1 /*
2  *  linux/drivers/mtd/onenand/onenand_base.c
3  *
4  *  Copyright (C) 2005-2007 Samsung Electronics
5  *  Kyungmin Park <kyungmin.park@samsung.com>
6  *
7  *  Credits:
8  *      Adrian Hunter <ext-adrian.hunter@nokia.com>:
9  *      auto-placement support, read-while load support, various fixes
10  *      Copyright (C) Nokia Corporation, 2007
11  *
12  *      Rohit Hagargundgi <h.rohit at samsung.com>,
13  *      Amul Kumar Saha <amul.saha@samsung.com>:
14  *      Flex-OneNAND support
15  *      Copyright (C) Samsung Electronics, 2009
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License version 2 as
19  * published by the Free Software Foundation.
20  */
21 
22 #include <common.h>
23 #include <linux/compat.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/onenand.h>
26 
27 #include <asm/io.h>
28 #include <asm/errno.h>
29 #include <malloc.h>
30 
31 /* It should access 16-bit instead of 8-bit */
32 static void *memcpy_16(void *dst, const void *src, unsigned int len)
33 {
34 	void *ret = dst;
35 	short *d = dst;
36 	const short *s = src;
37 
38 	len >>= 1;
39 	while (len-- > 0)
40 		*d++ = *s++;
41 	return ret;
42 }
43 
44 /**
45  *  onenand_oob_128 - oob info for Flex-Onenand with 4KB page
46  *  For now, we expose only 64 out of 80 ecc bytes
47  */
48 static struct nand_ecclayout onenand_oob_128 = {
49 	.eccbytes	= 64,
50 	.eccpos		= {
51 		6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
52 		22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
53 		38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
54 		54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
55 		70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
56 		86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
57 		102, 103, 104, 105
58 		},
59 	.oobfree	= {
60 		{2, 4}, {18, 4}, {34, 4}, {50, 4},
61 		{66, 4}, {82, 4}, {98, 4}, {114, 4}
62 	}
63 };
64 
65 /**
66  * onenand_oob_64 - oob info for large (2KB) page
67  */
68 static struct nand_ecclayout onenand_oob_64 = {
69 	.eccbytes	= 20,
70 	.eccpos		= {
71 		8, 9, 10, 11, 12,
72 		24, 25, 26, 27, 28,
73 		40, 41, 42, 43, 44,
74 		56, 57, 58, 59, 60,
75 		},
76 	.oobfree	= {
77 		{2, 3}, {14, 2}, {18, 3}, {30, 2},
78 		{34, 3}, {46, 2}, {50, 3}, {62, 2}
79 	}
80 };
81 
82 /**
83  * onenand_oob_32 - oob info for middle (1KB) page
84  */
85 static struct nand_ecclayout onenand_oob_32 = {
86 	.eccbytes	= 10,
87 	.eccpos		= {
88 		8, 9, 10, 11, 12,
89 		24, 25, 26, 27, 28,
90 		},
91 	.oobfree	= { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
92 };
93 
94 static const unsigned char ffchars[] = {
95 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
96 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 16 */
97 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
98 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 32 */
99 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
100 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 48 */
101 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
102 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 64 */
103 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
104 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 80 */
105 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
106 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 96 */
107 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
108 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 112 */
109 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
110 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 128 */
111 };
112 
113 /**
114  * onenand_readw - [OneNAND Interface] Read OneNAND register
115  * @param addr		address to read
116  *
117  * Read OneNAND register
118  */
119 static unsigned short onenand_readw(void __iomem * addr)
120 {
121 	return readw(addr);
122 }
123 
124 /**
125  * onenand_writew - [OneNAND Interface] Write OneNAND register with value
126  * @param value		value to write
127  * @param addr		address to write
128  *
129  * Write OneNAND register with value
130  */
131 static void onenand_writew(unsigned short value, void __iomem * addr)
132 {
133 	writew(value, addr);
134 }
135 
136 /**
137  * onenand_block_address - [DEFAULT] Get block address
138  * @param device	the device id
139  * @param block		the block
140  * @return		translated block address if DDP, otherwise same
141  *
142  * Setup Start Address 1 Register (F100h)
143  */
144 static int onenand_block_address(struct onenand_chip *this, int block)
145 {
146 	/* Device Flash Core select, NAND Flash Block Address */
147 	if (block & this->density_mask)
148 		return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
149 
150 	return block;
151 }
152 
153 /**
154  * onenand_bufferram_address - [DEFAULT] Get bufferram address
155  * @param device	the device id
156  * @param block		the block
157  * @return		set DBS value if DDP, otherwise 0
158  *
159  * Setup Start Address 2 Register (F101h) for DDP
160  */
161 static int onenand_bufferram_address(struct onenand_chip *this, int block)
162 {
163 	/* Device BufferRAM Select */
164 	if (block & this->density_mask)
165 		return ONENAND_DDP_CHIP1;
166 
167 	return ONENAND_DDP_CHIP0;
168 }
169 
170 /**
171  * onenand_page_address - [DEFAULT] Get page address
172  * @param page		the page address
173  * @param sector	the sector address
174  * @return		combined page and sector address
175  *
176  * Setup Start Address 8 Register (F107h)
177  */
178 static int onenand_page_address(int page, int sector)
179 {
180 	/* Flash Page Address, Flash Sector Address */
181 	int fpa, fsa;
182 
183 	fpa = page & ONENAND_FPA_MASK;
184 	fsa = sector & ONENAND_FSA_MASK;
185 
186 	return ((fpa << ONENAND_FPA_SHIFT) | fsa);
187 }
188 
189 /**
190  * onenand_buffer_address - [DEFAULT] Get buffer address
191  * @param dataram1	DataRAM index
192  * @param sectors	the sector address
193  * @param count		the number of sectors
194  * @return		the start buffer value
195  *
196  * Setup Start Buffer Register (F200h)
197  */
198 static int onenand_buffer_address(int dataram1, int sectors, int count)
199 {
200 	int bsa, bsc;
201 
202 	/* BufferRAM Sector Address */
203 	bsa = sectors & ONENAND_BSA_MASK;
204 
205 	if (dataram1)
206 		bsa |= ONENAND_BSA_DATARAM1;	/* DataRAM1 */
207 	else
208 		bsa |= ONENAND_BSA_DATARAM0;	/* DataRAM0 */
209 
210 	/* BufferRAM Sector Count */
211 	bsc = count & ONENAND_BSC_MASK;
212 
213 	return ((bsa << ONENAND_BSA_SHIFT) | bsc);
214 }
215 
216 /**
217  * flexonenand_block - Return block number for flash address
218  * @param this		- OneNAND device structure
219  * @param addr		- Address for which block number is needed
220  */
221 static unsigned int flexonenand_block(struct onenand_chip *this, loff_t addr)
222 {
223 	unsigned int boundary, blk, die = 0;
224 
225 	if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
226 		die = 1;
227 		addr -= this->diesize[0];
228 	}
229 
230 	boundary = this->boundary[die];
231 
232 	blk = addr >> (this->erase_shift - 1);
233 	if (blk > boundary)
234 		blk = (blk + boundary + 1) >> 1;
235 
236 	blk += die ? this->density_mask : 0;
237 	return blk;
238 }
239 
240 unsigned int onenand_block(struct onenand_chip *this, loff_t addr)
241 {
242 	if (!FLEXONENAND(this))
243 		return addr >> this->erase_shift;
244 	return flexonenand_block(this, addr);
245 }
246 
247 /**
248  * flexonenand_addr - Return address of the block
249  * @this:		OneNAND device structure
250  * @block:		Block number on Flex-OneNAND
251  *
252  * Return address of the block
253  */
254 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
255 {
256 	loff_t ofs = 0;
257 	int die = 0, boundary;
258 
259 	if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
260 		block -= this->density_mask;
261 		die = 1;
262 		ofs = this->diesize[0];
263 	}
264 
265 	boundary = this->boundary[die];
266 	ofs += (loff_t) block << (this->erase_shift - 1);
267 	if (block > (boundary + 1))
268 		ofs += (loff_t) (block - boundary - 1)
269 			<< (this->erase_shift - 1);
270 	return ofs;
271 }
272 
273 loff_t onenand_addr(struct onenand_chip *this, int block)
274 {
275 	if (!FLEXONENAND(this))
276 		return (loff_t) block << this->erase_shift;
277 	return flexonenand_addr(this, block);
278 }
279 
280 /**
281  * flexonenand_region - [Flex-OneNAND] Return erase region of addr
282  * @param mtd		MTD device structure
283  * @param addr		address whose erase region needs to be identified
284  */
285 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
286 {
287 	int i;
288 
289 	for (i = 0; i < mtd->numeraseregions; i++)
290 		if (addr < mtd->eraseregions[i].offset)
291 			break;
292 	return i - 1;
293 }
294 
295 /**
296  * onenand_get_density - [DEFAULT] Get OneNAND density
297  * @param dev_id        OneNAND device ID
298  *
299  * Get OneNAND density from device ID
300  */
301 static inline int onenand_get_density(int dev_id)
302 {
303 	int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
304 	return (density & ONENAND_DEVICE_DENSITY_MASK);
305 }
306 
307 /**
308  * onenand_command - [DEFAULT] Send command to OneNAND device
309  * @param mtd		MTD device structure
310  * @param cmd		the command to be sent
311  * @param addr		offset to read from or write to
312  * @param len		number of bytes to read or write
313  *
314  * Send command to OneNAND device. This function is used for middle/large page
315  * devices (1KB/2KB Bytes per page)
316  */
317 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr,
318 			   size_t len)
319 {
320 	struct onenand_chip *this = mtd->priv;
321 	int value;
322 	int block, page;
323 
324 	/* Now we use page size operation */
325 	int sectors = 0, count = 0;
326 
327 	/* Address translation */
328 	switch (cmd) {
329 	case ONENAND_CMD_UNLOCK:
330 	case ONENAND_CMD_LOCK:
331 	case ONENAND_CMD_LOCK_TIGHT:
332 	case ONENAND_CMD_UNLOCK_ALL:
333 		block = -1;
334 		page = -1;
335 		break;
336 
337 	case FLEXONENAND_CMD_PI_ACCESS:
338 		/* addr contains die index */
339 		block = addr * this->density_mask;
340 		page = -1;
341 		break;
342 
343 	case ONENAND_CMD_ERASE:
344 	case ONENAND_CMD_BUFFERRAM:
345 		block = onenand_block(this, addr);
346 		page = -1;
347 		break;
348 
349 	case FLEXONENAND_CMD_READ_PI:
350 		cmd = ONENAND_CMD_READ;
351 		block = addr * this->density_mask;
352 		page = 0;
353 		break;
354 
355 	default:
356 		block = onenand_block(this, addr);
357 		page = (int) (addr
358 			- onenand_addr(this, block)) >> this->page_shift;
359 		page &= this->page_mask;
360 		break;
361 	}
362 
363 	/* NOTE: The setting order of the registers is very important! */
364 	if (cmd == ONENAND_CMD_BUFFERRAM) {
365 		/* Select DataRAM for DDP */
366 		value = onenand_bufferram_address(this, block);
367 		this->write_word(value,
368 				 this->base + ONENAND_REG_START_ADDRESS2);
369 
370 		if (ONENAND_IS_4KB_PAGE(this))
371 			ONENAND_SET_BUFFERRAM0(this);
372 		else
373 			/* Switch to the next data buffer */
374 			ONENAND_SET_NEXT_BUFFERRAM(this);
375 
376 		return 0;
377 	}
378 
379 	if (block != -1) {
380 		/* Write 'DFS, FBA' of Flash */
381 		value = onenand_block_address(this, block);
382 		this->write_word(value,
383 				 this->base + ONENAND_REG_START_ADDRESS1);
384 
385 		/* Select DataRAM for DDP */
386 		value = onenand_bufferram_address(this, block);
387 		this->write_word(value,
388 				 this->base + ONENAND_REG_START_ADDRESS2);
389 	}
390 
391 	if (page != -1) {
392 		int dataram;
393 
394 		switch (cmd) {
395 		case FLEXONENAND_CMD_RECOVER_LSB:
396 		case ONENAND_CMD_READ:
397 		case ONENAND_CMD_READOOB:
398 			if (ONENAND_IS_4KB_PAGE(this))
399 				dataram = ONENAND_SET_BUFFERRAM0(this);
400 			else
401 				dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
402 
403 			break;
404 
405 		default:
406 			dataram = ONENAND_CURRENT_BUFFERRAM(this);
407 			break;
408 		}
409 
410 		/* Write 'FPA, FSA' of Flash */
411 		value = onenand_page_address(page, sectors);
412 		this->write_word(value,
413 				 this->base + ONENAND_REG_START_ADDRESS8);
414 
415 		/* Write 'BSA, BSC' of DataRAM */
416 		value = onenand_buffer_address(dataram, sectors, count);
417 		this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
418 	}
419 
420 	/* Interrupt clear */
421 	this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
422 	/* Write command */
423 	this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
424 
425 	return 0;
426 }
427 
428 /**
429  * onenand_read_ecc - return ecc status
430  * @param this		onenand chip structure
431  */
432 static int onenand_read_ecc(struct onenand_chip *this)
433 {
434 	int ecc, i;
435 
436 	if (!FLEXONENAND(this))
437 		return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
438 
439 	for (i = 0; i < 4; i++) {
440 		ecc = this->read_word(this->base
441 				+ ((ONENAND_REG_ECC_STATUS + i) << 1));
442 		if (likely(!ecc))
443 			continue;
444 		if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
445 			return ONENAND_ECC_2BIT_ALL;
446 	}
447 
448 	return 0;
449 }
450 
451 /**
452  * onenand_wait - [DEFAULT] wait until the command is done
453  * @param mtd		MTD device structure
454  * @param state		state to select the max. timeout value
455  *
456  * Wait for command done. This applies to all OneNAND command
457  * Read can take up to 30us, erase up to 2ms and program up to 350us
458  * according to general OneNAND specs
459  */
460 static int onenand_wait(struct mtd_info *mtd, int state)
461 {
462 	struct onenand_chip *this = mtd->priv;
463 	unsigned int flags = ONENAND_INT_MASTER;
464 	unsigned int interrupt = 0;
465 	unsigned int ctrl;
466 
467 	while (1) {
468 		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
469 		if (interrupt & flags)
470 			break;
471 	}
472 
473 	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
474 
475 	if (interrupt & ONENAND_INT_READ) {
476 		int ecc = onenand_read_ecc(this);
477 		if (ecc & ONENAND_ECC_2BIT_ALL) {
478 			printk("onenand_wait: ECC error = 0x%04x\n", ecc);
479 			return -EBADMSG;
480 		}
481 	}
482 
483 	if (ctrl & ONENAND_CTRL_ERROR) {
484 		printk("onenand_wait: controller error = 0x%04x\n", ctrl);
485 		if (ctrl & ONENAND_CTRL_LOCK)
486 			printk("onenand_wait: it's locked error = 0x%04x\n",
487 				ctrl);
488 
489 		return -EIO;
490 	}
491 
492 
493 	return 0;
494 }
495 
496 /**
497  * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
498  * @param mtd		MTD data structure
499  * @param area		BufferRAM area
500  * @return		offset given area
501  *
502  * Return BufferRAM offset given area
503  */
504 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
505 {
506 	struct onenand_chip *this = mtd->priv;
507 
508 	if (ONENAND_CURRENT_BUFFERRAM(this)) {
509 		if (area == ONENAND_DATARAM)
510 			return mtd->writesize;
511 		if (area == ONENAND_SPARERAM)
512 			return mtd->oobsize;
513 	}
514 
515 	return 0;
516 }
517 
518 /**
519  * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
520  * @param mtd		MTD data structure
521  * @param area		BufferRAM area
522  * @param buffer	the databuffer to put/get data
523  * @param offset	offset to read from or write to
524  * @param count		number of bytes to read/write
525  *
526  * Read the BufferRAM area
527  */
528 static int onenand_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
529 				  unsigned char *buffer, int offset,
530 				  size_t count)
531 {
532 	struct onenand_chip *this = mtd->priv;
533 	void __iomem *bufferram;
534 
535 	bufferram = this->base + area;
536 	bufferram += onenand_bufferram_offset(mtd, area);
537 
538 	memcpy_16(buffer, bufferram + offset, count);
539 
540 	return 0;
541 }
542 
543 /**
544  * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
545  * @param mtd		MTD data structure
546  * @param area		BufferRAM area
547  * @param buffer	the databuffer to put/get data
548  * @param offset	offset to read from or write to
549  * @param count		number of bytes to read/write
550  *
551  * Read the BufferRAM area with Sync. Burst Mode
552  */
553 static int onenand_sync_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
554 				       unsigned char *buffer, int offset,
555 				       size_t count)
556 {
557 	struct onenand_chip *this = mtd->priv;
558 	void __iomem *bufferram;
559 
560 	bufferram = this->base + area;
561 	bufferram += onenand_bufferram_offset(mtd, area);
562 
563 	this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
564 
565 	memcpy_16(buffer, bufferram + offset, count);
566 
567 	this->mmcontrol(mtd, 0);
568 
569 	return 0;
570 }
571 
572 /**
573  * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
574  * @param mtd		MTD data structure
575  * @param area		BufferRAM area
576  * @param buffer	the databuffer to put/get data
577  * @param offset	offset to read from or write to
578  * @param count		number of bytes to read/write
579  *
580  * Write the BufferRAM area
581  */
582 static int onenand_write_bufferram(struct mtd_info *mtd, loff_t addr, int area,
583 				   const unsigned char *buffer, int offset,
584 				   size_t count)
585 {
586 	struct onenand_chip *this = mtd->priv;
587 	void __iomem *bufferram;
588 
589 	bufferram = this->base + area;
590 	bufferram += onenand_bufferram_offset(mtd, area);
591 
592 	memcpy_16(bufferram + offset, buffer, count);
593 
594 	return 0;
595 }
596 
597 /**
598  * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
599  * @param mtd		MTD data structure
600  * @param addr		address to check
601  * @return		blockpage address
602  *
603  * Get blockpage address at 2x program mode
604  */
605 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
606 {
607 	struct onenand_chip *this = mtd->priv;
608 	int blockpage, block, page;
609 
610 	/* Calculate the even block number */
611 	block = (int) (addr >> this->erase_shift) & ~1;
612 	/* Is it the odd plane? */
613 	if (addr & this->writesize)
614 		block++;
615 	page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
616 	blockpage = (block << 7) | page;
617 
618 	return blockpage;
619 }
620 
621 /**
622  * onenand_check_bufferram - [GENERIC] Check BufferRAM information
623  * @param mtd		MTD data structure
624  * @param addr		address to check
625  * @return		1 if there are valid data, otherwise 0
626  *
627  * Check bufferram if there is data we required
628  */
629 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
630 {
631 	struct onenand_chip *this = mtd->priv;
632 	int blockpage, found = 0;
633 	unsigned int i;
634 
635 #ifdef CONFIG_S3C64XX
636 	return 0;
637 #endif
638 
639 	if (ONENAND_IS_2PLANE(this))
640 		blockpage = onenand_get_2x_blockpage(mtd, addr);
641 	else
642 		blockpage = (int) (addr >> this->page_shift);
643 
644 	/* Is there valid data? */
645 	i = ONENAND_CURRENT_BUFFERRAM(this);
646 	if (this->bufferram[i].blockpage == blockpage)
647 		found = 1;
648 	else {
649 		/* Check another BufferRAM */
650 		i = ONENAND_NEXT_BUFFERRAM(this);
651 		if (this->bufferram[i].blockpage == blockpage) {
652 			ONENAND_SET_NEXT_BUFFERRAM(this);
653 			found = 1;
654 		}
655 	}
656 
657 	if (found && ONENAND_IS_DDP(this)) {
658 		/* Select DataRAM for DDP */
659 		int block = onenand_block(this, addr);
660 		int value = onenand_bufferram_address(this, block);
661 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
662 	}
663 
664 	return found;
665 }
666 
667 /**
668  * onenand_update_bufferram - [GENERIC] Update BufferRAM information
669  * @param mtd		MTD data structure
670  * @param addr		address to update
671  * @param valid		valid flag
672  *
673  * Update BufferRAM information
674  */
675 static int onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
676 				    int valid)
677 {
678 	struct onenand_chip *this = mtd->priv;
679 	int blockpage;
680 	unsigned int i;
681 
682 	if (ONENAND_IS_2PLANE(this))
683 		blockpage = onenand_get_2x_blockpage(mtd, addr);
684 	else
685 		blockpage = (int)(addr >> this->page_shift);
686 
687 	/* Invalidate another BufferRAM */
688 	i = ONENAND_NEXT_BUFFERRAM(this);
689 	if (this->bufferram[i].blockpage == blockpage)
690 		this->bufferram[i].blockpage = -1;
691 
692 	/* Update BufferRAM */
693 	i = ONENAND_CURRENT_BUFFERRAM(this);
694 	if (valid)
695 		this->bufferram[i].blockpage = blockpage;
696 	else
697 		this->bufferram[i].blockpage = -1;
698 
699 	return 0;
700 }
701 
702 /**
703  * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
704  * @param mtd           MTD data structure
705  * @param addr          start address to invalidate
706  * @param len           length to invalidate
707  *
708  * Invalidate BufferRAM information
709  */
710 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
711 					 unsigned int len)
712 {
713 	struct onenand_chip *this = mtd->priv;
714 	int i;
715 	loff_t end_addr = addr + len;
716 
717 	/* Invalidate BufferRAM */
718 	for (i = 0; i < MAX_BUFFERRAM; i++) {
719 		loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
720 
721 		if (buf_addr >= addr && buf_addr < end_addr)
722 			this->bufferram[i].blockpage = -1;
723 	}
724 }
725 
726 /**
727  * onenand_get_device - [GENERIC] Get chip for selected access
728  * @param mtd		MTD device structure
729  * @param new_state	the state which is requested
730  *
731  * Get the device and lock it for exclusive access
732  */
733 static void onenand_get_device(struct mtd_info *mtd, int new_state)
734 {
735 	/* Do nothing */
736 }
737 
738 /**
739  * onenand_release_device - [GENERIC] release chip
740  * @param mtd		MTD device structure
741  *
742  * Deselect, release chip lock and wake up anyone waiting on the device
743  */
744 static void onenand_release_device(struct mtd_info *mtd)
745 {
746 	/* Do nothing */
747 }
748 
749 /**
750  * onenand_transfer_auto_oob - [Internal] oob auto-placement transfer
751  * @param mtd		MTD device structure
752  * @param buf		destination address
753  * @param column	oob offset to read from
754  * @param thislen	oob length to read
755  */
756 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf,
757 					int column, int thislen)
758 {
759 	struct onenand_chip *this = mtd->priv;
760 	struct nand_oobfree *free;
761 	int readcol = column;
762 	int readend = column + thislen;
763 	int lastgap = 0;
764 	unsigned int i;
765 	uint8_t *oob_buf = this->oob_buf;
766 
767 	free = this->ecclayout->oobfree;
768 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
769 		if (readcol >= lastgap)
770 			readcol += free->offset - lastgap;
771 		if (readend >= lastgap)
772 			readend += free->offset - lastgap;
773 		lastgap = free->offset + free->length;
774 	}
775 	this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
776 	free = this->ecclayout->oobfree;
777 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
778 		int free_end = free->offset + free->length;
779 		if (free->offset < readend && free_end > readcol) {
780 			int st = max_t(int,free->offset,readcol);
781 			int ed = min_t(int,free_end,readend);
782 			int n = ed - st;
783 			memcpy(buf, oob_buf + st, n);
784 			buf += n;
785 		} else if (column == 0)
786 			break;
787 	}
788 	return 0;
789 }
790 
791 /**
792  * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
793  * @param mtd		MTD device structure
794  * @param addr		address to recover
795  * @param status	return value from onenand_wait
796  *
797  * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
798  * lower page address and MSB page has higher page address in paired pages.
799  * If power off occurs during MSB page program, the paired LSB page data can
800  * become corrupt. LSB page recovery read is a way to read LSB page though page
801  * data are corrupted. When uncorrectable error occurs as a result of LSB page
802  * read after power up, issue LSB page recovery read.
803  */
804 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
805 {
806 	struct onenand_chip *this = mtd->priv;
807 	int i;
808 
809 	/* Recovery is only for Flex-OneNAND */
810 	if (!FLEXONENAND(this))
811 		return status;
812 
813 	/* check if we failed due to uncorrectable error */
814 	if (status != -EBADMSG && status != ONENAND_BBT_READ_ECC_ERROR)
815 		return status;
816 
817 	/* check if address lies in MLC region */
818 	i = flexonenand_region(mtd, addr);
819 	if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
820 		return status;
821 
822 	printk("onenand_recover_lsb:"
823 		"Attempting to recover from uncorrectable read\n");
824 
825 	/* Issue the LSB page recovery command */
826 	this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
827 	return this->wait(mtd, FL_READING);
828 }
829 
830 /**
831  * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
832  * @param mtd		MTD device structure
833  * @param from		offset to read from
834  * @param ops		oob operation description structure
835  *
836  * OneNAND read main and/or out-of-band data
837  */
838 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
839 		struct mtd_oob_ops *ops)
840 {
841 	struct onenand_chip *this = mtd->priv;
842 	struct mtd_ecc_stats stats;
843 	size_t len = ops->len;
844 	size_t ooblen = ops->ooblen;
845 	u_char *buf = ops->datbuf;
846 	u_char *oobbuf = ops->oobbuf;
847 	int read = 0, column, thislen;
848 	int oobread = 0, oobcolumn, thisooblen, oobsize;
849 	int ret = 0, boundary = 0;
850 	int writesize = this->writesize;
851 
852 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_read_ops_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
853 
854 	if (ops->mode == MTD_OOB_AUTO)
855 		oobsize = this->ecclayout->oobavail;
856 	else
857 		oobsize = mtd->oobsize;
858 
859 	oobcolumn = from & (mtd->oobsize - 1);
860 
861 	/* Do not allow reads past end of device */
862 	if ((from + len) > mtd->size) {
863 		printk(KERN_ERR "onenand_read_ops_nolock: Attempt read beyond end of device\n");
864 		ops->retlen = 0;
865 		ops->oobretlen = 0;
866 		return -EINVAL;
867 	}
868 
869 	stats = mtd->ecc_stats;
870 
871 	/* Read-while-load method */
872 	/* Note: We can't use this feature in MLC */
873 
874 	/* Do first load to bufferRAM */
875 	if (read < len) {
876 		if (!onenand_check_bufferram(mtd, from)) {
877 			this->main_buf = buf;
878 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
879 			ret = this->wait(mtd, FL_READING);
880 			if (unlikely(ret))
881 				ret = onenand_recover_lsb(mtd, from, ret);
882 			onenand_update_bufferram(mtd, from, !ret);
883 			if (ret == -EBADMSG)
884 				ret = 0;
885 		}
886 	}
887 
888 	thislen = min_t(int, writesize, len - read);
889 	column = from & (writesize - 1);
890 	if (column + thislen > writesize)
891 		thislen = writesize - column;
892 
893 	while (!ret) {
894 		/* If there is more to load then start next load */
895 		from += thislen;
896 		if (!ONENAND_IS_4KB_PAGE(this) && read + thislen < len) {
897 			this->main_buf = buf + thislen;
898 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
899 			/*
900 			 * Chip boundary handling in DDP
901 			 * Now we issued chip 1 read and pointed chip 1
902 			 * bufferam so we have to point chip 0 bufferam.
903 			 */
904 			if (ONENAND_IS_DDP(this) &&
905 					unlikely(from == (this->chipsize >> 1))) {
906 				this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
907 				boundary = 1;
908 			} else
909 				boundary = 0;
910 			ONENAND_SET_PREV_BUFFERRAM(this);
911 		}
912 
913 		/* While load is going, read from last bufferRAM */
914 		this->read_bufferram(mtd, from - thislen, ONENAND_DATARAM, buf, column, thislen);
915 
916 		/* Read oob area if needed */
917 		if (oobbuf) {
918 			thisooblen = oobsize - oobcolumn;
919 			thisooblen = min_t(int, thisooblen, ooblen - oobread);
920 
921 			if (ops->mode == MTD_OOB_AUTO)
922 				onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
923 			else
924 				this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
925 			oobread += thisooblen;
926 			oobbuf += thisooblen;
927 			oobcolumn = 0;
928 		}
929 
930 		if (ONENAND_IS_4KB_PAGE(this) && (read + thislen < len)) {
931 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
932 			ret = this->wait(mtd, FL_READING);
933 			if (unlikely(ret))
934 				ret = onenand_recover_lsb(mtd, from, ret);
935 			onenand_update_bufferram(mtd, from, !ret);
936 			if (ret == -EBADMSG)
937 				ret = 0;
938 		}
939 
940 		/* See if we are done */
941 		read += thislen;
942 		if (read == len)
943 			break;
944 		/* Set up for next read from bufferRAM */
945 		if (unlikely(boundary))
946 			this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
947 		if (!ONENAND_IS_4KB_PAGE(this))
948 			ONENAND_SET_NEXT_BUFFERRAM(this);
949 		buf += thislen;
950 		thislen = min_t(int, writesize, len - read);
951 		column = 0;
952 
953 		if (!ONENAND_IS_4KB_PAGE(this)) {
954 			/* Now wait for load */
955 			ret = this->wait(mtd, FL_READING);
956 			onenand_update_bufferram(mtd, from, !ret);
957 			if (ret == -EBADMSG)
958 				ret = 0;
959 		}
960 	}
961 
962 	/*
963 	 * Return success, if no ECC failures, else -EBADMSG
964 	 * fs driver will take care of that, because
965 	 * retlen == desired len and result == -EBADMSG
966 	 */
967 	ops->retlen = read;
968 	ops->oobretlen = oobread;
969 
970 	if (ret)
971 		return ret;
972 
973 	if (mtd->ecc_stats.failed - stats.failed)
974 		return -EBADMSG;
975 
976 	return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
977 }
978 
979 /**
980  * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
981  * @param mtd		MTD device structure
982  * @param from		offset to read from
983  * @param ops		oob operation description structure
984  *
985  * OneNAND read out-of-band data from the spare area
986  */
987 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
988 		struct mtd_oob_ops *ops)
989 {
990 	struct onenand_chip *this = mtd->priv;
991 	struct mtd_ecc_stats stats;
992 	int read = 0, thislen, column, oobsize;
993 	size_t len = ops->ooblen;
994 	mtd_oob_mode_t mode = ops->mode;
995 	u_char *buf = ops->oobbuf;
996 	int ret = 0, readcmd;
997 
998 	from += ops->ooboffs;
999 
1000 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
1001 
1002 	/* Initialize return length value */
1003 	ops->oobretlen = 0;
1004 
1005 	if (mode == MTD_OOB_AUTO)
1006 		oobsize = this->ecclayout->oobavail;
1007 	else
1008 		oobsize = mtd->oobsize;
1009 
1010 	column = from & (mtd->oobsize - 1);
1011 
1012 	if (unlikely(column >= oobsize)) {
1013 		printk(KERN_ERR "onenand_read_oob_nolock: Attempted to start read outside oob\n");
1014 		return -EINVAL;
1015 	}
1016 
1017 	/* Do not allow reads past end of device */
1018 	if (unlikely(from >= mtd->size ||
1019 		column + len > ((mtd->size >> this->page_shift) -
1020 				(from >> this->page_shift)) * oobsize)) {
1021 		printk(KERN_ERR "onenand_read_oob_nolock: Attempted to read beyond end of device\n");
1022 		return -EINVAL;
1023 	}
1024 
1025 	stats = mtd->ecc_stats;
1026 
1027 	readcmd = ONENAND_IS_4KB_PAGE(this) ?
1028 		ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1029 
1030 	while (read < len) {
1031 		thislen = oobsize - column;
1032 		thislen = min_t(int, thislen, len);
1033 
1034 		this->spare_buf = buf;
1035 		this->command(mtd, readcmd, from, mtd->oobsize);
1036 
1037 		onenand_update_bufferram(mtd, from, 0);
1038 
1039 		ret = this->wait(mtd, FL_READING);
1040 		if (unlikely(ret))
1041 			ret = onenand_recover_lsb(mtd, from, ret);
1042 
1043 		if (ret && ret != -EBADMSG) {
1044 			printk(KERN_ERR "onenand_read_oob_nolock: read failed = 0x%x\n", ret);
1045 			break;
1046 		}
1047 
1048 		if (mode == MTD_OOB_AUTO)
1049 			onenand_transfer_auto_oob(mtd, buf, column, thislen);
1050 		else
1051 			this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
1052 
1053 		read += thislen;
1054 
1055 		if (read == len)
1056 			break;
1057 
1058 		buf += thislen;
1059 
1060 		/* Read more? */
1061 		if (read < len) {
1062 			/* Page size */
1063 			from += mtd->writesize;
1064 			column = 0;
1065 		}
1066 	}
1067 
1068 	ops->oobretlen = read;
1069 
1070 	if (ret)
1071 		return ret;
1072 
1073 	if (mtd->ecc_stats.failed - stats.failed)
1074 		return -EBADMSG;
1075 
1076 	return 0;
1077 }
1078 
1079 /**
1080  * onenand_read - [MTD Interface] MTD compability function for onenand_read_ecc
1081  * @param mtd		MTD device structure
1082  * @param from		offset to read from
1083  * @param len		number of bytes to read
1084  * @param retlen	pointer to variable to store the number of read bytes
1085  * @param buf		the databuffer to put data
1086  *
1087  * This function simply calls onenand_read_ecc with oob buffer and oobsel = NULL
1088 */
1089 int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1090 		 size_t * retlen, u_char * buf)
1091 {
1092 	struct mtd_oob_ops ops = {
1093 		.len    = len,
1094 		.ooblen = 0,
1095 		.datbuf = buf,
1096 		.oobbuf = NULL,
1097 	};
1098 	int ret;
1099 
1100 	onenand_get_device(mtd, FL_READING);
1101 	ret = onenand_read_ops_nolock(mtd, from, &ops);
1102 	onenand_release_device(mtd);
1103 
1104 	*retlen = ops.retlen;
1105 	return ret;
1106 }
1107 
1108 /**
1109  * onenand_read_oob - [MTD Interface] OneNAND read out-of-band
1110  * @param mtd		MTD device structure
1111  * @param from		offset to read from
1112  * @param ops		oob operations description structure
1113  *
1114  * OneNAND main and/or out-of-band
1115  */
1116 int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1117 			struct mtd_oob_ops *ops)
1118 {
1119 	int ret;
1120 
1121 	switch (ops->mode) {
1122 	case MTD_OOB_PLACE:
1123 	case MTD_OOB_AUTO:
1124 		break;
1125 	case MTD_OOB_RAW:
1126 		/* Not implemented yet */
1127 	default:
1128 		return -EINVAL;
1129 	}
1130 
1131 	onenand_get_device(mtd, FL_READING);
1132 	if (ops->datbuf)
1133 		ret = onenand_read_ops_nolock(mtd, from, ops);
1134 	else
1135 		ret = onenand_read_oob_nolock(mtd, from, ops);
1136 	onenand_release_device(mtd);
1137 
1138 	return ret;
1139 }
1140 
1141 /**
1142  * onenand_bbt_wait - [DEFAULT] wait until the command is done
1143  * @param mtd		MTD device structure
1144  * @param state		state to select the max. timeout value
1145  *
1146  * Wait for command done.
1147  */
1148 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1149 {
1150 	struct onenand_chip *this = mtd->priv;
1151 	unsigned int flags = ONENAND_INT_MASTER;
1152 	unsigned int interrupt;
1153 	unsigned int ctrl;
1154 
1155 	while (1) {
1156 		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1157 		if (interrupt & flags)
1158 			break;
1159 	}
1160 
1161 	/* To get correct interrupt status in timeout case */
1162 	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1163 	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1164 
1165 	if (interrupt & ONENAND_INT_READ) {
1166 		int ecc = onenand_read_ecc(this);
1167 		if (ecc & ONENAND_ECC_2BIT_ALL) {
1168 			printk(KERN_INFO "onenand_bbt_wait: ecc error = 0x%04x"
1169 				", controller = 0x%04x\n", ecc, ctrl);
1170 			return ONENAND_BBT_READ_ERROR;
1171 		}
1172 	} else {
1173 		printk(KERN_ERR "onenand_bbt_wait: read timeout!"
1174 				"ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
1175 		return ONENAND_BBT_READ_FATAL_ERROR;
1176 	}
1177 
1178 	/* Initial bad block case: 0x2400 or 0x0400 */
1179 	if (ctrl & ONENAND_CTRL_ERROR) {
1180 		printk(KERN_DEBUG "onenand_bbt_wait: controller error = 0x%04x\n", ctrl);
1181 		return ONENAND_BBT_READ_ERROR;
1182 	}
1183 
1184 	return 0;
1185 }
1186 
1187 /**
1188  * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1189  * @param mtd		MTD device structure
1190  * @param from		offset to read from
1191  * @param ops		oob operation description structure
1192  *
1193  * OneNAND read out-of-band data from the spare area for bbt scan
1194  */
1195 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1196 		struct mtd_oob_ops *ops)
1197 {
1198 	struct onenand_chip *this = mtd->priv;
1199 	int read = 0, thislen, column;
1200 	int ret = 0, readcmd;
1201 	size_t len = ops->ooblen;
1202 	u_char *buf = ops->oobbuf;
1203 
1204 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_bbt_read_oob: from = 0x%08x, len = %zi\n", (unsigned int) from, len);
1205 
1206 	readcmd = ONENAND_IS_4KB_PAGE(this) ?
1207 		ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1208 
1209 	/* Initialize return value */
1210 	ops->oobretlen = 0;
1211 
1212 	/* Do not allow reads past end of device */
1213 	if (unlikely((from + len) > mtd->size)) {
1214 		printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n");
1215 		return ONENAND_BBT_READ_FATAL_ERROR;
1216 	}
1217 
1218 	/* Grab the lock and see if the device is available */
1219 	onenand_get_device(mtd, FL_READING);
1220 
1221 	column = from & (mtd->oobsize - 1);
1222 
1223 	while (read < len) {
1224 
1225 		thislen = mtd->oobsize - column;
1226 		thislen = min_t(int, thislen, len);
1227 
1228 		this->spare_buf = buf;
1229 		this->command(mtd, readcmd, from, mtd->oobsize);
1230 
1231 		onenand_update_bufferram(mtd, from, 0);
1232 
1233 		ret = this->bbt_wait(mtd, FL_READING);
1234 		if (unlikely(ret))
1235 			ret = onenand_recover_lsb(mtd, from, ret);
1236 
1237 		if (ret)
1238 			break;
1239 
1240 		this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
1241 		read += thislen;
1242 		if (read == len)
1243 			break;
1244 
1245 		buf += thislen;
1246 
1247 		/* Read more? */
1248 		if (read < len) {
1249 			/* Update Page size */
1250 			from += this->writesize;
1251 			column = 0;
1252 		}
1253 	}
1254 
1255 	/* Deselect and wake up anyone waiting on the device */
1256 	onenand_release_device(mtd);
1257 
1258 	ops->oobretlen = read;
1259 	return ret;
1260 }
1261 
1262 
1263 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1264 /**
1265  * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1266  * @param mtd           MTD device structure
1267  * @param buf           the databuffer to verify
1268  * @param to            offset to read from
1269  */
1270 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1271 {
1272 	struct onenand_chip *this = mtd->priv;
1273 	u_char *oob_buf = this->oob_buf;
1274 	int status, i, readcmd;
1275 
1276 	readcmd = ONENAND_IS_4KB_PAGE(this) ?
1277 		ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1278 
1279 	this->command(mtd, readcmd, to, mtd->oobsize);
1280 	onenand_update_bufferram(mtd, to, 0);
1281 	status = this->wait(mtd, FL_READING);
1282 	if (status)
1283 		return status;
1284 
1285 	this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1286 	for (i = 0; i < mtd->oobsize; i++)
1287 		if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1288 			return -EBADMSG;
1289 
1290 	return 0;
1291 }
1292 
1293 /**
1294  * onenand_verify - [GENERIC] verify the chip contents after a write
1295  * @param mtd          MTD device structure
1296  * @param buf          the databuffer to verify
1297  * @param addr         offset to read from
1298  * @param len          number of bytes to read and compare
1299  */
1300 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1301 {
1302 	struct onenand_chip *this = mtd->priv;
1303 	void __iomem *dataram;
1304 	int ret = 0;
1305 	int thislen, column;
1306 
1307 	while (len != 0) {
1308 		thislen = min_t(int, this->writesize, len);
1309 		column = addr & (this->writesize - 1);
1310 		if (column + thislen > this->writesize)
1311 			thislen = this->writesize - column;
1312 
1313 		this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1314 
1315 		onenand_update_bufferram(mtd, addr, 0);
1316 
1317 		ret = this->wait(mtd, FL_READING);
1318 		if (ret)
1319 			return ret;
1320 
1321 		onenand_update_bufferram(mtd, addr, 1);
1322 
1323 		dataram = this->base + ONENAND_DATARAM;
1324 		dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
1325 
1326 		if (memcmp(buf, dataram + column, thislen))
1327 			return -EBADMSG;
1328 
1329 		len -= thislen;
1330 		buf += thislen;
1331 		addr += thislen;
1332 	}
1333 
1334 	return 0;
1335 }
1336 #else
1337 #define onenand_verify(...)             (0)
1338 #define onenand_verify_oob(...)         (0)
1339 #endif
1340 
1341 #define NOTALIGNED(x)	((x & (this->subpagesize - 1)) != 0)
1342 
1343 /**
1344  * onenand_fill_auto_oob - [Internal] oob auto-placement transfer
1345  * @param mtd           MTD device structure
1346  * @param oob_buf       oob buffer
1347  * @param buf           source address
1348  * @param column        oob offset to write to
1349  * @param thislen       oob length to write
1350  */
1351 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1352 		const u_char *buf, int column, int thislen)
1353 {
1354 	struct onenand_chip *this = mtd->priv;
1355 	struct nand_oobfree *free;
1356 	int writecol = column;
1357 	int writeend = column + thislen;
1358 	int lastgap = 0;
1359 	unsigned int i;
1360 
1361 	free = this->ecclayout->oobfree;
1362 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1363 		if (writecol >= lastgap)
1364 			writecol += free->offset - lastgap;
1365 		if (writeend >= lastgap)
1366 			writeend += free->offset - lastgap;
1367 		lastgap = free->offset + free->length;
1368 	}
1369 	free = this->ecclayout->oobfree;
1370 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1371 		int free_end = free->offset + free->length;
1372 		if (free->offset < writeend && free_end > writecol) {
1373 			int st = max_t(int,free->offset,writecol);
1374 			int ed = min_t(int,free_end,writeend);
1375 			int n = ed - st;
1376 			memcpy(oob_buf + st, buf, n);
1377 			buf += n;
1378 		} else if (column == 0)
1379 			break;
1380 	}
1381 	return 0;
1382 }
1383 
1384 /**
1385  * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1386  * @param mtd           MTD device structure
1387  * @param to            offset to write to
1388  * @param ops           oob operation description structure
1389  *
1390  * Write main and/or oob with ECC
1391  */
1392 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1393 		struct mtd_oob_ops *ops)
1394 {
1395 	struct onenand_chip *this = mtd->priv;
1396 	int written = 0, column, thislen, subpage;
1397 	int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1398 	size_t len = ops->len;
1399 	size_t ooblen = ops->ooblen;
1400 	const u_char *buf = ops->datbuf;
1401 	const u_char *oob = ops->oobbuf;
1402 	u_char *oobbuf;
1403 	int ret = 0;
1404 
1405 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_write_ops_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1406 
1407 	/* Initialize retlen, in case of early exit */
1408 	ops->retlen = 0;
1409 	ops->oobretlen = 0;
1410 
1411 	/* Do not allow writes past end of device */
1412 	if (unlikely((to + len) > mtd->size)) {
1413 		printk(KERN_ERR "onenand_write_ops_nolock: Attempt write to past end of device\n");
1414 		return -EINVAL;
1415 	}
1416 
1417 	/* Reject writes, which are not page aligned */
1418 	if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1419 		printk(KERN_ERR "onenand_write_ops_nolock: Attempt to write not page aligned data\n");
1420 		return -EINVAL;
1421 	}
1422 
1423 	if (ops->mode == MTD_OOB_AUTO)
1424 		oobsize = this->ecclayout->oobavail;
1425 	else
1426 		oobsize = mtd->oobsize;
1427 
1428 	oobcolumn = to & (mtd->oobsize - 1);
1429 
1430 	column = to & (mtd->writesize - 1);
1431 
1432 	/* Loop until all data write */
1433 	while (written < len) {
1434 		u_char *wbuf = (u_char *) buf;
1435 
1436 		thislen = min_t(int, mtd->writesize - column, len - written);
1437 		thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1438 
1439 		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1440 
1441 		/* Partial page write */
1442 		subpage = thislen < mtd->writesize;
1443 		if (subpage) {
1444 			memset(this->page_buf, 0xff, mtd->writesize);
1445 			memcpy(this->page_buf + column, buf, thislen);
1446 			wbuf = this->page_buf;
1447 		}
1448 
1449 		this->write_bufferram(mtd, to, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1450 
1451 		if (oob) {
1452 			oobbuf = this->oob_buf;
1453 
1454 			/* We send data to spare ram with oobsize
1455 			 *                          * to prevent byte access */
1456 			memset(oobbuf, 0xff, mtd->oobsize);
1457 			if (ops->mode == MTD_OOB_AUTO)
1458 				onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1459 			else
1460 				memcpy(oobbuf + oobcolumn, oob, thisooblen);
1461 
1462 			oobwritten += thisooblen;
1463 			oob += thisooblen;
1464 			oobcolumn = 0;
1465 		} else
1466 			oobbuf = (u_char *) ffchars;
1467 
1468 		this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1469 
1470 		this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1471 
1472 		ret = this->wait(mtd, FL_WRITING);
1473 
1474 		/* In partial page write we don't update bufferram */
1475 		onenand_update_bufferram(mtd, to, !ret && !subpage);
1476 		if (ONENAND_IS_2PLANE(this)) {
1477 			ONENAND_SET_BUFFERRAM1(this);
1478 			onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1479 		}
1480 
1481 		if (ret) {
1482 			printk(KERN_ERR "onenand_write_ops_nolock: write filaed %d\n", ret);
1483 			break;
1484 		}
1485 
1486 		/* Only check verify write turn on */
1487 		ret = onenand_verify(mtd, buf, to, thislen);
1488 		if (ret) {
1489 			printk(KERN_ERR "onenand_write_ops_nolock: verify failed %d\n", ret);
1490 			break;
1491 		}
1492 
1493 		written += thislen;
1494 
1495 		if (written == len)
1496 			break;
1497 
1498 		column = 0;
1499 		to += thislen;
1500 		buf += thislen;
1501 	}
1502 
1503 	ops->retlen = written;
1504 
1505 	return ret;
1506 }
1507 
1508 /**
1509  * onenand_write_oob_nolock - [Internal] OneNAND write out-of-band
1510  * @param mtd           MTD device structure
1511  * @param to            offset to write to
1512  * @param len           number of bytes to write
1513  * @param retlen        pointer to variable to store the number of written bytes
1514  * @param buf           the data to write
1515  * @param mode          operation mode
1516  *
1517  * OneNAND write out-of-band
1518  */
1519 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1520 		struct mtd_oob_ops *ops)
1521 {
1522 	struct onenand_chip *this = mtd->priv;
1523 	int column, ret = 0, oobsize;
1524 	int written = 0, oobcmd;
1525 	u_char *oobbuf;
1526 	size_t len = ops->ooblen;
1527 	const u_char *buf = ops->oobbuf;
1528 	mtd_oob_mode_t mode = ops->mode;
1529 
1530 	to += ops->ooboffs;
1531 
1532 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1533 
1534 	/* Initialize retlen, in case of early exit */
1535 	ops->oobretlen = 0;
1536 
1537 	if (mode == MTD_OOB_AUTO)
1538 		oobsize = this->ecclayout->oobavail;
1539 	else
1540 		oobsize = mtd->oobsize;
1541 
1542 	column = to & (mtd->oobsize - 1);
1543 
1544 	if (unlikely(column >= oobsize)) {
1545 		printk(KERN_ERR "onenand_write_oob_nolock: Attempted to start write outside oob\n");
1546 		return -EINVAL;
1547 	}
1548 
1549 	/* For compatibility with NAND: Do not allow write past end of page */
1550 	if (unlikely(column + len > oobsize)) {
1551 		printk(KERN_ERR "onenand_write_oob_nolock: "
1552 				"Attempt to write past end of page\n");
1553 		return -EINVAL;
1554 	}
1555 
1556 	/* Do not allow reads past end of device */
1557 	if (unlikely(to >= mtd->size ||
1558 				column + len > ((mtd->size >> this->page_shift) -
1559 					(to >> this->page_shift)) * oobsize)) {
1560 		printk(KERN_ERR "onenand_write_oob_nolock: Attempted to write past end of device\n");
1561 		return -EINVAL;
1562 	}
1563 
1564 	oobbuf = this->oob_buf;
1565 
1566 	oobcmd = ONENAND_IS_4KB_PAGE(this) ?
1567 		ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
1568 
1569 	/* Loop until all data write */
1570 	while (written < len) {
1571 		int thislen = min_t(int, oobsize, len - written);
1572 
1573 		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
1574 
1575 		/* We send data to spare ram with oobsize
1576 		 * to prevent byte access */
1577 		memset(oobbuf, 0xff, mtd->oobsize);
1578 		if (mode == MTD_OOB_AUTO)
1579 			onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
1580 		else
1581 			memcpy(oobbuf + column, buf, thislen);
1582 		this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1583 
1584 		if (ONENAND_IS_4KB_PAGE(this)) {
1585 			/* Set main area of DataRAM to 0xff*/
1586 			memset(this->page_buf, 0xff, mtd->writesize);
1587 			this->write_bufferram(mtd, 0, ONENAND_DATARAM,
1588 				this->page_buf,	0, mtd->writesize);
1589 		}
1590 
1591 		this->command(mtd, oobcmd, to, mtd->oobsize);
1592 
1593 		onenand_update_bufferram(mtd, to, 0);
1594 		if (ONENAND_IS_2PLANE(this)) {
1595 			ONENAND_SET_BUFFERRAM1(this);
1596 			onenand_update_bufferram(mtd, to + this->writesize, 0);
1597 		}
1598 
1599 		ret = this->wait(mtd, FL_WRITING);
1600 		if (ret) {
1601 			printk(KERN_ERR "onenand_write_oob_nolock: write failed %d\n", ret);
1602 			break;
1603 		}
1604 
1605 		ret = onenand_verify_oob(mtd, oobbuf, to);
1606 		if (ret) {
1607 			printk(KERN_ERR "onenand_write_oob_nolock: verify failed %d\n", ret);
1608 			break;
1609 		}
1610 
1611 		written += thislen;
1612 		if (written == len)
1613 			break;
1614 
1615 		to += mtd->writesize;
1616 		buf += thislen;
1617 		column = 0;
1618 	}
1619 
1620 	ops->oobretlen = written;
1621 
1622 	return ret;
1623 }
1624 
1625 /**
1626  * onenand_write - [MTD Interface] compability function for onenand_write_ecc
1627  * @param mtd		MTD device structure
1628  * @param to		offset to write to
1629  * @param len		number of bytes to write
1630  * @param retlen	pointer to variable to store the number of written bytes
1631  * @param buf		the data to write
1632  *
1633  * Write with ECC
1634  */
1635 int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
1636 		  size_t * retlen, const u_char * buf)
1637 {
1638 	struct mtd_oob_ops ops = {
1639 		.len    = len,
1640 		.ooblen = 0,
1641 		.datbuf = (u_char *) buf,
1642 		.oobbuf = NULL,
1643 	};
1644 	int ret;
1645 
1646 	onenand_get_device(mtd, FL_WRITING);
1647 	ret = onenand_write_ops_nolock(mtd, to, &ops);
1648 	onenand_release_device(mtd);
1649 
1650 	*retlen = ops.retlen;
1651 	return ret;
1652 }
1653 
1654 /**
1655  * onenand_write_oob - [MTD Interface] OneNAND write out-of-band
1656  * @param mtd		MTD device structure
1657  * @param to		offset to write to
1658  * @param ops		oob operation description structure
1659  *
1660  * OneNAND write main and/or out-of-band
1661  */
1662 int onenand_write_oob(struct mtd_info *mtd, loff_t to,
1663 			struct mtd_oob_ops *ops)
1664 {
1665 	int ret;
1666 
1667 	switch (ops->mode) {
1668 	case MTD_OOB_PLACE:
1669 	case MTD_OOB_AUTO:
1670 		break;
1671 	case MTD_OOB_RAW:
1672 		/* Not implemented yet */
1673 	default:
1674 		return -EINVAL;
1675 	}
1676 
1677 	onenand_get_device(mtd, FL_WRITING);
1678 	if (ops->datbuf)
1679 		ret = onenand_write_ops_nolock(mtd, to, ops);
1680 	else
1681 		ret = onenand_write_oob_nolock(mtd, to, ops);
1682 	onenand_release_device(mtd);
1683 
1684 	return ret;
1685 
1686 }
1687 
1688 /**
1689  * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
1690  * @param mtd		MTD device structure
1691  * @param ofs		offset from device start
1692  * @param allowbbt	1, if its allowed to access the bbt area
1693  *
1694  * Check, if the block is bad, Either by reading the bad block table or
1695  * calling of the scan function.
1696  */
1697 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
1698 {
1699 	struct onenand_chip *this = mtd->priv;
1700 	struct bbm_info *bbm = this->bbm;
1701 
1702 	/* Return info from the table */
1703 	return bbm->isbad_bbt(mtd, ofs, allowbbt);
1704 }
1705 
1706 
1707 /**
1708  * onenand_erase - [MTD Interface] erase block(s)
1709  * @param mtd		MTD device structure
1710  * @param instr		erase instruction
1711  *
1712  * Erase one ore more blocks
1713  */
1714 int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
1715 {
1716 	struct onenand_chip *this = mtd->priv;
1717 	unsigned int block_size;
1718 	loff_t addr = instr->addr;
1719 	unsigned int len = instr->len;
1720 	int ret = 0, i;
1721 	struct mtd_erase_region_info *region = NULL;
1722 	unsigned int region_end = 0;
1723 
1724 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n",
1725 			(unsigned int) addr, len);
1726 
1727 	/* Do not allow erase past end of device */
1728 	if (unlikely((len + addr) > mtd->size)) {
1729 		MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:"
1730 					"Erase past end of device\n");
1731 		return -EINVAL;
1732 	}
1733 
1734 	if (FLEXONENAND(this)) {
1735 		/* Find the eraseregion of this address */
1736 		i = flexonenand_region(mtd, addr);
1737 		region = &mtd->eraseregions[i];
1738 
1739 		block_size = region->erasesize;
1740 		region_end = region->offset
1741 			+ region->erasesize * region->numblocks;
1742 
1743 		/* Start address within region must align on block boundary.
1744 		 * Erase region's start offset is always block start address.
1745 		 */
1746 		if (unlikely((addr - region->offset) & (block_size - 1))) {
1747 			MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:"
1748 				" Unaligned address\n");
1749 			return -EINVAL;
1750 		}
1751 	} else {
1752 		block_size = 1 << this->erase_shift;
1753 
1754 		/* Start address must align on block boundary */
1755 		if (unlikely(addr & (block_size - 1))) {
1756 			MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:"
1757 						"Unaligned address\n");
1758 			return -EINVAL;
1759 		}
1760 	}
1761 
1762 	/* Length must align on block boundary */
1763 	if (unlikely(len & (block_size - 1))) {
1764 		MTDDEBUG (MTD_DEBUG_LEVEL0,
1765 			 "onenand_erase: Length not block aligned\n");
1766 		return -EINVAL;
1767 	}
1768 
1769 	instr->fail_addr = 0xffffffff;
1770 
1771 	/* Grab the lock and see if the device is available */
1772 	onenand_get_device(mtd, FL_ERASING);
1773 
1774 	/* Loop throught the pages */
1775 	instr->state = MTD_ERASING;
1776 
1777 	while (len) {
1778 
1779 		/* Check if we have a bad block, we do not erase bad blocks */
1780 		if (instr->priv == 0 && onenand_block_isbad_nolock(mtd, addr, 0)) {
1781 			printk(KERN_WARNING "onenand_erase: attempt to erase"
1782 				" a bad block at addr 0x%08x\n",
1783 				(unsigned int) addr);
1784 			instr->state = MTD_ERASE_FAILED;
1785 			goto erase_exit;
1786 		}
1787 
1788 		this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
1789 
1790 		onenand_invalidate_bufferram(mtd, addr, block_size);
1791 
1792 		ret = this->wait(mtd, FL_ERASING);
1793 		/* Check, if it is write protected */
1794 		if (ret) {
1795 			if (ret == -EPERM)
1796 				MTDDEBUG (MTD_DEBUG_LEVEL0, "onenand_erase: "
1797 					  "Device is write protected!!!\n");
1798 			else
1799 				MTDDEBUG (MTD_DEBUG_LEVEL0, "onenand_erase: "
1800 					  "Failed erase, block %d\n",
1801 					onenand_block(this, addr));
1802 			instr->state = MTD_ERASE_FAILED;
1803 			instr->fail_addr = addr;
1804 
1805 			goto erase_exit;
1806 		}
1807 
1808 		len -= block_size;
1809 		addr += block_size;
1810 
1811 		if (addr == region_end) {
1812 			if (!len)
1813 				break;
1814 			region++;
1815 
1816 			block_size = region->erasesize;
1817 			region_end = region->offset
1818 				+ region->erasesize * region->numblocks;
1819 
1820 			if (len & (block_size - 1)) {
1821 				/* This has been checked at MTD
1822 				 * partitioning level. */
1823 				printk("onenand_erase: Unaligned address\n");
1824 				goto erase_exit;
1825 			}
1826 		}
1827 	}
1828 
1829 	instr->state = MTD_ERASE_DONE;
1830 
1831 erase_exit:
1832 
1833 	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1834 	/* Do call back function */
1835 	if (!ret)
1836 		mtd_erase_callback(instr);
1837 
1838 	/* Deselect and wake up anyone waiting on the device */
1839 	onenand_release_device(mtd);
1840 
1841 	return ret;
1842 }
1843 
1844 /**
1845  * onenand_sync - [MTD Interface] sync
1846  * @param mtd		MTD device structure
1847  *
1848  * Sync is actually a wait for chip ready function
1849  */
1850 void onenand_sync(struct mtd_info *mtd)
1851 {
1852 	MTDDEBUG (MTD_DEBUG_LEVEL3, "onenand_sync: called\n");
1853 
1854 	/* Grab the lock and see if the device is available */
1855 	onenand_get_device(mtd, FL_SYNCING);
1856 
1857 	/* Release it and go back */
1858 	onenand_release_device(mtd);
1859 }
1860 
1861 /**
1862  * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
1863  * @param mtd		MTD device structure
1864  * @param ofs		offset relative to mtd start
1865  *
1866  * Check whether the block is bad
1867  */
1868 int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
1869 {
1870 	int ret;
1871 
1872 	/* Check for invalid offset */
1873 	if (ofs > mtd->size)
1874 		return -EINVAL;
1875 
1876 	onenand_get_device(mtd, FL_READING);
1877 	ret = onenand_block_isbad_nolock(mtd,ofs, 0);
1878 	onenand_release_device(mtd);
1879 	return ret;
1880 }
1881 
1882 /**
1883  * onenand_default_block_markbad - [DEFAULT] mark a block bad
1884  * @param mtd           MTD device structure
1885  * @param ofs           offset from device start
1886  *
1887  * This is the default implementation, which can be overridden by
1888  * a hardware specific driver.
1889  */
1890 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
1891 {
1892 	struct onenand_chip *this = mtd->priv;
1893 	struct bbm_info *bbm = this->bbm;
1894 	u_char buf[2] = {0, 0};
1895 	struct mtd_oob_ops ops = {
1896 		.mode = MTD_OOB_PLACE,
1897 		.ooblen = 2,
1898 		.oobbuf = buf,
1899 		.ooboffs = 0,
1900 	};
1901 	int block;
1902 
1903 	/* Get block number */
1904 	block = onenand_block(this, ofs);
1905 	if (bbm->bbt)
1906 		bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1907 
1908 	/* We write two bytes, so we dont have to mess with 16 bit access */
1909 	ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
1910 	return onenand_write_oob_nolock(mtd, ofs, &ops);
1911 }
1912 
1913 /**
1914  * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
1915  * @param mtd		MTD device structure
1916  * @param ofs		offset relative to mtd start
1917  *
1918  * Mark the block as bad
1919  */
1920 int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1921 {
1922 	struct onenand_chip *this = mtd->priv;
1923 	int ret;
1924 
1925 	ret = onenand_block_isbad(mtd, ofs);
1926 	if (ret) {
1927 		/* If it was bad already, return success and do nothing */
1928 		if (ret > 0)
1929 			return 0;
1930 		return ret;
1931 	}
1932 
1933 	ret = this->block_markbad(mtd, ofs);
1934 	return ret;
1935 }
1936 
1937 /**
1938  * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
1939  * @param mtd           MTD device structure
1940  * @param ofs           offset relative to mtd start
1941  * @param len           number of bytes to lock or unlock
1942  * @param cmd           lock or unlock command
1943  *
1944  * Lock or unlock one or more blocks
1945  */
1946 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
1947 {
1948 	struct onenand_chip *this = mtd->priv;
1949 	int start, end, block, value, status;
1950 
1951 	start = onenand_block(this, ofs);
1952 	end = onenand_block(this, ofs + len);
1953 
1954 	/* Continuous lock scheme */
1955 	if (this->options & ONENAND_HAS_CONT_LOCK) {
1956 		/* Set start block address */
1957 		this->write_word(start,
1958 				 this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1959 		/* Set end block address */
1960 		this->write_word(end - 1,
1961 				 this->base + ONENAND_REG_END_BLOCK_ADDRESS);
1962 		/* Write unlock command */
1963 		this->command(mtd, cmd, 0, 0);
1964 
1965 		/* There's no return value */
1966 		this->wait(mtd, FL_UNLOCKING);
1967 
1968 		/* Sanity check */
1969 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1970 		       & ONENAND_CTRL_ONGO)
1971 			continue;
1972 
1973 		/* Check lock status */
1974 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1975 		if (!(status & ONENAND_WP_US))
1976 			printk(KERN_ERR "wp status = 0x%x\n", status);
1977 
1978 		return 0;
1979 	}
1980 
1981 	/* Block lock scheme */
1982 	for (block = start; block < end; block++) {
1983 		/* Set block address */
1984 		value = onenand_block_address(this, block);
1985 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1986 		/* Select DataRAM for DDP */
1987 		value = onenand_bufferram_address(this, block);
1988 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1989 
1990 		/* Set start block address */
1991 		this->write_word(block,
1992 				 this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1993 		/* Write unlock command */
1994 		this->command(mtd, ONENAND_CMD_UNLOCK, 0, 0);
1995 
1996 		/* There's no return value */
1997 		this->wait(mtd, FL_UNLOCKING);
1998 
1999 		/* Sanity check */
2000 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2001 		       & ONENAND_CTRL_ONGO)
2002 			continue;
2003 
2004 		/* Check lock status */
2005 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2006 		if (!(status & ONENAND_WP_US))
2007 			printk(KERN_ERR "block = %d, wp status = 0x%x\n",
2008 			       block, status);
2009 	}
2010 
2011 	return 0;
2012 }
2013 
2014 #ifdef ONENAND_LINUX
2015 /**
2016  * onenand_lock - [MTD Interface] Lock block(s)
2017  * @param mtd           MTD device structure
2018  * @param ofs           offset relative to mtd start
2019  * @param len           number of bytes to unlock
2020  *
2021  * Lock one or more blocks
2022  */
2023 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
2024 {
2025 	int ret;
2026 
2027 	onenand_get_device(mtd, FL_LOCKING);
2028 	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2029 	onenand_release_device(mtd);
2030 	return ret;
2031 }
2032 
2033 /**
2034  * onenand_unlock - [MTD Interface] Unlock block(s)
2035  * @param mtd           MTD device structure
2036  * @param ofs           offset relative to mtd start
2037  * @param len           number of bytes to unlock
2038  *
2039  * Unlock one or more blocks
2040  */
2041 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
2042 {
2043 	int ret;
2044 
2045 	onenand_get_device(mtd, FL_LOCKING);
2046 	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2047 	onenand_release_device(mtd);
2048 	return ret;
2049 }
2050 #endif
2051 
2052 /**
2053  * onenand_check_lock_status - [OneNAND Interface] Check lock status
2054  * @param this          onenand chip data structure
2055  *
2056  * Check lock status
2057  */
2058 static int onenand_check_lock_status(struct onenand_chip *this)
2059 {
2060 	unsigned int value, block, status;
2061 	unsigned int end;
2062 
2063 	end = this->chipsize >> this->erase_shift;
2064 	for (block = 0; block < end; block++) {
2065 		/* Set block address */
2066 		value = onenand_block_address(this, block);
2067 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2068 		/* Select DataRAM for DDP */
2069 		value = onenand_bufferram_address(this, block);
2070 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2071 		/* Set start block address */
2072 		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2073 
2074 		/* Check lock status */
2075 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2076 		if (!(status & ONENAND_WP_US)) {
2077 			printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
2078 			return 0;
2079 		}
2080 	}
2081 
2082 	return 1;
2083 }
2084 
2085 /**
2086  * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2087  * @param mtd           MTD device structure
2088  *
2089  * Unlock all blocks
2090  */
2091 static void onenand_unlock_all(struct mtd_info *mtd)
2092 {
2093 	struct onenand_chip *this = mtd->priv;
2094 	loff_t ofs = 0;
2095 	size_t len = mtd->size;
2096 
2097 	if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2098 		/* Set start block address */
2099 		this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2100 		/* Write unlock command */
2101 		this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2102 
2103 		/* There's no return value */
2104 		this->wait(mtd, FL_LOCKING);
2105 
2106 		/* Sanity check */
2107 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2108 				& ONENAND_CTRL_ONGO)
2109 			continue;
2110 
2111 		/* Check lock status */
2112 		if (onenand_check_lock_status(this))
2113 			return;
2114 
2115 		/* Workaround for all block unlock in DDP */
2116 		if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2117 			/* All blocks on another chip */
2118 			ofs = this->chipsize >> 1;
2119 			len = this->chipsize >> 1;
2120 		}
2121 	}
2122 
2123 	onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2124 }
2125 
2126 
2127 /**
2128  * onenand_check_features - Check and set OneNAND features
2129  * @param mtd           MTD data structure
2130  *
2131  * Check and set OneNAND features
2132  * - lock scheme
2133  * - two plane
2134  */
2135 static void onenand_check_features(struct mtd_info *mtd)
2136 {
2137 	struct onenand_chip *this = mtd->priv;
2138 	unsigned int density, process;
2139 
2140 	/* Lock scheme depends on density and process */
2141 	density = onenand_get_density(this->device_id);
2142 	process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
2143 
2144 	/* Lock scheme */
2145 	switch (density) {
2146 	case ONENAND_DEVICE_DENSITY_4Gb:
2147 		if (ONENAND_IS_DDP(this))
2148 			this->options |= ONENAND_HAS_2PLANE;
2149 		else
2150 			this->options |= ONENAND_HAS_4KB_PAGE;
2151 
2152 	case ONENAND_DEVICE_DENSITY_2Gb:
2153 		/* 2Gb DDP don't have 2 plane */
2154 		if (!ONENAND_IS_DDP(this))
2155 			this->options |= ONENAND_HAS_2PLANE;
2156 		this->options |= ONENAND_HAS_UNLOCK_ALL;
2157 
2158 	case ONENAND_DEVICE_DENSITY_1Gb:
2159 		/* A-Die has all block unlock */
2160 		if (process)
2161 			this->options |= ONENAND_HAS_UNLOCK_ALL;
2162 		break;
2163 
2164 	default:
2165 		/* Some OneNAND has continuous lock scheme */
2166 		if (!process)
2167 			this->options |= ONENAND_HAS_CONT_LOCK;
2168 		break;
2169 	}
2170 
2171 	if (ONENAND_IS_MLC(this))
2172 		this->options |= ONENAND_HAS_4KB_PAGE;
2173 
2174 	if (ONENAND_IS_4KB_PAGE(this))
2175 		this->options &= ~ONENAND_HAS_2PLANE;
2176 
2177 	if (FLEXONENAND(this)) {
2178 		this->options &= ~ONENAND_HAS_CONT_LOCK;
2179 		this->options |= ONENAND_HAS_UNLOCK_ALL;
2180 	}
2181 
2182 	if (this->options & ONENAND_HAS_CONT_LOCK)
2183 		printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
2184 	if (this->options & ONENAND_HAS_UNLOCK_ALL)
2185 		printk(KERN_DEBUG "Chip support all block unlock\n");
2186 	if (this->options & ONENAND_HAS_2PLANE)
2187 		printk(KERN_DEBUG "Chip has 2 plane\n");
2188 	if (this->options & ONENAND_HAS_4KB_PAGE)
2189 		printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
2190 
2191 }
2192 
2193 /**
2194  * onenand_print_device_info - Print device ID
2195  * @param device        device ID
2196  *
2197  * Print device ID
2198  */
2199 char *onenand_print_device_info(int device, int version)
2200 {
2201 	int vcc, demuxed, ddp, density, flexonenand;
2202 	char *dev_info = malloc(80);
2203 	char *p = dev_info;
2204 
2205 	vcc = device & ONENAND_DEVICE_VCC_MASK;
2206 	demuxed = device & ONENAND_DEVICE_IS_DEMUX;
2207 	ddp = device & ONENAND_DEVICE_IS_DDP;
2208 	density = onenand_get_density(device);
2209 	flexonenand = device & DEVICE_IS_FLEXONENAND;
2210 	p += sprintf(dev_info, "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)",
2211 	       demuxed ? "" : "Muxed ",
2212 	       flexonenand ? "Flex-" : "",
2213 	       ddp ? "(DDP)" : "",
2214 	       (16 << density), vcc ? "2.65/3.3" : "1.8", device);
2215 
2216 	sprintf(p, "\nOneNAND version = 0x%04x", version);
2217 	printk("%s\n", dev_info);
2218 
2219 	return dev_info;
2220 }
2221 
2222 static const struct onenand_manufacturers onenand_manuf_ids[] = {
2223 	{ONENAND_MFR_NUMONYX, "Numonyx"},
2224 	{ONENAND_MFR_SAMSUNG, "Samsung"},
2225 };
2226 
2227 /**
2228  * onenand_check_maf - Check manufacturer ID
2229  * @param manuf         manufacturer ID
2230  *
2231  * Check manufacturer ID
2232  */
2233 static int onenand_check_maf(int manuf)
2234 {
2235 	int size = ARRAY_SIZE(onenand_manuf_ids);
2236 	int i;
2237 #ifdef ONENAND_DEBUG
2238 	char *name;
2239 #endif
2240 
2241 	for (i = 0; i < size; i++)
2242 		if (manuf == onenand_manuf_ids[i].id)
2243 			break;
2244 
2245 #ifdef ONENAND_DEBUG
2246 	if (i < size)
2247 		name = onenand_manuf_ids[i].name;
2248 	else
2249 		name = "Unknown";
2250 
2251 	printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
2252 #endif
2253 
2254 	return i == size;
2255 }
2256 
2257 /**
2258 * flexonenand_get_boundary	- Reads the SLC boundary
2259 * @param onenand_info		- onenand info structure
2260 *
2261 * Fill up boundary[] field in onenand_chip
2262 **/
2263 static int flexonenand_get_boundary(struct mtd_info *mtd)
2264 {
2265 	struct onenand_chip *this = mtd->priv;
2266 	unsigned int die, bdry;
2267 	int syscfg, locked;
2268 
2269 	/* Disable ECC */
2270 	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2271 	this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
2272 
2273 	for (die = 0; die < this->dies; die++) {
2274 		this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
2275 		this->wait(mtd, FL_SYNCING);
2276 
2277 		this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
2278 		this->wait(mtd, FL_READING);
2279 
2280 		bdry = this->read_word(this->base + ONENAND_DATARAM);
2281 		if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
2282 			locked = 0;
2283 		else
2284 			locked = 1;
2285 		this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
2286 
2287 		this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2288 		this->wait(mtd, FL_RESETING);
2289 
2290 		printk(KERN_INFO "Die %d boundary: %d%s\n", die,
2291 		       this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
2292 	}
2293 
2294 	/* Enable ECC */
2295 	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2296 	return 0;
2297 }
2298 
2299 /**
2300  * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
2301  * 			  boundary[], diesize[], mtd->size, mtd->erasesize,
2302  * 			  mtd->eraseregions
2303  * @param mtd		- MTD device structure
2304  */
2305 static void flexonenand_get_size(struct mtd_info *mtd)
2306 {
2307 	struct onenand_chip *this = mtd->priv;
2308 	int die, i, eraseshift, density;
2309 	int blksperdie, maxbdry;
2310 	loff_t ofs;
2311 
2312 	density = onenand_get_density(this->device_id);
2313 	blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
2314 	blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
2315 	maxbdry = blksperdie - 1;
2316 	eraseshift = this->erase_shift - 1;
2317 
2318 	mtd->numeraseregions = this->dies << 1;
2319 
2320 	/* This fills up the device boundary */
2321 	flexonenand_get_boundary(mtd);
2322 	die = 0;
2323 	ofs = 0;
2324 	i = -1;
2325 	for (; die < this->dies; die++) {
2326 		if (!die || this->boundary[die-1] != maxbdry) {
2327 			i++;
2328 			mtd->eraseregions[i].offset = ofs;
2329 			mtd->eraseregions[i].erasesize = 1 << eraseshift;
2330 			mtd->eraseregions[i].numblocks =
2331 							this->boundary[die] + 1;
2332 			ofs += mtd->eraseregions[i].numblocks << eraseshift;
2333 			eraseshift++;
2334 		} else {
2335 			mtd->numeraseregions -= 1;
2336 			mtd->eraseregions[i].numblocks +=
2337 							this->boundary[die] + 1;
2338 			ofs += (this->boundary[die] + 1) << (eraseshift - 1);
2339 		}
2340 		if (this->boundary[die] != maxbdry) {
2341 			i++;
2342 			mtd->eraseregions[i].offset = ofs;
2343 			mtd->eraseregions[i].erasesize = 1 << eraseshift;
2344 			mtd->eraseregions[i].numblocks = maxbdry ^
2345 							 this->boundary[die];
2346 			ofs += mtd->eraseregions[i].numblocks << eraseshift;
2347 			eraseshift--;
2348 		} else
2349 			mtd->numeraseregions -= 1;
2350 	}
2351 
2352 	/* Expose MLC erase size except when all blocks are SLC */
2353 	mtd->erasesize = 1 << this->erase_shift;
2354 	if (mtd->numeraseregions == 1)
2355 		mtd->erasesize >>= 1;
2356 
2357 	printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
2358 	for (i = 0; i < mtd->numeraseregions; i++)
2359 		printk(KERN_INFO "[offset: 0x%08llx, erasesize: 0x%05x,"
2360 			" numblocks: %04u]\n", mtd->eraseregions[i].offset,
2361 			mtd->eraseregions[i].erasesize,
2362 			mtd->eraseregions[i].numblocks);
2363 
2364 	for (die = 0, mtd->size = 0; die < this->dies; die++) {
2365 		this->diesize[die] = (loff_t) (blksperdie << this->erase_shift);
2366 		this->diesize[die] -= (loff_t) (this->boundary[die] + 1)
2367 						 << (this->erase_shift - 1);
2368 		mtd->size += this->diesize[die];
2369 	}
2370 }
2371 
2372 /**
2373  * flexonenand_check_blocks_erased - Check if blocks are erased
2374  * @param mtd_info	- mtd info structure
2375  * @param start		- first erase block to check
2376  * @param end		- last erase block to check
2377  *
2378  * Converting an unerased block from MLC to SLC
2379  * causes byte values to change. Since both data and its ECC
2380  * have changed, reads on the block give uncorrectable error.
2381  * This might lead to the block being detected as bad.
2382  *
2383  * Avoid this by ensuring that the block to be converted is
2384  * erased.
2385  */
2386 static int flexonenand_check_blocks_erased(struct mtd_info *mtd,
2387 					int start, int end)
2388 {
2389 	struct onenand_chip *this = mtd->priv;
2390 	int i, ret;
2391 	int block;
2392 	struct mtd_oob_ops ops = {
2393 		.mode = MTD_OOB_PLACE,
2394 		.ooboffs = 0,
2395 		.ooblen	= mtd->oobsize,
2396 		.datbuf	= NULL,
2397 		.oobbuf	= this->oob_buf,
2398 	};
2399 	loff_t addr;
2400 
2401 	printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
2402 
2403 	for (block = start; block <= end; block++) {
2404 		addr = flexonenand_addr(this, block);
2405 		if (onenand_block_isbad_nolock(mtd, addr, 0))
2406 			continue;
2407 
2408 		/*
2409 		 * Since main area write results in ECC write to spare,
2410 		 * it is sufficient to check only ECC bytes for change.
2411 		 */
2412 		ret = onenand_read_oob_nolock(mtd, addr, &ops);
2413 		if (ret)
2414 			return ret;
2415 
2416 		for (i = 0; i < mtd->oobsize; i++)
2417 			if (this->oob_buf[i] != 0xff)
2418 				break;
2419 
2420 		if (i != mtd->oobsize) {
2421 			printk(KERN_WARNING "Block %d not erased.\n", block);
2422 			return 1;
2423 		}
2424 	}
2425 
2426 	return 0;
2427 }
2428 
2429 /**
2430  * flexonenand_set_boundary	- Writes the SLC boundary
2431  * @param mtd			- mtd info structure
2432  */
2433 int flexonenand_set_boundary(struct mtd_info *mtd, int die,
2434 				    int boundary, int lock)
2435 {
2436 	struct onenand_chip *this = mtd->priv;
2437 	int ret, density, blksperdie, old, new, thisboundary;
2438 	loff_t addr;
2439 
2440 	if (die >= this->dies)
2441 		return -EINVAL;
2442 
2443 	if (boundary == this->boundary[die])
2444 		return 0;
2445 
2446 	density = onenand_get_density(this->device_id);
2447 	blksperdie = ((16 << density) << 20) >> this->erase_shift;
2448 	blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
2449 
2450 	if (boundary >= blksperdie) {
2451 		printk("flexonenand_set_boundary:"
2452 			"Invalid boundary value. "
2453 			"Boundary not changed.\n");
2454 		return -EINVAL;
2455 	}
2456 
2457 	/* Check if converting blocks are erased */
2458 	old = this->boundary[die] + (die * this->density_mask);
2459 	new = boundary + (die * this->density_mask);
2460 	ret = flexonenand_check_blocks_erased(mtd, min(old, new)
2461 						+ 1, max(old, new));
2462 	if (ret) {
2463 		printk(KERN_ERR "flexonenand_set_boundary: Please erase blocks before boundary change\n");
2464 		return ret;
2465 	}
2466 
2467 	this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
2468 	this->wait(mtd, FL_SYNCING);
2469 
2470 	/* Check is boundary is locked */
2471 	this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
2472 	ret = this->wait(mtd, FL_READING);
2473 
2474 	thisboundary = this->read_word(this->base + ONENAND_DATARAM);
2475 	if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
2476 		printk(KERN_ERR "flexonenand_set_boundary: boundary locked\n");
2477 		goto out;
2478 	}
2479 
2480 	printk(KERN_INFO "flexonenand_set_boundary: Changing die %d boundary: %d%s\n",
2481 			die, boundary, lock ? "(Locked)" : "(Unlocked)");
2482 
2483 	boundary &= FLEXONENAND_PI_MASK;
2484 	boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
2485 
2486 	addr = die ? this->diesize[0] : 0;
2487 	this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
2488 	ret = this->wait(mtd, FL_ERASING);
2489 	if (ret) {
2490 		printk("flexonenand_set_boundary:"
2491 			"Failed PI erase for Die %d\n", die);
2492 		goto out;
2493 	}
2494 
2495 	this->write_word(boundary, this->base + ONENAND_DATARAM);
2496 	this->command(mtd, ONENAND_CMD_PROG, addr, 0);
2497 	ret = this->wait(mtd, FL_WRITING);
2498 	if (ret) {
2499 		printk("flexonenand_set_boundary:"
2500 			"Failed PI write for Die %d\n", die);
2501 		goto out;
2502 	}
2503 
2504 	this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
2505 	ret = this->wait(mtd, FL_WRITING);
2506 out:
2507 	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
2508 	this->wait(mtd, FL_RESETING);
2509 	if (!ret)
2510 		/* Recalculate device size on boundary change*/
2511 		flexonenand_get_size(mtd);
2512 
2513 	return ret;
2514 }
2515 
2516 /**
2517  * onenand_chip_probe - [OneNAND Interface] Probe the OneNAND chip
2518  * @param mtd		MTD device structure
2519  *
2520  * OneNAND detection method:
2521  *   Compare the the values from command with ones from register
2522  */
2523 static int onenand_chip_probe(struct mtd_info *mtd)
2524 {
2525 	struct onenand_chip *this = mtd->priv;
2526 	int bram_maf_id, bram_dev_id, maf_id, dev_id;
2527 	int syscfg;
2528 
2529 	/* Save system configuration 1 */
2530 	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2531 
2532 	/* Clear Sync. Burst Read mode to read BootRAM */
2533 	this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ),
2534 			 this->base + ONENAND_REG_SYS_CFG1);
2535 
2536 	/* Send the command for reading device ID from BootRAM */
2537 	this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
2538 
2539 	/* Read manufacturer and device IDs from BootRAM */
2540 	bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
2541 	bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
2542 
2543 	/* Reset OneNAND to read default register values */
2544 	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
2545 
2546 	/* Wait reset */
2547 	this->wait(mtd, FL_RESETING);
2548 
2549 	/* Restore system configuration 1 */
2550 	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2551 
2552 	/* Check manufacturer ID */
2553 	if (onenand_check_maf(bram_maf_id))
2554 		return -ENXIO;
2555 
2556 	/* Read manufacturer and device IDs from Register */
2557 	maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
2558 	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2559 
2560 	/* Check OneNAND device */
2561 	if (maf_id != bram_maf_id || dev_id != bram_dev_id)
2562 		return -ENXIO;
2563 
2564 	return 0;
2565 }
2566 
2567 /**
2568  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
2569  * @param mtd		MTD device structure
2570  *
2571  * OneNAND detection method:
2572  *   Compare the the values from command with ones from register
2573  */
2574 int onenand_probe(struct mtd_info *mtd)
2575 {
2576 	struct onenand_chip *this = mtd->priv;
2577 	int dev_id, ver_id;
2578 	int density;
2579 	int ret;
2580 
2581 	ret = this->chip_probe(mtd);
2582 	if (ret)
2583 		return ret;
2584 
2585 	/* Read device IDs from Register */
2586 	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2587 	ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
2588 	this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
2589 
2590 	/* Flash device information */
2591 	mtd->name = onenand_print_device_info(dev_id, ver_id);
2592 	this->device_id = dev_id;
2593 	this->version_id = ver_id;
2594 
2595 	/* Check OneNAND features */
2596 	onenand_check_features(mtd);
2597 
2598 	density = onenand_get_density(dev_id);
2599 	if (FLEXONENAND(this)) {
2600 		this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
2601 		/* Maximum possible erase regions */
2602 		mtd->numeraseregions = this->dies << 1;
2603 		mtd->eraseregions = malloc(sizeof(struct mtd_erase_region_info)
2604 					* (this->dies << 1));
2605 		if (!mtd->eraseregions)
2606 			return -ENOMEM;
2607 	}
2608 
2609 	/*
2610 	 * For Flex-OneNAND, chipsize represents maximum possible device size.
2611 	 * mtd->size represents the actual device size.
2612 	 */
2613 	this->chipsize = (16 << density) << 20;
2614 
2615 	/* OneNAND page size & block size */
2616 	/* The data buffer size is equal to page size */
2617 	mtd->writesize =
2618 	    this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
2619 	/* We use the full BufferRAM */
2620 	if (ONENAND_IS_4KB_PAGE(this))
2621 		mtd->writesize <<= 1;
2622 
2623 	mtd->oobsize = mtd->writesize >> 5;
2624 	/* Pagers per block is always 64 in OneNAND */
2625 	mtd->erasesize = mtd->writesize << 6;
2626 	/*
2627 	 * Flex-OneNAND SLC area has 64 pages per block.
2628 	 * Flex-OneNAND MLC area has 128 pages per block.
2629 	 * Expose MLC erase size to find erase_shift and page_mask.
2630 	 */
2631 	if (FLEXONENAND(this))
2632 		mtd->erasesize <<= 1;
2633 
2634 	this->erase_shift = ffs(mtd->erasesize) - 1;
2635 	this->page_shift = ffs(mtd->writesize) - 1;
2636 	this->ppb_shift = (this->erase_shift - this->page_shift);
2637 	this->page_mask = (mtd->erasesize / mtd->writesize) - 1;
2638 	/* Set density mask. it is used for DDP */
2639 	if (ONENAND_IS_DDP(this))
2640 		this->density_mask = this->chipsize >> (this->erase_shift + 1);
2641 	/* It's real page size */
2642 	this->writesize = mtd->writesize;
2643 
2644 	/* REVIST: Multichip handling */
2645 
2646 	if (FLEXONENAND(this))
2647 		flexonenand_get_size(mtd);
2648 	else
2649 		mtd->size = this->chipsize;
2650 
2651 	mtd->flags = MTD_CAP_NANDFLASH;
2652 	mtd->erase = onenand_erase;
2653 	mtd->read = onenand_read;
2654 	mtd->write = onenand_write;
2655 	mtd->read_oob = onenand_read_oob;
2656 	mtd->write_oob = onenand_write_oob;
2657 	mtd->sync = onenand_sync;
2658 	mtd->block_isbad = onenand_block_isbad;
2659 	mtd->block_markbad = onenand_block_markbad;
2660 
2661 	return 0;
2662 }
2663 
2664 /**
2665  * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
2666  * @param mtd		MTD device structure
2667  * @param maxchips	Number of chips to scan for
2668  *
2669  * This fills out all the not initialized function pointers
2670  * with the defaults.
2671  * The flash ID is read and the mtd/chip structures are
2672  * filled with the appropriate values.
2673  */
2674 int onenand_scan(struct mtd_info *mtd, int maxchips)
2675 {
2676 	int i;
2677 	struct onenand_chip *this = mtd->priv;
2678 
2679 	if (!this->read_word)
2680 		this->read_word = onenand_readw;
2681 	if (!this->write_word)
2682 		this->write_word = onenand_writew;
2683 
2684 	if (!this->command)
2685 		this->command = onenand_command;
2686 	if (!this->wait)
2687 		this->wait = onenand_wait;
2688 	if (!this->bbt_wait)
2689 		this->bbt_wait = onenand_bbt_wait;
2690 
2691 	if (!this->read_bufferram)
2692 		this->read_bufferram = onenand_read_bufferram;
2693 	if (!this->write_bufferram)
2694 		this->write_bufferram = onenand_write_bufferram;
2695 
2696 	if (!this->chip_probe)
2697 		this->chip_probe = onenand_chip_probe;
2698 
2699 	if (!this->block_markbad)
2700 		this->block_markbad = onenand_default_block_markbad;
2701 	if (!this->scan_bbt)
2702 		this->scan_bbt = onenand_default_bbt;
2703 
2704 	if (onenand_probe(mtd))
2705 		return -ENXIO;
2706 
2707 	/* Set Sync. Burst Read after probing */
2708 	if (this->mmcontrol) {
2709 		printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
2710 		this->read_bufferram = onenand_sync_read_bufferram;
2711 	}
2712 
2713 	/* Allocate buffers, if necessary */
2714 	if (!this->page_buf) {
2715 		this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
2716 		if (!this->page_buf) {
2717 			printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
2718 			return -ENOMEM;
2719 		}
2720 		this->options |= ONENAND_PAGEBUF_ALLOC;
2721 	}
2722 	if (!this->oob_buf) {
2723 		this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
2724 		if (!this->oob_buf) {
2725 			printk(KERN_ERR "onenand_scan: Can't allocate oob_buf\n");
2726 			if (this->options & ONENAND_PAGEBUF_ALLOC) {
2727 				this->options &= ~ONENAND_PAGEBUF_ALLOC;
2728 				kfree(this->page_buf);
2729 			}
2730 			return -ENOMEM;
2731 		}
2732 		this->options |= ONENAND_OOBBUF_ALLOC;
2733 	}
2734 
2735 	this->state = FL_READY;
2736 
2737 	/*
2738 	 * Allow subpage writes up to oobsize.
2739 	 */
2740 	switch (mtd->oobsize) {
2741 	case 128:
2742 		this->ecclayout = &onenand_oob_128;
2743 		mtd->subpage_sft = 0;
2744 		break;
2745 
2746 	case 64:
2747 		this->ecclayout = &onenand_oob_64;
2748 		mtd->subpage_sft = 2;
2749 		break;
2750 
2751 	case 32:
2752 		this->ecclayout = &onenand_oob_32;
2753 		mtd->subpage_sft = 1;
2754 		break;
2755 
2756 	default:
2757 		printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
2758 			mtd->oobsize);
2759 		mtd->subpage_sft = 0;
2760 		/* To prevent kernel oops */
2761 		this->ecclayout = &onenand_oob_32;
2762 		break;
2763 	}
2764 
2765 	this->subpagesize = mtd->writesize >> mtd->subpage_sft;
2766 
2767 	/*
2768 	 * The number of bytes available for a client to place data into
2769 	 * the out of band area
2770 	 */
2771 	this->ecclayout->oobavail = 0;
2772 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
2773 	    this->ecclayout->oobfree[i].length; i++)
2774 		this->ecclayout->oobavail +=
2775 			this->ecclayout->oobfree[i].length;
2776 	mtd->oobavail = this->ecclayout->oobavail;
2777 
2778 	mtd->ecclayout = this->ecclayout;
2779 
2780 	/* Unlock whole block */
2781 	onenand_unlock_all(mtd);
2782 
2783 	return this->scan_bbt(mtd);
2784 }
2785 
2786 /**
2787  * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
2788  * @param mtd		MTD device structure
2789  */
2790 void onenand_release(struct mtd_info *mtd)
2791 {
2792 }
2793