1 /* 2 * linux/drivers/mtd/onenand/onenand_base.c 3 * 4 * Copyright (C) 2005-2007 Samsung Electronics 5 * Kyungmin Park <kyungmin.park@samsung.com> 6 * 7 * Credits: 8 * Adrian Hunter <ext-adrian.hunter@nokia.com>: 9 * auto-placement support, read-while load support, various fixes 10 * Copyright (C) Nokia Corporation, 2007 11 * 12 * Rohit Hagargundgi <h.rohit at samsung.com>, 13 * Amul Kumar Saha <amul.saha@samsung.com>: 14 * Flex-OneNAND support 15 * Copyright (C) Samsung Electronics, 2009 16 * 17 * This program is free software; you can redistribute it and/or modify 18 * it under the terms of the GNU General Public License version 2 as 19 * published by the Free Software Foundation. 20 */ 21 22 #include <common.h> 23 #include <linux/mtd/compat.h> 24 #include <linux/mtd/mtd.h> 25 #include <linux/mtd/onenand.h> 26 27 #include <asm/io.h> 28 #include <asm/errno.h> 29 #include <malloc.h> 30 31 /* It should access 16-bit instead of 8-bit */ 32 static void *memcpy_16(void *dst, const void *src, unsigned int len) 33 { 34 void *ret = dst; 35 short *d = dst; 36 const short *s = src; 37 38 len >>= 1; 39 while (len-- > 0) 40 *d++ = *s++; 41 return ret; 42 } 43 44 /** 45 * onenand_oob_128 - oob info for Flex-Onenand with 4KB page 46 * For now, we expose only 64 out of 80 ecc bytes 47 */ 48 static struct nand_ecclayout onenand_oob_128 = { 49 .eccbytes = 64, 50 .eccpos = { 51 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 52 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 53 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 54 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 55 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 56 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 57 102, 103, 104, 105 58 }, 59 .oobfree = { 60 {2, 4}, {18, 4}, {34, 4}, {50, 4}, 61 {66, 4}, {82, 4}, {98, 4}, {114, 4} 62 } 63 }; 64 65 /** 66 * onenand_oob_64 - oob info for large (2KB) page 67 */ 68 static struct nand_ecclayout onenand_oob_64 = { 69 .eccbytes = 20, 70 .eccpos = { 71 8, 9, 10, 11, 12, 72 24, 25, 26, 27, 28, 73 40, 41, 42, 43, 44, 74 56, 57, 58, 59, 60, 75 }, 76 .oobfree = { 77 {2, 3}, {14, 2}, {18, 3}, {30, 2}, 78 {34, 3}, {46, 2}, {50, 3}, {62, 2} 79 } 80 }; 81 82 /** 83 * onenand_oob_32 - oob info for middle (1KB) page 84 */ 85 static struct nand_ecclayout onenand_oob_32 = { 86 .eccbytes = 10, 87 .eccpos = { 88 8, 9, 10, 11, 12, 89 24, 25, 26, 27, 28, 90 }, 91 .oobfree = { {2, 3}, {14, 2}, {18, 3}, {30, 2} } 92 }; 93 94 static const unsigned char ffchars[] = { 95 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 96 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */ 97 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 98 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */ 99 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 100 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */ 101 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 102 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */ 103 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 104 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */ 105 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 106 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */ 107 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 108 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */ 109 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 110 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */ 111 }; 112 113 /** 114 * onenand_readw - [OneNAND Interface] Read OneNAND register 115 * @param addr address to read 116 * 117 * Read OneNAND register 118 */ 119 static unsigned short onenand_readw(void __iomem * addr) 120 { 121 return readw(addr); 122 } 123 124 /** 125 * onenand_writew - [OneNAND Interface] Write OneNAND register with value 126 * @param value value to write 127 * @param addr address to write 128 * 129 * Write OneNAND register with value 130 */ 131 static void onenand_writew(unsigned short value, void __iomem * addr) 132 { 133 writew(value, addr); 134 } 135 136 /** 137 * onenand_block_address - [DEFAULT] Get block address 138 * @param device the device id 139 * @param block the block 140 * @return translated block address if DDP, otherwise same 141 * 142 * Setup Start Address 1 Register (F100h) 143 */ 144 static int onenand_block_address(struct onenand_chip *this, int block) 145 { 146 /* Device Flash Core select, NAND Flash Block Address */ 147 if (block & this->density_mask) 148 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask); 149 150 return block; 151 } 152 153 /** 154 * onenand_bufferram_address - [DEFAULT] Get bufferram address 155 * @param device the device id 156 * @param block the block 157 * @return set DBS value if DDP, otherwise 0 158 * 159 * Setup Start Address 2 Register (F101h) for DDP 160 */ 161 static int onenand_bufferram_address(struct onenand_chip *this, int block) 162 { 163 /* Device BufferRAM Select */ 164 if (block & this->density_mask) 165 return ONENAND_DDP_CHIP1; 166 167 return ONENAND_DDP_CHIP0; 168 } 169 170 /** 171 * onenand_page_address - [DEFAULT] Get page address 172 * @param page the page address 173 * @param sector the sector address 174 * @return combined page and sector address 175 * 176 * Setup Start Address 8 Register (F107h) 177 */ 178 static int onenand_page_address(int page, int sector) 179 { 180 /* Flash Page Address, Flash Sector Address */ 181 int fpa, fsa; 182 183 fpa = page & ONENAND_FPA_MASK; 184 fsa = sector & ONENAND_FSA_MASK; 185 186 return ((fpa << ONENAND_FPA_SHIFT) | fsa); 187 } 188 189 /** 190 * onenand_buffer_address - [DEFAULT] Get buffer address 191 * @param dataram1 DataRAM index 192 * @param sectors the sector address 193 * @param count the number of sectors 194 * @return the start buffer value 195 * 196 * Setup Start Buffer Register (F200h) 197 */ 198 static int onenand_buffer_address(int dataram1, int sectors, int count) 199 { 200 int bsa, bsc; 201 202 /* BufferRAM Sector Address */ 203 bsa = sectors & ONENAND_BSA_MASK; 204 205 if (dataram1) 206 bsa |= ONENAND_BSA_DATARAM1; /* DataRAM1 */ 207 else 208 bsa |= ONENAND_BSA_DATARAM0; /* DataRAM0 */ 209 210 /* BufferRAM Sector Count */ 211 bsc = count & ONENAND_BSC_MASK; 212 213 return ((bsa << ONENAND_BSA_SHIFT) | bsc); 214 } 215 216 /** 217 * flexonenand_block - Return block number for flash address 218 * @param this - OneNAND device structure 219 * @param addr - Address for which block number is needed 220 */ 221 static unsigned int flexonenand_block(struct onenand_chip *this, loff_t addr) 222 { 223 unsigned int boundary, blk, die = 0; 224 225 if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) { 226 die = 1; 227 addr -= this->diesize[0]; 228 } 229 230 boundary = this->boundary[die]; 231 232 blk = addr >> (this->erase_shift - 1); 233 if (blk > boundary) 234 blk = (blk + boundary + 1) >> 1; 235 236 blk += die ? this->density_mask : 0; 237 return blk; 238 } 239 240 unsigned int onenand_block(struct onenand_chip *this, loff_t addr) 241 { 242 if (!FLEXONENAND(this)) 243 return addr >> this->erase_shift; 244 return flexonenand_block(this, addr); 245 } 246 247 /** 248 * flexonenand_addr - Return address of the block 249 * @this: OneNAND device structure 250 * @block: Block number on Flex-OneNAND 251 * 252 * Return address of the block 253 */ 254 static loff_t flexonenand_addr(struct onenand_chip *this, int block) 255 { 256 loff_t ofs = 0; 257 int die = 0, boundary; 258 259 if (ONENAND_IS_DDP(this) && block >= this->density_mask) { 260 block -= this->density_mask; 261 die = 1; 262 ofs = this->diesize[0]; 263 } 264 265 boundary = this->boundary[die]; 266 ofs += (loff_t) block << (this->erase_shift - 1); 267 if (block > (boundary + 1)) 268 ofs += (loff_t) (block - boundary - 1) 269 << (this->erase_shift - 1); 270 return ofs; 271 } 272 273 loff_t onenand_addr(struct onenand_chip *this, int block) 274 { 275 if (!FLEXONENAND(this)) 276 return (loff_t) block << this->erase_shift; 277 return flexonenand_addr(this, block); 278 } 279 280 /** 281 * flexonenand_region - [Flex-OneNAND] Return erase region of addr 282 * @param mtd MTD device structure 283 * @param addr address whose erase region needs to be identified 284 */ 285 int flexonenand_region(struct mtd_info *mtd, loff_t addr) 286 { 287 int i; 288 289 for (i = 0; i < mtd->numeraseregions; i++) 290 if (addr < mtd->eraseregions[i].offset) 291 break; 292 return i - 1; 293 } 294 295 /** 296 * onenand_get_density - [DEFAULT] Get OneNAND density 297 * @param dev_id OneNAND device ID 298 * 299 * Get OneNAND density from device ID 300 */ 301 static inline int onenand_get_density(int dev_id) 302 { 303 int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT; 304 return (density & ONENAND_DEVICE_DENSITY_MASK); 305 } 306 307 /** 308 * onenand_command - [DEFAULT] Send command to OneNAND device 309 * @param mtd MTD device structure 310 * @param cmd the command to be sent 311 * @param addr offset to read from or write to 312 * @param len number of bytes to read or write 313 * 314 * Send command to OneNAND device. This function is used for middle/large page 315 * devices (1KB/2KB Bytes per page) 316 */ 317 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, 318 size_t len) 319 { 320 struct onenand_chip *this = mtd->priv; 321 int value; 322 int block, page; 323 324 /* Now we use page size operation */ 325 int sectors = 0, count = 0; 326 327 /* Address translation */ 328 switch (cmd) { 329 case ONENAND_CMD_UNLOCK: 330 case ONENAND_CMD_LOCK: 331 case ONENAND_CMD_LOCK_TIGHT: 332 case ONENAND_CMD_UNLOCK_ALL: 333 block = -1; 334 page = -1; 335 break; 336 337 case FLEXONENAND_CMD_PI_ACCESS: 338 /* addr contains die index */ 339 block = addr * this->density_mask; 340 page = -1; 341 break; 342 343 case ONENAND_CMD_ERASE: 344 case ONENAND_CMD_BUFFERRAM: 345 block = onenand_block(this, addr); 346 page = -1; 347 break; 348 349 case FLEXONENAND_CMD_READ_PI: 350 cmd = ONENAND_CMD_READ; 351 block = addr * this->density_mask; 352 page = 0; 353 break; 354 355 default: 356 block = onenand_block(this, addr); 357 page = (int) (addr 358 - onenand_addr(this, block)) >> this->page_shift; 359 page &= this->page_mask; 360 break; 361 } 362 363 /* NOTE: The setting order of the registers is very important! */ 364 if (cmd == ONENAND_CMD_BUFFERRAM) { 365 /* Select DataRAM for DDP */ 366 value = onenand_bufferram_address(this, block); 367 this->write_word(value, 368 this->base + ONENAND_REG_START_ADDRESS2); 369 370 if (ONENAND_IS_MLC(this)) 371 ONENAND_SET_BUFFERRAM0(this); 372 else 373 /* Switch to the next data buffer */ 374 ONENAND_SET_NEXT_BUFFERRAM(this); 375 376 return 0; 377 } 378 379 if (block != -1) { 380 /* Write 'DFS, FBA' of Flash */ 381 value = onenand_block_address(this, block); 382 this->write_word(value, 383 this->base + ONENAND_REG_START_ADDRESS1); 384 385 /* Select DataRAM for DDP */ 386 value = onenand_bufferram_address(this, block); 387 this->write_word(value, 388 this->base + ONENAND_REG_START_ADDRESS2); 389 } 390 391 if (page != -1) { 392 int dataram; 393 394 switch (cmd) { 395 case FLEXONENAND_CMD_RECOVER_LSB: 396 case ONENAND_CMD_READ: 397 case ONENAND_CMD_READOOB: 398 if (ONENAND_IS_MLC(this)) 399 dataram = ONENAND_SET_BUFFERRAM0(this); 400 else 401 dataram = ONENAND_SET_NEXT_BUFFERRAM(this); 402 403 break; 404 405 default: 406 dataram = ONENAND_CURRENT_BUFFERRAM(this); 407 break; 408 } 409 410 /* Write 'FPA, FSA' of Flash */ 411 value = onenand_page_address(page, sectors); 412 this->write_word(value, 413 this->base + ONENAND_REG_START_ADDRESS8); 414 415 /* Write 'BSA, BSC' of DataRAM */ 416 value = onenand_buffer_address(dataram, sectors, count); 417 this->write_word(value, this->base + ONENAND_REG_START_BUFFER); 418 } 419 420 /* Interrupt clear */ 421 this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT); 422 /* Write command */ 423 this->write_word(cmd, this->base + ONENAND_REG_COMMAND); 424 425 return 0; 426 } 427 428 /** 429 * onenand_read_ecc - return ecc status 430 * @param this onenand chip structure 431 */ 432 static int onenand_read_ecc(struct onenand_chip *this) 433 { 434 int ecc, i; 435 436 if (!FLEXONENAND(this)) 437 return this->read_word(this->base + ONENAND_REG_ECC_STATUS); 438 439 for (i = 0; i < 4; i++) { 440 ecc = this->read_word(this->base 441 + ((ONENAND_REG_ECC_STATUS + i) << 1)); 442 if (likely(!ecc)) 443 continue; 444 if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR) 445 return ONENAND_ECC_2BIT_ALL; 446 } 447 448 return 0; 449 } 450 451 /** 452 * onenand_wait - [DEFAULT] wait until the command is done 453 * @param mtd MTD device structure 454 * @param state state to select the max. timeout value 455 * 456 * Wait for command done. This applies to all OneNAND command 457 * Read can take up to 30us, erase up to 2ms and program up to 350us 458 * according to general OneNAND specs 459 */ 460 static int onenand_wait(struct mtd_info *mtd, int state) 461 { 462 struct onenand_chip *this = mtd->priv; 463 unsigned int flags = ONENAND_INT_MASTER; 464 unsigned int interrupt = 0; 465 unsigned int ctrl; 466 467 while (1) { 468 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); 469 if (interrupt & flags) 470 break; 471 } 472 473 ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS); 474 475 if (interrupt & ONENAND_INT_READ) { 476 int ecc = onenand_read_ecc(this); 477 if (ecc & ONENAND_ECC_2BIT_ALL) { 478 printk("onenand_wait: ECC error = 0x%04x\n", ecc); 479 return -EBADMSG; 480 } 481 } 482 483 if (ctrl & ONENAND_CTRL_ERROR) { 484 printk("onenand_wait: controller error = 0x%04x\n", ctrl); 485 if (ctrl & ONENAND_CTRL_LOCK) 486 printk("onenand_wait: it's locked error = 0x%04x\n", 487 ctrl); 488 489 return -EIO; 490 } 491 492 493 return 0; 494 } 495 496 /** 497 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset 498 * @param mtd MTD data structure 499 * @param area BufferRAM area 500 * @return offset given area 501 * 502 * Return BufferRAM offset given area 503 */ 504 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area) 505 { 506 struct onenand_chip *this = mtd->priv; 507 508 if (ONENAND_CURRENT_BUFFERRAM(this)) { 509 if (area == ONENAND_DATARAM) 510 return mtd->writesize; 511 if (area == ONENAND_SPARERAM) 512 return mtd->oobsize; 513 } 514 515 return 0; 516 } 517 518 /** 519 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area 520 * @param mtd MTD data structure 521 * @param area BufferRAM area 522 * @param buffer the databuffer to put/get data 523 * @param offset offset to read from or write to 524 * @param count number of bytes to read/write 525 * 526 * Read the BufferRAM area 527 */ 528 static int onenand_read_bufferram(struct mtd_info *mtd, loff_t addr, int area, 529 unsigned char *buffer, int offset, 530 size_t count) 531 { 532 struct onenand_chip *this = mtd->priv; 533 void __iomem *bufferram; 534 535 bufferram = this->base + area; 536 bufferram += onenand_bufferram_offset(mtd, area); 537 538 memcpy_16(buffer, bufferram + offset, count); 539 540 return 0; 541 } 542 543 /** 544 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode 545 * @param mtd MTD data structure 546 * @param area BufferRAM area 547 * @param buffer the databuffer to put/get data 548 * @param offset offset to read from or write to 549 * @param count number of bytes to read/write 550 * 551 * Read the BufferRAM area with Sync. Burst Mode 552 */ 553 static int onenand_sync_read_bufferram(struct mtd_info *mtd, loff_t addr, int area, 554 unsigned char *buffer, int offset, 555 size_t count) 556 { 557 struct onenand_chip *this = mtd->priv; 558 void __iomem *bufferram; 559 560 bufferram = this->base + area; 561 bufferram += onenand_bufferram_offset(mtd, area); 562 563 this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ); 564 565 memcpy_16(buffer, bufferram + offset, count); 566 567 this->mmcontrol(mtd, 0); 568 569 return 0; 570 } 571 572 /** 573 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area 574 * @param mtd MTD data structure 575 * @param area BufferRAM area 576 * @param buffer the databuffer to put/get data 577 * @param offset offset to read from or write to 578 * @param count number of bytes to read/write 579 * 580 * Write the BufferRAM area 581 */ 582 static int onenand_write_bufferram(struct mtd_info *mtd, loff_t addr, int area, 583 const unsigned char *buffer, int offset, 584 size_t count) 585 { 586 struct onenand_chip *this = mtd->priv; 587 void __iomem *bufferram; 588 589 bufferram = this->base + area; 590 bufferram += onenand_bufferram_offset(mtd, area); 591 592 memcpy_16(bufferram + offset, buffer, count); 593 594 return 0; 595 } 596 597 /** 598 * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode 599 * @param mtd MTD data structure 600 * @param addr address to check 601 * @return blockpage address 602 * 603 * Get blockpage address at 2x program mode 604 */ 605 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr) 606 { 607 struct onenand_chip *this = mtd->priv; 608 int blockpage, block, page; 609 610 /* Calculate the even block number */ 611 block = (int) (addr >> this->erase_shift) & ~1; 612 /* Is it the odd plane? */ 613 if (addr & this->writesize) 614 block++; 615 page = (int) (addr >> (this->page_shift + 1)) & this->page_mask; 616 blockpage = (block << 7) | page; 617 618 return blockpage; 619 } 620 621 /** 622 * onenand_check_bufferram - [GENERIC] Check BufferRAM information 623 * @param mtd MTD data structure 624 * @param addr address to check 625 * @return 1 if there are valid data, otherwise 0 626 * 627 * Check bufferram if there is data we required 628 */ 629 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr) 630 { 631 struct onenand_chip *this = mtd->priv; 632 int blockpage, found = 0; 633 unsigned int i; 634 635 #ifdef CONFIG_S3C64XX 636 return 0; 637 #endif 638 639 if (ONENAND_IS_2PLANE(this)) 640 blockpage = onenand_get_2x_blockpage(mtd, addr); 641 else 642 blockpage = (int) (addr >> this->page_shift); 643 644 /* Is there valid data? */ 645 i = ONENAND_CURRENT_BUFFERRAM(this); 646 if (this->bufferram[i].blockpage == blockpage) 647 found = 1; 648 else { 649 /* Check another BufferRAM */ 650 i = ONENAND_NEXT_BUFFERRAM(this); 651 if (this->bufferram[i].blockpage == blockpage) { 652 ONENAND_SET_NEXT_BUFFERRAM(this); 653 found = 1; 654 } 655 } 656 657 if (found && ONENAND_IS_DDP(this)) { 658 /* Select DataRAM for DDP */ 659 int block = onenand_block(this, addr); 660 int value = onenand_bufferram_address(this, block); 661 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); 662 } 663 664 return found; 665 } 666 667 /** 668 * onenand_update_bufferram - [GENERIC] Update BufferRAM information 669 * @param mtd MTD data structure 670 * @param addr address to update 671 * @param valid valid flag 672 * 673 * Update BufferRAM information 674 */ 675 static int onenand_update_bufferram(struct mtd_info *mtd, loff_t addr, 676 int valid) 677 { 678 struct onenand_chip *this = mtd->priv; 679 int blockpage; 680 unsigned int i; 681 682 if (ONENAND_IS_2PLANE(this)) 683 blockpage = onenand_get_2x_blockpage(mtd, addr); 684 else 685 blockpage = (int)(addr >> this->page_shift); 686 687 /* Invalidate another BufferRAM */ 688 i = ONENAND_NEXT_BUFFERRAM(this); 689 if (this->bufferram[i].blockpage == blockpage) 690 this->bufferram[i].blockpage = -1; 691 692 /* Update BufferRAM */ 693 i = ONENAND_CURRENT_BUFFERRAM(this); 694 if (valid) 695 this->bufferram[i].blockpage = blockpage; 696 else 697 this->bufferram[i].blockpage = -1; 698 699 return 0; 700 } 701 702 /** 703 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information 704 * @param mtd MTD data structure 705 * @param addr start address to invalidate 706 * @param len length to invalidate 707 * 708 * Invalidate BufferRAM information 709 */ 710 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr, 711 unsigned int len) 712 { 713 struct onenand_chip *this = mtd->priv; 714 int i; 715 loff_t end_addr = addr + len; 716 717 /* Invalidate BufferRAM */ 718 for (i = 0; i < MAX_BUFFERRAM; i++) { 719 loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift; 720 721 if (buf_addr >= addr && buf_addr < end_addr) 722 this->bufferram[i].blockpage = -1; 723 } 724 } 725 726 /** 727 * onenand_get_device - [GENERIC] Get chip for selected access 728 * @param mtd MTD device structure 729 * @param new_state the state which is requested 730 * 731 * Get the device and lock it for exclusive access 732 */ 733 static void onenand_get_device(struct mtd_info *mtd, int new_state) 734 { 735 /* Do nothing */ 736 } 737 738 /** 739 * onenand_release_device - [GENERIC] release chip 740 * @param mtd MTD device structure 741 * 742 * Deselect, release chip lock and wake up anyone waiting on the device 743 */ 744 static void onenand_release_device(struct mtd_info *mtd) 745 { 746 /* Do nothing */ 747 } 748 749 /** 750 * onenand_transfer_auto_oob - [Internal] oob auto-placement transfer 751 * @param mtd MTD device structure 752 * @param buf destination address 753 * @param column oob offset to read from 754 * @param thislen oob length to read 755 */ 756 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, 757 int column, int thislen) 758 { 759 struct onenand_chip *this = mtd->priv; 760 struct nand_oobfree *free; 761 int readcol = column; 762 int readend = column + thislen; 763 int lastgap = 0; 764 unsigned int i; 765 uint8_t *oob_buf = this->oob_buf; 766 767 free = this->ecclayout->oobfree; 768 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) { 769 if (readcol >= lastgap) 770 readcol += free->offset - lastgap; 771 if (readend >= lastgap) 772 readend += free->offset - lastgap; 773 lastgap = free->offset + free->length; 774 } 775 this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize); 776 free = this->ecclayout->oobfree; 777 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) { 778 int free_end = free->offset + free->length; 779 if (free->offset < readend && free_end > readcol) { 780 int st = max_t(int,free->offset,readcol); 781 int ed = min_t(int,free_end,readend); 782 int n = ed - st; 783 memcpy(buf, oob_buf + st, n); 784 buf += n; 785 } else if (column == 0) 786 break; 787 } 788 return 0; 789 } 790 791 /** 792 * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data 793 * @param mtd MTD device structure 794 * @param addr address to recover 795 * @param status return value from onenand_wait 796 * 797 * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has 798 * lower page address and MSB page has higher page address in paired pages. 799 * If power off occurs during MSB page program, the paired LSB page data can 800 * become corrupt. LSB page recovery read is a way to read LSB page though page 801 * data are corrupted. When uncorrectable error occurs as a result of LSB page 802 * read after power up, issue LSB page recovery read. 803 */ 804 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status) 805 { 806 struct onenand_chip *this = mtd->priv; 807 int i; 808 809 /* Recovery is only for Flex-OneNAND */ 810 if (!FLEXONENAND(this)) 811 return status; 812 813 /* check if we failed due to uncorrectable error */ 814 if (status != -EBADMSG && status != ONENAND_BBT_READ_ECC_ERROR) 815 return status; 816 817 /* check if address lies in MLC region */ 818 i = flexonenand_region(mtd, addr); 819 if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift)) 820 return status; 821 822 printk("onenand_recover_lsb:" 823 "Attempting to recover from uncorrectable read\n"); 824 825 /* Issue the LSB page recovery command */ 826 this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize); 827 return this->wait(mtd, FL_READING); 828 } 829 830 /** 831 * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band 832 * @param mtd MTD device structure 833 * @param from offset to read from 834 * @param ops oob operation description structure 835 * 836 * OneNAND read main and/or out-of-band data 837 */ 838 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from, 839 struct mtd_oob_ops *ops) 840 { 841 struct onenand_chip *this = mtd->priv; 842 struct mtd_ecc_stats stats; 843 size_t len = ops->len; 844 size_t ooblen = ops->ooblen; 845 u_char *buf = ops->datbuf; 846 u_char *oobbuf = ops->oobbuf; 847 int read = 0, column, thislen; 848 int oobread = 0, oobcolumn, thisooblen, oobsize; 849 int ret = 0, boundary = 0; 850 int writesize = this->writesize; 851 852 MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_read_ops_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len); 853 854 if (ops->mode == MTD_OOB_AUTO) 855 oobsize = this->ecclayout->oobavail; 856 else 857 oobsize = mtd->oobsize; 858 859 oobcolumn = from & (mtd->oobsize - 1); 860 861 /* Do not allow reads past end of device */ 862 if ((from + len) > mtd->size) { 863 printk(KERN_ERR "onenand_read_ops_nolock: Attempt read beyond end of device\n"); 864 ops->retlen = 0; 865 ops->oobretlen = 0; 866 return -EINVAL; 867 } 868 869 stats = mtd->ecc_stats; 870 871 /* Read-while-load method */ 872 /* Note: We can't use this feature in MLC */ 873 874 /* Do first load to bufferRAM */ 875 if (read < len) { 876 if (!onenand_check_bufferram(mtd, from)) { 877 this->main_buf = buf; 878 this->command(mtd, ONENAND_CMD_READ, from, writesize); 879 ret = this->wait(mtd, FL_READING); 880 if (unlikely(ret)) 881 ret = onenand_recover_lsb(mtd, from, ret); 882 onenand_update_bufferram(mtd, from, !ret); 883 if (ret == -EBADMSG) 884 ret = 0; 885 } 886 } 887 888 thislen = min_t(int, writesize, len - read); 889 column = from & (writesize - 1); 890 if (column + thislen > writesize) 891 thislen = writesize - column; 892 893 while (!ret) { 894 /* If there is more to load then start next load */ 895 from += thislen; 896 if (!ONENAND_IS_MLC(this) && read + thislen < len) { 897 this->main_buf = buf + thislen; 898 this->command(mtd, ONENAND_CMD_READ, from, writesize); 899 /* 900 * Chip boundary handling in DDP 901 * Now we issued chip 1 read and pointed chip 1 902 * bufferam so we have to point chip 0 bufferam. 903 */ 904 if (ONENAND_IS_DDP(this) && 905 unlikely(from == (this->chipsize >> 1))) { 906 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2); 907 boundary = 1; 908 } else 909 boundary = 0; 910 ONENAND_SET_PREV_BUFFERRAM(this); 911 } 912 913 /* While load is going, read from last bufferRAM */ 914 this->read_bufferram(mtd, from - thislen, ONENAND_DATARAM, buf, column, thislen); 915 916 /* Read oob area if needed */ 917 if (oobbuf) { 918 thisooblen = oobsize - oobcolumn; 919 thisooblen = min_t(int, thisooblen, ooblen - oobread); 920 921 if (ops->mode == MTD_OOB_AUTO) 922 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen); 923 else 924 this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen); 925 oobread += thisooblen; 926 oobbuf += thisooblen; 927 oobcolumn = 0; 928 } 929 930 if (ONENAND_IS_MLC(this) && (read + thislen < len)) { 931 this->command(mtd, ONENAND_CMD_READ, from, writesize); 932 ret = this->wait(mtd, FL_READING); 933 if (unlikely(ret)) 934 ret = onenand_recover_lsb(mtd, from, ret); 935 onenand_update_bufferram(mtd, from, !ret); 936 if (ret == -EBADMSG) 937 ret = 0; 938 } 939 940 /* See if we are done */ 941 read += thislen; 942 if (read == len) 943 break; 944 /* Set up for next read from bufferRAM */ 945 if (unlikely(boundary)) 946 this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2); 947 if (!ONENAND_IS_MLC(this)) 948 ONENAND_SET_NEXT_BUFFERRAM(this); 949 buf += thislen; 950 thislen = min_t(int, writesize, len - read); 951 column = 0; 952 953 if (!ONENAND_IS_MLC(this)) { 954 /* Now wait for load */ 955 ret = this->wait(mtd, FL_READING); 956 onenand_update_bufferram(mtd, from, !ret); 957 if (ret == -EBADMSG) 958 ret = 0; 959 } 960 } 961 962 /* 963 * Return success, if no ECC failures, else -EBADMSG 964 * fs driver will take care of that, because 965 * retlen == desired len and result == -EBADMSG 966 */ 967 ops->retlen = read; 968 ops->oobretlen = oobread; 969 970 if (ret) 971 return ret; 972 973 if (mtd->ecc_stats.failed - stats.failed) 974 return -EBADMSG; 975 976 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0; 977 } 978 979 /** 980 * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band 981 * @param mtd MTD device structure 982 * @param from offset to read from 983 * @param ops oob operation description structure 984 * 985 * OneNAND read out-of-band data from the spare area 986 */ 987 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from, 988 struct mtd_oob_ops *ops) 989 { 990 struct onenand_chip *this = mtd->priv; 991 struct mtd_ecc_stats stats; 992 int read = 0, thislen, column, oobsize; 993 size_t len = ops->ooblen; 994 mtd_oob_mode_t mode = ops->mode; 995 u_char *buf = ops->oobbuf; 996 int ret = 0, readcmd; 997 998 from += ops->ooboffs; 999 1000 MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len); 1001 1002 /* Initialize return length value */ 1003 ops->oobretlen = 0; 1004 1005 if (mode == MTD_OOB_AUTO) 1006 oobsize = this->ecclayout->oobavail; 1007 else 1008 oobsize = mtd->oobsize; 1009 1010 column = from & (mtd->oobsize - 1); 1011 1012 if (unlikely(column >= oobsize)) { 1013 printk(KERN_ERR "onenand_read_oob_nolock: Attempted to start read outside oob\n"); 1014 return -EINVAL; 1015 } 1016 1017 /* Do not allow reads past end of device */ 1018 if (unlikely(from >= mtd->size || 1019 column + len > ((mtd->size >> this->page_shift) - 1020 (from >> this->page_shift)) * oobsize)) { 1021 printk(KERN_ERR "onenand_read_oob_nolock: Attempted to read beyond end of device\n"); 1022 return -EINVAL; 1023 } 1024 1025 stats = mtd->ecc_stats; 1026 1027 readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB; 1028 1029 while (read < len) { 1030 thislen = oobsize - column; 1031 thislen = min_t(int, thislen, len); 1032 1033 this->spare_buf = buf; 1034 this->command(mtd, readcmd, from, mtd->oobsize); 1035 1036 onenand_update_bufferram(mtd, from, 0); 1037 1038 ret = this->wait(mtd, FL_READING); 1039 if (unlikely(ret)) 1040 ret = onenand_recover_lsb(mtd, from, ret); 1041 1042 if (ret && ret != -EBADMSG) { 1043 printk(KERN_ERR "onenand_read_oob_nolock: read failed = 0x%x\n", ret); 1044 break; 1045 } 1046 1047 if (mode == MTD_OOB_AUTO) 1048 onenand_transfer_auto_oob(mtd, buf, column, thislen); 1049 else 1050 this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen); 1051 1052 read += thislen; 1053 1054 if (read == len) 1055 break; 1056 1057 buf += thislen; 1058 1059 /* Read more? */ 1060 if (read < len) { 1061 /* Page size */ 1062 from += mtd->writesize; 1063 column = 0; 1064 } 1065 } 1066 1067 ops->oobretlen = read; 1068 1069 if (ret) 1070 return ret; 1071 1072 if (mtd->ecc_stats.failed - stats.failed) 1073 return -EBADMSG; 1074 1075 return 0; 1076 } 1077 1078 /** 1079 * onenand_read - [MTD Interface] MTD compability function for onenand_read_ecc 1080 * @param mtd MTD device structure 1081 * @param from offset to read from 1082 * @param len number of bytes to read 1083 * @param retlen pointer to variable to store the number of read bytes 1084 * @param buf the databuffer to put data 1085 * 1086 * This function simply calls onenand_read_ecc with oob buffer and oobsel = NULL 1087 */ 1088 int onenand_read(struct mtd_info *mtd, loff_t from, size_t len, 1089 size_t * retlen, u_char * buf) 1090 { 1091 struct mtd_oob_ops ops = { 1092 .len = len, 1093 .ooblen = 0, 1094 .datbuf = buf, 1095 .oobbuf = NULL, 1096 }; 1097 int ret; 1098 1099 onenand_get_device(mtd, FL_READING); 1100 ret = onenand_read_ops_nolock(mtd, from, &ops); 1101 onenand_release_device(mtd); 1102 1103 *retlen = ops.retlen; 1104 return ret; 1105 } 1106 1107 /** 1108 * onenand_read_oob - [MTD Interface] OneNAND read out-of-band 1109 * @param mtd MTD device structure 1110 * @param from offset to read from 1111 * @param ops oob operations description structure 1112 * 1113 * OneNAND main and/or out-of-band 1114 */ 1115 int onenand_read_oob(struct mtd_info *mtd, loff_t from, 1116 struct mtd_oob_ops *ops) 1117 { 1118 int ret; 1119 1120 switch (ops->mode) { 1121 case MTD_OOB_PLACE: 1122 case MTD_OOB_AUTO: 1123 break; 1124 case MTD_OOB_RAW: 1125 /* Not implemented yet */ 1126 default: 1127 return -EINVAL; 1128 } 1129 1130 onenand_get_device(mtd, FL_READING); 1131 if (ops->datbuf) 1132 ret = onenand_read_ops_nolock(mtd, from, ops); 1133 else 1134 ret = onenand_read_oob_nolock(mtd, from, ops); 1135 onenand_release_device(mtd); 1136 1137 return ret; 1138 } 1139 1140 /** 1141 * onenand_bbt_wait - [DEFAULT] wait until the command is done 1142 * @param mtd MTD device structure 1143 * @param state state to select the max. timeout value 1144 * 1145 * Wait for command done. 1146 */ 1147 static int onenand_bbt_wait(struct mtd_info *mtd, int state) 1148 { 1149 struct onenand_chip *this = mtd->priv; 1150 unsigned int flags = ONENAND_INT_MASTER; 1151 unsigned int interrupt; 1152 unsigned int ctrl; 1153 1154 while (1) { 1155 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); 1156 if (interrupt & flags) 1157 break; 1158 } 1159 1160 /* To get correct interrupt status in timeout case */ 1161 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); 1162 ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS); 1163 1164 if (interrupt & ONENAND_INT_READ) { 1165 int ecc = onenand_read_ecc(this); 1166 if (ecc & ONENAND_ECC_2BIT_ALL) { 1167 printk(KERN_INFO "onenand_bbt_wait: ecc error = 0x%04x" 1168 ", controller = 0x%04x\n", ecc, ctrl); 1169 return ONENAND_BBT_READ_ERROR; 1170 } 1171 } else { 1172 printk(KERN_ERR "onenand_bbt_wait: read timeout!" 1173 "ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt); 1174 return ONENAND_BBT_READ_FATAL_ERROR; 1175 } 1176 1177 /* Initial bad block case: 0x2400 or 0x0400 */ 1178 if (ctrl & ONENAND_CTRL_ERROR) { 1179 printk(KERN_DEBUG "onenand_bbt_wait: controller error = 0x%04x\n", ctrl); 1180 return ONENAND_BBT_READ_ERROR; 1181 } 1182 1183 return 0; 1184 } 1185 1186 /** 1187 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan 1188 * @param mtd MTD device structure 1189 * @param from offset to read from 1190 * @param ops oob operation description structure 1191 * 1192 * OneNAND read out-of-band data from the spare area for bbt scan 1193 */ 1194 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from, 1195 struct mtd_oob_ops *ops) 1196 { 1197 struct onenand_chip *this = mtd->priv; 1198 int read = 0, thislen, column; 1199 int ret = 0, readcmd; 1200 size_t len = ops->ooblen; 1201 u_char *buf = ops->oobbuf; 1202 1203 MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_bbt_read_oob: from = 0x%08x, len = %zi\n", (unsigned int) from, len); 1204 1205 readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB; 1206 1207 /* Initialize return value */ 1208 ops->oobretlen = 0; 1209 1210 /* Do not allow reads past end of device */ 1211 if (unlikely((from + len) > mtd->size)) { 1212 printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n"); 1213 return ONENAND_BBT_READ_FATAL_ERROR; 1214 } 1215 1216 /* Grab the lock and see if the device is available */ 1217 onenand_get_device(mtd, FL_READING); 1218 1219 column = from & (mtd->oobsize - 1); 1220 1221 while (read < len) { 1222 1223 thislen = mtd->oobsize - column; 1224 thislen = min_t(int, thislen, len); 1225 1226 this->spare_buf = buf; 1227 this->command(mtd, readcmd, from, mtd->oobsize); 1228 1229 onenand_update_bufferram(mtd, from, 0); 1230 1231 ret = this->bbt_wait(mtd, FL_READING); 1232 if (unlikely(ret)) 1233 ret = onenand_recover_lsb(mtd, from, ret); 1234 1235 if (ret) 1236 break; 1237 1238 this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen); 1239 read += thislen; 1240 if (read == len) 1241 break; 1242 1243 buf += thislen; 1244 1245 /* Read more? */ 1246 if (read < len) { 1247 /* Update Page size */ 1248 from += this->writesize; 1249 column = 0; 1250 } 1251 } 1252 1253 /* Deselect and wake up anyone waiting on the device */ 1254 onenand_release_device(mtd); 1255 1256 ops->oobretlen = read; 1257 return ret; 1258 } 1259 1260 1261 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE 1262 /** 1263 * onenand_verify_oob - [GENERIC] verify the oob contents after a write 1264 * @param mtd MTD device structure 1265 * @param buf the databuffer to verify 1266 * @param to offset to read from 1267 */ 1268 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to) 1269 { 1270 struct onenand_chip *this = mtd->priv; 1271 u_char *oob_buf = this->oob_buf; 1272 int status, i, readcmd; 1273 1274 readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB; 1275 1276 this->command(mtd, readcmd, to, mtd->oobsize); 1277 onenand_update_bufferram(mtd, to, 0); 1278 status = this->wait(mtd, FL_READING); 1279 if (status) 1280 return status; 1281 1282 this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize); 1283 for (i = 0; i < mtd->oobsize; i++) 1284 if (buf[i] != 0xFF && buf[i] != oob_buf[i]) 1285 return -EBADMSG; 1286 1287 return 0; 1288 } 1289 1290 /** 1291 * onenand_verify - [GENERIC] verify the chip contents after a write 1292 * @param mtd MTD device structure 1293 * @param buf the databuffer to verify 1294 * @param addr offset to read from 1295 * @param len number of bytes to read and compare 1296 */ 1297 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len) 1298 { 1299 struct onenand_chip *this = mtd->priv; 1300 void __iomem *dataram; 1301 int ret = 0; 1302 int thislen, column; 1303 1304 while (len != 0) { 1305 thislen = min_t(int, this->writesize, len); 1306 column = addr & (this->writesize - 1); 1307 if (column + thislen > this->writesize) 1308 thislen = this->writesize - column; 1309 1310 this->command(mtd, ONENAND_CMD_READ, addr, this->writesize); 1311 1312 onenand_update_bufferram(mtd, addr, 0); 1313 1314 ret = this->wait(mtd, FL_READING); 1315 if (ret) 1316 return ret; 1317 1318 onenand_update_bufferram(mtd, addr, 1); 1319 1320 dataram = this->base + ONENAND_DATARAM; 1321 dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM); 1322 1323 if (memcmp(buf, dataram + column, thislen)) 1324 return -EBADMSG; 1325 1326 len -= thislen; 1327 buf += thislen; 1328 addr += thislen; 1329 } 1330 1331 return 0; 1332 } 1333 #else 1334 #define onenand_verify(...) (0) 1335 #define onenand_verify_oob(...) (0) 1336 #endif 1337 1338 #define NOTALIGNED(x) ((x & (this->subpagesize - 1)) != 0) 1339 1340 /** 1341 * onenand_fill_auto_oob - [Internal] oob auto-placement transfer 1342 * @param mtd MTD device structure 1343 * @param oob_buf oob buffer 1344 * @param buf source address 1345 * @param column oob offset to write to 1346 * @param thislen oob length to write 1347 */ 1348 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf, 1349 const u_char *buf, int column, int thislen) 1350 { 1351 struct onenand_chip *this = mtd->priv; 1352 struct nand_oobfree *free; 1353 int writecol = column; 1354 int writeend = column + thislen; 1355 int lastgap = 0; 1356 unsigned int i; 1357 1358 free = this->ecclayout->oobfree; 1359 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) { 1360 if (writecol >= lastgap) 1361 writecol += free->offset - lastgap; 1362 if (writeend >= lastgap) 1363 writeend += free->offset - lastgap; 1364 lastgap = free->offset + free->length; 1365 } 1366 free = this->ecclayout->oobfree; 1367 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) { 1368 int free_end = free->offset + free->length; 1369 if (free->offset < writeend && free_end > writecol) { 1370 int st = max_t(int,free->offset,writecol); 1371 int ed = min_t(int,free_end,writeend); 1372 int n = ed - st; 1373 memcpy(oob_buf + st, buf, n); 1374 buf += n; 1375 } else if (column == 0) 1376 break; 1377 } 1378 return 0; 1379 } 1380 1381 /** 1382 * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band 1383 * @param mtd MTD device structure 1384 * @param to offset to write to 1385 * @param ops oob operation description structure 1386 * 1387 * Write main and/or oob with ECC 1388 */ 1389 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to, 1390 struct mtd_oob_ops *ops) 1391 { 1392 struct onenand_chip *this = mtd->priv; 1393 int written = 0, column, thislen, subpage; 1394 int oobwritten = 0, oobcolumn, thisooblen, oobsize; 1395 size_t len = ops->len; 1396 size_t ooblen = ops->ooblen; 1397 const u_char *buf = ops->datbuf; 1398 const u_char *oob = ops->oobbuf; 1399 u_char *oobbuf; 1400 int ret = 0; 1401 1402 MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_write_ops_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len); 1403 1404 /* Initialize retlen, in case of early exit */ 1405 ops->retlen = 0; 1406 ops->oobretlen = 0; 1407 1408 /* Do not allow writes past end of device */ 1409 if (unlikely((to + len) > mtd->size)) { 1410 printk(KERN_ERR "onenand_write_ops_nolock: Attempt write to past end of device\n"); 1411 return -EINVAL; 1412 } 1413 1414 /* Reject writes, which are not page aligned */ 1415 if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) { 1416 printk(KERN_ERR "onenand_write_ops_nolock: Attempt to write not page aligned data\n"); 1417 return -EINVAL; 1418 } 1419 1420 if (ops->mode == MTD_OOB_AUTO) 1421 oobsize = this->ecclayout->oobavail; 1422 else 1423 oobsize = mtd->oobsize; 1424 1425 oobcolumn = to & (mtd->oobsize - 1); 1426 1427 column = to & (mtd->writesize - 1); 1428 1429 /* Loop until all data write */ 1430 while (written < len) { 1431 u_char *wbuf = (u_char *) buf; 1432 1433 thislen = min_t(int, mtd->writesize - column, len - written); 1434 thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten); 1435 1436 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen); 1437 1438 /* Partial page write */ 1439 subpage = thislen < mtd->writesize; 1440 if (subpage) { 1441 memset(this->page_buf, 0xff, mtd->writesize); 1442 memcpy(this->page_buf + column, buf, thislen); 1443 wbuf = this->page_buf; 1444 } 1445 1446 this->write_bufferram(mtd, to, ONENAND_DATARAM, wbuf, 0, mtd->writesize); 1447 1448 if (oob) { 1449 oobbuf = this->oob_buf; 1450 1451 /* We send data to spare ram with oobsize 1452 * * to prevent byte access */ 1453 memset(oobbuf, 0xff, mtd->oobsize); 1454 if (ops->mode == MTD_OOB_AUTO) 1455 onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen); 1456 else 1457 memcpy(oobbuf + oobcolumn, oob, thisooblen); 1458 1459 oobwritten += thisooblen; 1460 oob += thisooblen; 1461 oobcolumn = 0; 1462 } else 1463 oobbuf = (u_char *) ffchars; 1464 1465 this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize); 1466 1467 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize); 1468 1469 ret = this->wait(mtd, FL_WRITING); 1470 1471 /* In partial page write we don't update bufferram */ 1472 onenand_update_bufferram(mtd, to, !ret && !subpage); 1473 if (ONENAND_IS_2PLANE(this)) { 1474 ONENAND_SET_BUFFERRAM1(this); 1475 onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage); 1476 } 1477 1478 if (ret) { 1479 printk(KERN_ERR "onenand_write_ops_nolock: write filaed %d\n", ret); 1480 break; 1481 } 1482 1483 /* Only check verify write turn on */ 1484 ret = onenand_verify(mtd, buf, to, thislen); 1485 if (ret) { 1486 printk(KERN_ERR "onenand_write_ops_nolock: verify failed %d\n", ret); 1487 break; 1488 } 1489 1490 written += thislen; 1491 1492 if (written == len) 1493 break; 1494 1495 column = 0; 1496 to += thislen; 1497 buf += thislen; 1498 } 1499 1500 ops->retlen = written; 1501 1502 return ret; 1503 } 1504 1505 /** 1506 * onenand_write_oob_nolock - [Internal] OneNAND write out-of-band 1507 * @param mtd MTD device structure 1508 * @param to offset to write to 1509 * @param len number of bytes to write 1510 * @param retlen pointer to variable to store the number of written bytes 1511 * @param buf the data to write 1512 * @param mode operation mode 1513 * 1514 * OneNAND write out-of-band 1515 */ 1516 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to, 1517 struct mtd_oob_ops *ops) 1518 { 1519 struct onenand_chip *this = mtd->priv; 1520 int column, ret = 0, oobsize; 1521 int written = 0, oobcmd; 1522 u_char *oobbuf; 1523 size_t len = ops->ooblen; 1524 const u_char *buf = ops->oobbuf; 1525 mtd_oob_mode_t mode = ops->mode; 1526 1527 to += ops->ooboffs; 1528 1529 MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len); 1530 1531 /* Initialize retlen, in case of early exit */ 1532 ops->oobretlen = 0; 1533 1534 if (mode == MTD_OOB_AUTO) 1535 oobsize = this->ecclayout->oobavail; 1536 else 1537 oobsize = mtd->oobsize; 1538 1539 column = to & (mtd->oobsize - 1); 1540 1541 if (unlikely(column >= oobsize)) { 1542 printk(KERN_ERR "onenand_write_oob_nolock: Attempted to start write outside oob\n"); 1543 return -EINVAL; 1544 } 1545 1546 /* For compatibility with NAND: Do not allow write past end of page */ 1547 if (unlikely(column + len > oobsize)) { 1548 printk(KERN_ERR "onenand_write_oob_nolock: " 1549 "Attempt to write past end of page\n"); 1550 return -EINVAL; 1551 } 1552 1553 /* Do not allow reads past end of device */ 1554 if (unlikely(to >= mtd->size || 1555 column + len > ((mtd->size >> this->page_shift) - 1556 (to >> this->page_shift)) * oobsize)) { 1557 printk(KERN_ERR "onenand_write_oob_nolock: Attempted to write past end of device\n"); 1558 return -EINVAL; 1559 } 1560 1561 oobbuf = this->oob_buf; 1562 1563 oobcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB; 1564 1565 /* Loop until all data write */ 1566 while (written < len) { 1567 int thislen = min_t(int, oobsize, len - written); 1568 1569 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize); 1570 1571 /* We send data to spare ram with oobsize 1572 * to prevent byte access */ 1573 memset(oobbuf, 0xff, mtd->oobsize); 1574 if (mode == MTD_OOB_AUTO) 1575 onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen); 1576 else 1577 memcpy(oobbuf + column, buf, thislen); 1578 this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize); 1579 1580 if (ONENAND_IS_MLC(this)) { 1581 /* Set main area of DataRAM to 0xff*/ 1582 memset(this->page_buf, 0xff, mtd->writesize); 1583 this->write_bufferram(mtd, 0, ONENAND_DATARAM, 1584 this->page_buf, 0, mtd->writesize); 1585 } 1586 1587 this->command(mtd, oobcmd, to, mtd->oobsize); 1588 1589 onenand_update_bufferram(mtd, to, 0); 1590 if (ONENAND_IS_2PLANE(this)) { 1591 ONENAND_SET_BUFFERRAM1(this); 1592 onenand_update_bufferram(mtd, to + this->writesize, 0); 1593 } 1594 1595 ret = this->wait(mtd, FL_WRITING); 1596 if (ret) { 1597 printk(KERN_ERR "onenand_write_oob_nolock: write failed %d\n", ret); 1598 break; 1599 } 1600 1601 ret = onenand_verify_oob(mtd, oobbuf, to); 1602 if (ret) { 1603 printk(KERN_ERR "onenand_write_oob_nolock: verify failed %d\n", ret); 1604 break; 1605 } 1606 1607 written += thislen; 1608 if (written == len) 1609 break; 1610 1611 to += mtd->writesize; 1612 buf += thislen; 1613 column = 0; 1614 } 1615 1616 ops->oobretlen = written; 1617 1618 return ret; 1619 } 1620 1621 /** 1622 * onenand_write - [MTD Interface] compability function for onenand_write_ecc 1623 * @param mtd MTD device structure 1624 * @param to offset to write to 1625 * @param len number of bytes to write 1626 * @param retlen pointer to variable to store the number of written bytes 1627 * @param buf the data to write 1628 * 1629 * Write with ECC 1630 */ 1631 int onenand_write(struct mtd_info *mtd, loff_t to, size_t len, 1632 size_t * retlen, const u_char * buf) 1633 { 1634 struct mtd_oob_ops ops = { 1635 .len = len, 1636 .ooblen = 0, 1637 .datbuf = (u_char *) buf, 1638 .oobbuf = NULL, 1639 }; 1640 int ret; 1641 1642 onenand_get_device(mtd, FL_WRITING); 1643 ret = onenand_write_ops_nolock(mtd, to, &ops); 1644 onenand_release_device(mtd); 1645 1646 *retlen = ops.retlen; 1647 return ret; 1648 } 1649 1650 /** 1651 * onenand_write_oob - [MTD Interface] OneNAND write out-of-band 1652 * @param mtd MTD device structure 1653 * @param to offset to write to 1654 * @param ops oob operation description structure 1655 * 1656 * OneNAND write main and/or out-of-band 1657 */ 1658 int onenand_write_oob(struct mtd_info *mtd, loff_t to, 1659 struct mtd_oob_ops *ops) 1660 { 1661 int ret; 1662 1663 switch (ops->mode) { 1664 case MTD_OOB_PLACE: 1665 case MTD_OOB_AUTO: 1666 break; 1667 case MTD_OOB_RAW: 1668 /* Not implemented yet */ 1669 default: 1670 return -EINVAL; 1671 } 1672 1673 onenand_get_device(mtd, FL_WRITING); 1674 if (ops->datbuf) 1675 ret = onenand_write_ops_nolock(mtd, to, ops); 1676 else 1677 ret = onenand_write_oob_nolock(mtd, to, ops); 1678 onenand_release_device(mtd); 1679 1680 return ret; 1681 1682 } 1683 1684 /** 1685 * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad 1686 * @param mtd MTD device structure 1687 * @param ofs offset from device start 1688 * @param allowbbt 1, if its allowed to access the bbt area 1689 * 1690 * Check, if the block is bad, Either by reading the bad block table or 1691 * calling of the scan function. 1692 */ 1693 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt) 1694 { 1695 struct onenand_chip *this = mtd->priv; 1696 struct bbm_info *bbm = this->bbm; 1697 1698 /* Return info from the table */ 1699 return bbm->isbad_bbt(mtd, ofs, allowbbt); 1700 } 1701 1702 1703 /** 1704 * onenand_erase - [MTD Interface] erase block(s) 1705 * @param mtd MTD device structure 1706 * @param instr erase instruction 1707 * 1708 * Erase one ore more blocks 1709 */ 1710 int onenand_erase(struct mtd_info *mtd, struct erase_info *instr) 1711 { 1712 struct onenand_chip *this = mtd->priv; 1713 unsigned int block_size; 1714 loff_t addr = instr->addr; 1715 unsigned int len = instr->len; 1716 int ret = 0, i; 1717 struct mtd_erase_region_info *region = NULL; 1718 unsigned int region_end = 0; 1719 1720 MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n", 1721 (unsigned int) addr, len); 1722 1723 /* Do not allow erase past end of device */ 1724 if (unlikely((len + addr) > mtd->size)) { 1725 MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:" 1726 "Erase past end of device\n"); 1727 return -EINVAL; 1728 } 1729 1730 if (FLEXONENAND(this)) { 1731 /* Find the eraseregion of this address */ 1732 i = flexonenand_region(mtd, addr); 1733 region = &mtd->eraseregions[i]; 1734 1735 block_size = region->erasesize; 1736 region_end = region->offset 1737 + region->erasesize * region->numblocks; 1738 1739 /* Start address within region must align on block boundary. 1740 * Erase region's start offset is always block start address. 1741 */ 1742 if (unlikely((addr - region->offset) & (block_size - 1))) { 1743 MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:" 1744 " Unaligned address\n"); 1745 return -EINVAL; 1746 } 1747 } else { 1748 block_size = 1 << this->erase_shift; 1749 1750 /* Start address must align on block boundary */ 1751 if (unlikely(addr & (block_size - 1))) { 1752 MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:" 1753 "Unaligned address\n"); 1754 return -EINVAL; 1755 } 1756 } 1757 1758 /* Length must align on block boundary */ 1759 if (unlikely(len & (block_size - 1))) { 1760 MTDDEBUG (MTD_DEBUG_LEVEL0, 1761 "onenand_erase: Length not block aligned\n"); 1762 return -EINVAL; 1763 } 1764 1765 instr->fail_addr = 0xffffffff; 1766 1767 /* Grab the lock and see if the device is available */ 1768 onenand_get_device(mtd, FL_ERASING); 1769 1770 /* Loop throught the pages */ 1771 instr->state = MTD_ERASING; 1772 1773 while (len) { 1774 1775 /* Check if we have a bad block, we do not erase bad blocks */ 1776 if (instr->priv == 0 && onenand_block_isbad_nolock(mtd, addr, 0)) { 1777 printk(KERN_WARNING "onenand_erase: attempt to erase" 1778 " a bad block at addr 0x%08x\n", 1779 (unsigned int) addr); 1780 instr->state = MTD_ERASE_FAILED; 1781 goto erase_exit; 1782 } 1783 1784 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size); 1785 1786 onenand_invalidate_bufferram(mtd, addr, block_size); 1787 1788 ret = this->wait(mtd, FL_ERASING); 1789 /* Check, if it is write protected */ 1790 if (ret) { 1791 if (ret == -EPERM) 1792 MTDDEBUG (MTD_DEBUG_LEVEL0, "onenand_erase: " 1793 "Device is write protected!!!\n"); 1794 else 1795 MTDDEBUG (MTD_DEBUG_LEVEL0, "onenand_erase: " 1796 "Failed erase, block %d\n", 1797 onenand_block(this, addr)); 1798 instr->state = MTD_ERASE_FAILED; 1799 instr->fail_addr = addr; 1800 1801 goto erase_exit; 1802 } 1803 1804 len -= block_size; 1805 addr += block_size; 1806 1807 if (addr == region_end) { 1808 if (!len) 1809 break; 1810 region++; 1811 1812 block_size = region->erasesize; 1813 region_end = region->offset 1814 + region->erasesize * region->numblocks; 1815 1816 if (len & (block_size - 1)) { 1817 /* This has been checked at MTD 1818 * partitioning level. */ 1819 printk("onenand_erase: Unaligned address\n"); 1820 goto erase_exit; 1821 } 1822 } 1823 } 1824 1825 instr->state = MTD_ERASE_DONE; 1826 1827 erase_exit: 1828 1829 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO; 1830 /* Do call back function */ 1831 if (!ret) 1832 mtd_erase_callback(instr); 1833 1834 /* Deselect and wake up anyone waiting on the device */ 1835 onenand_release_device(mtd); 1836 1837 return ret; 1838 } 1839 1840 /** 1841 * onenand_sync - [MTD Interface] sync 1842 * @param mtd MTD device structure 1843 * 1844 * Sync is actually a wait for chip ready function 1845 */ 1846 void onenand_sync(struct mtd_info *mtd) 1847 { 1848 MTDDEBUG (MTD_DEBUG_LEVEL3, "onenand_sync: called\n"); 1849 1850 /* Grab the lock and see if the device is available */ 1851 onenand_get_device(mtd, FL_SYNCING); 1852 1853 /* Release it and go back */ 1854 onenand_release_device(mtd); 1855 } 1856 1857 /** 1858 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad 1859 * @param mtd MTD device structure 1860 * @param ofs offset relative to mtd start 1861 * 1862 * Check whether the block is bad 1863 */ 1864 int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs) 1865 { 1866 int ret; 1867 1868 /* Check for invalid offset */ 1869 if (ofs > mtd->size) 1870 return -EINVAL; 1871 1872 onenand_get_device(mtd, FL_READING); 1873 ret = onenand_block_isbad_nolock(mtd,ofs, 0); 1874 onenand_release_device(mtd); 1875 return ret; 1876 } 1877 1878 /** 1879 * onenand_default_block_markbad - [DEFAULT] mark a block bad 1880 * @param mtd MTD device structure 1881 * @param ofs offset from device start 1882 * 1883 * This is the default implementation, which can be overridden by 1884 * a hardware specific driver. 1885 */ 1886 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs) 1887 { 1888 struct onenand_chip *this = mtd->priv; 1889 struct bbm_info *bbm = this->bbm; 1890 u_char buf[2] = {0, 0}; 1891 struct mtd_oob_ops ops = { 1892 .mode = MTD_OOB_PLACE, 1893 .ooblen = 2, 1894 .oobbuf = buf, 1895 .ooboffs = 0, 1896 }; 1897 int block; 1898 1899 /* Get block number */ 1900 block = onenand_block(this, ofs); 1901 if (bbm->bbt) 1902 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1); 1903 1904 /* We write two bytes, so we dont have to mess with 16 bit access */ 1905 ofs += mtd->oobsize + (bbm->badblockpos & ~0x01); 1906 return onenand_write_oob_nolock(mtd, ofs, &ops); 1907 } 1908 1909 /** 1910 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad 1911 * @param mtd MTD device structure 1912 * @param ofs offset relative to mtd start 1913 * 1914 * Mark the block as bad 1915 */ 1916 int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs) 1917 { 1918 struct onenand_chip *this = mtd->priv; 1919 int ret; 1920 1921 ret = onenand_block_isbad(mtd, ofs); 1922 if (ret) { 1923 /* If it was bad already, return success and do nothing */ 1924 if (ret > 0) 1925 return 0; 1926 return ret; 1927 } 1928 1929 ret = this->block_markbad(mtd, ofs); 1930 return ret; 1931 } 1932 1933 /** 1934 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s) 1935 * @param mtd MTD device structure 1936 * @param ofs offset relative to mtd start 1937 * @param len number of bytes to lock or unlock 1938 * @param cmd lock or unlock command 1939 * 1940 * Lock or unlock one or more blocks 1941 */ 1942 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd) 1943 { 1944 struct onenand_chip *this = mtd->priv; 1945 int start, end, block, value, status; 1946 int wp_status_mask; 1947 1948 start = onenand_block(this, ofs); 1949 end = onenand_block(this, ofs + len); 1950 1951 if (cmd == ONENAND_CMD_LOCK) 1952 wp_status_mask = ONENAND_WP_LS; 1953 else 1954 wp_status_mask = ONENAND_WP_US; 1955 1956 /* Continuous lock scheme */ 1957 if (this->options & ONENAND_HAS_CONT_LOCK) { 1958 /* Set start block address */ 1959 this->write_word(start, 1960 this->base + ONENAND_REG_START_BLOCK_ADDRESS); 1961 /* Set end block address */ 1962 this->write_word(end - 1, 1963 this->base + ONENAND_REG_END_BLOCK_ADDRESS); 1964 /* Write unlock command */ 1965 this->command(mtd, cmd, 0, 0); 1966 1967 /* There's no return value */ 1968 this->wait(mtd, FL_UNLOCKING); 1969 1970 /* Sanity check */ 1971 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS) 1972 & ONENAND_CTRL_ONGO) 1973 continue; 1974 1975 /* Check lock status */ 1976 status = this->read_word(this->base + ONENAND_REG_WP_STATUS); 1977 if (!(status & ONENAND_WP_US)) 1978 printk(KERN_ERR "wp status = 0x%x\n", status); 1979 1980 return 0; 1981 } 1982 1983 /* Block lock scheme */ 1984 for (block = start; block < end; block++) { 1985 /* Set block address */ 1986 value = onenand_block_address(this, block); 1987 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1); 1988 /* Select DataRAM for DDP */ 1989 value = onenand_bufferram_address(this, block); 1990 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); 1991 1992 /* Set start block address */ 1993 this->write_word(block, 1994 this->base + ONENAND_REG_START_BLOCK_ADDRESS); 1995 /* Write unlock command */ 1996 this->command(mtd, ONENAND_CMD_UNLOCK, 0, 0); 1997 1998 /* There's no return value */ 1999 this->wait(mtd, FL_UNLOCKING); 2000 2001 /* Sanity check */ 2002 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS) 2003 & ONENAND_CTRL_ONGO) 2004 continue; 2005 2006 /* Check lock status */ 2007 status = this->read_word(this->base + ONENAND_REG_WP_STATUS); 2008 if (!(status & ONENAND_WP_US)) 2009 printk(KERN_ERR "block = %d, wp status = 0x%x\n", 2010 block, status); 2011 } 2012 2013 return 0; 2014 } 2015 2016 #ifdef ONENAND_LINUX 2017 /** 2018 * onenand_lock - [MTD Interface] Lock block(s) 2019 * @param mtd MTD device structure 2020 * @param ofs offset relative to mtd start 2021 * @param len number of bytes to unlock 2022 * 2023 * Lock one or more blocks 2024 */ 2025 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len) 2026 { 2027 int ret; 2028 2029 onenand_get_device(mtd, FL_LOCKING); 2030 ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK); 2031 onenand_release_device(mtd); 2032 return ret; 2033 } 2034 2035 /** 2036 * onenand_unlock - [MTD Interface] Unlock block(s) 2037 * @param mtd MTD device structure 2038 * @param ofs offset relative to mtd start 2039 * @param len number of bytes to unlock 2040 * 2041 * Unlock one or more blocks 2042 */ 2043 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len) 2044 { 2045 int ret; 2046 2047 onenand_get_device(mtd, FL_LOCKING); 2048 ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK); 2049 onenand_release_device(mtd); 2050 return ret; 2051 } 2052 #endif 2053 2054 /** 2055 * onenand_check_lock_status - [OneNAND Interface] Check lock status 2056 * @param this onenand chip data structure 2057 * 2058 * Check lock status 2059 */ 2060 static int onenand_check_lock_status(struct onenand_chip *this) 2061 { 2062 unsigned int value, block, status; 2063 unsigned int end; 2064 2065 end = this->chipsize >> this->erase_shift; 2066 for (block = 0; block < end; block++) { 2067 /* Set block address */ 2068 value = onenand_block_address(this, block); 2069 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1); 2070 /* Select DataRAM for DDP */ 2071 value = onenand_bufferram_address(this, block); 2072 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); 2073 /* Set start block address */ 2074 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS); 2075 2076 /* Check lock status */ 2077 status = this->read_word(this->base + ONENAND_REG_WP_STATUS); 2078 if (!(status & ONENAND_WP_US)) { 2079 printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status); 2080 return 0; 2081 } 2082 } 2083 2084 return 1; 2085 } 2086 2087 /** 2088 * onenand_unlock_all - [OneNAND Interface] unlock all blocks 2089 * @param mtd MTD device structure 2090 * 2091 * Unlock all blocks 2092 */ 2093 static void onenand_unlock_all(struct mtd_info *mtd) 2094 { 2095 struct onenand_chip *this = mtd->priv; 2096 loff_t ofs = 0; 2097 size_t len = mtd->size; 2098 2099 if (this->options & ONENAND_HAS_UNLOCK_ALL) { 2100 /* Set start block address */ 2101 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS); 2102 /* Write unlock command */ 2103 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0); 2104 2105 /* There's no return value */ 2106 this->wait(mtd, FL_LOCKING); 2107 2108 /* Sanity check */ 2109 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS) 2110 & ONENAND_CTRL_ONGO) 2111 continue; 2112 2113 /* Check lock status */ 2114 if (onenand_check_lock_status(this)) 2115 return; 2116 2117 /* Workaround for all block unlock in DDP */ 2118 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) { 2119 /* All blocks on another chip */ 2120 ofs = this->chipsize >> 1; 2121 len = this->chipsize >> 1; 2122 } 2123 } 2124 2125 onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK); 2126 } 2127 2128 2129 /** 2130 * onenand_check_features - Check and set OneNAND features 2131 * @param mtd MTD data structure 2132 * 2133 * Check and set OneNAND features 2134 * - lock scheme 2135 * - two plane 2136 */ 2137 static void onenand_check_features(struct mtd_info *mtd) 2138 { 2139 struct onenand_chip *this = mtd->priv; 2140 unsigned int density, process; 2141 2142 /* Lock scheme depends on density and process */ 2143 density = onenand_get_density(this->device_id); 2144 process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT; 2145 2146 /* Lock scheme */ 2147 switch (density) { 2148 case ONENAND_DEVICE_DENSITY_4Gb: 2149 this->options |= ONENAND_HAS_2PLANE; 2150 2151 case ONENAND_DEVICE_DENSITY_2Gb: 2152 /* 2Gb DDP don't have 2 plane */ 2153 if (!ONENAND_IS_DDP(this)) 2154 this->options |= ONENAND_HAS_2PLANE; 2155 this->options |= ONENAND_HAS_UNLOCK_ALL; 2156 2157 case ONENAND_DEVICE_DENSITY_1Gb: 2158 /* A-Die has all block unlock */ 2159 if (process) 2160 this->options |= ONENAND_HAS_UNLOCK_ALL; 2161 break; 2162 2163 default: 2164 /* Some OneNAND has continuous lock scheme */ 2165 if (!process) 2166 this->options |= ONENAND_HAS_CONT_LOCK; 2167 break; 2168 } 2169 2170 if (ONENAND_IS_MLC(this)) 2171 this->options &= ~ONENAND_HAS_2PLANE; 2172 2173 if (FLEXONENAND(this)) { 2174 this->options &= ~ONENAND_HAS_CONT_LOCK; 2175 this->options |= ONENAND_HAS_UNLOCK_ALL; 2176 } 2177 2178 if (this->options & ONENAND_HAS_CONT_LOCK) 2179 printk(KERN_DEBUG "Lock scheme is Continuous Lock\n"); 2180 if (this->options & ONENAND_HAS_UNLOCK_ALL) 2181 printk(KERN_DEBUG "Chip support all block unlock\n"); 2182 if (this->options & ONENAND_HAS_2PLANE) 2183 printk(KERN_DEBUG "Chip has 2 plane\n"); 2184 } 2185 2186 /** 2187 * onenand_print_device_info - Print device ID 2188 * @param device device ID 2189 * 2190 * Print device ID 2191 */ 2192 char *onenand_print_device_info(int device, int version) 2193 { 2194 int vcc, demuxed, ddp, density, flexonenand; 2195 char *dev_info = malloc(80); 2196 char *p = dev_info; 2197 2198 vcc = device & ONENAND_DEVICE_VCC_MASK; 2199 demuxed = device & ONENAND_DEVICE_IS_DEMUX; 2200 ddp = device & ONENAND_DEVICE_IS_DDP; 2201 density = onenand_get_density(device); 2202 flexonenand = device & DEVICE_IS_FLEXONENAND; 2203 p += sprintf(dev_info, "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)", 2204 demuxed ? "" : "Muxed ", 2205 flexonenand ? "Flex-" : "", 2206 ddp ? "(DDP)" : "", 2207 (16 << density), vcc ? "2.65/3.3" : "1.8", device); 2208 2209 sprintf(p, "\nOneNAND version = 0x%04x", version); 2210 printk("%s\n", dev_info); 2211 2212 return dev_info; 2213 } 2214 2215 static const struct onenand_manufacturers onenand_manuf_ids[] = { 2216 {ONENAND_MFR_NUMONYX, "Numonyx"}, 2217 {ONENAND_MFR_SAMSUNG, "Samsung"}, 2218 }; 2219 2220 /** 2221 * onenand_check_maf - Check manufacturer ID 2222 * @param manuf manufacturer ID 2223 * 2224 * Check manufacturer ID 2225 */ 2226 static int onenand_check_maf(int manuf) 2227 { 2228 int size = ARRAY_SIZE(onenand_manuf_ids); 2229 char *name; 2230 int i; 2231 2232 for (i = 0; i < size; i++) 2233 if (manuf == onenand_manuf_ids[i].id) 2234 break; 2235 2236 if (i < size) 2237 name = onenand_manuf_ids[i].name; 2238 else 2239 name = "Unknown"; 2240 2241 #ifdef ONENAND_DEBUG 2242 printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf); 2243 #endif 2244 2245 return i == size; 2246 } 2247 2248 /** 2249 * flexonenand_get_boundary - Reads the SLC boundary 2250 * @param onenand_info - onenand info structure 2251 * 2252 * Fill up boundary[] field in onenand_chip 2253 **/ 2254 static int flexonenand_get_boundary(struct mtd_info *mtd) 2255 { 2256 struct onenand_chip *this = mtd->priv; 2257 unsigned int die, bdry; 2258 int ret, syscfg, locked; 2259 2260 /* Disable ECC */ 2261 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1); 2262 this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1); 2263 2264 for (die = 0; die < this->dies; die++) { 2265 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0); 2266 this->wait(mtd, FL_SYNCING); 2267 2268 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0); 2269 ret = this->wait(mtd, FL_READING); 2270 2271 bdry = this->read_word(this->base + ONENAND_DATARAM); 2272 if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3) 2273 locked = 0; 2274 else 2275 locked = 1; 2276 this->boundary[die] = bdry & FLEXONENAND_PI_MASK; 2277 2278 this->command(mtd, ONENAND_CMD_RESET, 0, 0); 2279 ret = this->wait(mtd, FL_RESETING); 2280 2281 printk(KERN_INFO "Die %d boundary: %d%s\n", die, 2282 this->boundary[die], locked ? "(Locked)" : "(Unlocked)"); 2283 } 2284 2285 /* Enable ECC */ 2286 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1); 2287 return 0; 2288 } 2289 2290 /** 2291 * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info 2292 * boundary[], diesize[], mtd->size, mtd->erasesize, 2293 * mtd->eraseregions 2294 * @param mtd - MTD device structure 2295 */ 2296 static void flexonenand_get_size(struct mtd_info *mtd) 2297 { 2298 struct onenand_chip *this = mtd->priv; 2299 int die, i, eraseshift, density; 2300 int blksperdie, maxbdry; 2301 loff_t ofs; 2302 2303 density = onenand_get_density(this->device_id); 2304 blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift); 2305 blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0; 2306 maxbdry = blksperdie - 1; 2307 eraseshift = this->erase_shift - 1; 2308 2309 mtd->numeraseregions = this->dies << 1; 2310 2311 /* This fills up the device boundary */ 2312 flexonenand_get_boundary(mtd); 2313 die = 0; 2314 ofs = 0; 2315 i = -1; 2316 for (; die < this->dies; die++) { 2317 if (!die || this->boundary[die-1] != maxbdry) { 2318 i++; 2319 mtd->eraseregions[i].offset = ofs; 2320 mtd->eraseregions[i].erasesize = 1 << eraseshift; 2321 mtd->eraseregions[i].numblocks = 2322 this->boundary[die] + 1; 2323 ofs += mtd->eraseregions[i].numblocks << eraseshift; 2324 eraseshift++; 2325 } else { 2326 mtd->numeraseregions -= 1; 2327 mtd->eraseregions[i].numblocks += 2328 this->boundary[die] + 1; 2329 ofs += (this->boundary[die] + 1) << (eraseshift - 1); 2330 } 2331 if (this->boundary[die] != maxbdry) { 2332 i++; 2333 mtd->eraseregions[i].offset = ofs; 2334 mtd->eraseregions[i].erasesize = 1 << eraseshift; 2335 mtd->eraseregions[i].numblocks = maxbdry ^ 2336 this->boundary[die]; 2337 ofs += mtd->eraseregions[i].numblocks << eraseshift; 2338 eraseshift--; 2339 } else 2340 mtd->numeraseregions -= 1; 2341 } 2342 2343 /* Expose MLC erase size except when all blocks are SLC */ 2344 mtd->erasesize = 1 << this->erase_shift; 2345 if (mtd->numeraseregions == 1) 2346 mtd->erasesize >>= 1; 2347 2348 printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions); 2349 for (i = 0; i < mtd->numeraseregions; i++) 2350 printk(KERN_INFO "[offset: 0x%08llx, erasesize: 0x%05x," 2351 " numblocks: %04u]\n", mtd->eraseregions[i].offset, 2352 mtd->eraseregions[i].erasesize, 2353 mtd->eraseregions[i].numblocks); 2354 2355 for (die = 0, mtd->size = 0; die < this->dies; die++) { 2356 this->diesize[die] = (loff_t) (blksperdie << this->erase_shift); 2357 this->diesize[die] -= (loff_t) (this->boundary[die] + 1) 2358 << (this->erase_shift - 1); 2359 mtd->size += this->diesize[die]; 2360 } 2361 } 2362 2363 /** 2364 * flexonenand_check_blocks_erased - Check if blocks are erased 2365 * @param mtd_info - mtd info structure 2366 * @param start - first erase block to check 2367 * @param end - last erase block to check 2368 * 2369 * Converting an unerased block from MLC to SLC 2370 * causes byte values to change. Since both data and its ECC 2371 * have changed, reads on the block give uncorrectable error. 2372 * This might lead to the block being detected as bad. 2373 * 2374 * Avoid this by ensuring that the block to be converted is 2375 * erased. 2376 */ 2377 static int flexonenand_check_blocks_erased(struct mtd_info *mtd, 2378 int start, int end) 2379 { 2380 struct onenand_chip *this = mtd->priv; 2381 int i, ret; 2382 int block; 2383 struct mtd_oob_ops ops = { 2384 .mode = MTD_OOB_PLACE, 2385 .ooboffs = 0, 2386 .ooblen = mtd->oobsize, 2387 .datbuf = NULL, 2388 .oobbuf = this->oob_buf, 2389 }; 2390 loff_t addr; 2391 2392 printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end); 2393 2394 for (block = start; block <= end; block++) { 2395 addr = flexonenand_addr(this, block); 2396 if (onenand_block_isbad_nolock(mtd, addr, 0)) 2397 continue; 2398 2399 /* 2400 * Since main area write results in ECC write to spare, 2401 * it is sufficient to check only ECC bytes for change. 2402 */ 2403 ret = onenand_read_oob_nolock(mtd, addr, &ops); 2404 if (ret) 2405 return ret; 2406 2407 for (i = 0; i < mtd->oobsize; i++) 2408 if (this->oob_buf[i] != 0xff) 2409 break; 2410 2411 if (i != mtd->oobsize) { 2412 printk(KERN_WARNING "Block %d not erased.\n", block); 2413 return 1; 2414 } 2415 } 2416 2417 return 0; 2418 } 2419 2420 /** 2421 * flexonenand_set_boundary - Writes the SLC boundary 2422 * @param mtd - mtd info structure 2423 */ 2424 int flexonenand_set_boundary(struct mtd_info *mtd, int die, 2425 int boundary, int lock) 2426 { 2427 struct onenand_chip *this = mtd->priv; 2428 int ret, density, blksperdie, old, new, thisboundary; 2429 loff_t addr; 2430 2431 if (die >= this->dies) 2432 return -EINVAL; 2433 2434 if (boundary == this->boundary[die]) 2435 return 0; 2436 2437 density = onenand_get_density(this->device_id); 2438 blksperdie = ((16 << density) << 20) >> this->erase_shift; 2439 blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0; 2440 2441 if (boundary >= blksperdie) { 2442 printk("flexonenand_set_boundary:" 2443 "Invalid boundary value. " 2444 "Boundary not changed.\n"); 2445 return -EINVAL; 2446 } 2447 2448 /* Check if converting blocks are erased */ 2449 old = this->boundary[die] + (die * this->density_mask); 2450 new = boundary + (die * this->density_mask); 2451 ret = flexonenand_check_blocks_erased(mtd, min(old, new) 2452 + 1, max(old, new)); 2453 if (ret) { 2454 printk(KERN_ERR "flexonenand_set_boundary: Please erase blocks before boundary change\n"); 2455 return ret; 2456 } 2457 2458 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0); 2459 this->wait(mtd, FL_SYNCING); 2460 2461 /* Check is boundary is locked */ 2462 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0); 2463 ret = this->wait(mtd, FL_READING); 2464 2465 thisboundary = this->read_word(this->base + ONENAND_DATARAM); 2466 if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) { 2467 printk(KERN_ERR "flexonenand_set_boundary: boundary locked\n"); 2468 goto out; 2469 } 2470 2471 printk(KERN_INFO "flexonenand_set_boundary: Changing die %d boundary: %d%s\n", 2472 die, boundary, lock ? "(Locked)" : "(Unlocked)"); 2473 2474 boundary &= FLEXONENAND_PI_MASK; 2475 boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT); 2476 2477 addr = die ? this->diesize[0] : 0; 2478 this->command(mtd, ONENAND_CMD_ERASE, addr, 0); 2479 ret = this->wait(mtd, FL_ERASING); 2480 if (ret) { 2481 printk("flexonenand_set_boundary:" 2482 "Failed PI erase for Die %d\n", die); 2483 goto out; 2484 } 2485 2486 this->write_word(boundary, this->base + ONENAND_DATARAM); 2487 this->command(mtd, ONENAND_CMD_PROG, addr, 0); 2488 ret = this->wait(mtd, FL_WRITING); 2489 if (ret) { 2490 printk("flexonenand_set_boundary:" 2491 "Failed PI write for Die %d\n", die); 2492 goto out; 2493 } 2494 2495 this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0); 2496 ret = this->wait(mtd, FL_WRITING); 2497 out: 2498 this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND); 2499 this->wait(mtd, FL_RESETING); 2500 if (!ret) 2501 /* Recalculate device size on boundary change*/ 2502 flexonenand_get_size(mtd); 2503 2504 return ret; 2505 } 2506 2507 /** 2508 * onenand_probe - [OneNAND Interface] Probe the OneNAND device 2509 * @param mtd MTD device structure 2510 * 2511 * OneNAND detection method: 2512 * Compare the the values from command with ones from register 2513 */ 2514 static int onenand_probe(struct mtd_info *mtd) 2515 { 2516 struct onenand_chip *this = mtd->priv; 2517 int bram_maf_id, bram_dev_id, maf_id, dev_id, ver_id; 2518 int density; 2519 int syscfg; 2520 2521 /* Save system configuration 1 */ 2522 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1); 2523 /* Clear Sync. Burst Read mode to read BootRAM */ 2524 this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ), this->base + ONENAND_REG_SYS_CFG1); 2525 2526 /* Send the command for reading device ID from BootRAM */ 2527 this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM); 2528 2529 /* Read manufacturer and device IDs from BootRAM */ 2530 bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0); 2531 bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2); 2532 2533 /* Reset OneNAND to read default register values */ 2534 this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM); 2535 2536 /* Wait reset */ 2537 this->wait(mtd, FL_RESETING); 2538 2539 /* Restore system configuration 1 */ 2540 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1); 2541 2542 /* Check manufacturer ID */ 2543 if (onenand_check_maf(bram_maf_id)) 2544 return -ENXIO; 2545 2546 /* Read manufacturer and device IDs from Register */ 2547 maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID); 2548 dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID); 2549 ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID); 2550 this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY); 2551 2552 /* Check OneNAND device */ 2553 if (maf_id != bram_maf_id || dev_id != bram_dev_id) 2554 return -ENXIO; 2555 2556 /* Flash device information */ 2557 mtd->name = onenand_print_device_info(dev_id, ver_id); 2558 this->device_id = dev_id; 2559 this->version_id = ver_id; 2560 2561 density = onenand_get_density(dev_id); 2562 if (FLEXONENAND(this)) { 2563 this->dies = ONENAND_IS_DDP(this) ? 2 : 1; 2564 /* Maximum possible erase regions */ 2565 mtd->numeraseregions = this->dies << 1; 2566 mtd->eraseregions = malloc(sizeof(struct mtd_erase_region_info) 2567 * (this->dies << 1)); 2568 if (!mtd->eraseregions) 2569 return -ENOMEM; 2570 } 2571 2572 /* 2573 * For Flex-OneNAND, chipsize represents maximum possible device size. 2574 * mtd->size represents the actual device size. 2575 */ 2576 this->chipsize = (16 << density) << 20; 2577 2578 /* OneNAND page size & block size */ 2579 /* The data buffer size is equal to page size */ 2580 mtd->writesize = 2581 this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE); 2582 /* We use the full BufferRAM */ 2583 if (ONENAND_IS_MLC(this)) 2584 mtd->writesize <<= 1; 2585 2586 mtd->oobsize = mtd->writesize >> 5; 2587 /* Pagers per block is always 64 in OneNAND */ 2588 mtd->erasesize = mtd->writesize << 6; 2589 /* 2590 * Flex-OneNAND SLC area has 64 pages per block. 2591 * Flex-OneNAND MLC area has 128 pages per block. 2592 * Expose MLC erase size to find erase_shift and page_mask. 2593 */ 2594 if (FLEXONENAND(this)) 2595 mtd->erasesize <<= 1; 2596 2597 this->erase_shift = ffs(mtd->erasesize) - 1; 2598 this->page_shift = ffs(mtd->writesize) - 1; 2599 this->ppb_shift = (this->erase_shift - this->page_shift); 2600 this->page_mask = (mtd->erasesize / mtd->writesize) - 1; 2601 /* Set density mask. it is used for DDP */ 2602 if (ONENAND_IS_DDP(this)) 2603 this->density_mask = this->chipsize >> (this->erase_shift + 1); 2604 /* It's real page size */ 2605 this->writesize = mtd->writesize; 2606 2607 /* REVIST: Multichip handling */ 2608 2609 if (FLEXONENAND(this)) 2610 flexonenand_get_size(mtd); 2611 else 2612 mtd->size = this->chipsize; 2613 2614 /* Check OneNAND features */ 2615 onenand_check_features(mtd); 2616 2617 mtd->flags = MTD_CAP_NANDFLASH; 2618 mtd->erase = onenand_erase; 2619 mtd->read = onenand_read; 2620 mtd->write = onenand_write; 2621 mtd->read_oob = onenand_read_oob; 2622 mtd->write_oob = onenand_write_oob; 2623 mtd->sync = onenand_sync; 2624 mtd->block_isbad = onenand_block_isbad; 2625 mtd->block_markbad = onenand_block_markbad; 2626 2627 return 0; 2628 } 2629 2630 /** 2631 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device 2632 * @param mtd MTD device structure 2633 * @param maxchips Number of chips to scan for 2634 * 2635 * This fills out all the not initialized function pointers 2636 * with the defaults. 2637 * The flash ID is read and the mtd/chip structures are 2638 * filled with the appropriate values. 2639 */ 2640 int onenand_scan(struct mtd_info *mtd, int maxchips) 2641 { 2642 int i; 2643 struct onenand_chip *this = mtd->priv; 2644 2645 if (!this->read_word) 2646 this->read_word = onenand_readw; 2647 if (!this->write_word) 2648 this->write_word = onenand_writew; 2649 2650 if (!this->command) 2651 this->command = onenand_command; 2652 if (!this->wait) 2653 this->wait = onenand_wait; 2654 if (!this->bbt_wait) 2655 this->bbt_wait = onenand_bbt_wait; 2656 2657 if (!this->read_bufferram) 2658 this->read_bufferram = onenand_read_bufferram; 2659 if (!this->write_bufferram) 2660 this->write_bufferram = onenand_write_bufferram; 2661 2662 if (!this->block_markbad) 2663 this->block_markbad = onenand_default_block_markbad; 2664 if (!this->scan_bbt) 2665 this->scan_bbt = onenand_default_bbt; 2666 2667 if (onenand_probe(mtd)) 2668 return -ENXIO; 2669 2670 /* Set Sync. Burst Read after probing */ 2671 if (this->mmcontrol) { 2672 printk(KERN_INFO "OneNAND Sync. Burst Read support\n"); 2673 this->read_bufferram = onenand_sync_read_bufferram; 2674 } 2675 2676 /* Allocate buffers, if necessary */ 2677 if (!this->page_buf) { 2678 this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL); 2679 if (!this->page_buf) { 2680 printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n"); 2681 return -ENOMEM; 2682 } 2683 this->options |= ONENAND_PAGEBUF_ALLOC; 2684 } 2685 if (!this->oob_buf) { 2686 this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL); 2687 if (!this->oob_buf) { 2688 printk(KERN_ERR "onenand_scan: Can't allocate oob_buf\n"); 2689 if (this->options & ONENAND_PAGEBUF_ALLOC) { 2690 this->options &= ~ONENAND_PAGEBUF_ALLOC; 2691 kfree(this->page_buf); 2692 } 2693 return -ENOMEM; 2694 } 2695 this->options |= ONENAND_OOBBUF_ALLOC; 2696 } 2697 2698 this->state = FL_READY; 2699 2700 /* 2701 * Allow subpage writes up to oobsize. 2702 */ 2703 switch (mtd->oobsize) { 2704 case 128: 2705 this->ecclayout = &onenand_oob_128; 2706 mtd->subpage_sft = 0; 2707 break; 2708 2709 case 64: 2710 this->ecclayout = &onenand_oob_64; 2711 mtd->subpage_sft = 2; 2712 break; 2713 2714 case 32: 2715 this->ecclayout = &onenand_oob_32; 2716 mtd->subpage_sft = 1; 2717 break; 2718 2719 default: 2720 printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n", 2721 mtd->oobsize); 2722 mtd->subpage_sft = 0; 2723 /* To prevent kernel oops */ 2724 this->ecclayout = &onenand_oob_32; 2725 break; 2726 } 2727 2728 this->subpagesize = mtd->writesize >> mtd->subpage_sft; 2729 2730 /* 2731 * The number of bytes available for a client to place data into 2732 * the out of band area 2733 */ 2734 this->ecclayout->oobavail = 0; 2735 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && 2736 this->ecclayout->oobfree[i].length; i++) 2737 this->ecclayout->oobavail += 2738 this->ecclayout->oobfree[i].length; 2739 mtd->oobavail = this->ecclayout->oobavail; 2740 2741 mtd->ecclayout = this->ecclayout; 2742 2743 /* Unlock whole block */ 2744 onenand_unlock_all(mtd); 2745 2746 return this->scan_bbt(mtd); 2747 } 2748 2749 /** 2750 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device 2751 * @param mtd MTD device structure 2752 */ 2753 void onenand_release(struct mtd_info *mtd) 2754 { 2755 } 2756