xref: /openbmc/u-boot/drivers/mtd/spi/sandbox.c (revision ecab65e4)
1 /*
2  * Simulate a SPI flash
3  *
4  * Copyright (c) 2011-2013 The Chromium OS Authors.
5  * See file CREDITS for list of people who contributed to this
6  * project.
7  *
8  * Licensed under the GPL-2 or later.
9  */
10 
11 #define LOG_CATEGORY UCLASS_SPI_FLASH
12 
13 #include <common.h>
14 #include <dm.h>
15 #include <malloc.h>
16 #include <spi.h>
17 #include <os.h>
18 
19 #include <spi_flash.h>
20 #include "sf_internal.h"
21 
22 #include <asm/getopt.h>
23 #include <asm/spi.h>
24 #include <asm/state.h>
25 #include <dm/device-internal.h>
26 #include <dm/lists.h>
27 #include <dm/uclass-internal.h>
28 
29 /*
30  * The different states that our SPI flash transitions between.
31  * We need to keep track of this across multiple xfer calls since
32  * the SPI bus could possibly call down into us multiple times.
33  */
34 enum sandbox_sf_state {
35 	SF_CMD,   /* default state -- we're awaiting a command */
36 	SF_ID,    /* read the flash's (jedec) ID code */
37 	SF_ADDR,  /* processing the offset in the flash to read/etc... */
38 	SF_READ,  /* reading data from the flash */
39 	SF_WRITE, /* writing data to the flash, i.e. page programming */
40 	SF_ERASE, /* erase the flash */
41 	SF_READ_STATUS, /* read the flash's status register */
42 	SF_READ_STATUS1, /* read the flash's status register upper 8 bits*/
43 	SF_WRITE_STATUS, /* write the flash's status register */
44 };
45 
46 #if CONFIG_IS_ENABLED(LOG)
47 static const char *sandbox_sf_state_name(enum sandbox_sf_state state)
48 {
49 	static const char * const states[] = {
50 		"CMD", "ID", "ADDR", "READ", "WRITE", "ERASE", "READ_STATUS",
51 		"READ_STATUS1", "WRITE_STATUS",
52 	};
53 	return states[state];
54 }
55 #endif /* LOG */
56 
57 /* Bits for the status register */
58 #define STAT_WIP	(1 << 0)
59 #define STAT_WEL	(1 << 1)
60 #define STAT_BP_SHIFT	2
61 #define STAT_BP_MASK	(7 << STAT_BP_SHIFT)
62 
63 /* Assume all SPI flashes have 3 byte addresses since they do atm */
64 #define SF_ADDR_LEN	3
65 
66 #define IDCODE_LEN 3
67 
68 /* Used to quickly bulk erase backing store */
69 static u8 sandbox_sf_0xff[0x1000];
70 
71 /* Internal state data for each SPI flash */
72 struct sandbox_spi_flash {
73 	unsigned int cs;	/* Chip select we are attached to */
74 	/*
75 	 * As we receive data over the SPI bus, our flash transitions
76 	 * between states.  For example, we start off in the SF_CMD
77 	 * state where the first byte tells us what operation to perform
78 	 * (such as read or write the flash).  But the operation itself
79 	 * can go through a few states such as first reading in the
80 	 * offset in the flash to perform the requested operation.
81 	 * Thus "state" stores the exact state that our machine is in
82 	 * while "cmd" stores the overall command we're processing.
83 	 */
84 	enum sandbox_sf_state state;
85 	uint cmd;
86 	/* Erase size of current erase command */
87 	uint erase_size;
88 	/* Current position in the flash; used when reading/writing/etc... */
89 	uint off;
90 	/* How many address bytes we've consumed */
91 	uint addr_bytes, pad_addr_bytes;
92 	/* The current flash status (see STAT_XXX defines above) */
93 	u16 status;
94 	/* Data describing the flash we're emulating */
95 	const struct spi_flash_info *data;
96 	/* The file on disk to serv up data from */
97 	int fd;
98 };
99 
100 struct sandbox_spi_flash_plat_data {
101 	const char *filename;
102 	const char *device_name;
103 	int bus;
104 	int cs;
105 };
106 
107 void sandbox_sf_set_block_protect(struct udevice *dev, int bp_mask)
108 {
109 	struct sandbox_spi_flash *sbsf = dev_get_priv(dev);
110 
111 	sbsf->status &= ~STAT_BP_MASK;
112 	sbsf->status |= bp_mask << STAT_BP_SHIFT;
113 }
114 
115 /**
116  * This is a very strange probe function. If it has platform data (which may
117  * have come from the device tree) then this function gets the filename and
118  * device type from there.
119  */
120 static int sandbox_sf_probe(struct udevice *dev)
121 {
122 	/* spec = idcode:file */
123 	struct sandbox_spi_flash *sbsf = dev_get_priv(dev);
124 	size_t len, idname_len;
125 	const struct spi_flash_info *data;
126 	struct sandbox_spi_flash_plat_data *pdata = dev_get_platdata(dev);
127 	struct sandbox_state *state = state_get_current();
128 	struct dm_spi_slave_platdata *slave_plat;
129 	struct udevice *bus = dev->parent;
130 	const char *spec = NULL;
131 	struct udevice *emul;
132 	int ret = 0;
133 	int cs = -1;
134 
135 	debug("%s: bus %d, looking for emul=%p: ", __func__, bus->seq, dev);
136 	ret = sandbox_spi_get_emul(state, bus, dev, &emul);
137 	if (ret) {
138 		printf("Error: Unknown chip select for device '%s'\n",
139 			dev->name);
140 		return ret;
141 	}
142 	slave_plat = dev_get_parent_platdata(dev);
143 	cs = slave_plat->cs;
144 	debug("found at cs %d\n", cs);
145 
146 	if (!pdata->filename) {
147 		printf("Error: No filename available\n");
148 		return -EINVAL;
149 	}
150 	spec = strchr(pdata->device_name, ',');
151 	if (spec)
152 		spec++;
153 	else
154 		spec = pdata->device_name;
155 	idname_len = strlen(spec);
156 	debug("%s: device='%s'\n", __func__, spec);
157 
158 	for (data = spi_flash_ids; data->name; data++) {
159 		len = strlen(data->name);
160 		if (idname_len != len)
161 			continue;
162 		if (!strncasecmp(spec, data->name, len))
163 			break;
164 	}
165 	if (!data->name) {
166 		printf("%s: unknown flash '%*s'\n", __func__, (int)idname_len,
167 		       spec);
168 		ret = -EINVAL;
169 		goto error;
170 	}
171 
172 	if (sandbox_sf_0xff[0] == 0x00)
173 		memset(sandbox_sf_0xff, 0xff, sizeof(sandbox_sf_0xff));
174 
175 	sbsf->fd = os_open(pdata->filename, 02);
176 	if (sbsf->fd == -1) {
177 		printf("%s: unable to open file '%s'\n", __func__,
178 		       pdata->filename);
179 		ret = -EIO;
180 		goto error;
181 	}
182 
183 	sbsf->data = data;
184 	sbsf->cs = cs;
185 
186 	return 0;
187 
188  error:
189 	debug("%s: Got error %d\n", __func__, ret);
190 	return ret;
191 }
192 
193 static int sandbox_sf_remove(struct udevice *dev)
194 {
195 	struct sandbox_spi_flash *sbsf = dev_get_priv(dev);
196 
197 	os_close(sbsf->fd);
198 
199 	return 0;
200 }
201 
202 static void sandbox_sf_cs_activate(struct udevice *dev)
203 {
204 	struct sandbox_spi_flash *sbsf = dev_get_priv(dev);
205 
206 	log_content("sandbox_sf: CS activated; state is fresh!\n");
207 
208 	/* CS is asserted, so reset state */
209 	sbsf->off = 0;
210 	sbsf->addr_bytes = 0;
211 	sbsf->pad_addr_bytes = 0;
212 	sbsf->state = SF_CMD;
213 	sbsf->cmd = SF_CMD;
214 }
215 
216 static void sandbox_sf_cs_deactivate(struct udevice *dev)
217 {
218 	log_content("sandbox_sf: CS deactivated; cmd done processing!\n");
219 }
220 
221 /*
222  * There are times when the data lines are allowed to tristate.  What
223  * is actually sensed on the line depends on the hardware.  It could
224  * always be 0xFF/0x00 (if there are pull ups/downs), or things could
225  * float and so we'd get garbage back.  This func encapsulates that
226  * scenario so we can worry about the details here.
227  */
228 static void sandbox_spi_tristate(u8 *buf, uint len)
229 {
230 	/* XXX: make this into a user config option ? */
231 	memset(buf, 0xff, len);
232 }
233 
234 /* Figure out what command this stream is telling us to do */
235 static int sandbox_sf_process_cmd(struct sandbox_spi_flash *sbsf, const u8 *rx,
236 				  u8 *tx)
237 {
238 	enum sandbox_sf_state oldstate = sbsf->state;
239 
240 	/* We need to output a byte for the cmd byte we just ate */
241 	if (tx)
242 		sandbox_spi_tristate(tx, 1);
243 
244 	sbsf->cmd = rx[0];
245 	switch (sbsf->cmd) {
246 	case CMD_READ_ID:
247 		sbsf->state = SF_ID;
248 		sbsf->cmd = SF_ID;
249 		break;
250 	case CMD_READ_ARRAY_FAST:
251 		sbsf->pad_addr_bytes = 1;
252 	case CMD_READ_ARRAY_SLOW:
253 	case CMD_PAGE_PROGRAM:
254 		sbsf->state = SF_ADDR;
255 		break;
256 	case CMD_WRITE_DISABLE:
257 		debug(" write disabled\n");
258 		sbsf->status &= ~STAT_WEL;
259 		break;
260 	case CMD_READ_STATUS:
261 		sbsf->state = SF_READ_STATUS;
262 		break;
263 	case CMD_READ_STATUS1:
264 		sbsf->state = SF_READ_STATUS1;
265 		break;
266 	case CMD_WRITE_ENABLE:
267 		debug(" write enabled\n");
268 		sbsf->status |= STAT_WEL;
269 		break;
270 	case CMD_WRITE_STATUS:
271 		sbsf->state = SF_WRITE_STATUS;
272 		break;
273 	default: {
274 		int flags = sbsf->data->flags;
275 
276 		/* we only support erase here */
277 		if (sbsf->cmd == CMD_ERASE_CHIP) {
278 			sbsf->erase_size = sbsf->data->sector_size *
279 				sbsf->data->n_sectors;
280 		} else if (sbsf->cmd == CMD_ERASE_4K && (flags & SECT_4K)) {
281 			sbsf->erase_size = 4 << 10;
282 		} else if (sbsf->cmd == CMD_ERASE_64K && !(flags & SECT_4K)) {
283 			sbsf->erase_size = 64 << 10;
284 		} else {
285 			debug(" cmd unknown: %#x\n", sbsf->cmd);
286 			return -EIO;
287 		}
288 		sbsf->state = SF_ADDR;
289 		break;
290 	}
291 	}
292 
293 	if (oldstate != sbsf->state)
294 		log_content(" cmd: transition to %s state\n",
295 			    sandbox_sf_state_name(sbsf->state));
296 
297 	return 0;
298 }
299 
300 int sandbox_erase_part(struct sandbox_spi_flash *sbsf, int size)
301 {
302 	int todo;
303 	int ret;
304 
305 	while (size > 0) {
306 		todo = min(size, (int)sizeof(sandbox_sf_0xff));
307 		ret = os_write(sbsf->fd, sandbox_sf_0xff, todo);
308 		if (ret != todo)
309 			return ret;
310 		size -= todo;
311 	}
312 
313 	return 0;
314 }
315 
316 static int sandbox_sf_xfer(struct udevice *dev, unsigned int bitlen,
317 			   const void *rxp, void *txp, unsigned long flags)
318 {
319 	struct sandbox_spi_flash *sbsf = dev_get_priv(dev);
320 	const uint8_t *rx = rxp;
321 	uint8_t *tx = txp;
322 	uint cnt, pos = 0;
323 	int bytes = bitlen / 8;
324 	int ret;
325 
326 	log_content("sandbox_sf: state:%x(%s) bytes:%u\n", sbsf->state,
327 		    sandbox_sf_state_name(sbsf->state), bytes);
328 
329 	if ((flags & SPI_XFER_BEGIN))
330 		sandbox_sf_cs_activate(dev);
331 
332 	if (sbsf->state == SF_CMD) {
333 		/* Figure out the initial state */
334 		ret = sandbox_sf_process_cmd(sbsf, rx, tx);
335 		if (ret)
336 			return ret;
337 		++pos;
338 	}
339 
340 	/* Process the remaining data */
341 	while (pos < bytes) {
342 		switch (sbsf->state) {
343 		case SF_ID: {
344 			u8 id;
345 
346 			log_content(" id: off:%u tx:", sbsf->off);
347 			if (sbsf->off < IDCODE_LEN) {
348 				/* Extract correct byte from ID 0x00aabbcc */
349 				id = ((JEDEC_MFR(sbsf->data) << 16) |
350 					JEDEC_ID(sbsf->data)) >>
351 					(8 * (IDCODE_LEN - 1 - sbsf->off));
352 			} else {
353 				id = 0;
354 			}
355 			log_content("%d %02x\n", sbsf->off, id);
356 			tx[pos++] = id;
357 			++sbsf->off;
358 			break;
359 		}
360 		case SF_ADDR:
361 			log_content(" addr: bytes:%u rx:%02x ",
362 				    sbsf->addr_bytes, rx[pos]);
363 
364 			if (sbsf->addr_bytes++ < SF_ADDR_LEN)
365 				sbsf->off = (sbsf->off << 8) | rx[pos];
366 			log_content("addr:%06x\n", sbsf->off);
367 
368 			if (tx)
369 				sandbox_spi_tristate(&tx[pos], 1);
370 			pos++;
371 
372 			/* See if we're done processing */
373 			if (sbsf->addr_bytes <
374 					SF_ADDR_LEN + sbsf->pad_addr_bytes)
375 				break;
376 
377 			/* Next state! */
378 			if (os_lseek(sbsf->fd, sbsf->off, OS_SEEK_SET) < 0) {
379 				puts("sandbox_sf: os_lseek() failed");
380 				return -EIO;
381 			}
382 			switch (sbsf->cmd) {
383 			case CMD_READ_ARRAY_FAST:
384 			case CMD_READ_ARRAY_SLOW:
385 				sbsf->state = SF_READ;
386 				break;
387 			case CMD_PAGE_PROGRAM:
388 				sbsf->state = SF_WRITE;
389 				break;
390 			default:
391 				/* assume erase state ... */
392 				sbsf->state = SF_ERASE;
393 				goto case_sf_erase;
394 			}
395 			log_content(" cmd: transition to %s state\n",
396 				    sandbox_sf_state_name(sbsf->state));
397 			break;
398 		case SF_READ:
399 			/*
400 			 * XXX: need to handle exotic behavior:
401 			 *      - reading past end of device
402 			 */
403 
404 			cnt = bytes - pos;
405 			log_content(" tx: read(%u)\n", cnt);
406 			assert(tx);
407 			ret = os_read(sbsf->fd, tx + pos, cnt);
408 			if (ret < 0) {
409 				puts("sandbox_sf: os_read() failed\n");
410 				return -EIO;
411 			}
412 			pos += ret;
413 			break;
414 		case SF_READ_STATUS:
415 			log_content(" read status: %#x\n", sbsf->status);
416 			cnt = bytes - pos;
417 			memset(tx + pos, sbsf->status, cnt);
418 			pos += cnt;
419 			break;
420 		case SF_READ_STATUS1:
421 			log_content(" read status: %#x\n", sbsf->status);
422 			cnt = bytes - pos;
423 			memset(tx + pos, sbsf->status >> 8, cnt);
424 			pos += cnt;
425 			break;
426 		case SF_WRITE_STATUS:
427 			log_content(" write status: %#x (ignored)\n", rx[pos]);
428 			pos = bytes;
429 			break;
430 		case SF_WRITE:
431 			/*
432 			 * XXX: need to handle exotic behavior:
433 			 *      - unaligned addresses
434 			 *      - more than a page (256) worth of data
435 			 *      - reading past end of device
436 			 */
437 			if (!(sbsf->status & STAT_WEL)) {
438 				puts("sandbox_sf: write enable not set before write\n");
439 				goto done;
440 			}
441 
442 			cnt = bytes - pos;
443 			log_content(" rx: write(%u)\n", cnt);
444 			if (tx)
445 				sandbox_spi_tristate(&tx[pos], cnt);
446 			ret = os_write(sbsf->fd, rx + pos, cnt);
447 			if (ret < 0) {
448 				puts("sandbox_spi: os_write() failed\n");
449 				return -EIO;
450 			}
451 			pos += ret;
452 			sbsf->status &= ~STAT_WEL;
453 			break;
454 		case SF_ERASE:
455  case_sf_erase: {
456 			if (!(sbsf->status & STAT_WEL)) {
457 				puts("sandbox_sf: write enable not set before erase\n");
458 				goto done;
459 			}
460 
461 			/* verify address is aligned */
462 			if (sbsf->off & (sbsf->erase_size - 1)) {
463 				log_content(" sector erase: cmd:%#x needs align:%#x, but we got %#x\n",
464 					    sbsf->cmd, sbsf->erase_size,
465 					    sbsf->off);
466 				sbsf->status &= ~STAT_WEL;
467 				goto done;
468 			}
469 
470 			log_content(" sector erase addr: %u, size: %u\n",
471 				    sbsf->off, sbsf->erase_size);
472 
473 			cnt = bytes - pos;
474 			if (tx)
475 				sandbox_spi_tristate(&tx[pos], cnt);
476 			pos += cnt;
477 
478 			/*
479 			 * TODO(vapier@gentoo.org): latch WIP in status, and
480 			 * delay before clearing it ?
481 			 */
482 			ret = sandbox_erase_part(sbsf, sbsf->erase_size);
483 			sbsf->status &= ~STAT_WEL;
484 			if (ret) {
485 				log_content("sandbox_sf: Erase failed\n");
486 				goto done;
487 			}
488 			goto done;
489 		}
490 		default:
491 			log_content(" ??? no idea what to do ???\n");
492 			goto done;
493 		}
494 	}
495 
496  done:
497 	if (flags & SPI_XFER_END)
498 		sandbox_sf_cs_deactivate(dev);
499 	return pos == bytes ? 0 : -EIO;
500 }
501 
502 int sandbox_sf_ofdata_to_platdata(struct udevice *dev)
503 {
504 	struct sandbox_spi_flash_plat_data *pdata = dev_get_platdata(dev);
505 
506 	pdata->filename = dev_read_string(dev, "sandbox,filename");
507 	pdata->device_name = dev_read_string(dev, "compatible");
508 	if (!pdata->filename || !pdata->device_name) {
509 		debug("%s: Missing properties, filename=%s, device_name=%s\n",
510 		      __func__, pdata->filename, pdata->device_name);
511 		return -EINVAL;
512 	}
513 
514 	return 0;
515 }
516 
517 static const struct dm_spi_emul_ops sandbox_sf_emul_ops = {
518 	.xfer          = sandbox_sf_xfer,
519 };
520 
521 #ifdef CONFIG_SPI_FLASH
522 int sandbox_sf_bind_emul(struct sandbox_state *state, int busnum, int cs,
523 			 struct udevice *bus, ofnode node, const char *spec)
524 {
525 	struct udevice *emul;
526 	char name[20], *str;
527 	struct driver *drv;
528 	int ret;
529 
530 	/* now the emulator */
531 	strncpy(name, spec, sizeof(name) - 6);
532 	name[sizeof(name) - 6] = '\0';
533 	strcat(name, "-emul");
534 	drv = lists_driver_lookup_name("sandbox_sf_emul");
535 	if (!drv) {
536 		puts("Cannot find sandbox_sf_emul driver\n");
537 		return -ENOENT;
538 	}
539 	str = strdup(name);
540 	if (!str)
541 		return -ENOMEM;
542 	ret = device_bind_ofnode(bus, drv, str, NULL, node, &emul);
543 	if (ret) {
544 		free(str);
545 		printf("Cannot create emul device for spec '%s' (err=%d)\n",
546 		       spec, ret);
547 		return ret;
548 	}
549 	state->spi[busnum][cs].emul = emul;
550 
551 	return 0;
552 }
553 
554 void sandbox_sf_unbind_emul(struct sandbox_state *state, int busnum, int cs)
555 {
556 	struct udevice *dev;
557 
558 	dev = state->spi[busnum][cs].emul;
559 	device_remove(dev, DM_REMOVE_NORMAL);
560 	device_unbind(dev);
561 	state->spi[busnum][cs].emul = NULL;
562 }
563 
564 int sandbox_spi_get_emul(struct sandbox_state *state,
565 			 struct udevice *bus, struct udevice *slave,
566 			 struct udevice **emulp)
567 {
568 	struct sandbox_spi_info *info;
569 	int busnum = bus->seq;
570 	int cs = spi_chip_select(slave);
571 	int ret;
572 
573 	info = &state->spi[busnum][cs];
574 	if (!info->emul) {
575 		/* Use the same device tree node as the SPI flash device */
576 		debug("%s: busnum=%u, cs=%u: binding SPI flash emulation: ",
577 		      __func__, busnum, cs);
578 		ret = sandbox_sf_bind_emul(state, busnum, cs, bus,
579 					   dev_ofnode(slave), slave->name);
580 		if (ret) {
581 			debug("failed (err=%d)\n", ret);
582 			return ret;
583 		}
584 		debug("OK\n");
585 	}
586 	*emulp = info->emul;
587 
588 	return 0;
589 }
590 #endif
591 
592 static const struct udevice_id sandbox_sf_ids[] = {
593 	{ .compatible = "sandbox,spi-flash" },
594 	{ }
595 };
596 
597 U_BOOT_DRIVER(sandbox_sf_emul) = {
598 	.name		= "sandbox_sf_emul",
599 	.id		= UCLASS_SPI_EMUL,
600 	.of_match	= sandbox_sf_ids,
601 	.ofdata_to_platdata = sandbox_sf_ofdata_to_platdata,
602 	.probe		= sandbox_sf_probe,
603 	.remove		= sandbox_sf_remove,
604 	.priv_auto_alloc_size = sizeof(struct sandbox_spi_flash),
605 	.platdata_auto_alloc_size = sizeof(struct sandbox_spi_flash_plat_data),
606 	.ops		= &sandbox_sf_emul_ops,
607 };
608