xref: /openbmc/u-boot/drivers/mtd/spi/sandbox.c (revision 53ab4af34e4e4242809114580320d2faa150b336)
1 /*
2  * Simulate a SPI flash
3  *
4  * Copyright (c) 2011-2013 The Chromium OS Authors.
5  * See file CREDITS for list of people who contributed to this
6  * project.
7  *
8  * Licensed under the GPL-2 or later.
9  */
10 
11 #include <common.h>
12 #include <dm.h>
13 #include <malloc.h>
14 #include <spi.h>
15 #include <os.h>
16 
17 #include <spi_flash.h>
18 #include "sf_internal.h"
19 
20 #include <asm/getopt.h>
21 #include <asm/spi.h>
22 #include <asm/state.h>
23 #include <dm/device-internal.h>
24 #include <dm/lists.h>
25 #include <dm/uclass-internal.h>
26 
27 DECLARE_GLOBAL_DATA_PTR;
28 
29 /*
30  * The different states that our SPI flash transitions between.
31  * We need to keep track of this across multiple xfer calls since
32  * the SPI bus could possibly call down into us multiple times.
33  */
34 enum sandbox_sf_state {
35 	SF_CMD,   /* default state -- we're awaiting a command */
36 	SF_ID,    /* read the flash's (jedec) ID code */
37 	SF_ADDR,  /* processing the offset in the flash to read/etc... */
38 	SF_READ,  /* reading data from the flash */
39 	SF_WRITE, /* writing data to the flash, i.e. page programming */
40 	SF_ERASE, /* erase the flash */
41 	SF_READ_STATUS, /* read the flash's status register */
42 	SF_READ_STATUS1, /* read the flash's status register upper 8 bits*/
43 	SF_WRITE_STATUS, /* write the flash's status register */
44 };
45 
46 static const char *sandbox_sf_state_name(enum sandbox_sf_state state)
47 {
48 	static const char * const states[] = {
49 		"CMD", "ID", "ADDR", "READ", "WRITE", "ERASE", "READ_STATUS",
50 		"READ_STATUS1", "WRITE_STATUS",
51 	};
52 	return states[state];
53 }
54 
55 /* Bits for the status register */
56 #define STAT_WIP	(1 << 0)
57 #define STAT_WEL	(1 << 1)
58 
59 /* Assume all SPI flashes have 3 byte addresses since they do atm */
60 #define SF_ADDR_LEN	3
61 
62 #define IDCODE_LEN 3
63 
64 /* Used to quickly bulk erase backing store */
65 static u8 sandbox_sf_0xff[0x1000];
66 
67 /* Internal state data for each SPI flash */
68 struct sandbox_spi_flash {
69 	unsigned int cs;	/* Chip select we are attached to */
70 	/*
71 	 * As we receive data over the SPI bus, our flash transitions
72 	 * between states.  For example, we start off in the SF_CMD
73 	 * state where the first byte tells us what operation to perform
74 	 * (such as read or write the flash).  But the operation itself
75 	 * can go through a few states such as first reading in the
76 	 * offset in the flash to perform the requested operation.
77 	 * Thus "state" stores the exact state that our machine is in
78 	 * while "cmd" stores the overall command we're processing.
79 	 */
80 	enum sandbox_sf_state state;
81 	uint cmd;
82 	/* Erase size of current erase command */
83 	uint erase_size;
84 	/* Current position in the flash; used when reading/writing/etc... */
85 	uint off;
86 	/* How many address bytes we've consumed */
87 	uint addr_bytes, pad_addr_bytes;
88 	/* The current flash status (see STAT_XXX defines above) */
89 	u16 status;
90 	/* Data describing the flash we're emulating */
91 	const struct spi_flash_params *data;
92 	/* The file on disk to serv up data from */
93 	int fd;
94 };
95 
96 struct sandbox_spi_flash_plat_data {
97 	const char *filename;
98 	const char *device_name;
99 	int bus;
100 	int cs;
101 };
102 
103 /**
104  * This is a very strange probe function. If it has platform data (which may
105  * have come from the device tree) then this function gets the filename and
106  * device type from there. Failing that it looks at the command line
107  * parameter.
108  */
109 static int sandbox_sf_probe(struct udevice *dev)
110 {
111 	/* spec = idcode:file */
112 	struct sandbox_spi_flash *sbsf = dev_get_priv(dev);
113 	const char *file;
114 	size_t len, idname_len;
115 	const struct spi_flash_params *data;
116 	struct sandbox_spi_flash_plat_data *pdata = dev_get_platdata(dev);
117 	struct sandbox_state *state = state_get_current();
118 	struct udevice *bus = dev->parent;
119 	const char *spec = NULL;
120 	int ret = 0;
121 	int cs = -1;
122 	int i;
123 
124 	debug("%s: bus %d, looking for emul=%p: ", __func__, bus->seq, dev);
125 	if (bus->seq >= 0 && bus->seq < CONFIG_SANDBOX_SPI_MAX_BUS) {
126 		for (i = 0; i < CONFIG_SANDBOX_SPI_MAX_CS; i++) {
127 			if (state->spi[bus->seq][i].emul == dev)
128 				cs = i;
129 		}
130 	}
131 	if (cs == -1) {
132 		printf("Error: Unknown chip select for device '%s'",
133 		       dev->name);
134 		return -EINVAL;
135 	}
136 	debug("found at cs %d\n", cs);
137 
138 	if (!pdata->filename) {
139 		struct sandbox_state *state = state_get_current();
140 
141 		assert(bus->seq != -1);
142 		if (bus->seq < CONFIG_SANDBOX_SPI_MAX_BUS)
143 			spec = state->spi[bus->seq][cs].spec;
144 		if (!spec) {
145 			ret = -ENOENT;
146 			goto error;
147 		}
148 
149 		file = strchr(spec, ':');
150 		if (!file) {
151 			printf("sandbox_sf: unable to parse file\n");
152 			ret = -EINVAL;
153 			goto error;
154 		}
155 		idname_len = file - spec;
156 		pdata->filename = file + 1;
157 		pdata->device_name = spec;
158 		++file;
159 	} else {
160 		spec = strchr(pdata->device_name, ',');
161 		if (spec)
162 			spec++;
163 		else
164 			spec = pdata->device_name;
165 		idname_len = strlen(spec);
166 	}
167 	debug("%s: device='%s'\n", __func__, spec);
168 
169 	for (data = spi_flash_params_table; data->name; data++) {
170 		len = strlen(data->name);
171 		if (idname_len != len)
172 			continue;
173 		if (!strncasecmp(spec, data->name, len))
174 			break;
175 	}
176 	if (!data->name) {
177 		printf("sandbox_sf: unknown flash '%*s'\n", (int)idname_len,
178 		       spec);
179 		ret = -EINVAL;
180 		goto error;
181 	}
182 
183 	if (sandbox_sf_0xff[0] == 0x00)
184 		memset(sandbox_sf_0xff, 0xff, sizeof(sandbox_sf_0xff));
185 
186 	sbsf->fd = os_open(pdata->filename, 02);
187 	if (sbsf->fd == -1) {
188 		free(sbsf);
189 		printf("sandbox_sf: unable to open file '%s'\n",
190 		       pdata->filename);
191 		ret = -EIO;
192 		goto error;
193 	}
194 
195 	sbsf->data = data;
196 	sbsf->cs = cs;
197 
198 	return 0;
199 
200  error:
201 	debug("%s: Got error %d\n", __func__, ret);
202 	return ret;
203 }
204 
205 static int sandbox_sf_remove(struct udevice *dev)
206 {
207 	struct sandbox_spi_flash *sbsf = dev_get_priv(dev);
208 
209 	os_close(sbsf->fd);
210 
211 	return 0;
212 }
213 
214 static void sandbox_sf_cs_activate(struct udevice *dev)
215 {
216 	struct sandbox_spi_flash *sbsf = dev_get_priv(dev);
217 
218 	debug("sandbox_sf: CS activated; state is fresh!\n");
219 
220 	/* CS is asserted, so reset state */
221 	sbsf->off = 0;
222 	sbsf->addr_bytes = 0;
223 	sbsf->pad_addr_bytes = 0;
224 	sbsf->state = SF_CMD;
225 	sbsf->cmd = SF_CMD;
226 }
227 
228 static void sandbox_sf_cs_deactivate(struct udevice *dev)
229 {
230 	debug("sandbox_sf: CS deactivated; cmd done processing!\n");
231 }
232 
233 /*
234  * There are times when the data lines are allowed to tristate.  What
235  * is actually sensed on the line depends on the hardware.  It could
236  * always be 0xFF/0x00 (if there are pull ups/downs), or things could
237  * float and so we'd get garbage back.  This func encapsulates that
238  * scenario so we can worry about the details here.
239  */
240 static void sandbox_spi_tristate(u8 *buf, uint len)
241 {
242 	/* XXX: make this into a user config option ? */
243 	memset(buf, 0xff, len);
244 }
245 
246 /* Figure out what command this stream is telling us to do */
247 static int sandbox_sf_process_cmd(struct sandbox_spi_flash *sbsf, const u8 *rx,
248 				  u8 *tx)
249 {
250 	enum sandbox_sf_state oldstate = sbsf->state;
251 
252 	/* We need to output a byte for the cmd byte we just ate */
253 	if (tx)
254 		sandbox_spi_tristate(tx, 1);
255 
256 	sbsf->cmd = rx[0];
257 	switch (sbsf->cmd) {
258 	case CMD_READ_ID:
259 		sbsf->state = SF_ID;
260 		sbsf->cmd = SF_ID;
261 		break;
262 	case CMD_READ_ARRAY_FAST:
263 		sbsf->pad_addr_bytes = 1;
264 	case CMD_READ_ARRAY_SLOW:
265 	case CMD_PAGE_PROGRAM:
266 		sbsf->state = SF_ADDR;
267 		break;
268 	case CMD_WRITE_DISABLE:
269 		debug(" write disabled\n");
270 		sbsf->status &= ~STAT_WEL;
271 		break;
272 	case CMD_READ_STATUS:
273 		sbsf->state = SF_READ_STATUS;
274 		break;
275 	case CMD_READ_STATUS1:
276 		sbsf->state = SF_READ_STATUS1;
277 		break;
278 	case CMD_WRITE_ENABLE:
279 		debug(" write enabled\n");
280 		sbsf->status |= STAT_WEL;
281 		break;
282 	case CMD_WRITE_STATUS:
283 		sbsf->state = SF_WRITE_STATUS;
284 		break;
285 	default: {
286 		int flags = sbsf->data->flags;
287 
288 		/* we only support erase here */
289 		if (sbsf->cmd == CMD_ERASE_CHIP) {
290 			sbsf->erase_size = sbsf->data->sector_size *
291 				sbsf->data->nr_sectors;
292 		} else if (sbsf->cmd == CMD_ERASE_4K && (flags & SECT_4K)) {
293 			sbsf->erase_size = 4 << 10;
294 		} else if (sbsf->cmd == CMD_ERASE_32K && (flags & SECT_32K)) {
295 			sbsf->erase_size = 32 << 10;
296 		} else if (sbsf->cmd == CMD_ERASE_64K &&
297 			   !(flags & (SECT_4K | SECT_32K))) {
298 			sbsf->erase_size = 64 << 10;
299 		} else {
300 			debug(" cmd unknown: %#x\n", sbsf->cmd);
301 			return -EIO;
302 		}
303 		sbsf->state = SF_ADDR;
304 		break;
305 	}
306 	}
307 
308 	if (oldstate != sbsf->state)
309 		debug(" cmd: transition to %s state\n",
310 		      sandbox_sf_state_name(sbsf->state));
311 
312 	return 0;
313 }
314 
315 int sandbox_erase_part(struct sandbox_spi_flash *sbsf, int size)
316 {
317 	int todo;
318 	int ret;
319 
320 	while (size > 0) {
321 		todo = min(size, (int)sizeof(sandbox_sf_0xff));
322 		ret = os_write(sbsf->fd, sandbox_sf_0xff, todo);
323 		if (ret != todo)
324 			return ret;
325 		size -= todo;
326 	}
327 
328 	return 0;
329 }
330 
331 static int sandbox_sf_xfer(struct udevice *dev, unsigned int bitlen,
332 			   const void *rxp, void *txp, unsigned long flags)
333 {
334 	struct sandbox_spi_flash *sbsf = dev_get_priv(dev);
335 	const uint8_t *rx = rxp;
336 	uint8_t *tx = txp;
337 	uint cnt, pos = 0;
338 	int bytes = bitlen / 8;
339 	int ret;
340 
341 	debug("sandbox_sf: state:%x(%s) bytes:%u\n", sbsf->state,
342 	      sandbox_sf_state_name(sbsf->state), bytes);
343 
344 	if ((flags & SPI_XFER_BEGIN))
345 		sandbox_sf_cs_activate(dev);
346 
347 	if (sbsf->state == SF_CMD) {
348 		/* Figure out the initial state */
349 		ret = sandbox_sf_process_cmd(sbsf, rx, tx);
350 		if (ret)
351 			return ret;
352 		++pos;
353 	}
354 
355 	/* Process the remaining data */
356 	while (pos < bytes) {
357 		switch (sbsf->state) {
358 		case SF_ID: {
359 			u8 id;
360 
361 			debug(" id: off:%u tx:", sbsf->off);
362 			if (sbsf->off < IDCODE_LEN) {
363 				/* Extract correct byte from ID 0x00aabbcc */
364 				id = sbsf->data->jedec >>
365 					(8 * (IDCODE_LEN - 1 - sbsf->off));
366 			} else {
367 				id = 0;
368 			}
369 			debug("%d %02x\n", sbsf->off, id);
370 			tx[pos++] = id;
371 			++sbsf->off;
372 			break;
373 		}
374 		case SF_ADDR:
375 			debug(" addr: bytes:%u rx:%02x ", sbsf->addr_bytes,
376 			      rx[pos]);
377 
378 			if (sbsf->addr_bytes++ < SF_ADDR_LEN)
379 				sbsf->off = (sbsf->off << 8) | rx[pos];
380 			debug("addr:%06x\n", sbsf->off);
381 
382 			if (tx)
383 				sandbox_spi_tristate(&tx[pos], 1);
384 			pos++;
385 
386 			/* See if we're done processing */
387 			if (sbsf->addr_bytes <
388 					SF_ADDR_LEN + sbsf->pad_addr_bytes)
389 				break;
390 
391 			/* Next state! */
392 			if (os_lseek(sbsf->fd, sbsf->off, OS_SEEK_SET) < 0) {
393 				puts("sandbox_sf: os_lseek() failed");
394 				return -EIO;
395 			}
396 			switch (sbsf->cmd) {
397 			case CMD_READ_ARRAY_FAST:
398 			case CMD_READ_ARRAY_SLOW:
399 				sbsf->state = SF_READ;
400 				break;
401 			case CMD_PAGE_PROGRAM:
402 				sbsf->state = SF_WRITE;
403 				break;
404 			default:
405 				/* assume erase state ... */
406 				sbsf->state = SF_ERASE;
407 				goto case_sf_erase;
408 			}
409 			debug(" cmd: transition to %s state\n",
410 			      sandbox_sf_state_name(sbsf->state));
411 			break;
412 		case SF_READ:
413 			/*
414 			 * XXX: need to handle exotic behavior:
415 			 *      - reading past end of device
416 			 */
417 
418 			cnt = bytes - pos;
419 			debug(" tx: read(%u)\n", cnt);
420 			assert(tx);
421 			ret = os_read(sbsf->fd, tx + pos, cnt);
422 			if (ret < 0) {
423 				puts("sandbox_sf: os_read() failed\n");
424 				return -EIO;
425 			}
426 			pos += ret;
427 			break;
428 		case SF_READ_STATUS:
429 			debug(" read status: %#x\n", sbsf->status);
430 			cnt = bytes - pos;
431 			memset(tx + pos, sbsf->status, cnt);
432 			pos += cnt;
433 			break;
434 		case SF_READ_STATUS1:
435 			debug(" read status: %#x\n", sbsf->status);
436 			cnt = bytes - pos;
437 			memset(tx + pos, sbsf->status >> 8, cnt);
438 			pos += cnt;
439 			break;
440 		case SF_WRITE_STATUS:
441 			debug(" write status: %#x (ignored)\n", rx[pos]);
442 			pos = bytes;
443 			break;
444 		case SF_WRITE:
445 			/*
446 			 * XXX: need to handle exotic behavior:
447 			 *      - unaligned addresses
448 			 *      - more than a page (256) worth of data
449 			 *      - reading past end of device
450 			 */
451 			if (!(sbsf->status & STAT_WEL)) {
452 				puts("sandbox_sf: write enable not set before write\n");
453 				goto done;
454 			}
455 
456 			cnt = bytes - pos;
457 			debug(" rx: write(%u)\n", cnt);
458 			if (tx)
459 				sandbox_spi_tristate(&tx[pos], cnt);
460 			ret = os_write(sbsf->fd, rx + pos, cnt);
461 			if (ret < 0) {
462 				puts("sandbox_spi: os_write() failed\n");
463 				return -EIO;
464 			}
465 			pos += ret;
466 			sbsf->status &= ~STAT_WEL;
467 			break;
468 		case SF_ERASE:
469  case_sf_erase: {
470 			if (!(sbsf->status & STAT_WEL)) {
471 				puts("sandbox_sf: write enable not set before erase\n");
472 				goto done;
473 			}
474 
475 			/* verify address is aligned */
476 			if (sbsf->off & (sbsf->erase_size - 1)) {
477 				debug(" sector erase: cmd:%#x needs align:%#x, but we got %#x\n",
478 				      sbsf->cmd, sbsf->erase_size,
479 				      sbsf->off);
480 				sbsf->status &= ~STAT_WEL;
481 				goto done;
482 			}
483 
484 			debug(" sector erase addr: %u, size: %u\n", sbsf->off,
485 			      sbsf->erase_size);
486 
487 			cnt = bytes - pos;
488 			if (tx)
489 				sandbox_spi_tristate(&tx[pos], cnt);
490 			pos += cnt;
491 
492 			/*
493 			 * TODO(vapier@gentoo.org): latch WIP in status, and
494 			 * delay before clearing it ?
495 			 */
496 			ret = sandbox_erase_part(sbsf, sbsf->erase_size);
497 			sbsf->status &= ~STAT_WEL;
498 			if (ret) {
499 				debug("sandbox_sf: Erase failed\n");
500 				goto done;
501 			}
502 			goto done;
503 		}
504 		default:
505 			debug(" ??? no idea what to do ???\n");
506 			goto done;
507 		}
508 	}
509 
510  done:
511 	if (flags & SPI_XFER_END)
512 		sandbox_sf_cs_deactivate(dev);
513 	return pos == bytes ? 0 : -EIO;
514 }
515 
516 int sandbox_sf_ofdata_to_platdata(struct udevice *dev)
517 {
518 	struct sandbox_spi_flash_plat_data *pdata = dev_get_platdata(dev);
519 	const void *blob = gd->fdt_blob;
520 	int node = dev->of_offset;
521 
522 	pdata->filename = fdt_getprop(blob, node, "sandbox,filename", NULL);
523 	pdata->device_name = fdt_getprop(blob, node, "compatible", NULL);
524 	if (!pdata->filename || !pdata->device_name) {
525 		debug("%s: Missing properties, filename=%s, device_name=%s\n",
526 		      __func__, pdata->filename, pdata->device_name);
527 		return -EINVAL;
528 	}
529 
530 	return 0;
531 }
532 
533 static const struct dm_spi_emul_ops sandbox_sf_emul_ops = {
534 	.xfer          = sandbox_sf_xfer,
535 };
536 
537 #ifdef CONFIG_SPI_FLASH
538 static int sandbox_cmdline_cb_spi_sf(struct sandbox_state *state,
539 				     const char *arg)
540 {
541 	unsigned long bus, cs;
542 	const char *spec = sandbox_spi_parse_spec(arg, &bus, &cs);
543 
544 	if (!spec)
545 		return 1;
546 
547 	/*
548 	 * It is safe to not make a copy of 'spec' because it comes from the
549 	 * command line.
550 	 *
551 	 * TODO(sjg@chromium.org): It would be nice if we could parse the
552 	 * spec here, but the problem is that no U-Boot init has been done
553 	 * yet. Perhaps we can figure something out.
554 	 */
555 	state->spi[bus][cs].spec = spec;
556 	return 0;
557 }
558 SANDBOX_CMDLINE_OPT(spi_sf, 1, "connect a SPI flash: <bus>:<cs>:<id>:<file>");
559 
560 int sandbox_sf_bind_emul(struct sandbox_state *state, int busnum, int cs,
561 			 struct udevice *bus, int of_offset, const char *spec)
562 {
563 	struct udevice *emul;
564 	char name[20], *str;
565 	struct driver *drv;
566 	int ret;
567 
568 	/* now the emulator */
569 	strncpy(name, spec, sizeof(name) - 6);
570 	name[sizeof(name) - 6] = '\0';
571 	strcat(name, "-emul");
572 	str = strdup(name);
573 	if (!str)
574 		return -ENOMEM;
575 	drv = lists_driver_lookup_name("sandbox_sf_emul");
576 	if (!drv) {
577 		puts("Cannot find sandbox_sf_emul driver\n");
578 		return -ENOENT;
579 	}
580 	ret = device_bind(bus, drv, str, NULL, of_offset, &emul);
581 	if (ret) {
582 		printf("Cannot create emul device for spec '%s' (err=%d)\n",
583 		       spec, ret);
584 		return ret;
585 	}
586 	state->spi[busnum][cs].emul = emul;
587 
588 	return 0;
589 }
590 
591 void sandbox_sf_unbind_emul(struct sandbox_state *state, int busnum, int cs)
592 {
593 	struct udevice *dev;
594 
595 	dev = state->spi[busnum][cs].emul;
596 	device_remove(dev);
597 	device_unbind(dev);
598 	state->spi[busnum][cs].emul = NULL;
599 }
600 
601 static int sandbox_sf_bind_bus_cs(struct sandbox_state *state, int busnum,
602 				  int cs, const char *spec)
603 {
604 	struct udevice *bus, *slave;
605 	int ret;
606 
607 	ret = uclass_find_device_by_seq(UCLASS_SPI, busnum, true, &bus);
608 	if (ret) {
609 		printf("Invalid bus %d for spec '%s' (err=%d)\n", busnum,
610 		       spec, ret);
611 		return ret;
612 	}
613 	ret = spi_find_chip_select(bus, cs, &slave);
614 	if (!ret) {
615 		printf("Chip select %d already exists for spec '%s'\n", cs,
616 		       spec);
617 		return -EEXIST;
618 	}
619 
620 	ret = device_bind_driver(bus, "spi_flash_std", spec, &slave);
621 	if (ret)
622 		return ret;
623 
624 	return sandbox_sf_bind_emul(state, busnum, cs, bus, -1, spec);
625 }
626 
627 int sandbox_spi_get_emul(struct sandbox_state *state,
628 			 struct udevice *bus, struct udevice *slave,
629 			 struct udevice **emulp)
630 {
631 	struct sandbox_spi_info *info;
632 	int busnum = bus->seq;
633 	int cs = spi_chip_select(slave);
634 	int ret;
635 
636 	info = &state->spi[busnum][cs];
637 	if (!info->emul) {
638 		/* Use the same device tree node as the SPI flash device */
639 		debug("%s: busnum=%u, cs=%u: binding SPI flash emulation: ",
640 		      __func__, busnum, cs);
641 		ret = sandbox_sf_bind_emul(state, busnum, cs, bus,
642 					   slave->of_offset, slave->name);
643 		if (ret) {
644 			debug("failed (err=%d)\n", ret);
645 			return ret;
646 		}
647 		debug("OK\n");
648 	}
649 	*emulp = info->emul;
650 
651 	return 0;
652 }
653 
654 int dm_scan_other(bool pre_reloc_only)
655 {
656 	struct sandbox_state *state = state_get_current();
657 	int busnum, cs;
658 
659 	if (pre_reloc_only)
660 		return 0;
661 	for (busnum = 0; busnum < CONFIG_SANDBOX_SPI_MAX_BUS; busnum++) {
662 		for (cs = 0; cs < CONFIG_SANDBOX_SPI_MAX_CS; cs++) {
663 			const char *spec = state->spi[busnum][cs].spec;
664 			int ret;
665 
666 			if (spec) {
667 				ret = sandbox_sf_bind_bus_cs(state, busnum,
668 							     cs, spec);
669 				if (ret) {
670 					debug("%s: Bind failed for bus %d, cs %d\n",
671 					      __func__, busnum, cs);
672 					return ret;
673 				}
674 			}
675 		}
676 	}
677 
678 	return 0;
679 }
680 #endif
681 
682 static const struct udevice_id sandbox_sf_ids[] = {
683 	{ .compatible = "sandbox,spi-flash" },
684 	{ }
685 };
686 
687 U_BOOT_DRIVER(sandbox_sf_emul) = {
688 	.name		= "sandbox_sf_emul",
689 	.id		= UCLASS_SPI_EMUL,
690 	.of_match	= sandbox_sf_ids,
691 	.ofdata_to_platdata = sandbox_sf_ofdata_to_platdata,
692 	.probe		= sandbox_sf_probe,
693 	.remove		= sandbox_sf_remove,
694 	.priv_auto_alloc_size = sizeof(struct sandbox_spi_flash),
695 	.platdata_auto_alloc_size = sizeof(struct sandbox_spi_flash_plat_data),
696 	.ops		= &sandbox_sf_emul_ops,
697 };
698