandbox_sf_emul", 689 .id = UCLASS_SPI_EMUL, 690 .of_match = sandbox_sf_ids, 691 .ofdata_to_platdata = sandbox_sf_ofdata_to_platdata, 692 .probe = sandbox_sf_probe, 693 .remove = sandbox_sf_remove, 694 .priv_auto_alloc_size = sizeof(struct sandbox_spi_flash), 695 .platdata_auto_alloc_size = sizeof(struct sandbox_spi_flash_plat_data), 696 .ops = &sandbox_sf_emul_ops, 697 }; 698