1 /* 2 * linux/drivers/mtd/onenand/onenand_base.c 3 * 4 * Copyright (C) 2005-2007 Samsung Electronics 5 * Kyungmin Park <kyungmin.park@samsung.com> 6 * 7 * Credits: 8 * Adrian Hunter <ext-adrian.hunter@nokia.com>: 9 * auto-placement support, read-while load support, various fixes 10 * Copyright (C) Nokia Corporation, 2007 11 * 12 * Rohit Hagargundgi <h.rohit at samsung.com>, 13 * Amul Kumar Saha <amul.saha@samsung.com>: 14 * Flex-OneNAND support 15 * Copyright (C) Samsung Electronics, 2009 16 * 17 * This program is free software; you can redistribute it and/or modify 18 * it under the terms of the GNU General Public License version 2 as 19 * published by the Free Software Foundation. 20 */ 21 22 #include <common.h> 23 #include <linux/compat.h> 24 #include <linux/mtd/mtd.h> 25 #include <linux/mtd/onenand.h> 26 27 #include <asm/io.h> 28 #include <asm/errno.h> 29 #include <malloc.h> 30 31 /* It should access 16-bit instead of 8-bit */ 32 static void *memcpy_16(void *dst, const void *src, unsigned int len) 33 { 34 void *ret = dst; 35 short *d = dst; 36 const short *s = src; 37 38 len >>= 1; 39 while (len-- > 0) 40 *d++ = *s++; 41 return ret; 42 } 43 44 /** 45 * onenand_oob_128 - oob info for Flex-Onenand with 4KB page 46 * For now, we expose only 64 out of 80 ecc bytes 47 */ 48 static struct nand_ecclayout onenand_oob_128 = { 49 .eccbytes = 64, 50 .eccpos = { 51 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 52 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 53 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 54 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 55 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 56 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 57 102, 103, 104, 105 58 }, 59 .oobfree = { 60 {2, 4}, {18, 4}, {34, 4}, {50, 4}, 61 {66, 4}, {82, 4}, {98, 4}, {114, 4} 62 } 63 }; 64 65 /** 66 * onenand_oob_64 - oob info for large (2KB) page 67 */ 68 static struct nand_ecclayout onenand_oob_64 = { 69 .eccbytes = 20, 70 .eccpos = { 71 8, 9, 10, 11, 12, 72 24, 25, 26, 27, 28, 73 40, 41, 42, 43, 44, 74 56, 57, 58, 59, 60, 75 }, 76 .oobfree = { 77 {2, 3}, {14, 2}, {18, 3}, {30, 2}, 78 {34, 3}, {46, 2}, {50, 3}, {62, 2} 79 } 80 }; 81 82 /** 83 * onenand_oob_32 - oob info for middle (1KB) page 84 */ 85 static struct nand_ecclayout onenand_oob_32 = { 86 .eccbytes = 10, 87 .eccpos = { 88 8, 9, 10, 11, 12, 89 24, 25, 26, 27, 28, 90 }, 91 .oobfree = { {2, 3}, {14, 2}, {18, 3}, {30, 2} } 92 }; 93 94 static const unsigned char ffchars[] = { 95 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 96 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */ 97 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 98 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */ 99 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 100 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */ 101 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 102 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */ 103 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 104 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */ 105 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 106 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */ 107 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 108 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */ 109 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 110 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */ 111 }; 112 113 /** 114 * onenand_readw - [OneNAND Interface] Read OneNAND register 115 * @param addr address to read 116 * 117 * Read OneNAND register 118 */ 119 static unsigned short onenand_readw(void __iomem * addr) 120 { 121 return readw(addr); 122 } 123 124 /** 125 * onenand_writew - [OneNAND Interface] Write OneNAND register with value 126 * @param value value to write 127 * @param addr address to write 128 * 129 * Write OneNAND register with value 130 */ 131 static void onenand_writew(unsigned short value, void __iomem * addr) 132 { 133 writew(value, addr); 134 } 135 136 /** 137 * onenand_block_address - [DEFAULT] Get block address 138 * @param device the device id 139 * @param block the block 140 * @return translated block address if DDP, otherwise same 141 * 142 * Setup Start Address 1 Register (F100h) 143 */ 144 static int onenand_block_address(struct onenand_chip *this, int block) 145 { 146 /* Device Flash Core select, NAND Flash Block Address */ 147 if (block & this->density_mask) 148 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask); 149 150 return block; 151 } 152 153 /** 154 * onenand_bufferram_address - [DEFAULT] Get bufferram address 155 * @param device the device id 156 * @param block the block 157 * @return set DBS value if DDP, otherwise 0 158 * 159 * Setup Start Address 2 Register (F101h) for DDP 160 */ 161 static int onenand_bufferram_address(struct onenand_chip *this, int block) 162 { 163 /* Device BufferRAM Select */ 164 if (block & this->density_mask) 165 return ONENAND_DDP_CHIP1; 166 167 return ONENAND_DDP_CHIP0; 168 } 169 170 /** 171 * onenand_page_address - [DEFAULT] Get page address 172 * @param page the page address 173 * @param sector the sector address 174 * @return combined page and sector address 175 * 176 * Setup Start Address 8 Register (F107h) 177 */ 178 static int onenand_page_address(int page, int sector) 179 { 180 /* Flash Page Address, Flash Sector Address */ 181 int fpa, fsa; 182 183 fpa = page & ONENAND_FPA_MASK; 184 fsa = sector & ONENAND_FSA_MASK; 185 186 return ((fpa << ONENAND_FPA_SHIFT) | fsa); 187 } 188 189 /** 190 * onenand_buffer_address - [DEFAULT] Get buffer address 191 * @param dataram1 DataRAM index 192 * @param sectors the sector address 193 * @param count the number of sectors 194 * @return the start buffer value 195 * 196 * Setup Start Buffer Register (F200h) 197 */ 198 static int onenand_buffer_address(int dataram1, int sectors, int count) 199 { 200 int bsa, bsc; 201 202 /* BufferRAM Sector Address */ 203 bsa = sectors & ONENAND_BSA_MASK; 204 205 if (dataram1) 206 bsa |= ONENAND_BSA_DATARAM1; /* DataRAM1 */ 207 else 208 bsa |= ONENAND_BSA_DATARAM0; /* DataRAM0 */ 209 210 /* BufferRAM Sector Count */ 211 bsc = count & ONENAND_BSC_MASK; 212 213 return ((bsa << ONENAND_BSA_SHIFT) | bsc); 214 } 215 216 /** 217 * flexonenand_block - Return block number for flash address 218 * @param this - OneNAND device structure 219 * @param addr - Address for which block number is needed 220 */ 221 static unsigned int flexonenand_block(struct onenand_chip *this, loff_t addr) 222 { 223 unsigned int boundary, blk, die = 0; 224 225 if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) { 226 die = 1; 227 addr -= this->diesize[0]; 228 } 229 230 boundary = this->boundary[die]; 231 232 blk = addr >> (this->erase_shift - 1); 233 if (blk > boundary) 234 blk = (blk + boundary + 1) >> 1; 235 236 blk += die ? this->density_mask : 0; 237 return blk; 238 } 239 240 unsigned int onenand_block(struct onenand_chip *this, loff_t addr) 241 { 242 if (!FLEXONENAND(this)) 243 return addr >> this->erase_shift; 244 return flexonenand_block(this, addr); 245 } 246 247 /** 248 * flexonenand_addr - Return address of the block 249 * @this: OneNAND device structure 250 * @block: Block number on Flex-OneNAND 251 * 252 * Return address of the block 253 */ 254 static loff_t flexonenand_addr(struct onenand_chip *this, int block) 255 { 256 loff_t ofs = 0; 257 int die = 0, boundary; 258 259 if (ONENAND_IS_DDP(this) && block >= this->density_mask) { 260 block -= this->density_mask; 261 die = 1; 262 ofs = this->diesize[0]; 263 } 264 265 boundary = this->boundary[die]; 266 ofs += (loff_t) block << (this->erase_shift - 1); 267 if (block > (boundary + 1)) 268 ofs += (loff_t) (block - boundary - 1) 269 << (this->erase_shift - 1); 270 return ofs; 271 } 272 273 loff_t onenand_addr(struct onenand_chip *this, int block) 274 { 275 if (!FLEXONENAND(this)) 276 return (loff_t) block << this->erase_shift; 277 return flexonenand_addr(this, block); 278 } 279 280 /** 281 * flexonenand_region - [Flex-OneNAND] Return erase region of addr 282 * @param mtd MTD device structure 283 * @param addr address whose erase region needs to be identified 284 */ 285 int flexonenand_region(struct mtd_info *mtd, loff_t addr) 286 { 287 int i; 288 289 for (i = 0; i < mtd->numeraseregions; i++) 290 if (addr < mtd->eraseregions[i].offset) 291 break; 292 return i - 1; 293 } 294 295 /** 296 * onenand_get_density - [DEFAULT] Get OneNAND density 297 * @param dev_id OneNAND device ID 298 * 299 * Get OneNAND density from device ID 300 */ 301 static inline int onenand_get_density(int dev_id) 302 { 303 int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT; 304 return (density & ONENAND_DEVICE_DENSITY_MASK); 305 } 306 307 /** 308 * onenand_command - [DEFAULT] Send command to OneNAND device 309 * @param mtd MTD device structure 310 * @param cmd the command to be sent 311 * @param addr offset to read from or write to 312 * @param len number of bytes to read or write 313 * 314 * Send command to OneNAND device. This function is used for middle/large page 315 * devices (1KB/2KB Bytes per page) 316 */ 317 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, 318 size_t len) 319 { 320 struct onenand_chip *this = mtd->priv; 321 int value; 322 int block, page; 323 324 /* Now we use page size operation */ 325 int sectors = 0, count = 0; 326 327 /* Address translation */ 328 switch (cmd) { 329 case ONENAND_CMD_UNLOCK: 330 case ONENAND_CMD_LOCK: 331 case ONENAND_CMD_LOCK_TIGHT: 332 case ONENAND_CMD_UNLOCK_ALL: 333 block = -1; 334 page = -1; 335 break; 336 337 case FLEXONENAND_CMD_PI_ACCESS: 338 /* addr contains die index */ 339 block = addr * this->density_mask; 340 page = -1; 341 break; 342 343 case ONENAND_CMD_ERASE: 344 case ONENAND_CMD_BUFFERRAM: 345 block = onenand_block(this, addr); 346 page = -1; 347 break; 348 349 case FLEXONENAND_CMD_READ_PI: 350 cmd = ONENAND_CMD_READ; 351 block = addr * this->density_mask; 352 page = 0; 353 break; 354 355 default: 356 block = onenand_block(this, addr); 357 page = (int) (addr 358 - onenand_addr(this, block)) >> this->page_shift; 359 page &= this->page_mask; 360 break; 361 } 362 363 /* NOTE: The setting order of the registers is very important! */ 364 if (cmd == ONENAND_CMD_BUFFERRAM) { 365 /* Select DataRAM for DDP */ 366 value = onenand_bufferram_address(this, block); 367 this->write_word(value, 368 this->base + ONENAND_REG_START_ADDRESS2); 369 370 if (ONENAND_IS_4KB_PAGE(this)) 371 ONENAND_SET_BUFFERRAM0(this); 372 else 373 /* Switch to the next data buffer */ 374 ONENAND_SET_NEXT_BUFFERRAM(this); 375 376 return 0; 377 } 378 379 if (block != -1) { 380 /* Write 'DFS, FBA' of Flash */ 381 value = onenand_block_address(this, block); 382 this->write_word(value, 383 this->base + ONENAND_REG_START_ADDRESS1); 384 385 /* Select DataRAM for DDP */ 386 value = onenand_bufferram_address(this, block); 387 this->write_word(value, 388 this->base + ONENAND_REG_START_ADDRESS2); 389 } 390 391 if (page != -1) { 392 int dataram; 393 394 switch (cmd) { 395 case FLEXONENAND_CMD_RECOVER_LSB: 396 case ONENAND_CMD_READ: 397 case ONENAND_CMD_READOOB: 398 if (ONENAND_IS_4KB_PAGE(this)) 399 dataram = ONENAND_SET_BUFFERRAM0(this); 400 else 401 dataram = ONENAND_SET_NEXT_BUFFERRAM(this); 402 403 break; 404 405 default: 406 dataram = ONENAND_CURRENT_BUFFERRAM(this); 407 break; 408 } 409 410 /* Write 'FPA, FSA' of Flash */ 411 value = onenand_page_address(page, sectors); 412 this->write_word(value, 413 this->base + ONENAND_REG_START_ADDRESS8); 414 415 /* Write 'BSA, BSC' of DataRAM */ 416 value = onenand_buffer_address(dataram, sectors, count); 417 this->write_word(value, this->base + ONENAND_REG_START_BUFFER); 418 } 419 420 /* Interrupt clear */ 421 this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT); 422 /* Write command */ 423 this->write_word(cmd, this->base + ONENAND_REG_COMMAND); 424 425 return 0; 426 } 427 428 /** 429 * onenand_read_ecc - return ecc status 430 * @param this onenand chip structure 431 */ 432 static int onenand_read_ecc(struct onenand_chip *this) 433 { 434 int ecc, i; 435 436 if (!FLEXONENAND(this)) 437 return this->read_word(this->base + ONENAND_REG_ECC_STATUS); 438 439 for (i = 0; i < 4; i++) { 440 ecc = this->read_word(this->base 441 + ((ONENAND_REG_ECC_STATUS + i) << 1)); 442 if (likely(!ecc)) 443 continue; 444 if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR) 445 return ONENAND_ECC_2BIT_ALL; 446 } 447 448 return 0; 449 } 450 451 /** 452 * onenand_wait - [DEFAULT] wait until the command is done 453 * @param mtd MTD device structure 454 * @param state state to select the max. timeout value 455 * 456 * Wait for command done. This applies to all OneNAND command 457 * Read can take up to 30us, erase up to 2ms and program up to 350us 458 * according to general OneNAND specs 459 */ 460 static int onenand_wait(struct mtd_info *mtd, int state) 461 { 462 struct onenand_chip *this = mtd->priv; 463 unsigned int flags = ONENAND_INT_MASTER; 464 unsigned int interrupt = 0; 465 unsigned int ctrl; 466 467 while (1) { 468 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); 469 if (interrupt & flags) 470 break; 471 } 472 473 ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS); 474 475 if (interrupt & ONENAND_INT_READ) { 476 int ecc = onenand_read_ecc(this); 477 if (ecc & ONENAND_ECC_2BIT_ALL) { 478 printk("onenand_wait: ECC error = 0x%04x\n", ecc); 479 return -EBADMSG; 480 } 481 } 482 483 if (ctrl & ONENAND_CTRL_ERROR) { 484 printk("onenand_wait: controller error = 0x%04x\n", ctrl); 485 if (ctrl & ONENAND_CTRL_LOCK) 486 printk("onenand_wait: it's locked error = 0x%04x\n", 487 ctrl); 488 489 return -EIO; 490 } 491 492 493 return 0; 494 } 495 496 /** 497 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset 498 * @param mtd MTD data structure 499 * @param area BufferRAM area 500 * @return offset given area 501 * 502 * Return BufferRAM offset given area 503 */ 504 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area) 505 { 506 struct onenand_chip *this = mtd->priv; 507 508 if (ONENAND_CURRENT_BUFFERRAM(this)) { 509 if (area == ONENAND_DATARAM) 510 return mtd->writesize; 511 if (area == ONENAND_SPARERAM) 512 return mtd->oobsize; 513 } 514 515 return 0; 516 } 517 518 /** 519 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area 520 * @param mtd MTD data structure 521 * @param area BufferRAM area 522 * @param buffer the databuffer to put/get data 523 * @param offset offset to read from or write to 524 * @param count number of bytes to read/write 525 * 526 * Read the BufferRAM area 527 */ 528 static int onenand_read_bufferram(struct mtd_info *mtd, loff_t addr, int area, 529 unsigned char *buffer, int offset, 530 size_t count) 531 { 532 struct onenand_chip *this = mtd->priv; 533 void __iomem *bufferram; 534 535 bufferram = this->base + area; 536 bufferram += onenand_bufferram_offset(mtd, area); 537 538 memcpy_16(buffer, bufferram + offset, count); 539 540 return 0; 541 } 542 543 /** 544 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode 545 * @param mtd MTD data structure 546 * @param area BufferRAM area 547 * @param buffer the databuffer to put/get data 548 * @param offset offset to read from or write to 549 * @param count number of bytes to read/write 550 * 551 * Read the BufferRAM area with Sync. Burst Mode 552 */ 553 static int onenand_sync_read_bufferram(struct mtd_info *mtd, loff_t addr, int area, 554 unsigned char *buffer, int offset, 555 size_t count) 556 { 557 struct onenand_chip *this = mtd->priv; 558 void __iomem *bufferram; 559 560 bufferram = this->base + area; 561 bufferram += onenand_bufferram_offset(mtd, area); 562 563 this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ); 564 565 memcpy_16(buffer, bufferram + offset, count); 566 567 this->mmcontrol(mtd, 0); 568 569 return 0; 570 } 571 572 /** 573 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area 574 * @param mtd MTD data structure 575 * @param area BufferRAM area 576 * @param buffer the databuffer to put/get data 577 * @param offset offset to read from or write to 578 * @param count number of bytes to read/write 579 * 580 * Write the BufferRAM area 581 */ 582 static int onenand_write_bufferram(struct mtd_info *mtd, loff_t addr, int area, 583 const unsigned char *buffer, int offset, 584 size_t count) 585 { 586 struct onenand_chip *this = mtd->priv; 587 void __iomem *bufferram; 588 589 bufferram = this->base + area; 590 bufferram += onenand_bufferram_offset(mtd, area); 591 592 memcpy_16(bufferram + offset, buffer, count); 593 594 return 0; 595 } 596 597 /** 598 * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode 599 * @param mtd MTD data structure 600 * @param addr address to check 601 * @return blockpage address 602 * 603 * Get blockpage address at 2x program mode 604 */ 605 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr) 606 { 607 struct onenand_chip *this = mtd->priv; 608 int blockpage, block, page; 609 610 /* Calculate the even block number */ 611 block = (int) (addr >> this->erase_shift) & ~1; 612 /* Is it the odd plane? */ 613 if (addr & this->writesize) 614 block++; 615 page = (int) (addr >> (this->page_shift + 1)) & this->page_mask; 616 blockpage = (block << 7) | page; 617 618 return blockpage; 619 } 620 621 /** 622 * onenand_check_bufferram - [GENERIC] Check BufferRAM information 623 * @param mtd MTD data structure 624 * @param addr address to check 625 * @return 1 if there are valid data, otherwise 0 626 * 627 * Check bufferram if there is data we required 628 */ 629 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr) 630 { 631 struct onenand_chip *this = mtd->priv; 632 int blockpage, found = 0; 633 unsigned int i; 634 635 if (ONENAND_IS_2PLANE(this)) 636 blockpage = onenand_get_2x_blockpage(mtd, addr); 637 else 638 blockpage = (int) (addr >> this->page_shift); 639 640 /* Is there valid data? */ 641 i = ONENAND_CURRENT_BUFFERRAM(this); 642 if (this->bufferram[i].blockpage == blockpage) 643 found = 1; 644 else { 645 /* Check another BufferRAM */ 646 i = ONENAND_NEXT_BUFFERRAM(this); 647 if (this->bufferram[i].blockpage == blockpage) { 648 ONENAND_SET_NEXT_BUFFERRAM(this); 649 found = 1; 650 } 651 } 652 653 if (found && ONENAND_IS_DDP(this)) { 654 /* Select DataRAM for DDP */ 655 int block = onenand_block(this, addr); 656 int value = onenand_bufferram_address(this, block); 657 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); 658 } 659 660 return found; 661 } 662 663 /** 664 * onenand_update_bufferram - [GENERIC] Update BufferRAM information 665 * @param mtd MTD data structure 666 * @param addr address to update 667 * @param valid valid flag 668 * 669 * Update BufferRAM information 670 */ 671 static int onenand_update_bufferram(struct mtd_info *mtd, loff_t addr, 672 int valid) 673 { 674 struct onenand_chip *this = mtd->priv; 675 int blockpage; 676 unsigned int i; 677 678 if (ONENAND_IS_2PLANE(this)) 679 blockpage = onenand_get_2x_blockpage(mtd, addr); 680 else 681 blockpage = (int)(addr >> this->page_shift); 682 683 /* Invalidate another BufferRAM */ 684 i = ONENAND_NEXT_BUFFERRAM(this); 685 if (this->bufferram[i].blockpage == blockpage) 686 this->bufferram[i].blockpage = -1; 687 688 /* Update BufferRAM */ 689 i = ONENAND_CURRENT_BUFFERRAM(this); 690 if (valid) 691 this->bufferram[i].blockpage = blockpage; 692 else 693 this->bufferram[i].blockpage = -1; 694 695 return 0; 696 } 697 698 /** 699 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information 700 * @param mtd MTD data structure 701 * @param addr start address to invalidate 702 * @param len length to invalidate 703 * 704 * Invalidate BufferRAM information 705 */ 706 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr, 707 unsigned int len) 708 { 709 struct onenand_chip *this = mtd->priv; 710 int i; 711 loff_t end_addr = addr + len; 712 713 /* Invalidate BufferRAM */ 714 for (i = 0; i < MAX_BUFFERRAM; i++) { 715 loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift; 716 717 if (buf_addr >= addr && buf_addr < end_addr) 718 this->bufferram[i].blockpage = -1; 719 } 720 } 721 722 /** 723 * onenand_get_device - [GENERIC] Get chip for selected access 724 * @param mtd MTD device structure 725 * @param new_state the state which is requested 726 * 727 * Get the device and lock it for exclusive access 728 */ 729 static void onenand_get_device(struct mtd_info *mtd, int new_state) 730 { 731 /* Do nothing */ 732 } 733 734 /** 735 * onenand_release_device - [GENERIC] release chip 736 * @param mtd MTD device structure 737 * 738 * Deselect, release chip lock and wake up anyone waiting on the device 739 */ 740 static void onenand_release_device(struct mtd_info *mtd) 741 { 742 /* Do nothing */ 743 } 744 745 /** 746 * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer 747 * @param mtd MTD device structure 748 * @param buf destination address 749 * @param column oob offset to read from 750 * @param thislen oob length to read 751 */ 752 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, 753 int column, int thislen) 754 { 755 struct onenand_chip *this = mtd->priv; 756 struct nand_oobfree *free; 757 int readcol = column; 758 int readend = column + thislen; 759 int lastgap = 0; 760 unsigned int i; 761 uint8_t *oob_buf = this->oob_buf; 762 763 free = this->ecclayout->oobfree; 764 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length; 765 i++, free++) { 766 if (readcol >= lastgap) 767 readcol += free->offset - lastgap; 768 if (readend >= lastgap) 769 readend += free->offset - lastgap; 770 lastgap = free->offset + free->length; 771 } 772 this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize); 773 free = this->ecclayout->oobfree; 774 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length; 775 i++, free++) { 776 int free_end = free->offset + free->length; 777 if (free->offset < readend && free_end > readcol) { 778 int st = max_t(int,free->offset,readcol); 779 int ed = min_t(int,free_end,readend); 780 int n = ed - st; 781 memcpy(buf, oob_buf + st, n); 782 buf += n; 783 } else if (column == 0) 784 break; 785 } 786 return 0; 787 } 788 789 /** 790 * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data 791 * @param mtd MTD device structure 792 * @param addr address to recover 793 * @param status return value from onenand_wait 794 * 795 * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has 796 * lower page address and MSB page has higher page address in paired pages. 797 * If power off occurs during MSB page program, the paired LSB page data can 798 * become corrupt. LSB page recovery read is a way to read LSB page though page 799 * data are corrupted. When uncorrectable error occurs as a result of LSB page 800 * read after power up, issue LSB page recovery read. 801 */ 802 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status) 803 { 804 struct onenand_chip *this = mtd->priv; 805 int i; 806 807 /* Recovery is only for Flex-OneNAND */ 808 if (!FLEXONENAND(this)) 809 return status; 810 811 /* check if we failed due to uncorrectable error */ 812 if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR) 813 return status; 814 815 /* check if address lies in MLC region */ 816 i = flexonenand_region(mtd, addr); 817 if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift)) 818 return status; 819 820 printk("onenand_recover_lsb:" 821 "Attempting to recover from uncorrectable read\n"); 822 823 /* Issue the LSB page recovery command */ 824 this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize); 825 return this->wait(mtd, FL_READING); 826 } 827 828 /** 829 * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band 830 * @param mtd MTD device structure 831 * @param from offset to read from 832 * @param ops oob operation description structure 833 * 834 * OneNAND read main and/or out-of-band data 835 */ 836 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from, 837 struct mtd_oob_ops *ops) 838 { 839 struct onenand_chip *this = mtd->priv; 840 struct mtd_ecc_stats stats; 841 size_t len = ops->len; 842 size_t ooblen = ops->ooblen; 843 u_char *buf = ops->datbuf; 844 u_char *oobbuf = ops->oobbuf; 845 int read = 0, column, thislen; 846 int oobread = 0, oobcolumn, thisooblen, oobsize; 847 int ret = 0, boundary = 0; 848 int writesize = this->writesize; 849 850 MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_read_ops_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len); 851 852 if (ops->mode == MTD_OPS_AUTO_OOB) 853 oobsize = this->ecclayout->oobavail; 854 else 855 oobsize = mtd->oobsize; 856 857 oobcolumn = from & (mtd->oobsize - 1); 858 859 /* Do not allow reads past end of device */ 860 if ((from + len) > mtd->size) { 861 printk(KERN_ERR "onenand_read_ops_nolock: Attempt read beyond end of device\n"); 862 ops->retlen = 0; 863 ops->oobretlen = 0; 864 return -EINVAL; 865 } 866 867 stats = mtd->ecc_stats; 868 869 /* Read-while-load method */ 870 /* Note: We can't use this feature in MLC */ 871 872 /* Do first load to bufferRAM */ 873 if (read < len) { 874 if (!onenand_check_bufferram(mtd, from)) { 875 this->main_buf = buf; 876 this->command(mtd, ONENAND_CMD_READ, from, writesize); 877 ret = this->wait(mtd, FL_READING); 878 if (unlikely(ret)) 879 ret = onenand_recover_lsb(mtd, from, ret); 880 onenand_update_bufferram(mtd, from, !ret); 881 if (ret == -EBADMSG) 882 ret = 0; 883 } 884 } 885 886 thislen = min_t(int, writesize, len - read); 887 column = from & (writesize - 1); 888 if (column + thislen > writesize) 889 thislen = writesize - column; 890 891 while (!ret) { 892 /* If there is more to load then start next load */ 893 from += thislen; 894 if (!ONENAND_IS_4KB_PAGE(this) && read + thislen < len) { 895 this->main_buf = buf + thislen; 896 this->command(mtd, ONENAND_CMD_READ, from, writesize); 897 /* 898 * Chip boundary handling in DDP 899 * Now we issued chip 1 read and pointed chip 1 900 * bufferam so we have to point chip 0 bufferam. 901 */ 902 if (ONENAND_IS_DDP(this) && 903 unlikely(from == (this->chipsize >> 1))) { 904 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2); 905 boundary = 1; 906 } else 907 boundary = 0; 908 ONENAND_SET_PREV_BUFFERRAM(this); 909 } 910 911 /* While load is going, read from last bufferRAM */ 912 this->read_bufferram(mtd, from - thislen, ONENAND_DATARAM, buf, column, thislen); 913 914 /* Read oob area if needed */ 915 if (oobbuf) { 916 thisooblen = oobsize - oobcolumn; 917 thisooblen = min_t(int, thisooblen, ooblen - oobread); 918 919 if (ops->mode == MTD_OPS_AUTO_OOB) 920 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen); 921 else 922 this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen); 923 oobread += thisooblen; 924 oobbuf += thisooblen; 925 oobcolumn = 0; 926 } 927 928 if (ONENAND_IS_4KB_PAGE(this) && (read + thislen < len)) { 929 this->command(mtd, ONENAND_CMD_READ, from, writesize); 930 ret = this->wait(mtd, FL_READING); 931 if (unlikely(ret)) 932 ret = onenand_recover_lsb(mtd, from, ret); 933 onenand_update_bufferram(mtd, from, !ret); 934 if (mtd_is_eccerr(ret)) 935 ret = 0; 936 } 937 938 /* See if we are done */ 939 read += thislen; 940 if (read == len) 941 break; 942 /* Set up for next read from bufferRAM */ 943 if (unlikely(boundary)) 944 this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2); 945 if (!ONENAND_IS_4KB_PAGE(this)) 946 ONENAND_SET_NEXT_BUFFERRAM(this); 947 buf += thislen; 948 thislen = min_t(int, writesize, len - read); 949 column = 0; 950 951 if (!ONENAND_IS_4KB_PAGE(this)) { 952 /* Now wait for load */ 953 ret = this->wait(mtd, FL_READING); 954 onenand_update_bufferram(mtd, from, !ret); 955 if (mtd_is_eccerr(ret)) 956 ret = 0; 957 } 958 } 959 960 /* 961 * Return success, if no ECC failures, else -EBADMSG 962 * fs driver will take care of that, because 963 * retlen == desired len and result == -EBADMSG 964 */ 965 ops->retlen = read; 966 ops->oobretlen = oobread; 967 968 if (ret) 969 return ret; 970 971 if (mtd->ecc_stats.failed - stats.failed) 972 return -EBADMSG; 973 974 /* return max bitflips per ecc step; ONENANDs correct 1 bit only */ 975 return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0; 976 } 977 978 /** 979 * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band 980 * @param mtd MTD device structure 981 * @param from offset to read from 982 * @param ops oob operation description structure 983 * 984 * OneNAND read out-of-band data from the spare area 985 */ 986 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from, 987 struct mtd_oob_ops *ops) 988 { 989 struct onenand_chip *this = mtd->priv; 990 struct mtd_ecc_stats stats; 991 int read = 0, thislen, column, oobsize; 992 size_t len = ops->ooblen; 993 unsigned int mode = ops->mode; 994 u_char *buf = ops->oobbuf; 995 int ret = 0, readcmd; 996 997 from += ops->ooboffs; 998 999 MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len); 1000 1001 /* Initialize return length value */ 1002 ops->oobretlen = 0; 1003 1004 if (mode == MTD_OPS_AUTO_OOB) 1005 oobsize = this->ecclayout->oobavail; 1006 else 1007 oobsize = mtd->oobsize; 1008 1009 column = from & (mtd->oobsize - 1); 1010 1011 if (unlikely(column >= oobsize)) { 1012 printk(KERN_ERR "onenand_read_oob_nolock: Attempted to start read outside oob\n"); 1013 return -EINVAL; 1014 } 1015 1016 /* Do not allow reads past end of device */ 1017 if (unlikely(from >= mtd->size || 1018 column + len > ((mtd->size >> this->page_shift) - 1019 (from >> this->page_shift)) * oobsize)) { 1020 printk(KERN_ERR "onenand_read_oob_nolock: Attempted to read beyond end of device\n"); 1021 return -EINVAL; 1022 } 1023 1024 stats = mtd->ecc_stats; 1025 1026 readcmd = ONENAND_IS_4KB_PAGE(this) ? 1027 ONENAND_CMD_READ : ONENAND_CMD_READOOB; 1028 1029 while (read < len) { 1030 thislen = oobsize - column; 1031 thislen = min_t(int, thislen, len); 1032 1033 this->spare_buf = buf; 1034 this->command(mtd, readcmd, from, mtd->oobsize); 1035 1036 onenand_update_bufferram(mtd, from, 0); 1037 1038 ret = this->wait(mtd, FL_READING); 1039 if (unlikely(ret)) 1040 ret = onenand_recover_lsb(mtd, from, ret); 1041 1042 if (ret && ret != -EBADMSG) { 1043 printk(KERN_ERR "onenand_read_oob_nolock: read failed = 0x%x\n", ret); 1044 break; 1045 } 1046 1047 if (mode == MTD_OPS_AUTO_OOB) 1048 onenand_transfer_auto_oob(mtd, buf, column, thislen); 1049 else 1050 this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen); 1051 1052 read += thislen; 1053 1054 if (read == len) 1055 break; 1056 1057 buf += thislen; 1058 1059 /* Read more? */ 1060 if (read < len) { 1061 /* Page size */ 1062 from += mtd->writesize; 1063 column = 0; 1064 } 1065 } 1066 1067 ops->oobretlen = read; 1068 1069 if (ret) 1070 return ret; 1071 1072 if (mtd->ecc_stats.failed - stats.failed) 1073 return -EBADMSG; 1074 1075 return 0; 1076 } 1077 1078 /** 1079 * onenand_read - [MTD Interface] MTD compability function for onenand_read_ecc 1080 * @param mtd MTD device structure 1081 * @param from offset to read from 1082 * @param len number of bytes to read 1083 * @param retlen pointer to variable to store the number of read bytes 1084 * @param buf the databuffer to put data 1085 * 1086 * This function simply calls onenand_read_ecc with oob buffer and oobsel = NULL 1087 */ 1088 int onenand_read(struct mtd_info *mtd, loff_t from, size_t len, 1089 size_t * retlen, u_char * buf) 1090 { 1091 struct mtd_oob_ops ops = { 1092 .len = len, 1093 .ooblen = 0, 1094 .datbuf = buf, 1095 .oobbuf = NULL, 1096 }; 1097 int ret; 1098 1099 onenand_get_device(mtd, FL_READING); 1100 ret = onenand_read_ops_nolock(mtd, from, &ops); 1101 onenand_release_device(mtd); 1102 1103 *retlen = ops.retlen; 1104 return ret; 1105 } 1106 1107 /** 1108 * onenand_read_oob - [MTD Interface] OneNAND read out-of-band 1109 * @param mtd MTD device structure 1110 * @param from offset to read from 1111 * @param ops oob operations description structure 1112 * 1113 * OneNAND main and/or out-of-band 1114 */ 1115 int onenand_read_oob(struct mtd_info *mtd, loff_t from, 1116 struct mtd_oob_ops *ops) 1117 { 1118 int ret; 1119 1120 switch (ops->mode) { 1121 case MTD_OPS_PLACE_OOB: 1122 case MTD_OPS_AUTO_OOB: 1123 break; 1124 case MTD_OPS_RAW: 1125 /* Not implemented yet */ 1126 default: 1127 return -EINVAL; 1128 } 1129 1130 onenand_get_device(mtd, FL_READING); 1131 if (ops->datbuf) 1132 ret = onenand_read_ops_nolock(mtd, from, ops); 1133 else 1134 ret = onenand_read_oob_nolock(mtd, from, ops); 1135 onenand_release_device(mtd); 1136 1137 return ret; 1138 } 1139 1140 /** 1141 * onenand_bbt_wait - [DEFAULT] wait until the command is done 1142 * @param mtd MTD device structure 1143 * @param state state to select the max. timeout value 1144 * 1145 * Wait for command done. 1146 */ 1147 static int onenand_bbt_wait(struct mtd_info *mtd, int state) 1148 { 1149 struct onenand_chip *this = mtd->priv; 1150 unsigned int flags = ONENAND_INT_MASTER; 1151 unsigned int interrupt; 1152 unsigned int ctrl; 1153 1154 while (1) { 1155 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); 1156 if (interrupt & flags) 1157 break; 1158 } 1159 1160 /* To get correct interrupt status in timeout case */ 1161 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); 1162 ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS); 1163 1164 if (interrupt & ONENAND_INT_READ) { 1165 int ecc = onenand_read_ecc(this); 1166 if (ecc & ONENAND_ECC_2BIT_ALL) { 1167 printk(KERN_INFO "onenand_bbt_wait: ecc error = 0x%04x" 1168 ", controller = 0x%04x\n", ecc, ctrl); 1169 return ONENAND_BBT_READ_ERROR; 1170 } 1171 } else { 1172 printk(KERN_ERR "onenand_bbt_wait: read timeout!" 1173 "ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt); 1174 return ONENAND_BBT_READ_FATAL_ERROR; 1175 } 1176 1177 /* Initial bad block case: 0x2400 or 0x0400 */ 1178 if (ctrl & ONENAND_CTRL_ERROR) { 1179 printk(KERN_DEBUG "onenand_bbt_wait: controller error = 0x%04x\n", ctrl); 1180 return ONENAND_BBT_READ_ERROR; 1181 } 1182 1183 return 0; 1184 } 1185 1186 /** 1187 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan 1188 * @param mtd MTD device structure 1189 * @param from offset to read from 1190 * @param ops oob operation description structure 1191 * 1192 * OneNAND read out-of-band data from the spare area for bbt scan 1193 */ 1194 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from, 1195 struct mtd_oob_ops *ops) 1196 { 1197 struct onenand_chip *this = mtd->priv; 1198 int read = 0, thislen, column; 1199 int ret = 0, readcmd; 1200 size_t len = ops->ooblen; 1201 u_char *buf = ops->oobbuf; 1202 1203 MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_bbt_read_oob: from = 0x%08x, len = %zi\n", (unsigned int) from, len); 1204 1205 readcmd = ONENAND_IS_4KB_PAGE(this) ? 1206 ONENAND_CMD_READ : ONENAND_CMD_READOOB; 1207 1208 /* Initialize return value */ 1209 ops->oobretlen = 0; 1210 1211 /* Do not allow reads past end of device */ 1212 if (unlikely((from + len) > mtd->size)) { 1213 printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n"); 1214 return ONENAND_BBT_READ_FATAL_ERROR; 1215 } 1216 1217 /* Grab the lock and see if the device is available */ 1218 onenand_get_device(mtd, FL_READING); 1219 1220 column = from & (mtd->oobsize - 1); 1221 1222 while (read < len) { 1223 1224 thislen = mtd->oobsize - column; 1225 thislen = min_t(int, thislen, len); 1226 1227 this->spare_buf = buf; 1228 this->command(mtd, readcmd, from, mtd->oobsize); 1229 1230 onenand_update_bufferram(mtd, from, 0); 1231 1232 ret = this->bbt_wait(mtd, FL_READING); 1233 if (unlikely(ret)) 1234 ret = onenand_recover_lsb(mtd, from, ret); 1235 1236 if (ret) 1237 break; 1238 1239 this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen); 1240 read += thislen; 1241 if (read == len) 1242 break; 1243 1244 buf += thislen; 1245 1246 /* Read more? */ 1247 if (read < len) { 1248 /* Update Page size */ 1249 from += this->writesize; 1250 column = 0; 1251 } 1252 } 1253 1254 /* Deselect and wake up anyone waiting on the device */ 1255 onenand_release_device(mtd); 1256 1257 ops->oobretlen = read; 1258 return ret; 1259 } 1260 1261 1262 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE 1263 /** 1264 * onenand_verify_oob - [GENERIC] verify the oob contents after a write 1265 * @param mtd MTD device structure 1266 * @param buf the databuffer to verify 1267 * @param to offset to read from 1268 */ 1269 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to) 1270 { 1271 struct onenand_chip *this = mtd->priv; 1272 u_char *oob_buf = this->oob_buf; 1273 int status, i, readcmd; 1274 1275 readcmd = ONENAND_IS_4KB_PAGE(this) ? 1276 ONENAND_CMD_READ : ONENAND_CMD_READOOB; 1277 1278 this->command(mtd, readcmd, to, mtd->oobsize); 1279 onenand_update_bufferram(mtd, to, 0); 1280 status = this->wait(mtd, FL_READING); 1281 if (status) 1282 return status; 1283 1284 this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize); 1285 for (i = 0; i < mtd->oobsize; i++) 1286 if (buf[i] != 0xFF && buf[i] != oob_buf[i]) 1287 return -EBADMSG; 1288 1289 return 0; 1290 } 1291 1292 /** 1293 * onenand_verify - [GENERIC] verify the chip contents after a write 1294 * @param mtd MTD device structure 1295 * @param buf the databuffer to verify 1296 * @param addr offset to read from 1297 * @param len number of bytes to read and compare 1298 */ 1299 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len) 1300 { 1301 struct onenand_chip *this = mtd->priv; 1302 void __iomem *dataram; 1303 int ret = 0; 1304 int thislen, column; 1305 1306 while (len != 0) { 1307 thislen = min_t(int, this->writesize, len); 1308 column = addr & (this->writesize - 1); 1309 if (column + thislen > this->writesize) 1310 thislen = this->writesize - column; 1311 1312 this->command(mtd, ONENAND_CMD_READ, addr, this->writesize); 1313 1314 onenand_update_bufferram(mtd, addr, 0); 1315 1316 ret = this->wait(mtd, FL_READING); 1317 if (ret) 1318 return ret; 1319 1320 onenand_update_bufferram(mtd, addr, 1); 1321 1322 dataram = this->base + ONENAND_DATARAM; 1323 dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM); 1324 1325 if (memcmp(buf, dataram + column, thislen)) 1326 return -EBADMSG; 1327 1328 len -= thislen; 1329 buf += thislen; 1330 addr += thislen; 1331 } 1332 1333 return 0; 1334 } 1335 #else 1336 #define onenand_verify(...) (0) 1337 #define onenand_verify_oob(...) (0) 1338 #endif 1339 1340 #define NOTALIGNED(x) ((x & (this->subpagesize - 1)) != 0) 1341 1342 /** 1343 * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer 1344 * @param mtd MTD device structure 1345 * @param oob_buf oob buffer 1346 * @param buf source address 1347 * @param column oob offset to write to 1348 * @param thislen oob length to write 1349 */ 1350 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf, 1351 const u_char *buf, int column, int thislen) 1352 { 1353 struct onenand_chip *this = mtd->priv; 1354 struct nand_oobfree *free; 1355 int writecol = column; 1356 int writeend = column + thislen; 1357 int lastgap = 0; 1358 unsigned int i; 1359 1360 free = this->ecclayout->oobfree; 1361 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length; 1362 i++, free++) { 1363 if (writecol >= lastgap) 1364 writecol += free->offset - lastgap; 1365 if (writeend >= lastgap) 1366 writeend += free->offset - lastgap; 1367 lastgap = free->offset + free->length; 1368 } 1369 free = this->ecclayout->oobfree; 1370 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length; 1371 i++, free++) { 1372 int free_end = free->offset + free->length; 1373 if (free->offset < writeend && free_end > writecol) { 1374 int st = max_t(int,free->offset,writecol); 1375 int ed = min_t(int,free_end,writeend); 1376 int n = ed - st; 1377 memcpy(oob_buf + st, buf, n); 1378 buf += n; 1379 } else if (column == 0) 1380 break; 1381 } 1382 return 0; 1383 } 1384 1385 /** 1386 * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band 1387 * @param mtd MTD device structure 1388 * @param to offset to write to 1389 * @param ops oob operation description structure 1390 * 1391 * Write main and/or oob with ECC 1392 */ 1393 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to, 1394 struct mtd_oob_ops *ops) 1395 { 1396 struct onenand_chip *this = mtd->priv; 1397 int written = 0, column, thislen, subpage; 1398 int oobwritten = 0, oobcolumn, thisooblen, oobsize; 1399 size_t len = ops->len; 1400 size_t ooblen = ops->ooblen; 1401 const u_char *buf = ops->datbuf; 1402 const u_char *oob = ops->oobbuf; 1403 u_char *oobbuf; 1404 int ret = 0; 1405 1406 MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_write_ops_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len); 1407 1408 /* Initialize retlen, in case of early exit */ 1409 ops->retlen = 0; 1410 ops->oobretlen = 0; 1411 1412 /* Reject writes, which are not page aligned */ 1413 if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) { 1414 printk(KERN_ERR "onenand_write_ops_nolock: Attempt to write not page aligned data\n"); 1415 return -EINVAL; 1416 } 1417 1418 if (ops->mode == MTD_OPS_AUTO_OOB) 1419 oobsize = this->ecclayout->oobavail; 1420 else 1421 oobsize = mtd->oobsize; 1422 1423 oobcolumn = to & (mtd->oobsize - 1); 1424 1425 column = to & (mtd->writesize - 1); 1426 1427 /* Loop until all data write */ 1428 while (written < len) { 1429 u_char *wbuf = (u_char *) buf; 1430 1431 thislen = min_t(int, mtd->writesize - column, len - written); 1432 thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten); 1433 1434 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen); 1435 1436 /* Partial page write */ 1437 subpage = thislen < mtd->writesize; 1438 if (subpage) { 1439 memset(this->page_buf, 0xff, mtd->writesize); 1440 memcpy(this->page_buf + column, buf, thislen); 1441 wbuf = this->page_buf; 1442 } 1443 1444 this->write_bufferram(mtd, to, ONENAND_DATARAM, wbuf, 0, mtd->writesize); 1445 1446 if (oob) { 1447 oobbuf = this->oob_buf; 1448 1449 /* We send data to spare ram with oobsize 1450 * * to prevent byte access */ 1451 memset(oobbuf, 0xff, mtd->oobsize); 1452 if (ops->mode == MTD_OPS_AUTO_OOB) 1453 onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen); 1454 else 1455 memcpy(oobbuf + oobcolumn, oob, thisooblen); 1456 1457 oobwritten += thisooblen; 1458 oob += thisooblen; 1459 oobcolumn = 0; 1460 } else 1461 oobbuf = (u_char *) ffchars; 1462 1463 this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize); 1464 1465 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize); 1466 1467 ret = this->wait(mtd, FL_WRITING); 1468 1469 /* In partial page write we don't update bufferram */ 1470 onenand_update_bufferram(mtd, to, !ret && !subpage); 1471 if (ONENAND_IS_2PLANE(this)) { 1472 ONENAND_SET_BUFFERRAM1(this); 1473 onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage); 1474 } 1475 1476 if (ret) { 1477 printk(KERN_ERR "onenand_write_ops_nolock: write filaed %d\n", ret); 1478 break; 1479 } 1480 1481 /* Only check verify write turn on */ 1482 ret = onenand_verify(mtd, buf, to, thislen); 1483 if (ret) { 1484 printk(KERN_ERR "onenand_write_ops_nolock: verify failed %d\n", ret); 1485 break; 1486 } 1487 1488 written += thislen; 1489 1490 if (written == len) 1491 break; 1492 1493 column = 0; 1494 to += thislen; 1495 buf += thislen; 1496 } 1497 1498 ops->retlen = written; 1499 1500 return ret; 1501 } 1502 1503 /** 1504 * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band 1505 * @param mtd MTD device structure 1506 * @param to offset to write to 1507 * @param len number of bytes to write 1508 * @param retlen pointer to variable to store the number of written bytes 1509 * @param buf the data to write 1510 * @param mode operation mode 1511 * 1512 * OneNAND write out-of-band 1513 */ 1514 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to, 1515 struct mtd_oob_ops *ops) 1516 { 1517 struct onenand_chip *this = mtd->priv; 1518 int column, ret = 0, oobsize; 1519 int written = 0, oobcmd; 1520 u_char *oobbuf; 1521 size_t len = ops->ooblen; 1522 const u_char *buf = ops->oobbuf; 1523 unsigned int mode = ops->mode; 1524 1525 to += ops->ooboffs; 1526 1527 MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len); 1528 1529 /* Initialize retlen, in case of early exit */ 1530 ops->oobretlen = 0; 1531 1532 if (mode == MTD_OPS_AUTO_OOB) 1533 oobsize = this->ecclayout->oobavail; 1534 else 1535 oobsize = mtd->oobsize; 1536 1537 column = to & (mtd->oobsize - 1); 1538 1539 if (unlikely(column >= oobsize)) { 1540 printk(KERN_ERR "onenand_write_oob_nolock: Attempted to start write outside oob\n"); 1541 return -EINVAL; 1542 } 1543 1544 /* For compatibility with NAND: Do not allow write past end of page */ 1545 if (unlikely(column + len > oobsize)) { 1546 printk(KERN_ERR "onenand_write_oob_nolock: " 1547 "Attempt to write past end of page\n"); 1548 return -EINVAL; 1549 } 1550 1551 /* Do not allow reads past end of device */ 1552 if (unlikely(to >= mtd->size || 1553 column + len > ((mtd->size >> this->page_shift) - 1554 (to >> this->page_shift)) * oobsize)) { 1555 printk(KERN_ERR "onenand_write_oob_nolock: Attempted to write past end of device\n"); 1556 return -EINVAL; 1557 } 1558 1559 oobbuf = this->oob_buf; 1560 1561 oobcmd = ONENAND_IS_4KB_PAGE(this) ? 1562 ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB; 1563 1564 /* Loop until all data write */ 1565 while (written < len) { 1566 int thislen = min_t(int, oobsize, len - written); 1567 1568 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize); 1569 1570 /* We send data to spare ram with oobsize 1571 * to prevent byte access */ 1572 memset(oobbuf, 0xff, mtd->oobsize); 1573 if (mode == MTD_OPS_AUTO_OOB) 1574 onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen); 1575 else 1576 memcpy(oobbuf + column, buf, thislen); 1577 this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize); 1578 1579 if (ONENAND_IS_4KB_PAGE(this)) { 1580 /* Set main area of DataRAM to 0xff*/ 1581 memset(this->page_buf, 0xff, mtd->writesize); 1582 this->write_bufferram(mtd, 0, ONENAND_DATARAM, 1583 this->page_buf, 0, mtd->writesize); 1584 } 1585 1586 this->command(mtd, oobcmd, to, mtd->oobsize); 1587 1588 onenand_update_bufferram(mtd, to, 0); 1589 if (ONENAND_IS_2PLANE(this)) { 1590 ONENAND_SET_BUFFERRAM1(this); 1591 onenand_update_bufferram(mtd, to + this->writesize, 0); 1592 } 1593 1594 ret = this->wait(mtd, FL_WRITING); 1595 if (ret) { 1596 printk(KERN_ERR "onenand_write_oob_nolock: write failed %d\n", ret); 1597 break; 1598 } 1599 1600 ret = onenand_verify_oob(mtd, oobbuf, to); 1601 if (ret) { 1602 printk(KERN_ERR "onenand_write_oob_nolock: verify failed %d\n", ret); 1603 break; 1604 } 1605 1606 written += thislen; 1607 if (written == len) 1608 break; 1609 1610 to += mtd->writesize; 1611 buf += thislen; 1612 column = 0; 1613 } 1614 1615 ops->oobretlen = written; 1616 1617 return ret; 1618 } 1619 1620 /** 1621 * onenand_write - [MTD Interface] compability function for onenand_write_ecc 1622 * @param mtd MTD device structure 1623 * @param to offset to write to 1624 * @param len number of bytes to write 1625 * @param retlen pointer to variable to store the number of written bytes 1626 * @param buf the data to write 1627 * 1628 * Write with ECC 1629 */ 1630 int onenand_write(struct mtd_info *mtd, loff_t to, size_t len, 1631 size_t * retlen, const u_char * buf) 1632 { 1633 struct mtd_oob_ops ops = { 1634 .len = len, 1635 .ooblen = 0, 1636 .datbuf = (u_char *) buf, 1637 .oobbuf = NULL, 1638 }; 1639 int ret; 1640 1641 onenand_get_device(mtd, FL_WRITING); 1642 ret = onenand_write_ops_nolock(mtd, to, &ops); 1643 onenand_release_device(mtd); 1644 1645 *retlen = ops.retlen; 1646 return ret; 1647 } 1648 1649 /** 1650 * onenand_write_oob - [MTD Interface] OneNAND write out-of-band 1651 * @param mtd MTD device structure 1652 * @param to offset to write to 1653 * @param ops oob operation description structure 1654 * 1655 * OneNAND write main and/or out-of-band 1656 */ 1657 int onenand_write_oob(struct mtd_info *mtd, loff_t to, 1658 struct mtd_oob_ops *ops) 1659 { 1660 int ret; 1661 1662 switch (ops->mode) { 1663 case MTD_OPS_PLACE_OOB: 1664 case MTD_OPS_AUTO_OOB: 1665 break; 1666 case MTD_OPS_RAW: 1667 /* Not implemented yet */ 1668 default: 1669 return -EINVAL; 1670 } 1671 1672 onenand_get_device(mtd, FL_WRITING); 1673 if (ops->datbuf) 1674 ret = onenand_write_ops_nolock(mtd, to, ops); 1675 else 1676 ret = onenand_write_oob_nolock(mtd, to, ops); 1677 onenand_release_device(mtd); 1678 1679 return ret; 1680 1681 } 1682 1683 /** 1684 * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad 1685 * @param mtd MTD device structure 1686 * @param ofs offset from device start 1687 * @param allowbbt 1, if its allowed to access the bbt area 1688 * 1689 * Check, if the block is bad, Either by reading the bad block table or 1690 * calling of the scan function. 1691 */ 1692 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt) 1693 { 1694 struct onenand_chip *this = mtd->priv; 1695 struct bbm_info *bbm = this->bbm; 1696 1697 /* Return info from the table */ 1698 return bbm->isbad_bbt(mtd, ofs, allowbbt); 1699 } 1700 1701 1702 /** 1703 * onenand_erase - [MTD Interface] erase block(s) 1704 * @param mtd MTD device structure 1705 * @param instr erase instruction 1706 * 1707 * Erase one ore more blocks 1708 */ 1709 int onenand_erase(struct mtd_info *mtd, struct erase_info *instr) 1710 { 1711 struct onenand_chip *this = mtd->priv; 1712 unsigned int block_size; 1713 loff_t addr = instr->addr; 1714 unsigned int len = instr->len; 1715 int ret = 0, i; 1716 struct mtd_erase_region_info *region = NULL; 1717 unsigned int region_end = 0; 1718 1719 MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n", 1720 (unsigned int) addr, len); 1721 1722 if (FLEXONENAND(this)) { 1723 /* Find the eraseregion of this address */ 1724 i = flexonenand_region(mtd, addr); 1725 region = &mtd->eraseregions[i]; 1726 1727 block_size = region->erasesize; 1728 region_end = region->offset 1729 + region->erasesize * region->numblocks; 1730 1731 /* Start address within region must align on block boundary. 1732 * Erase region's start offset is always block start address. 1733 */ 1734 if (unlikely((addr - region->offset) & (block_size - 1))) { 1735 MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:" 1736 " Unaligned address\n"); 1737 return -EINVAL; 1738 } 1739 } else { 1740 block_size = 1 << this->erase_shift; 1741 1742 /* Start address must align on block boundary */ 1743 if (unlikely(addr & (block_size - 1))) { 1744 MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:" 1745 "Unaligned address\n"); 1746 return -EINVAL; 1747 } 1748 } 1749 1750 /* Length must align on block boundary */ 1751 if (unlikely(len & (block_size - 1))) { 1752 MTDDEBUG (MTD_DEBUG_LEVEL0, 1753 "onenand_erase: Length not block aligned\n"); 1754 return -EINVAL; 1755 } 1756 1757 /* Grab the lock and see if the device is available */ 1758 onenand_get_device(mtd, FL_ERASING); 1759 1760 /* Loop throught the pages */ 1761 instr->state = MTD_ERASING; 1762 1763 while (len) { 1764 1765 /* Check if we have a bad block, we do not erase bad blocks */ 1766 if (instr->priv == 0 && onenand_block_isbad_nolock(mtd, addr, 0)) { 1767 printk(KERN_WARNING "onenand_erase: attempt to erase" 1768 " a bad block at addr 0x%08x\n", 1769 (unsigned int) addr); 1770 instr->state = MTD_ERASE_FAILED; 1771 goto erase_exit; 1772 } 1773 1774 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size); 1775 1776 onenand_invalidate_bufferram(mtd, addr, block_size); 1777 1778 ret = this->wait(mtd, FL_ERASING); 1779 /* Check, if it is write protected */ 1780 if (ret) { 1781 if (ret == -EPERM) 1782 MTDDEBUG (MTD_DEBUG_LEVEL0, "onenand_erase: " 1783 "Device is write protected!!!\n"); 1784 else 1785 MTDDEBUG (MTD_DEBUG_LEVEL0, "onenand_erase: " 1786 "Failed erase, block %d\n", 1787 onenand_block(this, addr)); 1788 instr->state = MTD_ERASE_FAILED; 1789 instr->fail_addr = addr; 1790 1791 goto erase_exit; 1792 } 1793 1794 len -= block_size; 1795 addr += block_size; 1796 1797 if (addr == region_end) { 1798 if (!len) 1799 break; 1800 region++; 1801 1802 block_size = region->erasesize; 1803 region_end = region->offset 1804 + region->erasesize * region->numblocks; 1805 1806 if (len & (block_size - 1)) { 1807 /* This has been checked at MTD 1808 * partitioning level. */ 1809 printk("onenand_erase: Unaligned address\n"); 1810 goto erase_exit; 1811 } 1812 } 1813 } 1814 1815 instr->state = MTD_ERASE_DONE; 1816 1817 erase_exit: 1818 1819 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO; 1820 /* Do call back function */ 1821 if (!ret) 1822 mtd_erase_callback(instr); 1823 1824 /* Deselect and wake up anyone waiting on the device */ 1825 onenand_release_device(mtd); 1826 1827 return ret; 1828 } 1829 1830 /** 1831 * onenand_sync - [MTD Interface] sync 1832 * @param mtd MTD device structure 1833 * 1834 * Sync is actually a wait for chip ready function 1835 */ 1836 void onenand_sync(struct mtd_info *mtd) 1837 { 1838 MTDDEBUG (MTD_DEBUG_LEVEL3, "onenand_sync: called\n"); 1839 1840 /* Grab the lock and see if the device is available */ 1841 onenand_get_device(mtd, FL_SYNCING); 1842 1843 /* Release it and go back */ 1844 onenand_release_device(mtd); 1845 } 1846 1847 /** 1848 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad 1849 * @param mtd MTD device structure 1850 * @param ofs offset relative to mtd start 1851 * 1852 * Check whether the block is bad 1853 */ 1854 int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs) 1855 { 1856 int ret; 1857 1858 /* Check for invalid offset */ 1859 if (ofs > mtd->size) 1860 return -EINVAL; 1861 1862 onenand_get_device(mtd, FL_READING); 1863 ret = onenand_block_isbad_nolock(mtd,ofs, 0); 1864 onenand_release_device(mtd); 1865 return ret; 1866 } 1867 1868 /** 1869 * onenand_default_block_markbad - [DEFAULT] mark a block bad 1870 * @param mtd MTD device structure 1871 * @param ofs offset from device start 1872 * 1873 * This is the default implementation, which can be overridden by 1874 * a hardware specific driver. 1875 */ 1876 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs) 1877 { 1878 struct onenand_chip *this = mtd->priv; 1879 struct bbm_info *bbm = this->bbm; 1880 u_char buf[2] = {0, 0}; 1881 struct mtd_oob_ops ops = { 1882 .mode = MTD_OPS_PLACE_OOB, 1883 .ooblen = 2, 1884 .oobbuf = buf, 1885 .ooboffs = 0, 1886 }; 1887 int block; 1888 1889 /* Get block number */ 1890 block = onenand_block(this, ofs); 1891 if (bbm->bbt) 1892 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1); 1893 1894 /* We write two bytes, so we dont have to mess with 16 bit access */ 1895 ofs += mtd->oobsize + (bbm->badblockpos & ~0x01); 1896 return onenand_write_oob_nolock(mtd, ofs, &ops); 1897 } 1898 1899 /** 1900 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad 1901 * @param mtd MTD device structure 1902 * @param ofs offset relative to mtd start 1903 * 1904 * Mark the block as bad 1905 */ 1906 int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs) 1907 { 1908 int ret; 1909 1910 ret = onenand_block_isbad(mtd, ofs); 1911 if (ret) { 1912 /* If it was bad already, return success and do nothing */ 1913 if (ret > 0) 1914 return 0; 1915 return ret; 1916 } 1917 1918 ret = mtd_block_markbad(mtd, ofs); 1919 return ret; 1920 } 1921 1922 /** 1923 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s) 1924 * @param mtd MTD device structure 1925 * @param ofs offset relative to mtd start 1926 * @param len number of bytes to lock or unlock 1927 * @param cmd lock or unlock command 1928 * 1929 * Lock or unlock one or more blocks 1930 */ 1931 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd) 1932 { 1933 struct onenand_chip *this = mtd->priv; 1934 int start, end, block, value, status; 1935 1936 start = onenand_block(this, ofs); 1937 end = onenand_block(this, ofs + len); 1938 1939 /* Continuous lock scheme */ 1940 if (this->options & ONENAND_HAS_CONT_LOCK) { 1941 /* Set start block address */ 1942 this->write_word(start, 1943 this->base + ONENAND_REG_START_BLOCK_ADDRESS); 1944 /* Set end block address */ 1945 this->write_word(end - 1, 1946 this->base + ONENAND_REG_END_BLOCK_ADDRESS); 1947 /* Write unlock command */ 1948 this->command(mtd, cmd, 0, 0); 1949 1950 /* There's no return value */ 1951 this->wait(mtd, FL_UNLOCKING); 1952 1953 /* Sanity check */ 1954 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS) 1955 & ONENAND_CTRL_ONGO) 1956 continue; 1957 1958 /* Check lock status */ 1959 status = this->read_word(this->base + ONENAND_REG_WP_STATUS); 1960 if (!(status & ONENAND_WP_US)) 1961 printk(KERN_ERR "wp status = 0x%x\n", status); 1962 1963 return 0; 1964 } 1965 1966 /* Block lock scheme */ 1967 for (block = start; block < end; block++) { 1968 /* Set block address */ 1969 value = onenand_block_address(this, block); 1970 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1); 1971 /* Select DataRAM for DDP */ 1972 value = onenand_bufferram_address(this, block); 1973 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); 1974 1975 /* Set start block address */ 1976 this->write_word(block, 1977 this->base + ONENAND_REG_START_BLOCK_ADDRESS); 1978 /* Write unlock command */ 1979 this->command(mtd, ONENAND_CMD_UNLOCK, 0, 0); 1980 1981 /* There's no return value */ 1982 this->wait(mtd, FL_UNLOCKING); 1983 1984 /* Sanity check */ 1985 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS) 1986 & ONENAND_CTRL_ONGO) 1987 continue; 1988 1989 /* Check lock status */ 1990 status = this->read_word(this->base + ONENAND_REG_WP_STATUS); 1991 if (!(status & ONENAND_WP_US)) 1992 printk(KERN_ERR "block = %d, wp status = 0x%x\n", 1993 block, status); 1994 } 1995 1996 return 0; 1997 } 1998 1999 #ifdef ONENAND_LINUX 2000 /** 2001 * onenand_lock - [MTD Interface] Lock block(s) 2002 * @param mtd MTD device structure 2003 * @param ofs offset relative to mtd start 2004 * @param len number of bytes to unlock 2005 * 2006 * Lock one or more blocks 2007 */ 2008 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len) 2009 { 2010 int ret; 2011 2012 onenand_get_device(mtd, FL_LOCKING); 2013 ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK); 2014 onenand_release_device(mtd); 2015 return ret; 2016 } 2017 2018 /** 2019 * onenand_unlock - [MTD Interface] Unlock block(s) 2020 * @param mtd MTD device structure 2021 * @param ofs offset relative to mtd start 2022 * @param len number of bytes to unlock 2023 * 2024 * Unlock one or more blocks 2025 */ 2026 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len) 2027 { 2028 int ret; 2029 2030 onenand_get_device(mtd, FL_LOCKING); 2031 ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK); 2032 onenand_release_device(mtd); 2033 return ret; 2034 } 2035 #endif 2036 2037 /** 2038 * onenand_check_lock_status - [OneNAND Interface] Check lock status 2039 * @param this onenand chip data structure 2040 * 2041 * Check lock status 2042 */ 2043 static int onenand_check_lock_status(struct onenand_chip *this) 2044 { 2045 unsigned int value, block, status; 2046 unsigned int end; 2047 2048 end = this->chipsize >> this->erase_shift; 2049 for (block = 0; block < end; block++) { 2050 /* Set block address */ 2051 value = onenand_block_address(this, block); 2052 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1); 2053 /* Select DataRAM for DDP */ 2054 value = onenand_bufferram_address(this, block); 2055 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); 2056 /* Set start block address */ 2057 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS); 2058 2059 /* Check lock status */ 2060 status = this->read_word(this->base + ONENAND_REG_WP_STATUS); 2061 if (!(status & ONENAND_WP_US)) { 2062 printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status); 2063 return 0; 2064 } 2065 } 2066 2067 return 1; 2068 } 2069 2070 /** 2071 * onenand_unlock_all - [OneNAND Interface] unlock all blocks 2072 * @param mtd MTD device structure 2073 * 2074 * Unlock all blocks 2075 */ 2076 static void onenand_unlock_all(struct mtd_info *mtd) 2077 { 2078 struct onenand_chip *this = mtd->priv; 2079 loff_t ofs = 0; 2080 size_t len = mtd->size; 2081 2082 if (this->options & ONENAND_HAS_UNLOCK_ALL) { 2083 /* Set start block address */ 2084 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS); 2085 /* Write unlock command */ 2086 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0); 2087 2088 /* There's no return value */ 2089 this->wait(mtd, FL_LOCKING); 2090 2091 /* Sanity check */ 2092 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS) 2093 & ONENAND_CTRL_ONGO) 2094 continue; 2095 2096 /* Check lock status */ 2097 if (onenand_check_lock_status(this)) 2098 return; 2099 2100 /* Workaround for all block unlock in DDP */ 2101 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) { 2102 /* All blocks on another chip */ 2103 ofs = this->chipsize >> 1; 2104 len = this->chipsize >> 1; 2105 } 2106 } 2107 2108 onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK); 2109 } 2110 2111 2112 /** 2113 * onenand_check_features - Check and set OneNAND features 2114 * @param mtd MTD data structure 2115 * 2116 * Check and set OneNAND features 2117 * - lock scheme 2118 * - two plane 2119 */ 2120 static void onenand_check_features(struct mtd_info *mtd) 2121 { 2122 struct onenand_chip *this = mtd->priv; 2123 unsigned int density, process; 2124 2125 /* Lock scheme depends on density and process */ 2126 density = onenand_get_density(this->device_id); 2127 process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT; 2128 2129 /* Lock scheme */ 2130 switch (density) { 2131 case ONENAND_DEVICE_DENSITY_4Gb: 2132 if (ONENAND_IS_DDP(this)) 2133 this->options |= ONENAND_HAS_2PLANE; 2134 else 2135 this->options |= ONENAND_HAS_4KB_PAGE; 2136 2137 case ONENAND_DEVICE_DENSITY_2Gb: 2138 /* 2Gb DDP don't have 2 plane */ 2139 if (!ONENAND_IS_DDP(this)) 2140 this->options |= ONENAND_HAS_2PLANE; 2141 this->options |= ONENAND_HAS_UNLOCK_ALL; 2142 2143 case ONENAND_DEVICE_DENSITY_1Gb: 2144 /* A-Die has all block unlock */ 2145 if (process) 2146 this->options |= ONENAND_HAS_UNLOCK_ALL; 2147 break; 2148 2149 default: 2150 /* Some OneNAND has continuous lock scheme */ 2151 if (!process) 2152 this->options |= ONENAND_HAS_CONT_LOCK; 2153 break; 2154 } 2155 2156 if (ONENAND_IS_MLC(this)) 2157 this->options |= ONENAND_HAS_4KB_PAGE; 2158 2159 if (ONENAND_IS_4KB_PAGE(this)) 2160 this->options &= ~ONENAND_HAS_2PLANE; 2161 2162 if (FLEXONENAND(this)) { 2163 this->options &= ~ONENAND_HAS_CONT_LOCK; 2164 this->options |= ONENAND_HAS_UNLOCK_ALL; 2165 } 2166 2167 if (this->options & ONENAND_HAS_CONT_LOCK) 2168 printk(KERN_DEBUG "Lock scheme is Continuous Lock\n"); 2169 if (this->options & ONENAND_HAS_UNLOCK_ALL) 2170 printk(KERN_DEBUG "Chip support all block unlock\n"); 2171 if (this->options & ONENAND_HAS_2PLANE) 2172 printk(KERN_DEBUG "Chip has 2 plane\n"); 2173 if (this->options & ONENAND_HAS_4KB_PAGE) 2174 printk(KERN_DEBUG "Chip has 4KiB pagesize\n"); 2175 2176 } 2177 2178 /** 2179 * onenand_print_device_info - Print device ID 2180 * @param device device ID 2181 * 2182 * Print device ID 2183 */ 2184 char *onenand_print_device_info(int device, int version) 2185 { 2186 int vcc, demuxed, ddp, density, flexonenand; 2187 char *dev_info = malloc(80); 2188 char *p = dev_info; 2189 2190 vcc = device & ONENAND_DEVICE_VCC_MASK; 2191 demuxed = device & ONENAND_DEVICE_IS_DEMUX; 2192 ddp = device & ONENAND_DEVICE_IS_DDP; 2193 density = onenand_get_density(device); 2194 flexonenand = device & DEVICE_IS_FLEXONENAND; 2195 p += sprintf(dev_info, "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)", 2196 demuxed ? "" : "Muxed ", 2197 flexonenand ? "Flex-" : "", 2198 ddp ? "(DDP)" : "", 2199 (16 << density), vcc ? "2.65/3.3" : "1.8", device); 2200 2201 sprintf(p, "\nOneNAND version = 0x%04x", version); 2202 printk("%s\n", dev_info); 2203 2204 return dev_info; 2205 } 2206 2207 static const struct onenand_manufacturers onenand_manuf_ids[] = { 2208 {ONENAND_MFR_NUMONYX, "Numonyx"}, 2209 {ONENAND_MFR_SAMSUNG, "Samsung"}, 2210 }; 2211 2212 /** 2213 * onenand_check_maf - Check manufacturer ID 2214 * @param manuf manufacturer ID 2215 * 2216 * Check manufacturer ID 2217 */ 2218 static int onenand_check_maf(int manuf) 2219 { 2220 int size = ARRAY_SIZE(onenand_manuf_ids); 2221 int i; 2222 #ifdef ONENAND_DEBUG 2223 char *name; 2224 #endif 2225 2226 for (i = 0; i < size; i++) 2227 if (manuf == onenand_manuf_ids[i].id) 2228 break; 2229 2230 #ifdef ONENAND_DEBUG 2231 if (i < size) 2232 name = onenand_manuf_ids[i].name; 2233 else 2234 name = "Unknown"; 2235 2236 printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf); 2237 #endif 2238 2239 return i == size; 2240 } 2241 2242 /** 2243 * flexonenand_get_boundary - Reads the SLC boundary 2244 * @param onenand_info - onenand info structure 2245 * 2246 * Fill up boundary[] field in onenand_chip 2247 **/ 2248 static int flexonenand_get_boundary(struct mtd_info *mtd) 2249 { 2250 struct onenand_chip *this = mtd->priv; 2251 unsigned int die, bdry; 2252 int syscfg, locked; 2253 2254 /* Disable ECC */ 2255 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1); 2256 this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1); 2257 2258 for (die = 0; die < this->dies; die++) { 2259 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0); 2260 this->wait(mtd, FL_SYNCING); 2261 2262 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0); 2263 this->wait(mtd, FL_READING); 2264 2265 bdry = this->read_word(this->base + ONENAND_DATARAM); 2266 if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3) 2267 locked = 0; 2268 else 2269 locked = 1; 2270 this->boundary[die] = bdry & FLEXONENAND_PI_MASK; 2271 2272 this->command(mtd, ONENAND_CMD_RESET, 0, 0); 2273 this->wait(mtd, FL_RESETING); 2274 2275 printk(KERN_INFO "Die %d boundary: %d%s\n", die, 2276 this->boundary[die], locked ? "(Locked)" : "(Unlocked)"); 2277 } 2278 2279 /* Enable ECC */ 2280 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1); 2281 return 0; 2282 } 2283 2284 /** 2285 * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info 2286 * boundary[], diesize[], mtd->size, mtd->erasesize, 2287 * mtd->eraseregions 2288 * @param mtd - MTD device structure 2289 */ 2290 static void flexonenand_get_size(struct mtd_info *mtd) 2291 { 2292 struct onenand_chip *this = mtd->priv; 2293 int die, i, eraseshift, density; 2294 int blksperdie, maxbdry; 2295 loff_t ofs; 2296 2297 density = onenand_get_density(this->device_id); 2298 blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift); 2299 blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0; 2300 maxbdry = blksperdie - 1; 2301 eraseshift = this->erase_shift - 1; 2302 2303 mtd->numeraseregions = this->dies << 1; 2304 2305 /* This fills up the device boundary */ 2306 flexonenand_get_boundary(mtd); 2307 die = 0; 2308 ofs = 0; 2309 i = -1; 2310 for (; die < this->dies; die++) { 2311 if (!die || this->boundary[die-1] != maxbdry) { 2312 i++; 2313 mtd->eraseregions[i].offset = ofs; 2314 mtd->eraseregions[i].erasesize = 1 << eraseshift; 2315 mtd->eraseregions[i].numblocks = 2316 this->boundary[die] + 1; 2317 ofs += mtd->eraseregions[i].numblocks << eraseshift; 2318 eraseshift++; 2319 } else { 2320 mtd->numeraseregions -= 1; 2321 mtd->eraseregions[i].numblocks += 2322 this->boundary[die] + 1; 2323 ofs += (this->boundary[die] + 1) << (eraseshift - 1); 2324 } 2325 if (this->boundary[die] != maxbdry) { 2326 i++; 2327 mtd->eraseregions[i].offset = ofs; 2328 mtd->eraseregions[i].erasesize = 1 << eraseshift; 2329 mtd->eraseregions[i].numblocks = maxbdry ^ 2330 this->boundary[die]; 2331 ofs += mtd->eraseregions[i].numblocks << eraseshift; 2332 eraseshift--; 2333 } else 2334 mtd->numeraseregions -= 1; 2335 } 2336 2337 /* Expose MLC erase size except when all blocks are SLC */ 2338 mtd->erasesize = 1 << this->erase_shift; 2339 if (mtd->numeraseregions == 1) 2340 mtd->erasesize >>= 1; 2341 2342 printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions); 2343 for (i = 0; i < mtd->numeraseregions; i++) 2344 printk(KERN_INFO "[offset: 0x%08llx, erasesize: 0x%05x," 2345 " numblocks: %04u]\n", mtd->eraseregions[i].offset, 2346 mtd->eraseregions[i].erasesize, 2347 mtd->eraseregions[i].numblocks); 2348 2349 for (die = 0, mtd->size = 0; die < this->dies; die++) { 2350 this->diesize[die] = (loff_t) (blksperdie << this->erase_shift); 2351 this->diesize[die] -= (loff_t) (this->boundary[die] + 1) 2352 << (this->erase_shift - 1); 2353 mtd->size += this->diesize[die]; 2354 } 2355 } 2356 2357 /** 2358 * flexonenand_check_blocks_erased - Check if blocks are erased 2359 * @param mtd_info - mtd info structure 2360 * @param start - first erase block to check 2361 * @param end - last erase block to check 2362 * 2363 * Converting an unerased block from MLC to SLC 2364 * causes byte values to change. Since both data and its ECC 2365 * have changed, reads on the block give uncorrectable error. 2366 * This might lead to the block being detected as bad. 2367 * 2368 * Avoid this by ensuring that the block to be converted is 2369 * erased. 2370 */ 2371 static int flexonenand_check_blocks_erased(struct mtd_info *mtd, 2372 int start, int end) 2373 { 2374 struct onenand_chip *this = mtd->priv; 2375 int i, ret; 2376 int block; 2377 struct mtd_oob_ops ops = { 2378 .mode = MTD_OPS_PLACE_OOB, 2379 .ooboffs = 0, 2380 .ooblen = mtd->oobsize, 2381 .datbuf = NULL, 2382 .oobbuf = this->oob_buf, 2383 }; 2384 loff_t addr; 2385 2386 printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end); 2387 2388 for (block = start; block <= end; block++) { 2389 addr = flexonenand_addr(this, block); 2390 if (onenand_block_isbad_nolock(mtd, addr, 0)) 2391 continue; 2392 2393 /* 2394 * Since main area write results in ECC write to spare, 2395 * it is sufficient to check only ECC bytes for change. 2396 */ 2397 ret = onenand_read_oob_nolock(mtd, addr, &ops); 2398 if (ret) 2399 return ret; 2400 2401 for (i = 0; i < mtd->oobsize; i++) 2402 if (this->oob_buf[i] != 0xff) 2403 break; 2404 2405 if (i != mtd->oobsize) { 2406 printk(KERN_WARNING "Block %d not erased.\n", block); 2407 return 1; 2408 } 2409 } 2410 2411 return 0; 2412 } 2413 2414 /** 2415 * flexonenand_set_boundary - Writes the SLC boundary 2416 * @param mtd - mtd info structure 2417 */ 2418 int flexonenand_set_boundary(struct mtd_info *mtd, int die, 2419 int boundary, int lock) 2420 { 2421 struct onenand_chip *this = mtd->priv; 2422 int ret, density, blksperdie, old, new, thisboundary; 2423 loff_t addr; 2424 2425 if (die >= this->dies) 2426 return -EINVAL; 2427 2428 if (boundary == this->boundary[die]) 2429 return 0; 2430 2431 density = onenand_get_density(this->device_id); 2432 blksperdie = ((16 << density) << 20) >> this->erase_shift; 2433 blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0; 2434 2435 if (boundary >= blksperdie) { 2436 printk("flexonenand_set_boundary:" 2437 "Invalid boundary value. " 2438 "Boundary not changed.\n"); 2439 return -EINVAL; 2440 } 2441 2442 /* Check if converting blocks are erased */ 2443 old = this->boundary[die] + (die * this->density_mask); 2444 new = boundary + (die * this->density_mask); 2445 ret = flexonenand_check_blocks_erased(mtd, min(old, new) 2446 + 1, max(old, new)); 2447 if (ret) { 2448 printk(KERN_ERR "flexonenand_set_boundary: Please erase blocks before boundary change\n"); 2449 return ret; 2450 } 2451 2452 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0); 2453 this->wait(mtd, FL_SYNCING); 2454 2455 /* Check is boundary is locked */ 2456 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0); 2457 ret = this->wait(mtd, FL_READING); 2458 2459 thisboundary = this->read_word(this->base + ONENAND_DATARAM); 2460 if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) { 2461 printk(KERN_ERR "flexonenand_set_boundary: boundary locked\n"); 2462 goto out; 2463 } 2464 2465 printk(KERN_INFO "flexonenand_set_boundary: Changing die %d boundary: %d%s\n", 2466 die, boundary, lock ? "(Locked)" : "(Unlocked)"); 2467 2468 boundary &= FLEXONENAND_PI_MASK; 2469 boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT); 2470 2471 addr = die ? this->diesize[0] : 0; 2472 this->command(mtd, ONENAND_CMD_ERASE, addr, 0); 2473 ret = this->wait(mtd, FL_ERASING); 2474 if (ret) { 2475 printk("flexonenand_set_boundary:" 2476 "Failed PI erase for Die %d\n", die); 2477 goto out; 2478 } 2479 2480 this->write_word(boundary, this->base + ONENAND_DATARAM); 2481 this->command(mtd, ONENAND_CMD_PROG, addr, 0); 2482 ret = this->wait(mtd, FL_WRITING); 2483 if (ret) { 2484 printk("flexonenand_set_boundary:" 2485 "Failed PI write for Die %d\n", die); 2486 goto out; 2487 } 2488 2489 this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0); 2490 ret = this->wait(mtd, FL_WRITING); 2491 out: 2492 this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND); 2493 this->wait(mtd, FL_RESETING); 2494 if (!ret) 2495 /* Recalculate device size on boundary change*/ 2496 flexonenand_get_size(mtd); 2497 2498 return ret; 2499 } 2500 2501 /** 2502 * onenand_chip_probe - [OneNAND Interface] Probe the OneNAND chip 2503 * @param mtd MTD device structure 2504 * 2505 * OneNAND detection method: 2506 * Compare the the values from command with ones from register 2507 */ 2508 static int onenand_chip_probe(struct mtd_info *mtd) 2509 { 2510 struct onenand_chip *this = mtd->priv; 2511 int bram_maf_id, bram_dev_id, maf_id, dev_id; 2512 int syscfg; 2513 2514 /* Save system configuration 1 */ 2515 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1); 2516 2517 /* Clear Sync. Burst Read mode to read BootRAM */ 2518 this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ), 2519 this->base + ONENAND_REG_SYS_CFG1); 2520 2521 /* Send the command for reading device ID from BootRAM */ 2522 this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM); 2523 2524 /* Read manufacturer and device IDs from BootRAM */ 2525 bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0); 2526 bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2); 2527 2528 /* Reset OneNAND to read default register values */ 2529 this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM); 2530 2531 /* Wait reset */ 2532 this->wait(mtd, FL_RESETING); 2533 2534 /* Restore system configuration 1 */ 2535 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1); 2536 2537 /* Check manufacturer ID */ 2538 if (onenand_check_maf(bram_maf_id)) 2539 return -ENXIO; 2540 2541 /* Read manufacturer and device IDs from Register */ 2542 maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID); 2543 dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID); 2544 2545 /* Check OneNAND device */ 2546 if (maf_id != bram_maf_id || dev_id != bram_dev_id) 2547 return -ENXIO; 2548 2549 return 0; 2550 } 2551 2552 /** 2553 * onenand_probe - [OneNAND Interface] Probe the OneNAND device 2554 * @param mtd MTD device structure 2555 * 2556 * OneNAND detection method: 2557 * Compare the the values from command with ones from register 2558 */ 2559 int onenand_probe(struct mtd_info *mtd) 2560 { 2561 struct onenand_chip *this = mtd->priv; 2562 int dev_id, ver_id; 2563 int density; 2564 int ret; 2565 2566 ret = this->chip_probe(mtd); 2567 if (ret) 2568 return ret; 2569 2570 /* Read device IDs from Register */ 2571 dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID); 2572 ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID); 2573 this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY); 2574 2575 /* Flash device information */ 2576 mtd->name = onenand_print_device_info(dev_id, ver_id); 2577 this->device_id = dev_id; 2578 this->version_id = ver_id; 2579 2580 /* Check OneNAND features */ 2581 onenand_check_features(mtd); 2582 2583 density = onenand_get_density(dev_id); 2584 if (FLEXONENAND(this)) { 2585 this->dies = ONENAND_IS_DDP(this) ? 2 : 1; 2586 /* Maximum possible erase regions */ 2587 mtd->numeraseregions = this->dies << 1; 2588 mtd->eraseregions = malloc(sizeof(struct mtd_erase_region_info) 2589 * (this->dies << 1)); 2590 if (!mtd->eraseregions) 2591 return -ENOMEM; 2592 } 2593 2594 /* 2595 * For Flex-OneNAND, chipsize represents maximum possible device size. 2596 * mtd->size represents the actual device size. 2597 */ 2598 this->chipsize = (16 << density) << 20; 2599 2600 /* OneNAND page size & block size */ 2601 /* The data buffer size is equal to page size */ 2602 mtd->writesize = 2603 this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE); 2604 /* We use the full BufferRAM */ 2605 if (ONENAND_IS_4KB_PAGE(this)) 2606 mtd->writesize <<= 1; 2607 2608 mtd->oobsize = mtd->writesize >> 5; 2609 /* Pagers per block is always 64 in OneNAND */ 2610 mtd->erasesize = mtd->writesize << 6; 2611 /* 2612 * Flex-OneNAND SLC area has 64 pages per block. 2613 * Flex-OneNAND MLC area has 128 pages per block. 2614 * Expose MLC erase size to find erase_shift and page_mask. 2615 */ 2616 if (FLEXONENAND(this)) 2617 mtd->erasesize <<= 1; 2618 2619 this->erase_shift = ffs(mtd->erasesize) - 1; 2620 this->page_shift = ffs(mtd->writesize) - 1; 2621 this->ppb_shift = (this->erase_shift - this->page_shift); 2622 this->page_mask = (mtd->erasesize / mtd->writesize) - 1; 2623 /* Set density mask. it is used for DDP */ 2624 if (ONENAND_IS_DDP(this)) 2625 this->density_mask = this->chipsize >> (this->erase_shift + 1); 2626 /* It's real page size */ 2627 this->writesize = mtd->writesize; 2628 2629 /* REVIST: Multichip handling */ 2630 2631 if (FLEXONENAND(this)) 2632 flexonenand_get_size(mtd); 2633 else 2634 mtd->size = this->chipsize; 2635 2636 mtd->flags = MTD_CAP_NANDFLASH; 2637 mtd->_erase = onenand_erase; 2638 mtd->_read = onenand_read; 2639 mtd->_write = onenand_write; 2640 mtd->_read_oob = onenand_read_oob; 2641 mtd->_write_oob = onenand_write_oob; 2642 mtd->_sync = onenand_sync; 2643 mtd->_block_isbad = onenand_block_isbad; 2644 mtd->_block_markbad = onenand_block_markbad; 2645 2646 return 0; 2647 } 2648 2649 /** 2650 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device 2651 * @param mtd MTD device structure 2652 * @param maxchips Number of chips to scan for 2653 * 2654 * This fills out all the not initialized function pointers 2655 * with the defaults. 2656 * The flash ID is read and the mtd/chip structures are 2657 * filled with the appropriate values. 2658 */ 2659 int onenand_scan(struct mtd_info *mtd, int maxchips) 2660 { 2661 int i; 2662 struct onenand_chip *this = mtd->priv; 2663 2664 if (!this->read_word) 2665 this->read_word = onenand_readw; 2666 if (!this->write_word) 2667 this->write_word = onenand_writew; 2668 2669 if (!this->command) 2670 this->command = onenand_command; 2671 if (!this->wait) 2672 this->wait = onenand_wait; 2673 if (!this->bbt_wait) 2674 this->bbt_wait = onenand_bbt_wait; 2675 2676 if (!this->read_bufferram) 2677 this->read_bufferram = onenand_read_bufferram; 2678 if (!this->write_bufferram) 2679 this->write_bufferram = onenand_write_bufferram; 2680 2681 if (!this->chip_probe) 2682 this->chip_probe = onenand_chip_probe; 2683 2684 if (!this->block_markbad) 2685 this->block_markbad = onenand_default_block_markbad; 2686 if (!this->scan_bbt) 2687 this->scan_bbt = onenand_default_bbt; 2688 2689 if (onenand_probe(mtd)) 2690 return -ENXIO; 2691 2692 /* Set Sync. Burst Read after probing */ 2693 if (this->mmcontrol) { 2694 printk(KERN_INFO "OneNAND Sync. Burst Read support\n"); 2695 this->read_bufferram = onenand_sync_read_bufferram; 2696 } 2697 2698 /* Allocate buffers, if necessary */ 2699 if (!this->page_buf) { 2700 this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL); 2701 if (!this->page_buf) { 2702 printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n"); 2703 return -ENOMEM; 2704 } 2705 this->options |= ONENAND_PAGEBUF_ALLOC; 2706 } 2707 if (!this->oob_buf) { 2708 this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL); 2709 if (!this->oob_buf) { 2710 printk(KERN_ERR "onenand_scan: Can't allocate oob_buf\n"); 2711 if (this->options & ONENAND_PAGEBUF_ALLOC) { 2712 this->options &= ~ONENAND_PAGEBUF_ALLOC; 2713 kfree(this->page_buf); 2714 } 2715 return -ENOMEM; 2716 } 2717 this->options |= ONENAND_OOBBUF_ALLOC; 2718 } 2719 2720 this->state = FL_READY; 2721 2722 /* 2723 * Allow subpage writes up to oobsize. 2724 */ 2725 switch (mtd->oobsize) { 2726 case 128: 2727 this->ecclayout = &onenand_oob_128; 2728 mtd->subpage_sft = 0; 2729 break; 2730 2731 case 64: 2732 this->ecclayout = &onenand_oob_64; 2733 mtd->subpage_sft = 2; 2734 break; 2735 2736 case 32: 2737 this->ecclayout = &onenand_oob_32; 2738 mtd->subpage_sft = 1; 2739 break; 2740 2741 default: 2742 printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n", 2743 mtd->oobsize); 2744 mtd->subpage_sft = 0; 2745 /* To prevent kernel oops */ 2746 this->ecclayout = &onenand_oob_32; 2747 break; 2748 } 2749 2750 this->subpagesize = mtd->writesize >> mtd->subpage_sft; 2751 2752 /* 2753 * The number of bytes available for a client to place data into 2754 * the out of band area 2755 */ 2756 this->ecclayout->oobavail = 0; 2757 2758 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && 2759 this->ecclayout->oobfree[i].length; i++) 2760 this->ecclayout->oobavail += 2761 this->ecclayout->oobfree[i].length; 2762 mtd->oobavail = this->ecclayout->oobavail; 2763 2764 mtd->ecclayout = this->ecclayout; 2765 2766 /* Unlock whole block */ 2767 onenand_unlock_all(mtd); 2768 2769 return this->scan_bbt(mtd); 2770 } 2771 2772 /** 2773 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device 2774 * @param mtd MTD device structure 2775 */ 2776 void onenand_release(struct mtd_info *mtd) 2777 { 2778 } 2779