xref: /openbmc/u-boot/drivers/mtd/spi/sandbox.c (revision 169eb191)
1 /*
2  * Simulate a SPI flash
3  *
4  * Copyright (c) 2011-2013 The Chromium OS Authors.
5  * See file CREDITS for list of people who contributed to this
6  * project.
7  *
8  * Licensed under the GPL-2 or later.
9  */
10 
11 #define LOG_CATEGORY UCLASS_SPI_FLASH
12 
13 #include <common.h>
14 #include <dm.h>
15 #include <malloc.h>
16 #include <spi.h>
17 #include <os.h>
18 
19 #include <spi_flash.h>
20 #include "sf_internal.h"
21 
22 #include <asm/getopt.h>
23 #include <asm/spi.h>
24 #include <asm/state.h>
25 #include <dm/device-internal.h>
26 #include <dm/lists.h>
27 #include <dm/uclass-internal.h>
28 
29 /*
30  * The different states that our SPI flash transitions between.
31  * We need to keep track of this across multiple xfer calls since
32  * the SPI bus could possibly call down into us multiple times.
33  */
34 enum sandbox_sf_state {
35 	SF_CMD,   /* default state -- we're awaiting a command */
36 	SF_ID,    /* read the flash's (jedec) ID code */
37 	SF_ADDR,  /* processing the offset in the flash to read/etc... */
38 	SF_READ,  /* reading data from the flash */
39 	SF_WRITE, /* writing data to the flash, i.e. page programming */
40 	SF_ERASE, /* erase the flash */
41 	SF_READ_STATUS, /* read the flash's status register */
42 	SF_READ_STATUS1, /* read the flash's status register upper 8 bits*/
43 	SF_WRITE_STATUS, /* write the flash's status register */
44 };
45 
46 #if CONFIG_IS_ENABLED(LOG)
47 static const char *sandbox_sf_state_name(enum sandbox_sf_state state)
48 {
49 	static const char * const states[] = {
50 		"CMD", "ID", "ADDR", "READ", "WRITE", "ERASE", "READ_STATUS",
51 		"READ_STATUS1", "WRITE_STATUS",
52 	};
53 	return states[state];
54 }
55 #endif /* LOG */
56 
57 /* Bits for the status register */
58 #define STAT_WIP	(1 << 0)
59 #define STAT_WEL	(1 << 1)
60 
61 /* Assume all SPI flashes have 3 byte addresses since they do atm */
62 #define SF_ADDR_LEN	3
63 
64 #define IDCODE_LEN 3
65 
66 /* Used to quickly bulk erase backing store */
67 static u8 sandbox_sf_0xff[0x1000];
68 
69 /* Internal state data for each SPI flash */
70 struct sandbox_spi_flash {
71 	unsigned int cs;	/* Chip select we are attached to */
72 	/*
73 	 * As we receive data over the SPI bus, our flash transitions
74 	 * between states.  For example, we start off in the SF_CMD
75 	 * state where the first byte tells us what operation to perform
76 	 * (such as read or write the flash).  But the operation itself
77 	 * can go through a few states such as first reading in the
78 	 * offset in the flash to perform the requested operation.
79 	 * Thus "state" stores the exact state that our machine is in
80 	 * while "cmd" stores the overall command we're processing.
81 	 */
82 	enum sandbox_sf_state state;
83 	uint cmd;
84 	/* Erase size of current erase command */
85 	uint erase_size;
86 	/* Current position in the flash; used when reading/writing/etc... */
87 	uint off;
88 	/* How many address bytes we've consumed */
89 	uint addr_bytes, pad_addr_bytes;
90 	/* The current flash status (see STAT_XXX defines above) */
91 	u16 status;
92 	/* Data describing the flash we're emulating */
93 	const struct spi_flash_info *data;
94 	/* The file on disk to serv up data from */
95 	int fd;
96 };
97 
98 struct sandbox_spi_flash_plat_data {
99 	const char *filename;
100 	const char *device_name;
101 	int bus;
102 	int cs;
103 };
104 
105 /**
106  * This is a very strange probe function. If it has platform data (which may
107  * have come from the device tree) then this function gets the filename and
108  * device type from there.
109  */
110 static int sandbox_sf_probe(struct udevice *dev)
111 {
112 	/* spec = idcode:file */
113 	struct sandbox_spi_flash *sbsf = dev_get_priv(dev);
114 	size_t len, idname_len;
115 	const struct spi_flash_info *data;
116 	struct sandbox_spi_flash_plat_data *pdata = dev_get_platdata(dev);
117 	struct sandbox_state *state = state_get_current();
118 	struct dm_spi_slave_platdata *slave_plat;
119 	struct udevice *bus = dev->parent;
120 	const char *spec = NULL;
121 	struct udevice *emul;
122 	int ret = 0;
123 	int cs = -1;
124 
125 	debug("%s: bus %d, looking for emul=%p: ", __func__, bus->seq, dev);
126 	ret = sandbox_spi_get_emul(state, bus, dev, &emul);
127 	if (ret) {
128 		printf("Error: Unknown chip select for device '%s'\n",
129 			dev->name);
130 		return ret;
131 	}
132 	slave_plat = dev_get_parent_platdata(dev);
133 	cs = slave_plat->cs;
134 	debug("found at cs %d\n", cs);
135 
136 	if (!pdata->filename) {
137 		printf("Error: No filename available\n");
138 		return -EINVAL;
139 	}
140 	spec = strchr(pdata->device_name, ',');
141 	if (spec)
142 		spec++;
143 	else
144 		spec = pdata->device_name;
145 	idname_len = strlen(spec);
146 	debug("%s: device='%s'\n", __func__, spec);
147 
148 	for (data = spi_flash_ids; data->name; data++) {
149 		len = strlen(data->name);
150 		if (idname_len != len)
151 			continue;
152 		if (!strncasecmp(spec, data->name, len))
153 			break;
154 	}
155 	if (!data->name) {
156 		printf("%s: unknown flash '%*s'\n", __func__, (int)idname_len,
157 		       spec);
158 		ret = -EINVAL;
159 		goto error;
160 	}
161 
162 	if (sandbox_sf_0xff[0] == 0x00)
163 		memset(sandbox_sf_0xff, 0xff, sizeof(sandbox_sf_0xff));
164 
165 	sbsf->fd = os_open(pdata->filename, 02);
166 	if (sbsf->fd == -1) {
167 		printf("%s: unable to open file '%s'\n", __func__,
168 		       pdata->filename);
169 		ret = -EIO;
170 		goto error;
171 	}
172 
173 	sbsf->data = data;
174 	sbsf->cs = cs;
175 
176 	return 0;
177 
178  error:
179 	debug("%s: Got error %d\n", __func__, ret);
180 	return ret;
181 }
182 
183 static int sandbox_sf_remove(struct udevice *dev)
184 {
185 	struct sandbox_spi_flash *sbsf = dev_get_priv(dev);
186 
187 	os_close(sbsf->fd);
188 
189 	return 0;
190 }
191 
192 static void sandbox_sf_cs_activate(struct udevice *dev)
193 {
194 	struct sandbox_spi_flash *sbsf = dev_get_priv(dev);
195 
196 	log_content("sandbox_sf: CS activated; state is fresh!\n");
197 
198 	/* CS is asserted, so reset state */
199 	sbsf->off = 0;
200 	sbsf->addr_bytes = 0;
201 	sbsf->pad_addr_bytes = 0;
202 	sbsf->state = SF_CMD;
203 	sbsf->cmd = SF_CMD;
204 }
205 
206 static void sandbox_sf_cs_deactivate(struct udevice *dev)
207 {
208 	log_content("sandbox_sf: CS deactivated; cmd done processing!\n");
209 }
210 
211 /*
212  * There are times when the data lines are allowed to tristate.  What
213  * is actually sensed on the line depends on the hardware.  It could
214  * always be 0xFF/0x00 (if there are pull ups/downs), or things could
215  * float and so we'd get garbage back.  This func encapsulates that
216  * scenario so we can worry about the details here.
217  */
218 static void sandbox_spi_tristate(u8 *buf, uint len)
219 {
220 	/* XXX: make this into a user config option ? */
221 	memset(buf, 0xff, len);
222 }
223 
224 /* Figure out what command this stream is telling us to do */
225 static int sandbox_sf_process_cmd(struct sandbox_spi_flash *sbsf, const u8 *rx,
226 				  u8 *tx)
227 {
228 	enum sandbox_sf_state oldstate = sbsf->state;
229 
230 	/* We need to output a byte for the cmd byte we just ate */
231 	if (tx)
232 		sandbox_spi_tristate(tx, 1);
233 
234 	sbsf->cmd = rx[0];
235 	switch (sbsf->cmd) {
236 	case CMD_READ_ID:
237 		sbsf->state = SF_ID;
238 		sbsf->cmd = SF_ID;
239 		break;
240 	case CMD_READ_ARRAY_FAST:
241 		sbsf->pad_addr_bytes = 1;
242 	case CMD_READ_ARRAY_SLOW:
243 	case CMD_PAGE_PROGRAM:
244 		sbsf->state = SF_ADDR;
245 		break;
246 	case CMD_WRITE_DISABLE:
247 		debug(" write disabled\n");
248 		sbsf->status &= ~STAT_WEL;
249 		break;
250 	case CMD_READ_STATUS:
251 		sbsf->state = SF_READ_STATUS;
252 		break;
253 	case CMD_READ_STATUS1:
254 		sbsf->state = SF_READ_STATUS1;
255 		break;
256 	case CMD_WRITE_ENABLE:
257 		debug(" write enabled\n");
258 		sbsf->status |= STAT_WEL;
259 		break;
260 	case CMD_WRITE_STATUS:
261 		sbsf->state = SF_WRITE_STATUS;
262 		break;
263 	default: {
264 		int flags = sbsf->data->flags;
265 
266 		/* we only support erase here */
267 		if (sbsf->cmd == CMD_ERASE_CHIP) {
268 			sbsf->erase_size = sbsf->data->sector_size *
269 				sbsf->data->n_sectors;
270 		} else if (sbsf->cmd == CMD_ERASE_4K && (flags & SECT_4K)) {
271 			sbsf->erase_size = 4 << 10;
272 		} else if (sbsf->cmd == CMD_ERASE_64K && !(flags & SECT_4K)) {
273 			sbsf->erase_size = 64 << 10;
274 		} else {
275 			debug(" cmd unknown: %#x\n", sbsf->cmd);
276 			return -EIO;
277 		}
278 		sbsf->state = SF_ADDR;
279 		break;
280 	}
281 	}
282 
283 	if (oldstate != sbsf->state)
284 		log_content(" cmd: transition to %s state\n",
285 			    sandbox_sf_state_name(sbsf->state));
286 
287 	return 0;
288 }
289 
290 int sandbox_erase_part(struct sandbox_spi_flash *sbsf, int size)
291 {
292 	int todo;
293 	int ret;
294 
295 	while (size > 0) {
296 		todo = min(size, (int)sizeof(sandbox_sf_0xff));
297 		ret = os_write(sbsf->fd, sandbox_sf_0xff, todo);
298 		if (ret != todo)
299 			return ret;
300 		size -= todo;
301 	}
302 
303 	return 0;
304 }
305 
306 static int sandbox_sf_xfer(struct udevice *dev, unsigned int bitlen,
307 			   const void *rxp, void *txp, unsigned long flags)
308 {
309 	struct sandbox_spi_flash *sbsf = dev_get_priv(dev);
310 	const uint8_t *rx = rxp;
311 	uint8_t *tx = txp;
312 	uint cnt, pos = 0;
313 	int bytes = bitlen / 8;
314 	int ret;
315 
316 	log_content("sandbox_sf: state:%x(%s) bytes:%u\n", sbsf->state,
317 		    sandbox_sf_state_name(sbsf->state), bytes);
318 
319 	if ((flags & SPI_XFER_BEGIN))
320 		sandbox_sf_cs_activate(dev);
321 
322 	if (sbsf->state == SF_CMD) {
323 		/* Figure out the initial state */
324 		ret = sandbox_sf_process_cmd(sbsf, rx, tx);
325 		if (ret)
326 			return ret;
327 		++pos;
328 	}
329 
330 	/* Process the remaining data */
331 	while (pos < bytes) {
332 		switch (sbsf->state) {
333 		case SF_ID: {
334 			u8 id;
335 
336 			log_content(" id: off:%u tx:", sbsf->off);
337 			if (sbsf->off < IDCODE_LEN) {
338 				/* Extract correct byte from ID 0x00aabbcc */
339 				id = ((JEDEC_MFR(sbsf->data) << 16) |
340 					JEDEC_ID(sbsf->data)) >>
341 					(8 * (IDCODE_LEN - 1 - sbsf->off));
342 			} else {
343 				id = 0;
344 			}
345 			log_content("%d %02x\n", sbsf->off, id);
346 			tx[pos++] = id;
347 			++sbsf->off;
348 			break;
349 		}
350 		case SF_ADDR:
351 			log_content(" addr: bytes:%u rx:%02x ",
352 				    sbsf->addr_bytes, rx[pos]);
353 
354 			if (sbsf->addr_bytes++ < SF_ADDR_LEN)
355 				sbsf->off = (sbsf->off << 8) | rx[pos];
356 			log_content("addr:%06x\n", sbsf->off);
357 
358 			if (tx)
359 				sandbox_spi_tristate(&tx[pos], 1);
360 			pos++;
361 
362 			/* See if we're done processing */
363 			if (sbsf->addr_bytes <
364 					SF_ADDR_LEN + sbsf->pad_addr_bytes)
365 				break;
366 
367 			/* Next state! */
368 			if (os_lseek(sbsf->fd, sbsf->off, OS_SEEK_SET) < 0) {
369 				puts("sandbox_sf: os_lseek() failed");
370 				return -EIO;
371 			}
372 			switch (sbsf->cmd) {
373 			case CMD_READ_ARRAY_FAST:
374 			case CMD_READ_ARRAY_SLOW:
375 				sbsf->state = SF_READ;
376 				break;
377 			case CMD_PAGE_PROGRAM:
378 				sbsf->state = SF_WRITE;
379 				break;
380 			default:
381 				/* assume erase state ... */
382 				sbsf->state = SF_ERASE;
383 				goto case_sf_erase;
384 			}
385 			log_content(" cmd: transition to %s state\n",
386 				    sandbox_sf_state_name(sbsf->state));
387 			break;
388 		case SF_READ:
389 			/*
390 			 * XXX: need to handle exotic behavior:
391 			 *      - reading past end of device
392 			 */
393 
394 			cnt = bytes - pos;
395 			log_content(" tx: read(%u)\n", cnt);
396 			assert(tx);
397 			ret = os_read(sbsf->fd, tx + pos, cnt);
398 			if (ret < 0) {
399 				puts("sandbox_sf: os_read() failed\n");
400 				return -EIO;
401 			}
402 			pos += ret;
403 			break;
404 		case SF_READ_STATUS:
405 			log_content(" read status: %#x\n", sbsf->status);
406 			cnt = bytes - pos;
407 			memset(tx + pos, sbsf->status, cnt);
408 			pos += cnt;
409 			break;
410 		case SF_READ_STATUS1:
411 			log_content(" read status: %#x\n", sbsf->status);
412 			cnt = bytes - pos;
413 			memset(tx + pos, sbsf->status >> 8, cnt);
414 			pos += cnt;
415 			break;
416 		case SF_WRITE_STATUS:
417 			log_content(" write status: %#x (ignored)\n", rx[pos]);
418 			pos = bytes;
419 			break;
420 		case SF_WRITE:
421 			/*
422 			 * XXX: need to handle exotic behavior:
423 			 *      - unaligned addresses
424 			 *      - more than a page (256) worth of data
425 			 *      - reading past end of device
426 			 */
427 			if (!(sbsf->status & STAT_WEL)) {
428 				puts("sandbox_sf: write enable not set before write\n");
429 				goto done;
430 			}
431 
432 			cnt = bytes - pos;
433 			log_content(" rx: write(%u)\n", cnt);
434 			if (tx)
435 				sandbox_spi_tristate(&tx[pos], cnt);
436 			ret = os_write(sbsf->fd, rx + pos, cnt);
437 			if (ret < 0) {
438 				puts("sandbox_spi: os_write() failed\n");
439 				return -EIO;
440 			}
441 			pos += ret;
442 			sbsf->status &= ~STAT_WEL;
443 			break;
444 		case SF_ERASE:
445  case_sf_erase: {
446 			if (!(sbsf->status & STAT_WEL)) {
447 				puts("sandbox_sf: write enable not set before erase\n");
448 				goto done;
449 			}
450 
451 			/* verify address is aligned */
452 			if (sbsf->off & (sbsf->erase_size - 1)) {
453 				log_content(" sector erase: cmd:%#x needs align:%#x, but we got %#x\n",
454 					    sbsf->cmd, sbsf->erase_size,
455 					    sbsf->off);
456 				sbsf->status &= ~STAT_WEL;
457 				goto done;
458 			}
459 
460 			log_content(" sector erase addr: %u, size: %u\n",
461 				    sbsf->off, sbsf->erase_size);
462 
463 			cnt = bytes - pos;
464 			if (tx)
465 				sandbox_spi_tristate(&tx[pos], cnt);
466 			pos += cnt;
467 
468 			/*
469 			 * TODO(vapier@gentoo.org): latch WIP in status, and
470 			 * delay before clearing it ?
471 			 */
472 			ret = sandbox_erase_part(sbsf, sbsf->erase_size);
473 			sbsf->status &= ~STAT_WEL;
474 			if (ret) {
475 				log_content("sandbox_sf: Erase failed\n");
476 				goto done;
477 			}
478 			goto done;
479 		}
480 		default:
481 			log_content(" ??? no idea what to do ???\n");
482 			goto done;
483 		}
484 	}
485 
486  done:
487 	if (flags & SPI_XFER_END)
488 		sandbox_sf_cs_deactivate(dev);
489 	return pos == bytes ? 0 : -EIO;
490 }
491 
492 int sandbox_sf_ofdata_to_platdata(struct udevice *dev)
493 {
494 	struct sandbox_spi_flash_plat_data *pdata = dev_get_platdata(dev);
495 
496 	pdata->filename = dev_read_string(dev, "sandbox,filename");
497 	pdata->device_name = dev_read_string(dev, "compatible");
498 	if (!pdata->filename || !pdata->device_name) {
499 		debug("%s: Missing properties, filename=%s, device_name=%s\n",
500 		      __func__, pdata->filename, pdata->device_name);
501 		return -EINVAL;
502 	}
503 
504 	return 0;
505 }
506 
507 static const struct dm_spi_emul_ops sandbox_sf_emul_ops = {
508 	.xfer          = sandbox_sf_xfer,
509 };
510 
511 #ifdef CONFIG_SPI_FLASH
512 int sandbox_sf_bind_emul(struct sandbox_state *state, int busnum, int cs,
513 			 struct udevice *bus, ofnode node, const char *spec)
514 {
515 	struct udevice *emul;
516 	char name[20], *str;
517 	struct driver *drv;
518 	int ret;
519 
520 	/* now the emulator */
521 	strncpy(name, spec, sizeof(name) - 6);
522 	name[sizeof(name) - 6] = '\0';
523 	strcat(name, "-emul");
524 	drv = lists_driver_lookup_name("sandbox_sf_emul");
525 	if (!drv) {
526 		puts("Cannot find sandbox_sf_emul driver\n");
527 		return -ENOENT;
528 	}
529 	str = strdup(name);
530 	if (!str)
531 		return -ENOMEM;
532 	ret = device_bind_ofnode(bus, drv, str, NULL, node, &emul);
533 	if (ret) {
534 		free(str);
535 		printf("Cannot create emul device for spec '%s' (err=%d)\n",
536 		       spec, ret);
537 		return ret;
538 	}
539 	state->spi[busnum][cs].emul = emul;
540 
541 	return 0;
542 }
543 
544 void sandbox_sf_unbind_emul(struct sandbox_state *state, int busnum, int cs)
545 {
546 	struct udevice *dev;
547 
548 	dev = state->spi[busnum][cs].emul;
549 	device_remove(dev, DM_REMOVE_NORMAL);
550 	device_unbind(dev);
551 	state->spi[busnum][cs].emul = NULL;
552 }
553 
554 int sandbox_spi_get_emul(struct sandbox_state *state,
555 			 struct udevice *bus, struct udevice *slave,
556 			 struct udevice **emulp)
557 {
558 	struct sandbox_spi_info *info;
559 	int busnum = bus->seq;
560 	int cs = spi_chip_select(slave);
561 	int ret;
562 
563 	info = &state->spi[busnum][cs];
564 	if (!info->emul) {
565 		/* Use the same device tree node as the SPI flash device */
566 		debug("%s: busnum=%u, cs=%u: binding SPI flash emulation: ",
567 		      __func__, busnum, cs);
568 		ret = sandbox_sf_bind_emul(state, busnum, cs, bus,
569 					   dev_ofnode(slave), slave->name);
570 		if (ret) {
571 			debug("failed (err=%d)\n", ret);
572 			return ret;
573 		}
574 		debug("OK\n");
575 	}
576 	*emulp = info->emul;
577 
578 	return 0;
579 }
580 #endif
581 
582 static const struct udevice_id sandbox_sf_ids[] = {
583 	{ .compatible = "sandbox,spi-flash" },
584 	{ }
585 };
586 
587 U_BOOT_DRIVER(sandbox_sf_emul) = {
588 	.name		= "sandbox_sf_emul",
589 	.id		= UCLASS_SPI_EMUL,
590 	.of_match	= sandbox_sf_ids,
591 	.ofdata_to_platdata = sandbox_sf_ofdata_to_platdata,
592 	.probe		= sandbox_sf_probe,
593 	.remove		= sandbox_sf_remove,
594 	.priv_auto_alloc_size = sizeof(struct sandbox_spi_flash),
595 	.platdata_auto_alloc_size = sizeof(struct sandbox_spi_flash_plat_data),
596 	.ops		= &sandbox_sf_emul_ops,
597 };
598