xref: /openbmc/u-boot/drivers/mtd/onenand/onenand_base.c (revision dd21f09669ee65500f1f9bce5c4024cf817f3c79)
1 /*
2  *  linux/drivers/mtd/onenand/onenand_base.c
3  *
4  *  Copyright (C) 2005-2007 Samsung Electronics
5  *  Kyungmin Park <kyungmin.park@samsung.com>
6  *
7  *  Credits:
8  *      Adrian Hunter <ext-adrian.hunter@nokia.com>:
9  *      auto-placement support, read-while load support, various fixes
10  *      Copyright (C) Nokia Corporation, 2007
11  *
12  *      Rohit Hagargundgi <h.rohit at samsung.com>,
13  *      Amul Kumar Saha <amul.saha@samsung.com>:
14  *      Flex-OneNAND support
15  *      Copyright (C) Samsung Electronics, 2009
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License version 2 as
19  * published by the Free Software Foundation.
20  */
21 
22 #include <common.h>
23 #include <linux/compat.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/onenand.h>
26 
27 #include <asm/io.h>
28 #include <asm/errno.h>
29 #include <malloc.h>
30 
31 /* It should access 16-bit instead of 8-bit */
32 static void *memcpy_16(void *dst, const void *src, unsigned int len)
33 {
34 	void *ret = dst;
35 	short *d = dst;
36 	const short *s = src;
37 
38 	len >>= 1;
39 	while (len-- > 0)
40 		*d++ = *s++;
41 	return ret;
42 }
43 
44 /**
45  *  onenand_oob_128 - oob info for Flex-Onenand with 4KB page
46  *  For now, we expose only 64 out of 80 ecc bytes
47  */
48 static struct nand_ecclayout onenand_oob_128 = {
49 	.eccbytes	= 64,
50 	.eccpos		= {
51 		6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
52 		22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
53 		38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
54 		54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
55 		70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
56 		86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
57 		102, 103, 104, 105
58 		},
59 	.oobfree	= {
60 		{2, 4}, {18, 4}, {34, 4}, {50, 4},
61 		{66, 4}, {82, 4}, {98, 4}, {114, 4}
62 	}
63 };
64 
65 /**
66  * onenand_oob_64 - oob info for large (2KB) page
67  */
68 static struct nand_ecclayout onenand_oob_64 = {
69 	.eccbytes	= 20,
70 	.eccpos		= {
71 		8, 9, 10, 11, 12,
72 		24, 25, 26, 27, 28,
73 		40, 41, 42, 43, 44,
74 		56, 57, 58, 59, 60,
75 		},
76 	.oobfree	= {
77 		{2, 3}, {14, 2}, {18, 3}, {30, 2},
78 		{34, 3}, {46, 2}, {50, 3}, {62, 2}
79 	}
80 };
81 
82 /**
83  * onenand_oob_32 - oob info for middle (1KB) page
84  */
85 static struct nand_ecclayout onenand_oob_32 = {
86 	.eccbytes	= 10,
87 	.eccpos		= {
88 		8, 9, 10, 11, 12,
89 		24, 25, 26, 27, 28,
90 		},
91 	.oobfree	= { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
92 };
93 
94 /*
95  * Warning! This array is used with the memcpy_16() function, thus
96  * it must be aligned to 2 bytes. GCC can make this array unaligned
97  * as the array is made of unsigned char, which memcpy16() doesn't
98  * like and will cause unaligned access.
99  */
100 static const unsigned char __aligned(2) ffchars[] = {
101 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
102 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 16 */
103 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
104 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 32 */
105 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
106 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 48 */
107 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
108 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 64 */
109 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
110 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 80 */
111 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
112 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 96 */
113 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
114 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 112 */
115 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
116 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 128 */
117 };
118 
119 /**
120  * onenand_readw - [OneNAND Interface] Read OneNAND register
121  * @param addr		address to read
122  *
123  * Read OneNAND register
124  */
125 static unsigned short onenand_readw(void __iomem * addr)
126 {
127 	return readw(addr);
128 }
129 
130 /**
131  * onenand_writew - [OneNAND Interface] Write OneNAND register with value
132  * @param value		value to write
133  * @param addr		address to write
134  *
135  * Write OneNAND register with value
136  */
137 static void onenand_writew(unsigned short value, void __iomem * addr)
138 {
139 	writew(value, addr);
140 }
141 
142 /**
143  * onenand_block_address - [DEFAULT] Get block address
144  * @param device	the device id
145  * @param block		the block
146  * @return		translated block address if DDP, otherwise same
147  *
148  * Setup Start Address 1 Register (F100h)
149  */
150 static int onenand_block_address(struct onenand_chip *this, int block)
151 {
152 	/* Device Flash Core select, NAND Flash Block Address */
153 	if (block & this->density_mask)
154 		return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
155 
156 	return block;
157 }
158 
159 /**
160  * onenand_bufferram_address - [DEFAULT] Get bufferram address
161  * @param device	the device id
162  * @param block		the block
163  * @return		set DBS value if DDP, otherwise 0
164  *
165  * Setup Start Address 2 Register (F101h) for DDP
166  */
167 static int onenand_bufferram_address(struct onenand_chip *this, int block)
168 {
169 	/* Device BufferRAM Select */
170 	if (block & this->density_mask)
171 		return ONENAND_DDP_CHIP1;
172 
173 	return ONENAND_DDP_CHIP0;
174 }
175 
176 /**
177  * onenand_page_address - [DEFAULT] Get page address
178  * @param page		the page address
179  * @param sector	the sector address
180  * @return		combined page and sector address
181  *
182  * Setup Start Address 8 Register (F107h)
183  */
184 static int onenand_page_address(int page, int sector)
185 {
186 	/* Flash Page Address, Flash Sector Address */
187 	int fpa, fsa;
188 
189 	fpa = page & ONENAND_FPA_MASK;
190 	fsa = sector & ONENAND_FSA_MASK;
191 
192 	return ((fpa << ONENAND_FPA_SHIFT) | fsa);
193 }
194 
195 /**
196  * onenand_buffer_address - [DEFAULT] Get buffer address
197  * @param dataram1	DataRAM index
198  * @param sectors	the sector address
199  * @param count		the number of sectors
200  * @return		the start buffer value
201  *
202  * Setup Start Buffer Register (F200h)
203  */
204 static int onenand_buffer_address(int dataram1, int sectors, int count)
205 {
206 	int bsa, bsc;
207 
208 	/* BufferRAM Sector Address */
209 	bsa = sectors & ONENAND_BSA_MASK;
210 
211 	if (dataram1)
212 		bsa |= ONENAND_BSA_DATARAM1;	/* DataRAM1 */
213 	else
214 		bsa |= ONENAND_BSA_DATARAM0;	/* DataRAM0 */
215 
216 	/* BufferRAM Sector Count */
217 	bsc = count & ONENAND_BSC_MASK;
218 
219 	return ((bsa << ONENAND_BSA_SHIFT) | bsc);
220 }
221 
222 /**
223  * flexonenand_block - Return block number for flash address
224  * @param this		- OneNAND device structure
225  * @param addr		- Address for which block number is needed
226  */
227 static unsigned int flexonenand_block(struct onenand_chip *this, loff_t addr)
228 {
229 	unsigned int boundary, blk, die = 0;
230 
231 	if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
232 		die = 1;
233 		addr -= this->diesize[0];
234 	}
235 
236 	boundary = this->boundary[die];
237 
238 	blk = addr >> (this->erase_shift - 1);
239 	if (blk > boundary)
240 		blk = (blk + boundary + 1) >> 1;
241 
242 	blk += die ? this->density_mask : 0;
243 	return blk;
244 }
245 
246 unsigned int onenand_block(struct onenand_chip *this, loff_t addr)
247 {
248 	if (!FLEXONENAND(this))
249 		return addr >> this->erase_shift;
250 	return flexonenand_block(this, addr);
251 }
252 
253 /**
254  * flexonenand_addr - Return address of the block
255  * @this:		OneNAND device structure
256  * @block:		Block number on Flex-OneNAND
257  *
258  * Return address of the block
259  */
260 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
261 {
262 	loff_t ofs = 0;
263 	int die = 0, boundary;
264 
265 	if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
266 		block -= this->density_mask;
267 		die = 1;
268 		ofs = this->diesize[0];
269 	}
270 
271 	boundary = this->boundary[die];
272 	ofs += (loff_t) block << (this->erase_shift - 1);
273 	if (block > (boundary + 1))
274 		ofs += (loff_t) (block - boundary - 1)
275 			<< (this->erase_shift - 1);
276 	return ofs;
277 }
278 
279 loff_t onenand_addr(struct onenand_chip *this, int block)
280 {
281 	if (!FLEXONENAND(this))
282 		return (loff_t) block << this->erase_shift;
283 	return flexonenand_addr(this, block);
284 }
285 
286 /**
287  * flexonenand_region - [Flex-OneNAND] Return erase region of addr
288  * @param mtd		MTD device structure
289  * @param addr		address whose erase region needs to be identified
290  */
291 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
292 {
293 	int i;
294 
295 	for (i = 0; i < mtd->numeraseregions; i++)
296 		if (addr < mtd->eraseregions[i].offset)
297 			break;
298 	return i - 1;
299 }
300 
301 /**
302  * onenand_get_density - [DEFAULT] Get OneNAND density
303  * @param dev_id        OneNAND device ID
304  *
305  * Get OneNAND density from device ID
306  */
307 static inline int onenand_get_density(int dev_id)
308 {
309 	int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
310 	return (density & ONENAND_DEVICE_DENSITY_MASK);
311 }
312 
313 /**
314  * onenand_command - [DEFAULT] Send command to OneNAND device
315  * @param mtd		MTD device structure
316  * @param cmd		the command to be sent
317  * @param addr		offset to read from or write to
318  * @param len		number of bytes to read or write
319  *
320  * Send command to OneNAND device. This function is used for middle/large page
321  * devices (1KB/2KB Bytes per page)
322  */
323 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr,
324 			   size_t len)
325 {
326 	struct onenand_chip *this = mtd->priv;
327 	int value;
328 	int block, page;
329 
330 	/* Now we use page size operation */
331 	int sectors = 0, count = 0;
332 
333 	/* Address translation */
334 	switch (cmd) {
335 	case ONENAND_CMD_UNLOCK:
336 	case ONENAND_CMD_LOCK:
337 	case ONENAND_CMD_LOCK_TIGHT:
338 	case ONENAND_CMD_UNLOCK_ALL:
339 		block = -1;
340 		page = -1;
341 		break;
342 
343 	case FLEXONENAND_CMD_PI_ACCESS:
344 		/* addr contains die index */
345 		block = addr * this->density_mask;
346 		page = -1;
347 		break;
348 
349 	case ONENAND_CMD_ERASE:
350 	case ONENAND_CMD_BUFFERRAM:
351 		block = onenand_block(this, addr);
352 		page = -1;
353 		break;
354 
355 	case FLEXONENAND_CMD_READ_PI:
356 		cmd = ONENAND_CMD_READ;
357 		block = addr * this->density_mask;
358 		page = 0;
359 		break;
360 
361 	default:
362 		block = onenand_block(this, addr);
363 		page = (int) (addr
364 			- onenand_addr(this, block)) >> this->page_shift;
365 		page &= this->page_mask;
366 		break;
367 	}
368 
369 	/* NOTE: The setting order of the registers is very important! */
370 	if (cmd == ONENAND_CMD_BUFFERRAM) {
371 		/* Select DataRAM for DDP */
372 		value = onenand_bufferram_address(this, block);
373 		this->write_word(value,
374 				 this->base + ONENAND_REG_START_ADDRESS2);
375 
376 		if (ONENAND_IS_4KB_PAGE(this))
377 			ONENAND_SET_BUFFERRAM0(this);
378 		else
379 			/* Switch to the next data buffer */
380 			ONENAND_SET_NEXT_BUFFERRAM(this);
381 
382 		return 0;
383 	}
384 
385 	if (block != -1) {
386 		/* Write 'DFS, FBA' of Flash */
387 		value = onenand_block_address(this, block);
388 		this->write_word(value,
389 				 this->base + ONENAND_REG_START_ADDRESS1);
390 
391 		/* Select DataRAM for DDP */
392 		value = onenand_bufferram_address(this, block);
393 		this->write_word(value,
394 				 this->base + ONENAND_REG_START_ADDRESS2);
395 	}
396 
397 	if (page != -1) {
398 		int dataram;
399 
400 		switch (cmd) {
401 		case FLEXONENAND_CMD_RECOVER_LSB:
402 		case ONENAND_CMD_READ:
403 		case ONENAND_CMD_READOOB:
404 			if (ONENAND_IS_4KB_PAGE(this))
405 				dataram = ONENAND_SET_BUFFERRAM0(this);
406 			else
407 				dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
408 
409 			break;
410 
411 		default:
412 			dataram = ONENAND_CURRENT_BUFFERRAM(this);
413 			break;
414 		}
415 
416 		/* Write 'FPA, FSA' of Flash */
417 		value = onenand_page_address(page, sectors);
418 		this->write_word(value,
419 				 this->base + ONENAND_REG_START_ADDRESS8);
420 
421 		/* Write 'BSA, BSC' of DataRAM */
422 		value = onenand_buffer_address(dataram, sectors, count);
423 		this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
424 	}
425 
426 	/* Interrupt clear */
427 	this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
428 	/* Write command */
429 	this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
430 
431 	return 0;
432 }
433 
434 /**
435  * onenand_read_ecc - return ecc status
436  * @param this		onenand chip structure
437  */
438 static int onenand_read_ecc(struct onenand_chip *this)
439 {
440 	int ecc, i;
441 
442 	if (!FLEXONENAND(this))
443 		return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
444 
445 	for (i = 0; i < 4; i++) {
446 		ecc = this->read_word(this->base
447 				+ ((ONENAND_REG_ECC_STATUS + i) << 1));
448 		if (likely(!ecc))
449 			continue;
450 		if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
451 			return ONENAND_ECC_2BIT_ALL;
452 	}
453 
454 	return 0;
455 }
456 
457 /**
458  * onenand_wait - [DEFAULT] wait until the command is done
459  * @param mtd		MTD device structure
460  * @param state		state to select the max. timeout value
461  *
462  * Wait for command done. This applies to all OneNAND command
463  * Read can take up to 30us, erase up to 2ms and program up to 350us
464  * according to general OneNAND specs
465  */
466 static int onenand_wait(struct mtd_info *mtd, int state)
467 {
468 	struct onenand_chip *this = mtd->priv;
469 	unsigned int flags = ONENAND_INT_MASTER;
470 	unsigned int interrupt = 0;
471 	unsigned int ctrl;
472 
473 	while (1) {
474 		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
475 		if (interrupt & flags)
476 			break;
477 	}
478 
479 	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
480 
481 	if (interrupt & ONENAND_INT_READ) {
482 		int ecc = onenand_read_ecc(this);
483 		if (ecc & ONENAND_ECC_2BIT_ALL) {
484 			printk("onenand_wait: ECC error = 0x%04x\n", ecc);
485 			return -EBADMSG;
486 		}
487 	}
488 
489 	if (ctrl & ONENAND_CTRL_ERROR) {
490 		printk("onenand_wait: controller error = 0x%04x\n", ctrl);
491 		if (ctrl & ONENAND_CTRL_LOCK)
492 			printk("onenand_wait: it's locked error = 0x%04x\n",
493 				ctrl);
494 
495 		return -EIO;
496 	}
497 
498 
499 	return 0;
500 }
501 
502 /**
503  * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
504  * @param mtd		MTD data structure
505  * @param area		BufferRAM area
506  * @return		offset given area
507  *
508  * Return BufferRAM offset given area
509  */
510 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
511 {
512 	struct onenand_chip *this = mtd->priv;
513 
514 	if (ONENAND_CURRENT_BUFFERRAM(this)) {
515 		if (area == ONENAND_DATARAM)
516 			return mtd->writesize;
517 		if (area == ONENAND_SPARERAM)
518 			return mtd->oobsize;
519 	}
520 
521 	return 0;
522 }
523 
524 /**
525  * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
526  * @param mtd		MTD data structure
527  * @param area		BufferRAM area
528  * @param buffer	the databuffer to put/get data
529  * @param offset	offset to read from or write to
530  * @param count		number of bytes to read/write
531  *
532  * Read the BufferRAM area
533  */
534 static int onenand_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
535 				  unsigned char *buffer, int offset,
536 				  size_t count)
537 {
538 	struct onenand_chip *this = mtd->priv;
539 	void __iomem *bufferram;
540 
541 	bufferram = this->base + area;
542 	bufferram += onenand_bufferram_offset(mtd, area);
543 
544 	memcpy_16(buffer, bufferram + offset, count);
545 
546 	return 0;
547 }
548 
549 /**
550  * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
551  * @param mtd		MTD data structure
552  * @param area		BufferRAM area
553  * @param buffer	the databuffer to put/get data
554  * @param offset	offset to read from or write to
555  * @param count		number of bytes to read/write
556  *
557  * Read the BufferRAM area with Sync. Burst Mode
558  */
559 static int onenand_sync_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
560 				       unsigned char *buffer, int offset,
561 				       size_t count)
562 {
563 	struct onenand_chip *this = mtd->priv;
564 	void __iomem *bufferram;
565 
566 	bufferram = this->base + area;
567 	bufferram += onenand_bufferram_offset(mtd, area);
568 
569 	this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
570 
571 	memcpy_16(buffer, bufferram + offset, count);
572 
573 	this->mmcontrol(mtd, 0);
574 
575 	return 0;
576 }
577 
578 /**
579  * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
580  * @param mtd		MTD data structure
581  * @param area		BufferRAM area
582  * @param buffer	the databuffer to put/get data
583  * @param offset	offset to read from or write to
584  * @param count		number of bytes to read/write
585  *
586  * Write the BufferRAM area
587  */
588 static int onenand_write_bufferram(struct mtd_info *mtd, loff_t addr, int area,
589 				   const unsigned char *buffer, int offset,
590 				   size_t count)
591 {
592 	struct onenand_chip *this = mtd->priv;
593 	void __iomem *bufferram;
594 
595 	bufferram = this->base + area;
596 	bufferram += onenand_bufferram_offset(mtd, area);
597 
598 	memcpy_16(bufferram + offset, buffer, count);
599 
600 	return 0;
601 }
602 
603 /**
604  * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
605  * @param mtd		MTD data structure
606  * @param addr		address to check
607  * @return		blockpage address
608  *
609  * Get blockpage address at 2x program mode
610  */
611 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
612 {
613 	struct onenand_chip *this = mtd->priv;
614 	int blockpage, block, page;
615 
616 	/* Calculate the even block number */
617 	block = (int) (addr >> this->erase_shift) & ~1;
618 	/* Is it the odd plane? */
619 	if (addr & this->writesize)
620 		block++;
621 	page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
622 	blockpage = (block << 7) | page;
623 
624 	return blockpage;
625 }
626 
627 /**
628  * onenand_check_bufferram - [GENERIC] Check BufferRAM information
629  * @param mtd		MTD data structure
630  * @param addr		address to check
631  * @return		1 if there are valid data, otherwise 0
632  *
633  * Check bufferram if there is data we required
634  */
635 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
636 {
637 	struct onenand_chip *this = mtd->priv;
638 	int blockpage, found = 0;
639 	unsigned int i;
640 
641 	if (ONENAND_IS_2PLANE(this))
642 		blockpage = onenand_get_2x_blockpage(mtd, addr);
643 	else
644 		blockpage = (int) (addr >> this->page_shift);
645 
646 	/* Is there valid data? */
647 	i = ONENAND_CURRENT_BUFFERRAM(this);
648 	if (this->bufferram[i].blockpage == blockpage)
649 		found = 1;
650 	else {
651 		/* Check another BufferRAM */
652 		i = ONENAND_NEXT_BUFFERRAM(this);
653 		if (this->bufferram[i].blockpage == blockpage) {
654 			ONENAND_SET_NEXT_BUFFERRAM(this);
655 			found = 1;
656 		}
657 	}
658 
659 	if (found && ONENAND_IS_DDP(this)) {
660 		/* Select DataRAM for DDP */
661 		int block = onenand_block(this, addr);
662 		int value = onenand_bufferram_address(this, block);
663 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
664 	}
665 
666 	return found;
667 }
668 
669 /**
670  * onenand_update_bufferram - [GENERIC] Update BufferRAM information
671  * @param mtd		MTD data structure
672  * @param addr		address to update
673  * @param valid		valid flag
674  *
675  * Update BufferRAM information
676  */
677 static int onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
678 				    int valid)
679 {
680 	struct onenand_chip *this = mtd->priv;
681 	int blockpage;
682 	unsigned int i;
683 
684 	if (ONENAND_IS_2PLANE(this))
685 		blockpage = onenand_get_2x_blockpage(mtd, addr);
686 	else
687 		blockpage = (int)(addr >> this->page_shift);
688 
689 	/* Invalidate another BufferRAM */
690 	i = ONENAND_NEXT_BUFFERRAM(this);
691 	if (this->bufferram[i].blockpage == blockpage)
692 		this->bufferram[i].blockpage = -1;
693 
694 	/* Update BufferRAM */
695 	i = ONENAND_CURRENT_BUFFERRAM(this);
696 	if (valid)
697 		this->bufferram[i].blockpage = blockpage;
698 	else
699 		this->bufferram[i].blockpage = -1;
700 
701 	return 0;
702 }
703 
704 /**
705  * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
706  * @param mtd           MTD data structure
707  * @param addr          start address to invalidate
708  * @param len           length to invalidate
709  *
710  * Invalidate BufferRAM information
711  */
712 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
713 					 unsigned int len)
714 {
715 	struct onenand_chip *this = mtd->priv;
716 	int i;
717 	loff_t end_addr = addr + len;
718 
719 	/* Invalidate BufferRAM */
720 	for (i = 0; i < MAX_BUFFERRAM; i++) {
721 		loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
722 
723 		if (buf_addr >= addr && buf_addr < end_addr)
724 			this->bufferram[i].blockpage = -1;
725 	}
726 }
727 
728 /**
729  * onenand_get_device - [GENERIC] Get chip for selected access
730  * @param mtd		MTD device structure
731  * @param new_state	the state which is requested
732  *
733  * Get the device and lock it for exclusive access
734  */
735 static void onenand_get_device(struct mtd_info *mtd, int new_state)
736 {
737 	/* Do nothing */
738 }
739 
740 /**
741  * onenand_release_device - [GENERIC] release chip
742  * @param mtd		MTD device structure
743  *
744  * Deselect, release chip lock and wake up anyone waiting on the device
745  */
746 static void onenand_release_device(struct mtd_info *mtd)
747 {
748 	/* Do nothing */
749 }
750 
751 /**
752  * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
753  * @param mtd		MTD device structure
754  * @param buf		destination address
755  * @param column	oob offset to read from
756  * @param thislen	oob length to read
757  */
758 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf,
759 					int column, int thislen)
760 {
761 	struct onenand_chip *this = mtd->priv;
762 	struct nand_oobfree *free;
763 	int readcol = column;
764 	int readend = column + thislen;
765 	int lastgap = 0;
766 	unsigned int i;
767 	uint8_t *oob_buf = this->oob_buf;
768 
769 	free = this->ecclayout->oobfree;
770 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length;
771 	     i++, free++) {
772 		if (readcol >= lastgap)
773 			readcol += free->offset - lastgap;
774 		if (readend >= lastgap)
775 			readend += free->offset - lastgap;
776 		lastgap = free->offset + free->length;
777 	}
778 	this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
779 	free = this->ecclayout->oobfree;
780 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length;
781 	     i++, free++) {
782 		int free_end = free->offset + free->length;
783 		if (free->offset < readend && free_end > readcol) {
784 			int st = max_t(int,free->offset,readcol);
785 			int ed = min_t(int,free_end,readend);
786 			int n = ed - st;
787 			memcpy(buf, oob_buf + st, n);
788 			buf += n;
789 		} else if (column == 0)
790 			break;
791 	}
792 	return 0;
793 }
794 
795 /**
796  * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
797  * @param mtd		MTD device structure
798  * @param addr		address to recover
799  * @param status	return value from onenand_wait
800  *
801  * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
802  * lower page address and MSB page has higher page address in paired pages.
803  * If power off occurs during MSB page program, the paired LSB page data can
804  * become corrupt. LSB page recovery read is a way to read LSB page though page
805  * data are corrupted. When uncorrectable error occurs as a result of LSB page
806  * read after power up, issue LSB page recovery read.
807  */
808 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
809 {
810 	struct onenand_chip *this = mtd->priv;
811 	int i;
812 
813 	/* Recovery is only for Flex-OneNAND */
814 	if (!FLEXONENAND(this))
815 		return status;
816 
817 	/* check if we failed due to uncorrectable error */
818 	if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR)
819 		return status;
820 
821 	/* check if address lies in MLC region */
822 	i = flexonenand_region(mtd, addr);
823 	if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
824 		return status;
825 
826 	printk("onenand_recover_lsb:"
827 		"Attempting to recover from uncorrectable read\n");
828 
829 	/* Issue the LSB page recovery command */
830 	this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
831 	return this->wait(mtd, FL_READING);
832 }
833 
834 /**
835  * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
836  * @param mtd		MTD device structure
837  * @param from		offset to read from
838  * @param ops		oob operation description structure
839  *
840  * OneNAND read main and/or out-of-band data
841  */
842 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
843 		struct mtd_oob_ops *ops)
844 {
845 	struct onenand_chip *this = mtd->priv;
846 	struct mtd_ecc_stats stats;
847 	size_t len = ops->len;
848 	size_t ooblen = ops->ooblen;
849 	u_char *buf = ops->datbuf;
850 	u_char *oobbuf = ops->oobbuf;
851 	int read = 0, column, thislen;
852 	int oobread = 0, oobcolumn, thisooblen, oobsize;
853 	int ret = 0, boundary = 0;
854 	int writesize = this->writesize;
855 
856 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_read_ops_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
857 
858 	if (ops->mode == MTD_OPS_AUTO_OOB)
859 		oobsize = this->ecclayout->oobavail;
860 	else
861 		oobsize = mtd->oobsize;
862 
863 	oobcolumn = from & (mtd->oobsize - 1);
864 
865 	/* Do not allow reads past end of device */
866 	if ((from + len) > mtd->size) {
867 		printk(KERN_ERR "onenand_read_ops_nolock: Attempt read beyond end of device\n");
868 		ops->retlen = 0;
869 		ops->oobretlen = 0;
870 		return -EINVAL;
871 	}
872 
873 	stats = mtd->ecc_stats;
874 
875 	/* Read-while-load method */
876 	/* Note: We can't use this feature in MLC */
877 
878 	/* Do first load to bufferRAM */
879 	if (read < len) {
880 		if (!onenand_check_bufferram(mtd, from)) {
881 			this->main_buf = buf;
882 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
883 			ret = this->wait(mtd, FL_READING);
884 			if (unlikely(ret))
885 				ret = onenand_recover_lsb(mtd, from, ret);
886 			onenand_update_bufferram(mtd, from, !ret);
887 			if (ret == -EBADMSG)
888 				ret = 0;
889 		}
890 	}
891 
892 	thislen = min_t(int, writesize, len - read);
893 	column = from & (writesize - 1);
894 	if (column + thislen > writesize)
895 		thislen = writesize - column;
896 
897 	while (!ret) {
898 		/* If there is more to load then start next load */
899 		from += thislen;
900 		if (!ONENAND_IS_4KB_PAGE(this) && read + thislen < len) {
901 			this->main_buf = buf + thislen;
902 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
903 			/*
904 			 * Chip boundary handling in DDP
905 			 * Now we issued chip 1 read and pointed chip 1
906 			 * bufferam so we have to point chip 0 bufferam.
907 			 */
908 			if (ONENAND_IS_DDP(this) &&
909 					unlikely(from == (this->chipsize >> 1))) {
910 				this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
911 				boundary = 1;
912 			} else
913 				boundary = 0;
914 			ONENAND_SET_PREV_BUFFERRAM(this);
915 		}
916 
917 		/* While load is going, read from last bufferRAM */
918 		this->read_bufferram(mtd, from - thislen, ONENAND_DATARAM, buf, column, thislen);
919 
920 		/* Read oob area if needed */
921 		if (oobbuf) {
922 			thisooblen = oobsize - oobcolumn;
923 			thisooblen = min_t(int, thisooblen, ooblen - oobread);
924 
925 			if (ops->mode == MTD_OPS_AUTO_OOB)
926 				onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
927 			else
928 				this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
929 			oobread += thisooblen;
930 			oobbuf += thisooblen;
931 			oobcolumn = 0;
932 		}
933 
934 		if (ONENAND_IS_4KB_PAGE(this) && (read + thislen < len)) {
935 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
936 			ret = this->wait(mtd, FL_READING);
937 			if (unlikely(ret))
938 				ret = onenand_recover_lsb(mtd, from, ret);
939 			onenand_update_bufferram(mtd, from, !ret);
940 			if (mtd_is_eccerr(ret))
941 				ret = 0;
942 		}
943 
944 		/* See if we are done */
945 		read += thislen;
946 		if (read == len)
947 			break;
948 		/* Set up for next read from bufferRAM */
949 		if (unlikely(boundary))
950 			this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
951 		if (!ONENAND_IS_4KB_PAGE(this))
952 			ONENAND_SET_NEXT_BUFFERRAM(this);
953 		buf += thislen;
954 		thislen = min_t(int, writesize, len - read);
955 		column = 0;
956 
957 		if (!ONENAND_IS_4KB_PAGE(this)) {
958 			/* Now wait for load */
959 			ret = this->wait(mtd, FL_READING);
960 			onenand_update_bufferram(mtd, from, !ret);
961 			if (mtd_is_eccerr(ret))
962 				ret = 0;
963 		}
964 	}
965 
966 	/*
967 	 * Return success, if no ECC failures, else -EBADMSG
968 	 * fs driver will take care of that, because
969 	 * retlen == desired len and result == -EBADMSG
970 	 */
971 	ops->retlen = read;
972 	ops->oobretlen = oobread;
973 
974 	if (ret)
975 		return ret;
976 
977 	if (mtd->ecc_stats.failed - stats.failed)
978 		return -EBADMSG;
979 
980 	/* return max bitflips per ecc step; ONENANDs correct 1 bit only */
981 	return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
982 }
983 
984 /**
985  * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
986  * @param mtd		MTD device structure
987  * @param from		offset to read from
988  * @param ops		oob operation description structure
989  *
990  * OneNAND read out-of-band data from the spare area
991  */
992 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
993 		struct mtd_oob_ops *ops)
994 {
995 	struct onenand_chip *this = mtd->priv;
996 	struct mtd_ecc_stats stats;
997 	int read = 0, thislen, column, oobsize;
998 	size_t len = ops->ooblen;
999 	unsigned int mode = ops->mode;
1000 	u_char *buf = ops->oobbuf;
1001 	int ret = 0, readcmd;
1002 
1003 	from += ops->ooboffs;
1004 
1005 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
1006 
1007 	/* Initialize return length value */
1008 	ops->oobretlen = 0;
1009 
1010 	if (mode == MTD_OPS_AUTO_OOB)
1011 		oobsize = this->ecclayout->oobavail;
1012 	else
1013 		oobsize = mtd->oobsize;
1014 
1015 	column = from & (mtd->oobsize - 1);
1016 
1017 	if (unlikely(column >= oobsize)) {
1018 		printk(KERN_ERR "onenand_read_oob_nolock: Attempted to start read outside oob\n");
1019 		return -EINVAL;
1020 	}
1021 
1022 	/* Do not allow reads past end of device */
1023 	if (unlikely(from >= mtd->size ||
1024 		column + len > ((mtd->size >> this->page_shift) -
1025 				(from >> this->page_shift)) * oobsize)) {
1026 		printk(KERN_ERR "onenand_read_oob_nolock: Attempted to read beyond end of device\n");
1027 		return -EINVAL;
1028 	}
1029 
1030 	stats = mtd->ecc_stats;
1031 
1032 	readcmd = ONENAND_IS_4KB_PAGE(this) ?
1033 		ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1034 
1035 	while (read < len) {
1036 		thislen = oobsize - column;
1037 		thislen = min_t(int, thislen, len);
1038 
1039 		this->spare_buf = buf;
1040 		this->command(mtd, readcmd, from, mtd->oobsize);
1041 
1042 		onenand_update_bufferram(mtd, from, 0);
1043 
1044 		ret = this->wait(mtd, FL_READING);
1045 		if (unlikely(ret))
1046 			ret = onenand_recover_lsb(mtd, from, ret);
1047 
1048 		if (ret && ret != -EBADMSG) {
1049 			printk(KERN_ERR "onenand_read_oob_nolock: read failed = 0x%x\n", ret);
1050 			break;
1051 		}
1052 
1053 		if (mode == MTD_OPS_AUTO_OOB)
1054 			onenand_transfer_auto_oob(mtd, buf, column, thislen);
1055 		else
1056 			this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
1057 
1058 		read += thislen;
1059 
1060 		if (read == len)
1061 			break;
1062 
1063 		buf += thislen;
1064 
1065 		/* Read more? */
1066 		if (read < len) {
1067 			/* Page size */
1068 			from += mtd->writesize;
1069 			column = 0;
1070 		}
1071 	}
1072 
1073 	ops->oobretlen = read;
1074 
1075 	if (ret)
1076 		return ret;
1077 
1078 	if (mtd->ecc_stats.failed - stats.failed)
1079 		return -EBADMSG;
1080 
1081 	return 0;
1082 }
1083 
1084 /**
1085  * onenand_read - [MTD Interface] MTD compability function for onenand_read_ecc
1086  * @param mtd		MTD device structure
1087  * @param from		offset to read from
1088  * @param len		number of bytes to read
1089  * @param retlen	pointer to variable to store the number of read bytes
1090  * @param buf		the databuffer to put data
1091  *
1092  * This function simply calls onenand_read_ecc with oob buffer and oobsel = NULL
1093 */
1094 int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1095 		 size_t * retlen, u_char * buf)
1096 {
1097 	struct mtd_oob_ops ops = {
1098 		.len    = len,
1099 		.ooblen = 0,
1100 		.datbuf = buf,
1101 		.oobbuf = NULL,
1102 	};
1103 	int ret;
1104 
1105 	onenand_get_device(mtd, FL_READING);
1106 	ret = onenand_read_ops_nolock(mtd, from, &ops);
1107 	onenand_release_device(mtd);
1108 
1109 	*retlen = ops.retlen;
1110 	return ret;
1111 }
1112 
1113 /**
1114  * onenand_read_oob - [MTD Interface] OneNAND read out-of-band
1115  * @param mtd		MTD device structure
1116  * @param from		offset to read from
1117  * @param ops		oob operations description structure
1118  *
1119  * OneNAND main and/or out-of-band
1120  */
1121 int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1122 			struct mtd_oob_ops *ops)
1123 {
1124 	int ret;
1125 
1126 	switch (ops->mode) {
1127 	case MTD_OPS_PLACE_OOB:
1128 	case MTD_OPS_AUTO_OOB:
1129 		break;
1130 	case MTD_OPS_RAW:
1131 		/* Not implemented yet */
1132 	default:
1133 		return -EINVAL;
1134 	}
1135 
1136 	onenand_get_device(mtd, FL_READING);
1137 	if (ops->datbuf)
1138 		ret = onenand_read_ops_nolock(mtd, from, ops);
1139 	else
1140 		ret = onenand_read_oob_nolock(mtd, from, ops);
1141 	onenand_release_device(mtd);
1142 
1143 	return ret;
1144 }
1145 
1146 /**
1147  * onenand_bbt_wait - [DEFAULT] wait until the command is done
1148  * @param mtd		MTD device structure
1149  * @param state		state to select the max. timeout value
1150  *
1151  * Wait for command done.
1152  */
1153 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1154 {
1155 	struct onenand_chip *this = mtd->priv;
1156 	unsigned int flags = ONENAND_INT_MASTER;
1157 	unsigned int interrupt;
1158 	unsigned int ctrl;
1159 
1160 	while (1) {
1161 		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1162 		if (interrupt & flags)
1163 			break;
1164 	}
1165 
1166 	/* To get correct interrupt status in timeout case */
1167 	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1168 	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1169 
1170 	if (interrupt & ONENAND_INT_READ) {
1171 		int ecc = onenand_read_ecc(this);
1172 		if (ecc & ONENAND_ECC_2BIT_ALL) {
1173 			printk(KERN_INFO "onenand_bbt_wait: ecc error = 0x%04x"
1174 				", controller = 0x%04x\n", ecc, ctrl);
1175 			return ONENAND_BBT_READ_ERROR;
1176 		}
1177 	} else {
1178 		printk(KERN_ERR "onenand_bbt_wait: read timeout!"
1179 				"ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
1180 		return ONENAND_BBT_READ_FATAL_ERROR;
1181 	}
1182 
1183 	/* Initial bad block case: 0x2400 or 0x0400 */
1184 	if (ctrl & ONENAND_CTRL_ERROR) {
1185 		printk(KERN_DEBUG "onenand_bbt_wait: controller error = 0x%04x\n", ctrl);
1186 		return ONENAND_BBT_READ_ERROR;
1187 	}
1188 
1189 	return 0;
1190 }
1191 
1192 /**
1193  * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1194  * @param mtd		MTD device structure
1195  * @param from		offset to read from
1196  * @param ops		oob operation description structure
1197  *
1198  * OneNAND read out-of-band data from the spare area for bbt scan
1199  */
1200 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1201 		struct mtd_oob_ops *ops)
1202 {
1203 	struct onenand_chip *this = mtd->priv;
1204 	int read = 0, thislen, column;
1205 	int ret = 0, readcmd;
1206 	size_t len = ops->ooblen;
1207 	u_char *buf = ops->oobbuf;
1208 
1209 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_bbt_read_oob: from = 0x%08x, len = %zi\n", (unsigned int) from, len);
1210 
1211 	readcmd = ONENAND_IS_4KB_PAGE(this) ?
1212 		ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1213 
1214 	/* Initialize return value */
1215 	ops->oobretlen = 0;
1216 
1217 	/* Do not allow reads past end of device */
1218 	if (unlikely((from + len) > mtd->size)) {
1219 		printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n");
1220 		return ONENAND_BBT_READ_FATAL_ERROR;
1221 	}
1222 
1223 	/* Grab the lock and see if the device is available */
1224 	onenand_get_device(mtd, FL_READING);
1225 
1226 	column = from & (mtd->oobsize - 1);
1227 
1228 	while (read < len) {
1229 
1230 		thislen = mtd->oobsize - column;
1231 		thislen = min_t(int, thislen, len);
1232 
1233 		this->spare_buf = buf;
1234 		this->command(mtd, readcmd, from, mtd->oobsize);
1235 
1236 		onenand_update_bufferram(mtd, from, 0);
1237 
1238 		ret = this->bbt_wait(mtd, FL_READING);
1239 		if (unlikely(ret))
1240 			ret = onenand_recover_lsb(mtd, from, ret);
1241 
1242 		if (ret)
1243 			break;
1244 
1245 		this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
1246 		read += thislen;
1247 		if (read == len)
1248 			break;
1249 
1250 		buf += thislen;
1251 
1252 		/* Read more? */
1253 		if (read < len) {
1254 			/* Update Page size */
1255 			from += this->writesize;
1256 			column = 0;
1257 		}
1258 	}
1259 
1260 	/* Deselect and wake up anyone waiting on the device */
1261 	onenand_release_device(mtd);
1262 
1263 	ops->oobretlen = read;
1264 	return ret;
1265 }
1266 
1267 
1268 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1269 /**
1270  * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1271  * @param mtd           MTD device structure
1272  * @param buf           the databuffer to verify
1273  * @param to            offset to read from
1274  */
1275 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1276 {
1277 	struct onenand_chip *this = mtd->priv;
1278 	u_char *oob_buf = this->oob_buf;
1279 	int status, i, readcmd;
1280 
1281 	readcmd = ONENAND_IS_4KB_PAGE(this) ?
1282 		ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1283 
1284 	this->command(mtd, readcmd, to, mtd->oobsize);
1285 	onenand_update_bufferram(mtd, to, 0);
1286 	status = this->wait(mtd, FL_READING);
1287 	if (status)
1288 		return status;
1289 
1290 	this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1291 	for (i = 0; i < mtd->oobsize; i++)
1292 		if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1293 			return -EBADMSG;
1294 
1295 	return 0;
1296 }
1297 
1298 /**
1299  * onenand_verify - [GENERIC] verify the chip contents after a write
1300  * @param mtd          MTD device structure
1301  * @param buf          the databuffer to verify
1302  * @param addr         offset to read from
1303  * @param len          number of bytes to read and compare
1304  */
1305 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1306 {
1307 	struct onenand_chip *this = mtd->priv;
1308 	void __iomem *dataram;
1309 	int ret = 0;
1310 	int thislen, column;
1311 
1312 	while (len != 0) {
1313 		thislen = min_t(int, this->writesize, len);
1314 		column = addr & (this->writesize - 1);
1315 		if (column + thislen > this->writesize)
1316 			thislen = this->writesize - column;
1317 
1318 		this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1319 
1320 		onenand_update_bufferram(mtd, addr, 0);
1321 
1322 		ret = this->wait(mtd, FL_READING);
1323 		if (ret)
1324 			return ret;
1325 
1326 		onenand_update_bufferram(mtd, addr, 1);
1327 
1328 		dataram = this->base + ONENAND_DATARAM;
1329 		dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
1330 
1331 		if (memcmp(buf, dataram + column, thislen))
1332 			return -EBADMSG;
1333 
1334 		len -= thislen;
1335 		buf += thislen;
1336 		addr += thislen;
1337 	}
1338 
1339 	return 0;
1340 }
1341 #else
1342 #define onenand_verify(...)             (0)
1343 #define onenand_verify_oob(...)         (0)
1344 #endif
1345 
1346 #define NOTALIGNED(x)	((x & (this->subpagesize - 1)) != 0)
1347 
1348 /**
1349  * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
1350  * @param mtd           MTD device structure
1351  * @param oob_buf       oob buffer
1352  * @param buf           source address
1353  * @param column        oob offset to write to
1354  * @param thislen       oob length to write
1355  */
1356 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1357 		const u_char *buf, int column, int thislen)
1358 {
1359 	struct onenand_chip *this = mtd->priv;
1360 	struct nand_oobfree *free;
1361 	int writecol = column;
1362 	int writeend = column + thislen;
1363 	int lastgap = 0;
1364 	unsigned int i;
1365 
1366 	free = this->ecclayout->oobfree;
1367 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length;
1368 	     i++, free++) {
1369 		if (writecol >= lastgap)
1370 			writecol += free->offset - lastgap;
1371 		if (writeend >= lastgap)
1372 			writeend += free->offset - lastgap;
1373 		lastgap = free->offset + free->length;
1374 	}
1375 	free = this->ecclayout->oobfree;
1376 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length;
1377 	     i++, free++) {
1378 		int free_end = free->offset + free->length;
1379 		if (free->offset < writeend && free_end > writecol) {
1380 			int st = max_t(int,free->offset,writecol);
1381 			int ed = min_t(int,free_end,writeend);
1382 			int n = ed - st;
1383 			memcpy(oob_buf + st, buf, n);
1384 			buf += n;
1385 		} else if (column == 0)
1386 			break;
1387 	}
1388 	return 0;
1389 }
1390 
1391 /**
1392  * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1393  * @param mtd           MTD device structure
1394  * @param to            offset to write to
1395  * @param ops           oob operation description structure
1396  *
1397  * Write main and/or oob with ECC
1398  */
1399 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1400 		struct mtd_oob_ops *ops)
1401 {
1402 	struct onenand_chip *this = mtd->priv;
1403 	int written = 0, column, thislen, subpage;
1404 	int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1405 	size_t len = ops->len;
1406 	size_t ooblen = ops->ooblen;
1407 	const u_char *buf = ops->datbuf;
1408 	const u_char *oob = ops->oobbuf;
1409 	u_char *oobbuf;
1410 	int ret = 0;
1411 
1412 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_write_ops_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1413 
1414 	/* Initialize retlen, in case of early exit */
1415 	ops->retlen = 0;
1416 	ops->oobretlen = 0;
1417 
1418 	/* Reject writes, which are not page aligned */
1419 	if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1420 		printk(KERN_ERR "onenand_write_ops_nolock: Attempt to write not page aligned data\n");
1421 		return -EINVAL;
1422 	}
1423 
1424 	if (ops->mode == MTD_OPS_AUTO_OOB)
1425 		oobsize = this->ecclayout->oobavail;
1426 	else
1427 		oobsize = mtd->oobsize;
1428 
1429 	oobcolumn = to & (mtd->oobsize - 1);
1430 
1431 	column = to & (mtd->writesize - 1);
1432 
1433 	/* Loop until all data write */
1434 	while (written < len) {
1435 		u_char *wbuf = (u_char *) buf;
1436 
1437 		thislen = min_t(int, mtd->writesize - column, len - written);
1438 		thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1439 
1440 		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1441 
1442 		/* Partial page write */
1443 		subpage = thislen < mtd->writesize;
1444 		if (subpage) {
1445 			memset(this->page_buf, 0xff, mtd->writesize);
1446 			memcpy(this->page_buf + column, buf, thislen);
1447 			wbuf = this->page_buf;
1448 		}
1449 
1450 		this->write_bufferram(mtd, to, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1451 
1452 		if (oob) {
1453 			oobbuf = this->oob_buf;
1454 
1455 			/* We send data to spare ram with oobsize
1456 			 *                          * to prevent byte access */
1457 			memset(oobbuf, 0xff, mtd->oobsize);
1458 			if (ops->mode == MTD_OPS_AUTO_OOB)
1459 				onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1460 			else
1461 				memcpy(oobbuf + oobcolumn, oob, thisooblen);
1462 
1463 			oobwritten += thisooblen;
1464 			oob += thisooblen;
1465 			oobcolumn = 0;
1466 		} else
1467 			oobbuf = (u_char *) ffchars;
1468 
1469 		this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1470 
1471 		this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1472 
1473 		ret = this->wait(mtd, FL_WRITING);
1474 
1475 		/* In partial page write we don't update bufferram */
1476 		onenand_update_bufferram(mtd, to, !ret && !subpage);
1477 		if (ONENAND_IS_2PLANE(this)) {
1478 			ONENAND_SET_BUFFERRAM1(this);
1479 			onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1480 		}
1481 
1482 		if (ret) {
1483 			printk(KERN_ERR "onenand_write_ops_nolock: write filaed %d\n", ret);
1484 			break;
1485 		}
1486 
1487 		/* Only check verify write turn on */
1488 		ret = onenand_verify(mtd, buf, to, thislen);
1489 		if (ret) {
1490 			printk(KERN_ERR "onenand_write_ops_nolock: verify failed %d\n", ret);
1491 			break;
1492 		}
1493 
1494 		written += thislen;
1495 
1496 		if (written == len)
1497 			break;
1498 
1499 		column = 0;
1500 		to += thislen;
1501 		buf += thislen;
1502 	}
1503 
1504 	ops->retlen = written;
1505 
1506 	return ret;
1507 }
1508 
1509 /**
1510  * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
1511  * @param mtd           MTD device structure
1512  * @param to            offset to write to
1513  * @param len           number of bytes to write
1514  * @param retlen        pointer to variable to store the number of written bytes
1515  * @param buf           the data to write
1516  * @param mode          operation mode
1517  *
1518  * OneNAND write out-of-band
1519  */
1520 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1521 		struct mtd_oob_ops *ops)
1522 {
1523 	struct onenand_chip *this = mtd->priv;
1524 	int column, ret = 0, oobsize;
1525 	int written = 0, oobcmd;
1526 	u_char *oobbuf;
1527 	size_t len = ops->ooblen;
1528 	const u_char *buf = ops->oobbuf;
1529 	unsigned int mode = ops->mode;
1530 
1531 	to += ops->ooboffs;
1532 
1533 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1534 
1535 	/* Initialize retlen, in case of early exit */
1536 	ops->oobretlen = 0;
1537 
1538 	if (mode == MTD_OPS_AUTO_OOB)
1539 		oobsize = this->ecclayout->oobavail;
1540 	else
1541 		oobsize = mtd->oobsize;
1542 
1543 	column = to & (mtd->oobsize - 1);
1544 
1545 	if (unlikely(column >= oobsize)) {
1546 		printk(KERN_ERR "onenand_write_oob_nolock: Attempted to start write outside oob\n");
1547 		return -EINVAL;
1548 	}
1549 
1550 	/* For compatibility with NAND: Do not allow write past end of page */
1551 	if (unlikely(column + len > oobsize)) {
1552 		printk(KERN_ERR "onenand_write_oob_nolock: "
1553 				"Attempt to write past end of page\n");
1554 		return -EINVAL;
1555 	}
1556 
1557 	/* Do not allow reads past end of device */
1558 	if (unlikely(to >= mtd->size ||
1559 				column + len > ((mtd->size >> this->page_shift) -
1560 					(to >> this->page_shift)) * oobsize)) {
1561 		printk(KERN_ERR "onenand_write_oob_nolock: Attempted to write past end of device\n");
1562 		return -EINVAL;
1563 	}
1564 
1565 	oobbuf = this->oob_buf;
1566 
1567 	oobcmd = ONENAND_IS_4KB_PAGE(this) ?
1568 		ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
1569 
1570 	/* Loop until all data write */
1571 	while (written < len) {
1572 		int thislen = min_t(int, oobsize, len - written);
1573 
1574 		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
1575 
1576 		/* We send data to spare ram with oobsize
1577 		 * to prevent byte access */
1578 		memset(oobbuf, 0xff, mtd->oobsize);
1579 		if (mode == MTD_OPS_AUTO_OOB)
1580 			onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
1581 		else
1582 			memcpy(oobbuf + column, buf, thislen);
1583 		this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1584 
1585 		if (ONENAND_IS_4KB_PAGE(this)) {
1586 			/* Set main area of DataRAM to 0xff*/
1587 			memset(this->page_buf, 0xff, mtd->writesize);
1588 			this->write_bufferram(mtd, 0, ONENAND_DATARAM,
1589 				this->page_buf,	0, mtd->writesize);
1590 		}
1591 
1592 		this->command(mtd, oobcmd, to, mtd->oobsize);
1593 
1594 		onenand_update_bufferram(mtd, to, 0);
1595 		if (ONENAND_IS_2PLANE(this)) {
1596 			ONENAND_SET_BUFFERRAM1(this);
1597 			onenand_update_bufferram(mtd, to + this->writesize, 0);
1598 		}
1599 
1600 		ret = this->wait(mtd, FL_WRITING);
1601 		if (ret) {
1602 			printk(KERN_ERR "onenand_write_oob_nolock: write failed %d\n", ret);
1603 			break;
1604 		}
1605 
1606 		ret = onenand_verify_oob(mtd, oobbuf, to);
1607 		if (ret) {
1608 			printk(KERN_ERR "onenand_write_oob_nolock: verify failed %d\n", ret);
1609 			break;
1610 		}
1611 
1612 		written += thislen;
1613 		if (written == len)
1614 			break;
1615 
1616 		to += mtd->writesize;
1617 		buf += thislen;
1618 		column = 0;
1619 	}
1620 
1621 	ops->oobretlen = written;
1622 
1623 	return ret;
1624 }
1625 
1626 /**
1627  * onenand_write - [MTD Interface] compability function for onenand_write_ecc
1628  * @param mtd		MTD device structure
1629  * @param to		offset to write to
1630  * @param len		number of bytes to write
1631  * @param retlen	pointer to variable to store the number of written bytes
1632  * @param buf		the data to write
1633  *
1634  * Write with ECC
1635  */
1636 int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
1637 		  size_t * retlen, const u_char * buf)
1638 {
1639 	struct mtd_oob_ops ops = {
1640 		.len    = len,
1641 		.ooblen = 0,
1642 		.datbuf = (u_char *) buf,
1643 		.oobbuf = NULL,
1644 	};
1645 	int ret;
1646 
1647 	onenand_get_device(mtd, FL_WRITING);
1648 	ret = onenand_write_ops_nolock(mtd, to, &ops);
1649 	onenand_release_device(mtd);
1650 
1651 	*retlen = ops.retlen;
1652 	return ret;
1653 }
1654 
1655 /**
1656  * onenand_write_oob - [MTD Interface] OneNAND write out-of-band
1657  * @param mtd		MTD device structure
1658  * @param to		offset to write to
1659  * @param ops		oob operation description structure
1660  *
1661  * OneNAND write main and/or out-of-band
1662  */
1663 int onenand_write_oob(struct mtd_info *mtd, loff_t to,
1664 			struct mtd_oob_ops *ops)
1665 {
1666 	int ret;
1667 
1668 	switch (ops->mode) {
1669 	case MTD_OPS_PLACE_OOB:
1670 	case MTD_OPS_AUTO_OOB:
1671 		break;
1672 	case MTD_OPS_RAW:
1673 		/* Not implemented yet */
1674 	default:
1675 		return -EINVAL;
1676 	}
1677 
1678 	onenand_get_device(mtd, FL_WRITING);
1679 	if (ops->datbuf)
1680 		ret = onenand_write_ops_nolock(mtd, to, ops);
1681 	else
1682 		ret = onenand_write_oob_nolock(mtd, to, ops);
1683 	onenand_release_device(mtd);
1684 
1685 	return ret;
1686 
1687 }
1688 
1689 /**
1690  * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
1691  * @param mtd		MTD device structure
1692  * @param ofs		offset from device start
1693  * @param allowbbt	1, if its allowed to access the bbt area
1694  *
1695  * Check, if the block is bad, Either by reading the bad block table or
1696  * calling of the scan function.
1697  */
1698 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
1699 {
1700 	struct onenand_chip *this = mtd->priv;
1701 	struct bbm_info *bbm = this->bbm;
1702 
1703 	/* Return info from the table */
1704 	return bbm->isbad_bbt(mtd, ofs, allowbbt);
1705 }
1706 
1707 
1708 /**
1709  * onenand_erase - [MTD Interface] erase block(s)
1710  * @param mtd		MTD device structure
1711  * @param instr		erase instruction
1712  *
1713  * Erase one ore more blocks
1714  */
1715 int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
1716 {
1717 	struct onenand_chip *this = mtd->priv;
1718 	unsigned int block_size;
1719 	loff_t addr = instr->addr;
1720 	unsigned int len = instr->len;
1721 	int ret = 0, i;
1722 	struct mtd_erase_region_info *region = NULL;
1723 	unsigned int region_end = 0;
1724 
1725 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n",
1726 			(unsigned int) addr, len);
1727 
1728 	if (FLEXONENAND(this)) {
1729 		/* Find the eraseregion of this address */
1730 		i = flexonenand_region(mtd, addr);
1731 		region = &mtd->eraseregions[i];
1732 
1733 		block_size = region->erasesize;
1734 		region_end = region->offset
1735 			+ region->erasesize * region->numblocks;
1736 
1737 		/* Start address within region must align on block boundary.
1738 		 * Erase region's start offset is always block start address.
1739 		 */
1740 		if (unlikely((addr - region->offset) & (block_size - 1))) {
1741 			MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:"
1742 				" Unaligned address\n");
1743 			return -EINVAL;
1744 		}
1745 	} else {
1746 		block_size = 1 << this->erase_shift;
1747 
1748 		/* Start address must align on block boundary */
1749 		if (unlikely(addr & (block_size - 1))) {
1750 			MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:"
1751 						"Unaligned address\n");
1752 			return -EINVAL;
1753 		}
1754 	}
1755 
1756 	/* Length must align on block boundary */
1757 	if (unlikely(len & (block_size - 1))) {
1758 		MTDDEBUG (MTD_DEBUG_LEVEL0,
1759 			 "onenand_erase: Length not block aligned\n");
1760 		return -EINVAL;
1761 	}
1762 
1763 	/* Grab the lock and see if the device is available */
1764 	onenand_get_device(mtd, FL_ERASING);
1765 
1766 	/* Loop throught the pages */
1767 	instr->state = MTD_ERASING;
1768 
1769 	while (len) {
1770 
1771 		/* Check if we have a bad block, we do not erase bad blocks */
1772 		if (instr->priv == 0 && onenand_block_isbad_nolock(mtd, addr, 0)) {
1773 			printk(KERN_WARNING "onenand_erase: attempt to erase"
1774 				" a bad block at addr 0x%08x\n",
1775 				(unsigned int) addr);
1776 			instr->state = MTD_ERASE_FAILED;
1777 			goto erase_exit;
1778 		}
1779 
1780 		this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
1781 
1782 		onenand_invalidate_bufferram(mtd, addr, block_size);
1783 
1784 		ret = this->wait(mtd, FL_ERASING);
1785 		/* Check, if it is write protected */
1786 		if (ret) {
1787 			if (ret == -EPERM)
1788 				MTDDEBUG (MTD_DEBUG_LEVEL0, "onenand_erase: "
1789 					  "Device is write protected!!!\n");
1790 			else
1791 				MTDDEBUG (MTD_DEBUG_LEVEL0, "onenand_erase: "
1792 					  "Failed erase, block %d\n",
1793 					onenand_block(this, addr));
1794 			instr->state = MTD_ERASE_FAILED;
1795 			instr->fail_addr = addr;
1796 
1797 			goto erase_exit;
1798 		}
1799 
1800 		len -= block_size;
1801 		addr += block_size;
1802 
1803 		if (addr == region_end) {
1804 			if (!len)
1805 				break;
1806 			region++;
1807 
1808 			block_size = region->erasesize;
1809 			region_end = region->offset
1810 				+ region->erasesize * region->numblocks;
1811 
1812 			if (len & (block_size - 1)) {
1813 				/* This has been checked at MTD
1814 				 * partitioning level. */
1815 				printk("onenand_erase: Unaligned address\n");
1816 				goto erase_exit;
1817 			}
1818 		}
1819 	}
1820 
1821 	instr->state = MTD_ERASE_DONE;
1822 
1823 erase_exit:
1824 
1825 	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1826 	/* Do call back function */
1827 	if (!ret)
1828 		mtd_erase_callback(instr);
1829 
1830 	/* Deselect and wake up anyone waiting on the device */
1831 	onenand_release_device(mtd);
1832 
1833 	return ret;
1834 }
1835 
1836 /**
1837  * onenand_sync - [MTD Interface] sync
1838  * @param mtd		MTD device structure
1839  *
1840  * Sync is actually a wait for chip ready function
1841  */
1842 void onenand_sync(struct mtd_info *mtd)
1843 {
1844 	MTDDEBUG (MTD_DEBUG_LEVEL3, "onenand_sync: called\n");
1845 
1846 	/* Grab the lock and see if the device is available */
1847 	onenand_get_device(mtd, FL_SYNCING);
1848 
1849 	/* Release it and go back */
1850 	onenand_release_device(mtd);
1851 }
1852 
1853 /**
1854  * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
1855  * @param mtd		MTD device structure
1856  * @param ofs		offset relative to mtd start
1857  *
1858  * Check whether the block is bad
1859  */
1860 int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
1861 {
1862 	int ret;
1863 
1864 	/* Check for invalid offset */
1865 	if (ofs > mtd->size)
1866 		return -EINVAL;
1867 
1868 	onenand_get_device(mtd, FL_READING);
1869 	ret = onenand_block_isbad_nolock(mtd,ofs, 0);
1870 	onenand_release_device(mtd);
1871 	return ret;
1872 }
1873 
1874 /**
1875  * onenand_default_block_markbad - [DEFAULT] mark a block bad
1876  * @param mtd           MTD device structure
1877  * @param ofs           offset from device start
1878  *
1879  * This is the default implementation, which can be overridden by
1880  * a hardware specific driver.
1881  */
1882 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
1883 {
1884 	struct onenand_chip *this = mtd->priv;
1885 	struct bbm_info *bbm = this->bbm;
1886 	u_char buf[2] = {0, 0};
1887 	struct mtd_oob_ops ops = {
1888 		.mode = MTD_OPS_PLACE_OOB,
1889 		.ooblen = 2,
1890 		.oobbuf = buf,
1891 		.ooboffs = 0,
1892 	};
1893 	int block;
1894 
1895 	/* Get block number */
1896 	block = onenand_block(this, ofs);
1897 	if (bbm->bbt)
1898 		bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1899 
1900 	/* We write two bytes, so we dont have to mess with 16 bit access */
1901 	ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
1902 	return onenand_write_oob_nolock(mtd, ofs, &ops);
1903 }
1904 
1905 /**
1906  * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
1907  * @param mtd		MTD device structure
1908  * @param ofs		offset relative to mtd start
1909  *
1910  * Mark the block as bad
1911  */
1912 int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1913 {
1914 	int ret;
1915 
1916 	ret = onenand_block_isbad(mtd, ofs);
1917 	if (ret) {
1918 		/* If it was bad already, return success and do nothing */
1919 		if (ret > 0)
1920 			return 0;
1921 		return ret;
1922 	}
1923 
1924 	ret = mtd_block_markbad(mtd, ofs);
1925 	return ret;
1926 }
1927 
1928 /**
1929  * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
1930  * @param mtd           MTD device structure
1931  * @param ofs           offset relative to mtd start
1932  * @param len           number of bytes to lock or unlock
1933  * @param cmd           lock or unlock command
1934  *
1935  * Lock or unlock one or more blocks
1936  */
1937 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
1938 {
1939 	struct onenand_chip *this = mtd->priv;
1940 	int start, end, block, value, status;
1941 
1942 	start = onenand_block(this, ofs);
1943 	end = onenand_block(this, ofs + len);
1944 
1945 	/* Continuous lock scheme */
1946 	if (this->options & ONENAND_HAS_CONT_LOCK) {
1947 		/* Set start block address */
1948 		this->write_word(start,
1949 				 this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1950 		/* Set end block address */
1951 		this->write_word(end - 1,
1952 				 this->base + ONENAND_REG_END_BLOCK_ADDRESS);
1953 		/* Write unlock command */
1954 		this->command(mtd, cmd, 0, 0);
1955 
1956 		/* There's no return value */
1957 		this->wait(mtd, FL_UNLOCKING);
1958 
1959 		/* Sanity check */
1960 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1961 		       & ONENAND_CTRL_ONGO)
1962 			continue;
1963 
1964 		/* Check lock status */
1965 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1966 		if (!(status & ONENAND_WP_US))
1967 			printk(KERN_ERR "wp status = 0x%x\n", status);
1968 
1969 		return 0;
1970 	}
1971 
1972 	/* Block lock scheme */
1973 	for (block = start; block < end; block++) {
1974 		/* Set block address */
1975 		value = onenand_block_address(this, block);
1976 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1977 		/* Select DataRAM for DDP */
1978 		value = onenand_bufferram_address(this, block);
1979 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1980 
1981 		/* Set start block address */
1982 		this->write_word(block,
1983 				 this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1984 		/* Write unlock command */
1985 		this->command(mtd, ONENAND_CMD_UNLOCK, 0, 0);
1986 
1987 		/* There's no return value */
1988 		this->wait(mtd, FL_UNLOCKING);
1989 
1990 		/* Sanity check */
1991 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1992 		       & ONENAND_CTRL_ONGO)
1993 			continue;
1994 
1995 		/* Check lock status */
1996 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1997 		if (!(status & ONENAND_WP_US))
1998 			printk(KERN_ERR "block = %d, wp status = 0x%x\n",
1999 			       block, status);
2000 	}
2001 
2002 	return 0;
2003 }
2004 
2005 #ifdef ONENAND_LINUX
2006 /**
2007  * onenand_lock - [MTD Interface] Lock block(s)
2008  * @param mtd           MTD device structure
2009  * @param ofs           offset relative to mtd start
2010  * @param len           number of bytes to unlock
2011  *
2012  * Lock one or more blocks
2013  */
2014 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
2015 {
2016 	int ret;
2017 
2018 	onenand_get_device(mtd, FL_LOCKING);
2019 	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2020 	onenand_release_device(mtd);
2021 	return ret;
2022 }
2023 
2024 /**
2025  * onenand_unlock - [MTD Interface] Unlock block(s)
2026  * @param mtd           MTD device structure
2027  * @param ofs           offset relative to mtd start
2028  * @param len           number of bytes to unlock
2029  *
2030  * Unlock one or more blocks
2031  */
2032 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
2033 {
2034 	int ret;
2035 
2036 	onenand_get_device(mtd, FL_LOCKING);
2037 	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2038 	onenand_release_device(mtd);
2039 	return ret;
2040 }
2041 #endif
2042 
2043 /**
2044  * onenand_check_lock_status - [OneNAND Interface] Check lock status
2045  * @param this          onenand chip data structure
2046  *
2047  * Check lock status
2048  */
2049 static int onenand_check_lock_status(struct onenand_chip *this)
2050 {
2051 	unsigned int value, block, status;
2052 	unsigned int end;
2053 
2054 	end = this->chipsize >> this->erase_shift;
2055 	for (block = 0; block < end; block++) {
2056 		/* Set block address */
2057 		value = onenand_block_address(this, block);
2058 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2059 		/* Select DataRAM for DDP */
2060 		value = onenand_bufferram_address(this, block);
2061 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2062 		/* Set start block address */
2063 		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2064 
2065 		/* Check lock status */
2066 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2067 		if (!(status & ONENAND_WP_US)) {
2068 			printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
2069 			return 0;
2070 		}
2071 	}
2072 
2073 	return 1;
2074 }
2075 
2076 /**
2077  * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2078  * @param mtd           MTD device structure
2079  *
2080  * Unlock all blocks
2081  */
2082 static void onenand_unlock_all(struct mtd_info *mtd)
2083 {
2084 	struct onenand_chip *this = mtd->priv;
2085 	loff_t ofs = 0;
2086 	size_t len = mtd->size;
2087 
2088 	if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2089 		/* Set start block address */
2090 		this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2091 		/* Write unlock command */
2092 		this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2093 
2094 		/* There's no return value */
2095 		this->wait(mtd, FL_LOCKING);
2096 
2097 		/* Sanity check */
2098 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2099 				& ONENAND_CTRL_ONGO)
2100 			continue;
2101 
2102 		/* Check lock status */
2103 		if (onenand_check_lock_status(this))
2104 			return;
2105 
2106 		/* Workaround for all block unlock in DDP */
2107 		if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2108 			/* All blocks on another chip */
2109 			ofs = this->chipsize >> 1;
2110 			len = this->chipsize >> 1;
2111 		}
2112 	}
2113 
2114 	onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2115 }
2116 
2117 
2118 /**
2119  * onenand_check_features - Check and set OneNAND features
2120  * @param mtd           MTD data structure
2121  *
2122  * Check and set OneNAND features
2123  * - lock scheme
2124  * - two plane
2125  */
2126 static void onenand_check_features(struct mtd_info *mtd)
2127 {
2128 	struct onenand_chip *this = mtd->priv;
2129 	unsigned int density, process;
2130 
2131 	/* Lock scheme depends on density and process */
2132 	density = onenand_get_density(this->device_id);
2133 	process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
2134 
2135 	/* Lock scheme */
2136 	switch (density) {
2137 	case ONENAND_DEVICE_DENSITY_4Gb:
2138 		if (ONENAND_IS_DDP(this))
2139 			this->options |= ONENAND_HAS_2PLANE;
2140 		else
2141 			this->options |= ONENAND_HAS_4KB_PAGE;
2142 
2143 	case ONENAND_DEVICE_DENSITY_2Gb:
2144 		/* 2Gb DDP don't have 2 plane */
2145 		if (!ONENAND_IS_DDP(this))
2146 			this->options |= ONENAND_HAS_2PLANE;
2147 		this->options |= ONENAND_HAS_UNLOCK_ALL;
2148 
2149 	case ONENAND_DEVICE_DENSITY_1Gb:
2150 		/* A-Die has all block unlock */
2151 		if (process)
2152 			this->options |= ONENAND_HAS_UNLOCK_ALL;
2153 		break;
2154 
2155 	default:
2156 		/* Some OneNAND has continuous lock scheme */
2157 		if (!process)
2158 			this->options |= ONENAND_HAS_CONT_LOCK;
2159 		break;
2160 	}
2161 
2162 	if (ONENAND_IS_MLC(this))
2163 		this->options |= ONENAND_HAS_4KB_PAGE;
2164 
2165 	if (ONENAND_IS_4KB_PAGE(this))
2166 		this->options &= ~ONENAND_HAS_2PLANE;
2167 
2168 	if (FLEXONENAND(this)) {
2169 		this->options &= ~ONENAND_HAS_CONT_LOCK;
2170 		this->options |= ONENAND_HAS_UNLOCK_ALL;
2171 	}
2172 
2173 	if (this->options & ONENAND_HAS_CONT_LOCK)
2174 		printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
2175 	if (this->options & ONENAND_HAS_UNLOCK_ALL)
2176 		printk(KERN_DEBUG "Chip support all block unlock\n");
2177 	if (this->options & ONENAND_HAS_2PLANE)
2178 		printk(KERN_DEBUG "Chip has 2 plane\n");
2179 	if (this->options & ONENAND_HAS_4KB_PAGE)
2180 		printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
2181 
2182 }
2183 
2184 /**
2185  * onenand_print_device_info - Print device ID
2186  * @param device        device ID
2187  *
2188  * Print device ID
2189  */
2190 char *onenand_print_device_info(int device, int version)
2191 {
2192 	int vcc, demuxed, ddp, density, flexonenand;
2193 	char *dev_info = malloc(80);
2194 	char *p = dev_info;
2195 
2196 	vcc = device & ONENAND_DEVICE_VCC_MASK;
2197 	demuxed = device & ONENAND_DEVICE_IS_DEMUX;
2198 	ddp = device & ONENAND_DEVICE_IS_DDP;
2199 	density = onenand_get_density(device);
2200 	flexonenand = device & DEVICE_IS_FLEXONENAND;
2201 	p += sprintf(dev_info, "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)",
2202 	       demuxed ? "" : "Muxed ",
2203 	       flexonenand ? "Flex-" : "",
2204 	       ddp ? "(DDP)" : "",
2205 	       (16 << density), vcc ? "2.65/3.3" : "1.8", device);
2206 
2207 	sprintf(p, "\nOneNAND version = 0x%04x", version);
2208 	printk("%s\n", dev_info);
2209 
2210 	return dev_info;
2211 }
2212 
2213 static const struct onenand_manufacturers onenand_manuf_ids[] = {
2214 	{ONENAND_MFR_NUMONYX, "Numonyx"},
2215 	{ONENAND_MFR_SAMSUNG, "Samsung"},
2216 };
2217 
2218 /**
2219  * onenand_check_maf - Check manufacturer ID
2220  * @param manuf         manufacturer ID
2221  *
2222  * Check manufacturer ID
2223  */
2224 static int onenand_check_maf(int manuf)
2225 {
2226 	int size = ARRAY_SIZE(onenand_manuf_ids);
2227 	int i;
2228 #ifdef ONENAND_DEBUG
2229 	char *name;
2230 #endif
2231 
2232 	for (i = 0; i < size; i++)
2233 		if (manuf == onenand_manuf_ids[i].id)
2234 			break;
2235 
2236 #ifdef ONENAND_DEBUG
2237 	if (i < size)
2238 		name = onenand_manuf_ids[i].name;
2239 	else
2240 		name = "Unknown";
2241 
2242 	printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
2243 #endif
2244 
2245 	return i == size;
2246 }
2247 
2248 /**
2249 * flexonenand_get_boundary	- Reads the SLC boundary
2250 * @param onenand_info		- onenand info structure
2251 *
2252 * Fill up boundary[] field in onenand_chip
2253 **/
2254 static int flexonenand_get_boundary(struct mtd_info *mtd)
2255 {
2256 	struct onenand_chip *this = mtd->priv;
2257 	unsigned int die, bdry;
2258 	int syscfg, locked;
2259 
2260 	/* Disable ECC */
2261 	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2262 	this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
2263 
2264 	for (die = 0; die < this->dies; die++) {
2265 		this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
2266 		this->wait(mtd, FL_SYNCING);
2267 
2268 		this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
2269 		this->wait(mtd, FL_READING);
2270 
2271 		bdry = this->read_word(this->base + ONENAND_DATARAM);
2272 		if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
2273 			locked = 0;
2274 		else
2275 			locked = 1;
2276 		this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
2277 
2278 		this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2279 		this->wait(mtd, FL_RESETING);
2280 
2281 		printk(KERN_INFO "Die %d boundary: %d%s\n", die,
2282 		       this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
2283 	}
2284 
2285 	/* Enable ECC */
2286 	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2287 	return 0;
2288 }
2289 
2290 /**
2291  * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
2292  * 			  boundary[], diesize[], mtd->size, mtd->erasesize,
2293  * 			  mtd->eraseregions
2294  * @param mtd		- MTD device structure
2295  */
2296 static void flexonenand_get_size(struct mtd_info *mtd)
2297 {
2298 	struct onenand_chip *this = mtd->priv;
2299 	int die, i, eraseshift, density;
2300 	int blksperdie, maxbdry;
2301 	loff_t ofs;
2302 
2303 	density = onenand_get_density(this->device_id);
2304 	blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
2305 	blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
2306 	maxbdry = blksperdie - 1;
2307 	eraseshift = this->erase_shift - 1;
2308 
2309 	mtd->numeraseregions = this->dies << 1;
2310 
2311 	/* This fills up the device boundary */
2312 	flexonenand_get_boundary(mtd);
2313 	die = 0;
2314 	ofs = 0;
2315 	i = -1;
2316 	for (; die < this->dies; die++) {
2317 		if (!die || this->boundary[die-1] != maxbdry) {
2318 			i++;
2319 			mtd->eraseregions[i].offset = ofs;
2320 			mtd->eraseregions[i].erasesize = 1 << eraseshift;
2321 			mtd->eraseregions[i].numblocks =
2322 							this->boundary[die] + 1;
2323 			ofs += mtd->eraseregions[i].numblocks << eraseshift;
2324 			eraseshift++;
2325 		} else {
2326 			mtd->numeraseregions -= 1;
2327 			mtd->eraseregions[i].numblocks +=
2328 							this->boundary[die] + 1;
2329 			ofs += (this->boundary[die] + 1) << (eraseshift - 1);
2330 		}
2331 		if (this->boundary[die] != maxbdry) {
2332 			i++;
2333 			mtd->eraseregions[i].offset = ofs;
2334 			mtd->eraseregions[i].erasesize = 1 << eraseshift;
2335 			mtd->eraseregions[i].numblocks = maxbdry ^
2336 							 this->boundary[die];
2337 			ofs += mtd->eraseregions[i].numblocks << eraseshift;
2338 			eraseshift--;
2339 		} else
2340 			mtd->numeraseregions -= 1;
2341 	}
2342 
2343 	/* Expose MLC erase size except when all blocks are SLC */
2344 	mtd->erasesize = 1 << this->erase_shift;
2345 	if (mtd->numeraseregions == 1)
2346 		mtd->erasesize >>= 1;
2347 
2348 	printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
2349 	for (i = 0; i < mtd->numeraseregions; i++)
2350 		printk(KERN_INFO "[offset: 0x%08llx, erasesize: 0x%05x,"
2351 			" numblocks: %04u]\n", mtd->eraseregions[i].offset,
2352 			mtd->eraseregions[i].erasesize,
2353 			mtd->eraseregions[i].numblocks);
2354 
2355 	for (die = 0, mtd->size = 0; die < this->dies; die++) {
2356 		this->diesize[die] = (loff_t) (blksperdie << this->erase_shift);
2357 		this->diesize[die] -= (loff_t) (this->boundary[die] + 1)
2358 						 << (this->erase_shift - 1);
2359 		mtd->size += this->diesize[die];
2360 	}
2361 }
2362 
2363 /**
2364  * flexonenand_check_blocks_erased - Check if blocks are erased
2365  * @param mtd_info	- mtd info structure
2366  * @param start		- first erase block to check
2367  * @param end		- last erase block to check
2368  *
2369  * Converting an unerased block from MLC to SLC
2370  * causes byte values to change. Since both data and its ECC
2371  * have changed, reads on the block give uncorrectable error.
2372  * This might lead to the block being detected as bad.
2373  *
2374  * Avoid this by ensuring that the block to be converted is
2375  * erased.
2376  */
2377 static int flexonenand_check_blocks_erased(struct mtd_info *mtd,
2378 					int start, int end)
2379 {
2380 	struct onenand_chip *this = mtd->priv;
2381 	int i, ret;
2382 	int block;
2383 	struct mtd_oob_ops ops = {
2384 		.mode = MTD_OPS_PLACE_OOB,
2385 		.ooboffs = 0,
2386 		.ooblen	= mtd->oobsize,
2387 		.datbuf	= NULL,
2388 		.oobbuf	= this->oob_buf,
2389 	};
2390 	loff_t addr;
2391 
2392 	printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
2393 
2394 	for (block = start; block <= end; block++) {
2395 		addr = flexonenand_addr(this, block);
2396 		if (onenand_block_isbad_nolock(mtd, addr, 0))
2397 			continue;
2398 
2399 		/*
2400 		 * Since main area write results in ECC write to spare,
2401 		 * it is sufficient to check only ECC bytes for change.
2402 		 */
2403 		ret = onenand_read_oob_nolock(mtd, addr, &ops);
2404 		if (ret)
2405 			return ret;
2406 
2407 		for (i = 0; i < mtd->oobsize; i++)
2408 			if (this->oob_buf[i] != 0xff)
2409 				break;
2410 
2411 		if (i != mtd->oobsize) {
2412 			printk(KERN_WARNING "Block %d not erased.\n", block);
2413 			return 1;
2414 		}
2415 	}
2416 
2417 	return 0;
2418 }
2419 
2420 /**
2421  * flexonenand_set_boundary	- Writes the SLC boundary
2422  * @param mtd			- mtd info structure
2423  */
2424 int flexonenand_set_boundary(struct mtd_info *mtd, int die,
2425 				    int boundary, int lock)
2426 {
2427 	struct onenand_chip *this = mtd->priv;
2428 	int ret, density, blksperdie, old, new, thisboundary;
2429 	loff_t addr;
2430 
2431 	if (die >= this->dies)
2432 		return -EINVAL;
2433 
2434 	if (boundary == this->boundary[die])
2435 		return 0;
2436 
2437 	density = onenand_get_density(this->device_id);
2438 	blksperdie = ((16 << density) << 20) >> this->erase_shift;
2439 	blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
2440 
2441 	if (boundary >= blksperdie) {
2442 		printk("flexonenand_set_boundary:"
2443 			"Invalid boundary value. "
2444 			"Boundary not changed.\n");
2445 		return -EINVAL;
2446 	}
2447 
2448 	/* Check if converting blocks are erased */
2449 	old = this->boundary[die] + (die * this->density_mask);
2450 	new = boundary + (die * this->density_mask);
2451 	ret = flexonenand_check_blocks_erased(mtd, min(old, new)
2452 						+ 1, max(old, new));
2453 	if (ret) {
2454 		printk(KERN_ERR "flexonenand_set_boundary: Please erase blocks before boundary change\n");
2455 		return ret;
2456 	}
2457 
2458 	this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
2459 	this->wait(mtd, FL_SYNCING);
2460 
2461 	/* Check is boundary is locked */
2462 	this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
2463 	ret = this->wait(mtd, FL_READING);
2464 
2465 	thisboundary = this->read_word(this->base + ONENAND_DATARAM);
2466 	if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
2467 		printk(KERN_ERR "flexonenand_set_boundary: boundary locked\n");
2468 		goto out;
2469 	}
2470 
2471 	printk(KERN_INFO "flexonenand_set_boundary: Changing die %d boundary: %d%s\n",
2472 			die, boundary, lock ? "(Locked)" : "(Unlocked)");
2473 
2474 	boundary &= FLEXONENAND_PI_MASK;
2475 	boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
2476 
2477 	addr = die ? this->diesize[0] : 0;
2478 	this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
2479 	ret = this->wait(mtd, FL_ERASING);
2480 	if (ret) {
2481 		printk("flexonenand_set_boundary:"
2482 			"Failed PI erase for Die %d\n", die);
2483 		goto out;
2484 	}
2485 
2486 	this->write_word(boundary, this->base + ONENAND_DATARAM);
2487 	this->command(mtd, ONENAND_CMD_PROG, addr, 0);
2488 	ret = this->wait(mtd, FL_WRITING);
2489 	if (ret) {
2490 		printk("flexonenand_set_boundary:"
2491 			"Failed PI write for Die %d\n", die);
2492 		goto out;
2493 	}
2494 
2495 	this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
2496 	ret = this->wait(mtd, FL_WRITING);
2497 out:
2498 	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
2499 	this->wait(mtd, FL_RESETING);
2500 	if (!ret)
2501 		/* Recalculate device size on boundary change*/
2502 		flexonenand_get_size(mtd);
2503 
2504 	return ret;
2505 }
2506 
2507 /**
2508  * onenand_chip_probe - [OneNAND Interface] Probe the OneNAND chip
2509  * @param mtd		MTD device structure
2510  *
2511  * OneNAND detection method:
2512  *   Compare the the values from command with ones from register
2513  */
2514 static int onenand_chip_probe(struct mtd_info *mtd)
2515 {
2516 	struct onenand_chip *this = mtd->priv;
2517 	int bram_maf_id, bram_dev_id, maf_id, dev_id;
2518 	int syscfg;
2519 
2520 	/* Save system configuration 1 */
2521 	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2522 
2523 	/* Clear Sync. Burst Read mode to read BootRAM */
2524 	this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ),
2525 			 this->base + ONENAND_REG_SYS_CFG1);
2526 
2527 	/* Send the command for reading device ID from BootRAM */
2528 	this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
2529 
2530 	/* Read manufacturer and device IDs from BootRAM */
2531 	bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
2532 	bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
2533 
2534 	/* Reset OneNAND to read default register values */
2535 	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
2536 
2537 	/* Wait reset */
2538 	this->wait(mtd, FL_RESETING);
2539 
2540 	/* Restore system configuration 1 */
2541 	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2542 
2543 	/* Check manufacturer ID */
2544 	if (onenand_check_maf(bram_maf_id))
2545 		return -ENXIO;
2546 
2547 	/* Read manufacturer and device IDs from Register */
2548 	maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
2549 	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2550 
2551 	/* Check OneNAND device */
2552 	if (maf_id != bram_maf_id || dev_id != bram_dev_id)
2553 		return -ENXIO;
2554 
2555 	return 0;
2556 }
2557 
2558 /**
2559  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
2560  * @param mtd		MTD device structure
2561  *
2562  * OneNAND detection method:
2563  *   Compare the the values from command with ones from register
2564  */
2565 int onenand_probe(struct mtd_info *mtd)
2566 {
2567 	struct onenand_chip *this = mtd->priv;
2568 	int dev_id, ver_id;
2569 	int density;
2570 	int ret;
2571 
2572 	ret = this->chip_probe(mtd);
2573 	if (ret)
2574 		return ret;
2575 
2576 	/* Read device IDs from Register */
2577 	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2578 	ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
2579 	this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
2580 
2581 	/* Flash device information */
2582 	mtd->name = onenand_print_device_info(dev_id, ver_id);
2583 	this->device_id = dev_id;
2584 	this->version_id = ver_id;
2585 
2586 	/* Check OneNAND features */
2587 	onenand_check_features(mtd);
2588 
2589 	density = onenand_get_density(dev_id);
2590 	if (FLEXONENAND(this)) {
2591 		this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
2592 		/* Maximum possible erase regions */
2593 		mtd->numeraseregions = this->dies << 1;
2594 		mtd->eraseregions = malloc(sizeof(struct mtd_erase_region_info)
2595 					* (this->dies << 1));
2596 		if (!mtd->eraseregions)
2597 			return -ENOMEM;
2598 	}
2599 
2600 	/*
2601 	 * For Flex-OneNAND, chipsize represents maximum possible device size.
2602 	 * mtd->size represents the actual device size.
2603 	 */
2604 	this->chipsize = (16 << density) << 20;
2605 
2606 	/* OneNAND page size & block size */
2607 	/* The data buffer size is equal to page size */
2608 	mtd->writesize =
2609 	    this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
2610 	/* We use the full BufferRAM */
2611 	if (ONENAND_IS_4KB_PAGE(this))
2612 		mtd->writesize <<= 1;
2613 
2614 	mtd->oobsize = mtd->writesize >> 5;
2615 	/* Pagers per block is always 64 in OneNAND */
2616 	mtd->erasesize = mtd->writesize << 6;
2617 	/*
2618 	 * Flex-OneNAND SLC area has 64 pages per block.
2619 	 * Flex-OneNAND MLC area has 128 pages per block.
2620 	 * Expose MLC erase size to find erase_shift and page_mask.
2621 	 */
2622 	if (FLEXONENAND(this))
2623 		mtd->erasesize <<= 1;
2624 
2625 	this->erase_shift = ffs(mtd->erasesize) - 1;
2626 	this->page_shift = ffs(mtd->writesize) - 1;
2627 	this->ppb_shift = (this->erase_shift - this->page_shift);
2628 	this->page_mask = (mtd->erasesize / mtd->writesize) - 1;
2629 	/* Set density mask. it is used for DDP */
2630 	if (ONENAND_IS_DDP(this))
2631 		this->density_mask = this->chipsize >> (this->erase_shift + 1);
2632 	/* It's real page size */
2633 	this->writesize = mtd->writesize;
2634 
2635 	/* REVIST: Multichip handling */
2636 
2637 	if (FLEXONENAND(this))
2638 		flexonenand_get_size(mtd);
2639 	else
2640 		mtd->size = this->chipsize;
2641 
2642 	mtd->flags = MTD_CAP_NANDFLASH;
2643 	mtd->_erase = onenand_erase;
2644 	mtd->_read = onenand_read;
2645 	mtd->_write = onenand_write;
2646 	mtd->_read_oob = onenand_read_oob;
2647 	mtd->_write_oob = onenand_write_oob;
2648 	mtd->_sync = onenand_sync;
2649 	mtd->_block_isbad = onenand_block_isbad;
2650 	mtd->_block_markbad = onenand_block_markbad;
2651 
2652 	return 0;
2653 }
2654 
2655 /**
2656  * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
2657  * @param mtd		MTD device structure
2658  * @param maxchips	Number of chips to scan for
2659  *
2660  * This fills out all the not initialized function pointers
2661  * with the defaults.
2662  * The flash ID is read and the mtd/chip structures are
2663  * filled with the appropriate values.
2664  */
2665 int onenand_scan(struct mtd_info *mtd, int maxchips)
2666 {
2667 	int i;
2668 	struct onenand_chip *this = mtd->priv;
2669 
2670 	if (!this->read_word)
2671 		this->read_word = onenand_readw;
2672 	if (!this->write_word)
2673 		this->write_word = onenand_writew;
2674 
2675 	if (!this->command)
2676 		this->command = onenand_command;
2677 	if (!this->wait)
2678 		this->wait = onenand_wait;
2679 	if (!this->bbt_wait)
2680 		this->bbt_wait = onenand_bbt_wait;
2681 
2682 	if (!this->read_bufferram)
2683 		this->read_bufferram = onenand_read_bufferram;
2684 	if (!this->write_bufferram)
2685 		this->write_bufferram = onenand_write_bufferram;
2686 
2687 	if (!this->chip_probe)
2688 		this->chip_probe = onenand_chip_probe;
2689 
2690 	if (!this->block_markbad)
2691 		this->block_markbad = onenand_default_block_markbad;
2692 	if (!this->scan_bbt)
2693 		this->scan_bbt = onenand_default_bbt;
2694 
2695 	if (onenand_probe(mtd))
2696 		return -ENXIO;
2697 
2698 	/* Set Sync. Burst Read after probing */
2699 	if (this->mmcontrol) {
2700 		printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
2701 		this->read_bufferram = onenand_sync_read_bufferram;
2702 	}
2703 
2704 	/* Allocate buffers, if necessary */
2705 	if (!this->page_buf) {
2706 		this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
2707 		if (!this->page_buf) {
2708 			printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
2709 			return -ENOMEM;
2710 		}
2711 		this->options |= ONENAND_PAGEBUF_ALLOC;
2712 	}
2713 	if (!this->oob_buf) {
2714 		this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
2715 		if (!this->oob_buf) {
2716 			printk(KERN_ERR "onenand_scan: Can't allocate oob_buf\n");
2717 			if (this->options & ONENAND_PAGEBUF_ALLOC) {
2718 				this->options &= ~ONENAND_PAGEBUF_ALLOC;
2719 				kfree(this->page_buf);
2720 			}
2721 			return -ENOMEM;
2722 		}
2723 		this->options |= ONENAND_OOBBUF_ALLOC;
2724 	}
2725 
2726 	this->state = FL_READY;
2727 
2728 	/*
2729 	 * Allow subpage writes up to oobsize.
2730 	 */
2731 	switch (mtd->oobsize) {
2732 	case 128:
2733 		this->ecclayout = &onenand_oob_128;
2734 		mtd->subpage_sft = 0;
2735 		break;
2736 
2737 	case 64:
2738 		this->ecclayout = &onenand_oob_64;
2739 		mtd->subpage_sft = 2;
2740 		break;
2741 
2742 	case 32:
2743 		this->ecclayout = &onenand_oob_32;
2744 		mtd->subpage_sft = 1;
2745 		break;
2746 
2747 	default:
2748 		printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
2749 			mtd->oobsize);
2750 		mtd->subpage_sft = 0;
2751 		/* To prevent kernel oops */
2752 		this->ecclayout = &onenand_oob_32;
2753 		break;
2754 	}
2755 
2756 	this->subpagesize = mtd->writesize >> mtd->subpage_sft;
2757 
2758 	/*
2759 	 * The number of bytes available for a client to place data into
2760 	 * the out of band area
2761 	 */
2762 	this->ecclayout->oobavail = 0;
2763 
2764 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE &&
2765 	    this->ecclayout->oobfree[i].length; i++)
2766 		this->ecclayout->oobavail +=
2767 			this->ecclayout->oobfree[i].length;
2768 	mtd->oobavail = this->ecclayout->oobavail;
2769 
2770 	mtd->ecclayout = this->ecclayout;
2771 
2772 	/* Unlock whole block */
2773 	onenand_unlock_all(mtd);
2774 
2775 	return this->scan_bbt(mtd);
2776 }
2777 
2778 /**
2779  * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
2780  * @param mtd		MTD device structure
2781  */
2782 void onenand_release(struct mtd_info *mtd)
2783 {
2784 }
2785