1 /*
2  *  linux/drivers/mtd/onenand/onenand_base.c
3  *
4  *  Copyright (C) 2005-2007 Samsung Electronics
5  *  Kyungmin Park <kyungmin.park@samsung.com>
6  *
7  *  Credits:
8  *      Adrian Hunter <ext-adrian.hunter@nokia.com>:
9  *      auto-placement support, read-while load support, various fixes
10  *      Copyright (C) Nokia Corporation, 2007
11  *
12  *      Rohit Hagargundgi <h.rohit at samsung.com>,
13  *      Amul Kumar Saha <amul.saha@samsung.com>:
14  *      Flex-OneNAND support
15  *      Copyright (C) Samsung Electronics, 2009
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License version 2 as
19  * published by the Free Software Foundation.
20  */
21 
22 #include <common.h>
23 #include <linux/compat.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/onenand.h>
26 
27 #include <asm/io.h>
28 #include <asm/errno.h>
29 #include <malloc.h>
30 
31 /* It should access 16-bit instead of 8-bit */
32 static void *memcpy_16(void *dst, const void *src, unsigned int len)
33 {
34 	void *ret = dst;
35 	short *d = dst;
36 	const short *s = src;
37 
38 	len >>= 1;
39 	while (len-- > 0)
40 		*d++ = *s++;
41 	return ret;
42 }
43 
44 /**
45  *  onenand_oob_128 - oob info for Flex-Onenand with 4KB page
46  *  For now, we expose only 64 out of 80 ecc bytes
47  */
48 static struct nand_ecclayout onenand_oob_128 = {
49 	.eccbytes	= 64,
50 	.eccpos		= {
51 		6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
52 		22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
53 		38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
54 		54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
55 		70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
56 		86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
57 		102, 103, 104, 105
58 		},
59 	.oobfree	= {
60 		{2, 4}, {18, 4}, {34, 4}, {50, 4},
61 		{66, 4}, {82, 4}, {98, 4}, {114, 4}
62 	}
63 };
64 
65 /**
66  * onenand_oob_64 - oob info for large (2KB) page
67  */
68 static struct nand_ecclayout onenand_oob_64 = {
69 	.eccbytes	= 20,
70 	.eccpos		= {
71 		8, 9, 10, 11, 12,
72 		24, 25, 26, 27, 28,
73 		40, 41, 42, 43, 44,
74 		56, 57, 58, 59, 60,
75 		},
76 	.oobfree	= {
77 		{2, 3}, {14, 2}, {18, 3}, {30, 2},
78 		{34, 3}, {46, 2}, {50, 3}, {62, 2}
79 	}
80 };
81 
82 /**
83  * onenand_oob_32 - oob info for middle (1KB) page
84  */
85 static struct nand_ecclayout onenand_oob_32 = {
86 	.eccbytes	= 10,
87 	.eccpos		= {
88 		8, 9, 10, 11, 12,
89 		24, 25, 26, 27, 28,
90 		},
91 	.oobfree	= { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
92 };
93 
94 static const unsigned char ffchars[] = {
95 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
96 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 16 */
97 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
98 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 32 */
99 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
100 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 48 */
101 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
102 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 64 */
103 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
104 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 80 */
105 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
106 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 96 */
107 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
108 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 112 */
109 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
110 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 128 */
111 };
112 
113 /**
114  * onenand_readw - [OneNAND Interface] Read OneNAND register
115  * @param addr		address to read
116  *
117  * Read OneNAND register
118  */
119 static unsigned short onenand_readw(void __iomem * addr)
120 {
121 	return readw(addr);
122 }
123 
124 /**
125  * onenand_writew - [OneNAND Interface] Write OneNAND register with value
126  * @param value		value to write
127  * @param addr		address to write
128  *
129  * Write OneNAND register with value
130  */
131 static void onenand_writew(unsigned short value, void __iomem * addr)
132 {
133 	writew(value, addr);
134 }
135 
136 /**
137  * onenand_block_address - [DEFAULT] Get block address
138  * @param device	the device id
139  * @param block		the block
140  * @return		translated block address if DDP, otherwise same
141  *
142  * Setup Start Address 1 Register (F100h)
143  */
144 static int onenand_block_address(struct onenand_chip *this, int block)
145 {
146 	/* Device Flash Core select, NAND Flash Block Address */
147 	if (block & this->density_mask)
148 		return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
149 
150 	return block;
151 }
152 
153 /**
154  * onenand_bufferram_address - [DEFAULT] Get bufferram address
155  * @param device	the device id
156  * @param block		the block
157  * @return		set DBS value if DDP, otherwise 0
158  *
159  * Setup Start Address 2 Register (F101h) for DDP
160  */
161 static int onenand_bufferram_address(struct onenand_chip *this, int block)
162 {
163 	/* Device BufferRAM Select */
164 	if (block & this->density_mask)
165 		return ONENAND_DDP_CHIP1;
166 
167 	return ONENAND_DDP_CHIP0;
168 }
169 
170 /**
171  * onenand_page_address - [DEFAULT] Get page address
172  * @param page		the page address
173  * @param sector	the sector address
174  * @return		combined page and sector address
175  *
176  * Setup Start Address 8 Register (F107h)
177  */
178 static int onenand_page_address(int page, int sector)
179 {
180 	/* Flash Page Address, Flash Sector Address */
181 	int fpa, fsa;
182 
183 	fpa = page & ONENAND_FPA_MASK;
184 	fsa = sector & ONENAND_FSA_MASK;
185 
186 	return ((fpa << ONENAND_FPA_SHIFT) | fsa);
187 }
188 
189 /**
190  * onenand_buffer_address - [DEFAULT] Get buffer address
191  * @param dataram1	DataRAM index
192  * @param sectors	the sector address
193  * @param count		the number of sectors
194  * @return		the start buffer value
195  *
196  * Setup Start Buffer Register (F200h)
197  */
198 static int onenand_buffer_address(int dataram1, int sectors, int count)
199 {
200 	int bsa, bsc;
201 
202 	/* BufferRAM Sector Address */
203 	bsa = sectors & ONENAND_BSA_MASK;
204 
205 	if (dataram1)
206 		bsa |= ONENAND_BSA_DATARAM1;	/* DataRAM1 */
207 	else
208 		bsa |= ONENAND_BSA_DATARAM0;	/* DataRAM0 */
209 
210 	/* BufferRAM Sector Count */
211 	bsc = count & ONENAND_BSC_MASK;
212 
213 	return ((bsa << ONENAND_BSA_SHIFT) | bsc);
214 }
215 
216 /**
217  * flexonenand_block - Return block number for flash address
218  * @param this		- OneNAND device structure
219  * @param addr		- Address for which block number is needed
220  */
221 static unsigned int flexonenand_block(struct onenand_chip *this, loff_t addr)
222 {
223 	unsigned int boundary, blk, die = 0;
224 
225 	if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
226 		die = 1;
227 		addr -= this->diesize[0];
228 	}
229 
230 	boundary = this->boundary[die];
231 
232 	blk = addr >> (this->erase_shift - 1);
233 	if (blk > boundary)
234 		blk = (blk + boundary + 1) >> 1;
235 
236 	blk += die ? this->density_mask : 0;
237 	return blk;
238 }
239 
240 unsigned int onenand_block(struct onenand_chip *this, loff_t addr)
241 {
242 	if (!FLEXONENAND(this))
243 		return addr >> this->erase_shift;
244 	return flexonenand_block(this, addr);
245 }
246 
247 /**
248  * flexonenand_addr - Return address of the block
249  * @this:		OneNAND device structure
250  * @block:		Block number on Flex-OneNAND
251  *
252  * Return address of the block
253  */
254 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
255 {
256 	loff_t ofs = 0;
257 	int die = 0, boundary;
258 
259 	if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
260 		block -= this->density_mask;
261 		die = 1;
262 		ofs = this->diesize[0];
263 	}
264 
265 	boundary = this->boundary[die];
266 	ofs += (loff_t) block << (this->erase_shift - 1);
267 	if (block > (boundary + 1))
268 		ofs += (loff_t) (block - boundary - 1)
269 			<< (this->erase_shift - 1);
270 	return ofs;
271 }
272 
273 loff_t onenand_addr(struct onenand_chip *this, int block)
274 {
275 	if (!FLEXONENAND(this))
276 		return (loff_t) block << this->erase_shift;
277 	return flexonenand_addr(this, block);
278 }
279 
280 /**
281  * flexonenand_region - [Flex-OneNAND] Return erase region of addr
282  * @param mtd		MTD device structure
283  * @param addr		address whose erase region needs to be identified
284  */
285 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
286 {
287 	int i;
288 
289 	for (i = 0; i < mtd->numeraseregions; i++)
290 		if (addr < mtd->eraseregions[i].offset)
291 			break;
292 	return i - 1;
293 }
294 
295 /**
296  * onenand_get_density - [DEFAULT] Get OneNAND density
297  * @param dev_id        OneNAND device ID
298  *
299  * Get OneNAND density from device ID
300  */
301 static inline int onenand_get_density(int dev_id)
302 {
303 	int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
304 	return (density & ONENAND_DEVICE_DENSITY_MASK);
305 }
306 
307 /**
308  * onenand_command - [DEFAULT] Send command to OneNAND device
309  * @param mtd		MTD device structure
310  * @param cmd		the command to be sent
311  * @param addr		offset to read from or write to
312  * @param len		number of bytes to read or write
313  *
314  * Send command to OneNAND device. This function is used for middle/large page
315  * devices (1KB/2KB Bytes per page)
316  */
317 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr,
318 			   size_t len)
319 {
320 	struct onenand_chip *this = mtd->priv;
321 	int value;
322 	int block, page;
323 
324 	/* Now we use page size operation */
325 	int sectors = 0, count = 0;
326 
327 	/* Address translation */
328 	switch (cmd) {
329 	case ONENAND_CMD_UNLOCK:
330 	case ONENAND_CMD_LOCK:
331 	case ONENAND_CMD_LOCK_TIGHT:
332 	case ONENAND_CMD_UNLOCK_ALL:
333 		block = -1;
334 		page = -1;
335 		break;
336 
337 	case FLEXONENAND_CMD_PI_ACCESS:
338 		/* addr contains die index */
339 		block = addr * this->density_mask;
340 		page = -1;
341 		break;
342 
343 	case ONENAND_CMD_ERASE:
344 	case ONENAND_CMD_BUFFERRAM:
345 		block = onenand_block(this, addr);
346 		page = -1;
347 		break;
348 
349 	case FLEXONENAND_CMD_READ_PI:
350 		cmd = ONENAND_CMD_READ;
351 		block = addr * this->density_mask;
352 		page = 0;
353 		break;
354 
355 	default:
356 		block = onenand_block(this, addr);
357 		page = (int) (addr
358 			- onenand_addr(this, block)) >> this->page_shift;
359 		page &= this->page_mask;
360 		break;
361 	}
362 
363 	/* NOTE: The setting order of the registers is very important! */
364 	if (cmd == ONENAND_CMD_BUFFERRAM) {
365 		/* Select DataRAM for DDP */
366 		value = onenand_bufferram_address(this, block);
367 		this->write_word(value,
368 				 this->base + ONENAND_REG_START_ADDRESS2);
369 
370 		if (ONENAND_IS_4KB_PAGE(this))
371 			ONENAND_SET_BUFFERRAM0(this);
372 		else
373 			/* Switch to the next data buffer */
374 			ONENAND_SET_NEXT_BUFFERRAM(this);
375 
376 		return 0;
377 	}
378 
379 	if (block != -1) {
380 		/* Write 'DFS, FBA' of Flash */
381 		value = onenand_block_address(this, block);
382 		this->write_word(value,
383 				 this->base + ONENAND_REG_START_ADDRESS1);
384 
385 		/* Select DataRAM for DDP */
386 		value = onenand_bufferram_address(this, block);
387 		this->write_word(value,
388 				 this->base + ONENAND_REG_START_ADDRESS2);
389 	}
390 
391 	if (page != -1) {
392 		int dataram;
393 
394 		switch (cmd) {
395 		case FLEXONENAND_CMD_RECOVER_LSB:
396 		case ONENAND_CMD_READ:
397 		case ONENAND_CMD_READOOB:
398 			if (ONENAND_IS_4KB_PAGE(this))
399 				dataram = ONENAND_SET_BUFFERRAM0(this);
400 			else
401 				dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
402 
403 			break;
404 
405 		default:
406 			dataram = ONENAND_CURRENT_BUFFERRAM(this);
407 			break;
408 		}
409 
410 		/* Write 'FPA, FSA' of Flash */
411 		value = onenand_page_address(page, sectors);
412 		this->write_word(value,
413 				 this->base + ONENAND_REG_START_ADDRESS8);
414 
415 		/* Write 'BSA, BSC' of DataRAM */
416 		value = onenand_buffer_address(dataram, sectors, count);
417 		this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
418 	}
419 
420 	/* Interrupt clear */
421 	this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
422 	/* Write command */
423 	this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
424 
425 	return 0;
426 }
427 
428 /**
429  * onenand_read_ecc - return ecc status
430  * @param this		onenand chip structure
431  */
432 static int onenand_read_ecc(struct onenand_chip *this)
433 {
434 	int ecc, i;
435 
436 	if (!FLEXONENAND(this))
437 		return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
438 
439 	for (i = 0; i < 4; i++) {
440 		ecc = this->read_word(this->base
441 				+ ((ONENAND_REG_ECC_STATUS + i) << 1));
442 		if (likely(!ecc))
443 			continue;
444 		if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
445 			return ONENAND_ECC_2BIT_ALL;
446 	}
447 
448 	return 0;
449 }
450 
451 /**
452  * onenand_wait - [DEFAULT] wait until the command is done
453  * @param mtd		MTD device structure
454  * @param state		state to select the max. timeout value
455  *
456  * Wait for command done. This applies to all OneNAND command
457  * Read can take up to 30us, erase up to 2ms and program up to 350us
458  * according to general OneNAND specs
459  */
460 static int onenand_wait(struct mtd_info *mtd, int state)
461 {
462 	struct onenand_chip *this = mtd->priv;
463 	unsigned int flags = ONENAND_INT_MASTER;
464 	unsigned int interrupt = 0;
465 	unsigned int ctrl;
466 
467 	while (1) {
468 		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
469 		if (interrupt & flags)
470 			break;
471 	}
472 
473 	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
474 
475 	if (interrupt & ONENAND_INT_READ) {
476 		int ecc = onenand_read_ecc(this);
477 		if (ecc & ONENAND_ECC_2BIT_ALL) {
478 			printk("onenand_wait: ECC error = 0x%04x\n", ecc);
479 			return -EBADMSG;
480 		}
481 	}
482 
483 	if (ctrl & ONENAND_CTRL_ERROR) {
484 		printk("onenand_wait: controller error = 0x%04x\n", ctrl);
485 		if (ctrl & ONENAND_CTRL_LOCK)
486 			printk("onenand_wait: it's locked error = 0x%04x\n",
487 				ctrl);
488 
489 		return -EIO;
490 	}
491 
492 
493 	return 0;
494 }
495 
496 /**
497  * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
498  * @param mtd		MTD data structure
499  * @param area		BufferRAM area
500  * @return		offset given area
501  *
502  * Return BufferRAM offset given area
503  */
504 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
505 {
506 	struct onenand_chip *this = mtd->priv;
507 
508 	if (ONENAND_CURRENT_BUFFERRAM(this)) {
509 		if (area == ONENAND_DATARAM)
510 			return mtd->writesize;
511 		if (area == ONENAND_SPARERAM)
512 			return mtd->oobsize;
513 	}
514 
515 	return 0;
516 }
517 
518 /**
519  * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
520  * @param mtd		MTD data structure
521  * @param area		BufferRAM area
522  * @param buffer	the databuffer to put/get data
523  * @param offset	offset to read from or write to
524  * @param count		number of bytes to read/write
525  *
526  * Read the BufferRAM area
527  */
528 static int onenand_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
529 				  unsigned char *buffer, int offset,
530 				  size_t count)
531 {
532 	struct onenand_chip *this = mtd->priv;
533 	void __iomem *bufferram;
534 
535 	bufferram = this->base + area;
536 	bufferram += onenand_bufferram_offset(mtd, area);
537 
538 	memcpy_16(buffer, bufferram + offset, count);
539 
540 	return 0;
541 }
542 
543 /**
544  * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
545  * @param mtd		MTD data structure
546  * @param area		BufferRAM area
547  * @param buffer	the databuffer to put/get data
548  * @param offset	offset to read from or write to
549  * @param count		number of bytes to read/write
550  *
551  * Read the BufferRAM area with Sync. Burst Mode
552  */
553 static int onenand_sync_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
554 				       unsigned char *buffer, int offset,
555 				       size_t count)
556 {
557 	struct onenand_chip *this = mtd->priv;
558 	void __iomem *bufferram;
559 
560 	bufferram = this->base + area;
561 	bufferram += onenand_bufferram_offset(mtd, area);
562 
563 	this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
564 
565 	memcpy_16(buffer, bufferram + offset, count);
566 
567 	this->mmcontrol(mtd, 0);
568 
569 	return 0;
570 }
571 
572 /**
573  * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
574  * @param mtd		MTD data structure
575  * @param area		BufferRAM area
576  * @param buffer	the databuffer to put/get data
577  * @param offset	offset to read from or write to
578  * @param count		number of bytes to read/write
579  *
580  * Write the BufferRAM area
581  */
582 static int onenand_write_bufferram(struct mtd_info *mtd, loff_t addr, int area,
583 				   const unsigned char *buffer, int offset,
584 				   size_t count)
585 {
586 	struct onenand_chip *this = mtd->priv;
587 	void __iomem *bufferram;
588 
589 	bufferram = this->base + area;
590 	bufferram += onenand_bufferram_offset(mtd, area);
591 
592 	memcpy_16(bufferram + offset, buffer, count);
593 
594 	return 0;
595 }
596 
597 /**
598  * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
599  * @param mtd		MTD data structure
600  * @param addr		address to check
601  * @return		blockpage address
602  *
603  * Get blockpage address at 2x program mode
604  */
605 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
606 {
607 	struct onenand_chip *this = mtd->priv;
608 	int blockpage, block, page;
609 
610 	/* Calculate the even block number */
611 	block = (int) (addr >> this->erase_shift) & ~1;
612 	/* Is it the odd plane? */
613 	if (addr & this->writesize)
614 		block++;
615 	page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
616 	blockpage = (block << 7) | page;
617 
618 	return blockpage;
619 }
620 
621 /**
622  * onenand_check_bufferram - [GENERIC] Check BufferRAM information
623  * @param mtd		MTD data structure
624  * @param addr		address to check
625  * @return		1 if there are valid data, otherwise 0
626  *
627  * Check bufferram if there is data we required
628  */
629 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
630 {
631 	struct onenand_chip *this = mtd->priv;
632 	int blockpage, found = 0;
633 	unsigned int i;
634 
635 	if (ONENAND_IS_2PLANE(this))
636 		blockpage = onenand_get_2x_blockpage(mtd, addr);
637 	else
638 		blockpage = (int) (addr >> this->page_shift);
639 
640 	/* Is there valid data? */
641 	i = ONENAND_CURRENT_BUFFERRAM(this);
642 	if (this->bufferram[i].blockpage == blockpage)
643 		found = 1;
644 	else {
645 		/* Check another BufferRAM */
646 		i = ONENAND_NEXT_BUFFERRAM(this);
647 		if (this->bufferram[i].blockpage == blockpage) {
648 			ONENAND_SET_NEXT_BUFFERRAM(this);
649 			found = 1;
650 		}
651 	}
652 
653 	if (found && ONENAND_IS_DDP(this)) {
654 		/* Select DataRAM for DDP */
655 		int block = onenand_block(this, addr);
656 		int value = onenand_bufferram_address(this, block);
657 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
658 	}
659 
660 	return found;
661 }
662 
663 /**
664  * onenand_update_bufferram - [GENERIC] Update BufferRAM information
665  * @param mtd		MTD data structure
666  * @param addr		address to update
667  * @param valid		valid flag
668  *
669  * Update BufferRAM information
670  */
671 static int onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
672 				    int valid)
673 {
674 	struct onenand_chip *this = mtd->priv;
675 	int blockpage;
676 	unsigned int i;
677 
678 	if (ONENAND_IS_2PLANE(this))
679 		blockpage = onenand_get_2x_blockpage(mtd, addr);
680 	else
681 		blockpage = (int)(addr >> this->page_shift);
682 
683 	/* Invalidate another BufferRAM */
684 	i = ONENAND_NEXT_BUFFERRAM(this);
685 	if (this->bufferram[i].blockpage == blockpage)
686 		this->bufferram[i].blockpage = -1;
687 
688 	/* Update BufferRAM */
689 	i = ONENAND_CURRENT_BUFFERRAM(this);
690 	if (valid)
691 		this->bufferram[i].blockpage = blockpage;
692 	else
693 		this->bufferram[i].blockpage = -1;
694 
695 	return 0;
696 }
697 
698 /**
699  * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
700  * @param mtd           MTD data structure
701  * @param addr          start address to invalidate
702  * @param len           length to invalidate
703  *
704  * Invalidate BufferRAM information
705  */
706 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
707 					 unsigned int len)
708 {
709 	struct onenand_chip *this = mtd->priv;
710 	int i;
711 	loff_t end_addr = addr + len;
712 
713 	/* Invalidate BufferRAM */
714 	for (i = 0; i < MAX_BUFFERRAM; i++) {
715 		loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
716 
717 		if (buf_addr >= addr && buf_addr < end_addr)
718 			this->bufferram[i].blockpage = -1;
719 	}
720 }
721 
722 /**
723  * onenand_get_device - [GENERIC] Get chip for selected access
724  * @param mtd		MTD device structure
725  * @param new_state	the state which is requested
726  *
727  * Get the device and lock it for exclusive access
728  */
729 static void onenand_get_device(struct mtd_info *mtd, int new_state)
730 {
731 	/* Do nothing */
732 }
733 
734 /**
735  * onenand_release_device - [GENERIC] release chip
736  * @param mtd		MTD device structure
737  *
738  * Deselect, release chip lock and wake up anyone waiting on the device
739  */
740 static void onenand_release_device(struct mtd_info *mtd)
741 {
742 	/* Do nothing */
743 }
744 
745 /**
746  * onenand_transfer_auto_oob - [Internal] oob auto-placement transfer
747  * @param mtd		MTD device structure
748  * @param buf		destination address
749  * @param column	oob offset to read from
750  * @param thislen	oob length to read
751  */
752 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf,
753 					int column, int thislen)
754 {
755 	struct onenand_chip *this = mtd->priv;
756 	struct nand_oobfree *free;
757 	int readcol = column;
758 	int readend = column + thislen;
759 	int lastgap = 0;
760 	unsigned int i;
761 	uint8_t *oob_buf = this->oob_buf;
762 
763 	free = this->ecclayout->oobfree;
764 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
765 		if (readcol >= lastgap)
766 			readcol += free->offset - lastgap;
767 		if (readend >= lastgap)
768 			readend += free->offset - lastgap;
769 		lastgap = free->offset + free->length;
770 	}
771 	this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
772 	free = this->ecclayout->oobfree;
773 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
774 		int free_end = free->offset + free->length;
775 		if (free->offset < readend && free_end > readcol) {
776 			int st = max_t(int,free->offset,readcol);
777 			int ed = min_t(int,free_end,readend);
778 			int n = ed - st;
779 			memcpy(buf, oob_buf + st, n);
780 			buf += n;
781 		} else if (column == 0)
782 			break;
783 	}
784 	return 0;
785 }
786 
787 /**
788  * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
789  * @param mtd		MTD device structure
790  * @param addr		address to recover
791  * @param status	return value from onenand_wait
792  *
793  * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
794  * lower page address and MSB page has higher page address in paired pages.
795  * If power off occurs during MSB page program, the paired LSB page data can
796  * become corrupt. LSB page recovery read is a way to read LSB page though page
797  * data are corrupted. When uncorrectable error occurs as a result of LSB page
798  * read after power up, issue LSB page recovery read.
799  */
800 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
801 {
802 	struct onenand_chip *this = mtd->priv;
803 	int i;
804 
805 	/* Recovery is only for Flex-OneNAND */
806 	if (!FLEXONENAND(this))
807 		return status;
808 
809 	/* check if we failed due to uncorrectable error */
810 	if (status != -EBADMSG && status != ONENAND_BBT_READ_ECC_ERROR)
811 		return status;
812 
813 	/* check if address lies in MLC region */
814 	i = flexonenand_region(mtd, addr);
815 	if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
816 		return status;
817 
818 	printk("onenand_recover_lsb:"
819 		"Attempting to recover from uncorrectable read\n");
820 
821 	/* Issue the LSB page recovery command */
822 	this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
823 	return this->wait(mtd, FL_READING);
824 }
825 
826 /**
827  * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
828  * @param mtd		MTD device structure
829  * @param from		offset to read from
830  * @param ops		oob operation description structure
831  *
832  * OneNAND read main and/or out-of-band data
833  */
834 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
835 		struct mtd_oob_ops *ops)
836 {
837 	struct onenand_chip *this = mtd->priv;
838 	struct mtd_ecc_stats stats;
839 	size_t len = ops->len;
840 	size_t ooblen = ops->ooblen;
841 	u_char *buf = ops->datbuf;
842 	u_char *oobbuf = ops->oobbuf;
843 	int read = 0, column, thislen;
844 	int oobread = 0, oobcolumn, thisooblen, oobsize;
845 	int ret = 0, boundary = 0;
846 	int writesize = this->writesize;
847 
848 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_read_ops_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
849 
850 	if (ops->mode == MTD_OOB_AUTO)
851 		oobsize = this->ecclayout->oobavail;
852 	else
853 		oobsize = mtd->oobsize;
854 
855 	oobcolumn = from & (mtd->oobsize - 1);
856 
857 	/* Do not allow reads past end of device */
858 	if ((from + len) > mtd->size) {
859 		printk(KERN_ERR "onenand_read_ops_nolock: Attempt read beyond end of device\n");
860 		ops->retlen = 0;
861 		ops->oobretlen = 0;
862 		return -EINVAL;
863 	}
864 
865 	stats = mtd->ecc_stats;
866 
867 	/* Read-while-load method */
868 	/* Note: We can't use this feature in MLC */
869 
870 	/* Do first load to bufferRAM */
871 	if (read < len) {
872 		if (!onenand_check_bufferram(mtd, from)) {
873 			this->main_buf = buf;
874 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
875 			ret = this->wait(mtd, FL_READING);
876 			if (unlikely(ret))
877 				ret = onenand_recover_lsb(mtd, from, ret);
878 			onenand_update_bufferram(mtd, from, !ret);
879 			if (ret == -EBADMSG)
880 				ret = 0;
881 		}
882 	}
883 
884 	thislen = min_t(int, writesize, len - read);
885 	column = from & (writesize - 1);
886 	if (column + thislen > writesize)
887 		thislen = writesize - column;
888 
889 	while (!ret) {
890 		/* If there is more to load then start next load */
891 		from += thislen;
892 		if (!ONENAND_IS_4KB_PAGE(this) && read + thislen < len) {
893 			this->main_buf = buf + thislen;
894 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
895 			/*
896 			 * Chip boundary handling in DDP
897 			 * Now we issued chip 1 read and pointed chip 1
898 			 * bufferam so we have to point chip 0 bufferam.
899 			 */
900 			if (ONENAND_IS_DDP(this) &&
901 					unlikely(from == (this->chipsize >> 1))) {
902 				this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
903 				boundary = 1;
904 			} else
905 				boundary = 0;
906 			ONENAND_SET_PREV_BUFFERRAM(this);
907 		}
908 
909 		/* While load is going, read from last bufferRAM */
910 		this->read_bufferram(mtd, from - thislen, ONENAND_DATARAM, buf, column, thislen);
911 
912 		/* Read oob area if needed */
913 		if (oobbuf) {
914 			thisooblen = oobsize - oobcolumn;
915 			thisooblen = min_t(int, thisooblen, ooblen - oobread);
916 
917 			if (ops->mode == MTD_OOB_AUTO)
918 				onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
919 			else
920 				this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
921 			oobread += thisooblen;
922 			oobbuf += thisooblen;
923 			oobcolumn = 0;
924 		}
925 
926 		if (ONENAND_IS_4KB_PAGE(this) && (read + thislen < len)) {
927 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
928 			ret = this->wait(mtd, FL_READING);
929 			if (unlikely(ret))
930 				ret = onenand_recover_lsb(mtd, from, ret);
931 			onenand_update_bufferram(mtd, from, !ret);
932 			if (ret == -EBADMSG)
933 				ret = 0;
934 		}
935 
936 		/* See if we are done */
937 		read += thislen;
938 		if (read == len)
939 			break;
940 		/* Set up for next read from bufferRAM */
941 		if (unlikely(boundary))
942 			this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
943 		if (!ONENAND_IS_4KB_PAGE(this))
944 			ONENAND_SET_NEXT_BUFFERRAM(this);
945 		buf += thislen;
946 		thislen = min_t(int, writesize, len - read);
947 		column = 0;
948 
949 		if (!ONENAND_IS_4KB_PAGE(this)) {
950 			/* Now wait for load */
951 			ret = this->wait(mtd, FL_READING);
952 			onenand_update_bufferram(mtd, from, !ret);
953 			if (ret == -EBADMSG)
954 				ret = 0;
955 		}
956 	}
957 
958 	/*
959 	 * Return success, if no ECC failures, else -EBADMSG
960 	 * fs driver will take care of that, because
961 	 * retlen == desired len and result == -EBADMSG
962 	 */
963 	ops->retlen = read;
964 	ops->oobretlen = oobread;
965 
966 	if (ret)
967 		return ret;
968 
969 	if (mtd->ecc_stats.failed - stats.failed)
970 		return -EBADMSG;
971 
972 	return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
973 }
974 
975 /**
976  * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
977  * @param mtd		MTD device structure
978  * @param from		offset to read from
979  * @param ops		oob operation description structure
980  *
981  * OneNAND read out-of-band data from the spare area
982  */
983 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
984 		struct mtd_oob_ops *ops)
985 {
986 	struct onenand_chip *this = mtd->priv;
987 	struct mtd_ecc_stats stats;
988 	int read = 0, thislen, column, oobsize;
989 	size_t len = ops->ooblen;
990 	mtd_oob_mode_t mode = ops->mode;
991 	u_char *buf = ops->oobbuf;
992 	int ret = 0, readcmd;
993 
994 	from += ops->ooboffs;
995 
996 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
997 
998 	/* Initialize return length value */
999 	ops->oobretlen = 0;
1000 
1001 	if (mode == MTD_OOB_AUTO)
1002 		oobsize = this->ecclayout->oobavail;
1003 	else
1004 		oobsize = mtd->oobsize;
1005 
1006 	column = from & (mtd->oobsize - 1);
1007 
1008 	if (unlikely(column >= oobsize)) {
1009 		printk(KERN_ERR "onenand_read_oob_nolock: Attempted to start read outside oob\n");
1010 		return -EINVAL;
1011 	}
1012 
1013 	/* Do not allow reads past end of device */
1014 	if (unlikely(from >= mtd->size ||
1015 		column + len > ((mtd->size >> this->page_shift) -
1016 				(from >> this->page_shift)) * oobsize)) {
1017 		printk(KERN_ERR "onenand_read_oob_nolock: Attempted to read beyond end of device\n");
1018 		return -EINVAL;
1019 	}
1020 
1021 	stats = mtd->ecc_stats;
1022 
1023 	readcmd = ONENAND_IS_4KB_PAGE(this) ?
1024 		ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1025 
1026 	while (read < len) {
1027 		thislen = oobsize - column;
1028 		thislen = min_t(int, thislen, len);
1029 
1030 		this->spare_buf = buf;
1031 		this->command(mtd, readcmd, from, mtd->oobsize);
1032 
1033 		onenand_update_bufferram(mtd, from, 0);
1034 
1035 		ret = this->wait(mtd, FL_READING);
1036 		if (unlikely(ret))
1037 			ret = onenand_recover_lsb(mtd, from, ret);
1038 
1039 		if (ret && ret != -EBADMSG) {
1040 			printk(KERN_ERR "onenand_read_oob_nolock: read failed = 0x%x\n", ret);
1041 			break;
1042 		}
1043 
1044 		if (mode == MTD_OOB_AUTO)
1045 			onenand_transfer_auto_oob(mtd, buf, column, thislen);
1046 		else
1047 			this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
1048 
1049 		read += thislen;
1050 
1051 		if (read == len)
1052 			break;
1053 
1054 		buf += thislen;
1055 
1056 		/* Read more? */
1057 		if (read < len) {
1058 			/* Page size */
1059 			from += mtd->writesize;
1060 			column = 0;
1061 		}
1062 	}
1063 
1064 	ops->oobretlen = read;
1065 
1066 	if (ret)
1067 		return ret;
1068 
1069 	if (mtd->ecc_stats.failed - stats.failed)
1070 		return -EBADMSG;
1071 
1072 	return 0;
1073 }
1074 
1075 /**
1076  * onenand_read - [MTD Interface] MTD compability function for onenand_read_ecc
1077  * @param mtd		MTD device structure
1078  * @param from		offset to read from
1079  * @param len		number of bytes to read
1080  * @param retlen	pointer to variable to store the number of read bytes
1081  * @param buf		the databuffer to put data
1082  *
1083  * This function simply calls onenand_read_ecc with oob buffer and oobsel = NULL
1084 */
1085 int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1086 		 size_t * retlen, u_char * buf)
1087 {
1088 	struct mtd_oob_ops ops = {
1089 		.len    = len,
1090 		.ooblen = 0,
1091 		.datbuf = buf,
1092 		.oobbuf = NULL,
1093 	};
1094 	int ret;
1095 
1096 	onenand_get_device(mtd, FL_READING);
1097 	ret = onenand_read_ops_nolock(mtd, from, &ops);
1098 	onenand_release_device(mtd);
1099 
1100 	*retlen = ops.retlen;
1101 	return ret;
1102 }
1103 
1104 /**
1105  * onenand_read_oob - [MTD Interface] OneNAND read out-of-band
1106  * @param mtd		MTD device structure
1107  * @param from		offset to read from
1108  * @param ops		oob operations description structure
1109  *
1110  * OneNAND main and/or out-of-band
1111  */
1112 int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1113 			struct mtd_oob_ops *ops)
1114 {
1115 	int ret;
1116 
1117 	switch (ops->mode) {
1118 	case MTD_OOB_PLACE:
1119 	case MTD_OOB_AUTO:
1120 		break;
1121 	case MTD_OOB_RAW:
1122 		/* Not implemented yet */
1123 	default:
1124 		return -EINVAL;
1125 	}
1126 
1127 	onenand_get_device(mtd, FL_READING);
1128 	if (ops->datbuf)
1129 		ret = onenand_read_ops_nolock(mtd, from, ops);
1130 	else
1131 		ret = onenand_read_oob_nolock(mtd, from, ops);
1132 	onenand_release_device(mtd);
1133 
1134 	return ret;
1135 }
1136 
1137 /**
1138  * onenand_bbt_wait - [DEFAULT] wait until the command is done
1139  * @param mtd		MTD device structure
1140  * @param state		state to select the max. timeout value
1141  *
1142  * Wait for command done.
1143  */
1144 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1145 {
1146 	struct onenand_chip *this = mtd->priv;
1147 	unsigned int flags = ONENAND_INT_MASTER;
1148 	unsigned int interrupt;
1149 	unsigned int ctrl;
1150 
1151 	while (1) {
1152 		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1153 		if (interrupt & flags)
1154 			break;
1155 	}
1156 
1157 	/* To get correct interrupt status in timeout case */
1158 	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1159 	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1160 
1161 	if (interrupt & ONENAND_INT_READ) {
1162 		int ecc = onenand_read_ecc(this);
1163 		if (ecc & ONENAND_ECC_2BIT_ALL) {
1164 			printk(KERN_INFO "onenand_bbt_wait: ecc error = 0x%04x"
1165 				", controller = 0x%04x\n", ecc, ctrl);
1166 			return ONENAND_BBT_READ_ERROR;
1167 		}
1168 	} else {
1169 		printk(KERN_ERR "onenand_bbt_wait: read timeout!"
1170 				"ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
1171 		return ONENAND_BBT_READ_FATAL_ERROR;
1172 	}
1173 
1174 	/* Initial bad block case: 0x2400 or 0x0400 */
1175 	if (ctrl & ONENAND_CTRL_ERROR) {
1176 		printk(KERN_DEBUG "onenand_bbt_wait: controller error = 0x%04x\n", ctrl);
1177 		return ONENAND_BBT_READ_ERROR;
1178 	}
1179 
1180 	return 0;
1181 }
1182 
1183 /**
1184  * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1185  * @param mtd		MTD device structure
1186  * @param from		offset to read from
1187  * @param ops		oob operation description structure
1188  *
1189  * OneNAND read out-of-band data from the spare area for bbt scan
1190  */
1191 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1192 		struct mtd_oob_ops *ops)
1193 {
1194 	struct onenand_chip *this = mtd->priv;
1195 	int read = 0, thislen, column;
1196 	int ret = 0, readcmd;
1197 	size_t len = ops->ooblen;
1198 	u_char *buf = ops->oobbuf;
1199 
1200 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_bbt_read_oob: from = 0x%08x, len = %zi\n", (unsigned int) from, len);
1201 
1202 	readcmd = ONENAND_IS_4KB_PAGE(this) ?
1203 		ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1204 
1205 	/* Initialize return value */
1206 	ops->oobretlen = 0;
1207 
1208 	/* Do not allow reads past end of device */
1209 	if (unlikely((from + len) > mtd->size)) {
1210 		printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n");
1211 		return ONENAND_BBT_READ_FATAL_ERROR;
1212 	}
1213 
1214 	/* Grab the lock and see if the device is available */
1215 	onenand_get_device(mtd, FL_READING);
1216 
1217 	column = from & (mtd->oobsize - 1);
1218 
1219 	while (read < len) {
1220 
1221 		thislen = mtd->oobsize - column;
1222 		thislen = min_t(int, thislen, len);
1223 
1224 		this->spare_buf = buf;
1225 		this->command(mtd, readcmd, from, mtd->oobsize);
1226 
1227 		onenand_update_bufferram(mtd, from, 0);
1228 
1229 		ret = this->bbt_wait(mtd, FL_READING);
1230 		if (unlikely(ret))
1231 			ret = onenand_recover_lsb(mtd, from, ret);
1232 
1233 		if (ret)
1234 			break;
1235 
1236 		this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
1237 		read += thislen;
1238 		if (read == len)
1239 			break;
1240 
1241 		buf += thislen;
1242 
1243 		/* Read more? */
1244 		if (read < len) {
1245 			/* Update Page size */
1246 			from += this->writesize;
1247 			column = 0;
1248 		}
1249 	}
1250 
1251 	/* Deselect and wake up anyone waiting on the device */
1252 	onenand_release_device(mtd);
1253 
1254 	ops->oobretlen = read;
1255 	return ret;
1256 }
1257 
1258 
1259 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1260 /**
1261  * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1262  * @param mtd           MTD device structure
1263  * @param buf           the databuffer to verify
1264  * @param to            offset to read from
1265  */
1266 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1267 {
1268 	struct onenand_chip *this = mtd->priv;
1269 	u_char *oob_buf = this->oob_buf;
1270 	int status, i, readcmd;
1271 
1272 	readcmd = ONENAND_IS_4KB_PAGE(this) ?
1273 		ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1274 
1275 	this->command(mtd, readcmd, to, mtd->oobsize);
1276 	onenand_update_bufferram(mtd, to, 0);
1277 	status = this->wait(mtd, FL_READING);
1278 	if (status)
1279 		return status;
1280 
1281 	this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1282 	for (i = 0; i < mtd->oobsize; i++)
1283 		if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1284 			return -EBADMSG;
1285 
1286 	return 0;
1287 }
1288 
1289 /**
1290  * onenand_verify - [GENERIC] verify the chip contents after a write
1291  * @param mtd          MTD device structure
1292  * @param buf          the databuffer to verify
1293  * @param addr         offset to read from
1294  * @param len          number of bytes to read and compare
1295  */
1296 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1297 {
1298 	struct onenand_chip *this = mtd->priv;
1299 	void __iomem *dataram;
1300 	int ret = 0;
1301 	int thislen, column;
1302 
1303 	while (len != 0) {
1304 		thislen = min_t(int, this->writesize, len);
1305 		column = addr & (this->writesize - 1);
1306 		if (column + thislen > this->writesize)
1307 			thislen = this->writesize - column;
1308 
1309 		this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1310 
1311 		onenand_update_bufferram(mtd, addr, 0);
1312 
1313 		ret = this->wait(mtd, FL_READING);
1314 		if (ret)
1315 			return ret;
1316 
1317 		onenand_update_bufferram(mtd, addr, 1);
1318 
1319 		dataram = this->base + ONENAND_DATARAM;
1320 		dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
1321 
1322 		if (memcmp(buf, dataram + column, thislen))
1323 			return -EBADMSG;
1324 
1325 		len -= thislen;
1326 		buf += thislen;
1327 		addr += thislen;
1328 	}
1329 
1330 	return 0;
1331 }
1332 #else
1333 #define onenand_verify(...)             (0)
1334 #define onenand_verify_oob(...)         (0)
1335 #endif
1336 
1337 #define NOTALIGNED(x)	((x & (this->subpagesize - 1)) != 0)
1338 
1339 /**
1340  * onenand_fill_auto_oob - [Internal] oob auto-placement transfer
1341  * @param mtd           MTD device structure
1342  * @param oob_buf       oob buffer
1343  * @param buf           source address
1344  * @param column        oob offset to write to
1345  * @param thislen       oob length to write
1346  */
1347 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1348 		const u_char *buf, int column, int thislen)
1349 {
1350 	struct onenand_chip *this = mtd->priv;
1351 	struct nand_oobfree *free;
1352 	int writecol = column;
1353 	int writeend = column + thislen;
1354 	int lastgap = 0;
1355 	unsigned int i;
1356 
1357 	free = this->ecclayout->oobfree;
1358 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1359 		if (writecol >= lastgap)
1360 			writecol += free->offset - lastgap;
1361 		if (writeend >= lastgap)
1362 			writeend += free->offset - lastgap;
1363 		lastgap = free->offset + free->length;
1364 	}
1365 	free = this->ecclayout->oobfree;
1366 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1367 		int free_end = free->offset + free->length;
1368 		if (free->offset < writeend && free_end > writecol) {
1369 			int st = max_t(int,free->offset,writecol);
1370 			int ed = min_t(int,free_end,writeend);
1371 			int n = ed - st;
1372 			memcpy(oob_buf + st, buf, n);
1373 			buf += n;
1374 		} else if (column == 0)
1375 			break;
1376 	}
1377 	return 0;
1378 }
1379 
1380 /**
1381  * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1382  * @param mtd           MTD device structure
1383  * @param to            offset to write to
1384  * @param ops           oob operation description structure
1385  *
1386  * Write main and/or oob with ECC
1387  */
1388 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1389 		struct mtd_oob_ops *ops)
1390 {
1391 	struct onenand_chip *this = mtd->priv;
1392 	int written = 0, column, thislen, subpage;
1393 	int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1394 	size_t len = ops->len;
1395 	size_t ooblen = ops->ooblen;
1396 	const u_char *buf = ops->datbuf;
1397 	const u_char *oob = ops->oobbuf;
1398 	u_char *oobbuf;
1399 	int ret = 0;
1400 
1401 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_write_ops_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1402 
1403 	/* Initialize retlen, in case of early exit */
1404 	ops->retlen = 0;
1405 	ops->oobretlen = 0;
1406 
1407 	/* Do not allow writes past end of device */
1408 	if (unlikely((to + len) > mtd->size)) {
1409 		printk(KERN_ERR "onenand_write_ops_nolock: Attempt write to past end of device\n");
1410 		return -EINVAL;
1411 	}
1412 
1413 	/* Reject writes, which are not page aligned */
1414 	if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1415 		printk(KERN_ERR "onenand_write_ops_nolock: Attempt to write not page aligned data\n");
1416 		return -EINVAL;
1417 	}
1418 
1419 	if (ops->mode == MTD_OOB_AUTO)
1420 		oobsize = this->ecclayout->oobavail;
1421 	else
1422 		oobsize = mtd->oobsize;
1423 
1424 	oobcolumn = to & (mtd->oobsize - 1);
1425 
1426 	column = to & (mtd->writesize - 1);
1427 
1428 	/* Loop until all data write */
1429 	while (written < len) {
1430 		u_char *wbuf = (u_char *) buf;
1431 
1432 		thislen = min_t(int, mtd->writesize - column, len - written);
1433 		thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1434 
1435 		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1436 
1437 		/* Partial page write */
1438 		subpage = thislen < mtd->writesize;
1439 		if (subpage) {
1440 			memset(this->page_buf, 0xff, mtd->writesize);
1441 			memcpy(this->page_buf + column, buf, thislen);
1442 			wbuf = this->page_buf;
1443 		}
1444 
1445 		this->write_bufferram(mtd, to, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1446 
1447 		if (oob) {
1448 			oobbuf = this->oob_buf;
1449 
1450 			/* We send data to spare ram with oobsize
1451 			 *                          * to prevent byte access */
1452 			memset(oobbuf, 0xff, mtd->oobsize);
1453 			if (ops->mode == MTD_OOB_AUTO)
1454 				onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1455 			else
1456 				memcpy(oobbuf + oobcolumn, oob, thisooblen);
1457 
1458 			oobwritten += thisooblen;
1459 			oob += thisooblen;
1460 			oobcolumn = 0;
1461 		} else
1462 			oobbuf = (u_char *) ffchars;
1463 
1464 		this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1465 
1466 		this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1467 
1468 		ret = this->wait(mtd, FL_WRITING);
1469 
1470 		/* In partial page write we don't update bufferram */
1471 		onenand_update_bufferram(mtd, to, !ret && !subpage);
1472 		if (ONENAND_IS_2PLANE(this)) {
1473 			ONENAND_SET_BUFFERRAM1(this);
1474 			onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1475 		}
1476 
1477 		if (ret) {
1478 			printk(KERN_ERR "onenand_write_ops_nolock: write filaed %d\n", ret);
1479 			break;
1480 		}
1481 
1482 		/* Only check verify write turn on */
1483 		ret = onenand_verify(mtd, buf, to, thislen);
1484 		if (ret) {
1485 			printk(KERN_ERR "onenand_write_ops_nolock: verify failed %d\n", ret);
1486 			break;
1487 		}
1488 
1489 		written += thislen;
1490 
1491 		if (written == len)
1492 			break;
1493 
1494 		column = 0;
1495 		to += thislen;
1496 		buf += thislen;
1497 	}
1498 
1499 	ops->retlen = written;
1500 
1501 	return ret;
1502 }
1503 
1504 /**
1505  * onenand_write_oob_nolock - [Internal] OneNAND write out-of-band
1506  * @param mtd           MTD device structure
1507  * @param to            offset to write to
1508  * @param len           number of bytes to write
1509  * @param retlen        pointer to variable to store the number of written bytes
1510  * @param buf           the data to write
1511  * @param mode          operation mode
1512  *
1513  * OneNAND write out-of-band
1514  */
1515 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1516 		struct mtd_oob_ops *ops)
1517 {
1518 	struct onenand_chip *this = mtd->priv;
1519 	int column, ret = 0, oobsize;
1520 	int written = 0, oobcmd;
1521 	u_char *oobbuf;
1522 	size_t len = ops->ooblen;
1523 	const u_char *buf = ops->oobbuf;
1524 	mtd_oob_mode_t mode = ops->mode;
1525 
1526 	to += ops->ooboffs;
1527 
1528 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1529 
1530 	/* Initialize retlen, in case of early exit */
1531 	ops->oobretlen = 0;
1532 
1533 	if (mode == MTD_OOB_AUTO)
1534 		oobsize = this->ecclayout->oobavail;
1535 	else
1536 		oobsize = mtd->oobsize;
1537 
1538 	column = to & (mtd->oobsize - 1);
1539 
1540 	if (unlikely(column >= oobsize)) {
1541 		printk(KERN_ERR "onenand_write_oob_nolock: Attempted to start write outside oob\n");
1542 		return -EINVAL;
1543 	}
1544 
1545 	/* For compatibility with NAND: Do not allow write past end of page */
1546 	if (unlikely(column + len > oobsize)) {
1547 		printk(KERN_ERR "onenand_write_oob_nolock: "
1548 				"Attempt to write past end of page\n");
1549 		return -EINVAL;
1550 	}
1551 
1552 	/* Do not allow reads past end of device */
1553 	if (unlikely(to >= mtd->size ||
1554 				column + len > ((mtd->size >> this->page_shift) -
1555 					(to >> this->page_shift)) * oobsize)) {
1556 		printk(KERN_ERR "onenand_write_oob_nolock: Attempted to write past end of device\n");
1557 		return -EINVAL;
1558 	}
1559 
1560 	oobbuf = this->oob_buf;
1561 
1562 	oobcmd = ONENAND_IS_4KB_PAGE(this) ?
1563 		ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
1564 
1565 	/* Loop until all data write */
1566 	while (written < len) {
1567 		int thislen = min_t(int, oobsize, len - written);
1568 
1569 		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
1570 
1571 		/* We send data to spare ram with oobsize
1572 		 * to prevent byte access */
1573 		memset(oobbuf, 0xff, mtd->oobsize);
1574 		if (mode == MTD_OOB_AUTO)
1575 			onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
1576 		else
1577 			memcpy(oobbuf + column, buf, thislen);
1578 		this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1579 
1580 		if (ONENAND_IS_4KB_PAGE(this)) {
1581 			/* Set main area of DataRAM to 0xff*/
1582 			memset(this->page_buf, 0xff, mtd->writesize);
1583 			this->write_bufferram(mtd, 0, ONENAND_DATARAM,
1584 				this->page_buf,	0, mtd->writesize);
1585 		}
1586 
1587 		this->command(mtd, oobcmd, to, mtd->oobsize);
1588 
1589 		onenand_update_bufferram(mtd, to, 0);
1590 		if (ONENAND_IS_2PLANE(this)) {
1591 			ONENAND_SET_BUFFERRAM1(this);
1592 			onenand_update_bufferram(mtd, to + this->writesize, 0);
1593 		}
1594 
1595 		ret = this->wait(mtd, FL_WRITING);
1596 		if (ret) {
1597 			printk(KERN_ERR "onenand_write_oob_nolock: write failed %d\n", ret);
1598 			break;
1599 		}
1600 
1601 		ret = onenand_verify_oob(mtd, oobbuf, to);
1602 		if (ret) {
1603 			printk(KERN_ERR "onenand_write_oob_nolock: verify failed %d\n", ret);
1604 			break;
1605 		}
1606 
1607 		written += thislen;
1608 		if (written == len)
1609 			break;
1610 
1611 		to += mtd->writesize;
1612 		buf += thislen;
1613 		column = 0;
1614 	}
1615 
1616 	ops->oobretlen = written;
1617 
1618 	return ret;
1619 }
1620 
1621 /**
1622  * onenand_write - [MTD Interface] compability function for onenand_write_ecc
1623  * @param mtd		MTD device structure
1624  * @param to		offset to write to
1625  * @param len		number of bytes to write
1626  * @param retlen	pointer to variable to store the number of written bytes
1627  * @param buf		the data to write
1628  *
1629  * Write with ECC
1630  */
1631 int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
1632 		  size_t * retlen, const u_char * buf)
1633 {
1634 	struct mtd_oob_ops ops = {
1635 		.len    = len,
1636 		.ooblen = 0,
1637 		.datbuf = (u_char *) buf,
1638 		.oobbuf = NULL,
1639 	};
1640 	int ret;
1641 
1642 	onenand_get_device(mtd, FL_WRITING);
1643 	ret = onenand_write_ops_nolock(mtd, to, &ops);
1644 	onenand_release_device(mtd);
1645 
1646 	*retlen = ops.retlen;
1647 	return ret;
1648 }
1649 
1650 /**
1651  * onenand_write_oob - [MTD Interface] OneNAND write out-of-band
1652  * @param mtd		MTD device structure
1653  * @param to		offset to write to
1654  * @param ops		oob operation description structure
1655  *
1656  * OneNAND write main and/or out-of-band
1657  */
1658 int onenand_write_oob(struct mtd_info *mtd, loff_t to,
1659 			struct mtd_oob_ops *ops)
1660 {
1661 	int ret;
1662 
1663 	switch (ops->mode) {
1664 	case MTD_OOB_PLACE:
1665 	case MTD_OOB_AUTO:
1666 		break;
1667 	case MTD_OOB_RAW:
1668 		/* Not implemented yet */
1669 	default:
1670 		return -EINVAL;
1671 	}
1672 
1673 	onenand_get_device(mtd, FL_WRITING);
1674 	if (ops->datbuf)
1675 		ret = onenand_write_ops_nolock(mtd, to, ops);
1676 	else
1677 		ret = onenand_write_oob_nolock(mtd, to, ops);
1678 	onenand_release_device(mtd);
1679 
1680 	return ret;
1681 
1682 }
1683 
1684 /**
1685  * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
1686  * @param mtd		MTD device structure
1687  * @param ofs		offset from device start
1688  * @param allowbbt	1, if its allowed to access the bbt area
1689  *
1690  * Check, if the block is bad, Either by reading the bad block table or
1691  * calling of the scan function.
1692  */
1693 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
1694 {
1695 	struct onenand_chip *this = mtd->priv;
1696 	struct bbm_info *bbm = this->bbm;
1697 
1698 	/* Return info from the table */
1699 	return bbm->isbad_bbt(mtd, ofs, allowbbt);
1700 }
1701 
1702 
1703 /**
1704  * onenand_erase - [MTD Interface] erase block(s)
1705  * @param mtd		MTD device structure
1706  * @param instr		erase instruction
1707  *
1708  * Erase one ore more blocks
1709  */
1710 int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
1711 {
1712 	struct onenand_chip *this = mtd->priv;
1713 	unsigned int block_size;
1714 	loff_t addr = instr->addr;
1715 	unsigned int len = instr->len;
1716 	int ret = 0, i;
1717 	struct mtd_erase_region_info *region = NULL;
1718 	unsigned int region_end = 0;
1719 
1720 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n",
1721 			(unsigned int) addr, len);
1722 
1723 	/* Do not allow erase past end of device */
1724 	if (unlikely((len + addr) > mtd->size)) {
1725 		MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:"
1726 					"Erase past end of device\n");
1727 		return -EINVAL;
1728 	}
1729 
1730 	if (FLEXONENAND(this)) {
1731 		/* Find the eraseregion of this address */
1732 		i = flexonenand_region(mtd, addr);
1733 		region = &mtd->eraseregions[i];
1734 
1735 		block_size = region->erasesize;
1736 		region_end = region->offset
1737 			+ region->erasesize * region->numblocks;
1738 
1739 		/* Start address within region must align on block boundary.
1740 		 * Erase region's start offset is always block start address.
1741 		 */
1742 		if (unlikely((addr - region->offset) & (block_size - 1))) {
1743 			MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:"
1744 				" Unaligned address\n");
1745 			return -EINVAL;
1746 		}
1747 	} else {
1748 		block_size = 1 << this->erase_shift;
1749 
1750 		/* Start address must align on block boundary */
1751 		if (unlikely(addr & (block_size - 1))) {
1752 			MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:"
1753 						"Unaligned address\n");
1754 			return -EINVAL;
1755 		}
1756 	}
1757 
1758 	/* Length must align on block boundary */
1759 	if (unlikely(len & (block_size - 1))) {
1760 		MTDDEBUG (MTD_DEBUG_LEVEL0,
1761 			 "onenand_erase: Length not block aligned\n");
1762 		return -EINVAL;
1763 	}
1764 
1765 	instr->fail_addr = 0xffffffff;
1766 
1767 	/* Grab the lock and see if the device is available */
1768 	onenand_get_device(mtd, FL_ERASING);
1769 
1770 	/* Loop throught the pages */
1771 	instr->state = MTD_ERASING;
1772 
1773 	while (len) {
1774 
1775 		/* Check if we have a bad block, we do not erase bad blocks */
1776 		if (instr->priv == 0 && onenand_block_isbad_nolock(mtd, addr, 0)) {
1777 			printk(KERN_WARNING "onenand_erase: attempt to erase"
1778 				" a bad block at addr 0x%08x\n",
1779 				(unsigned int) addr);
1780 			instr->state = MTD_ERASE_FAILED;
1781 			goto erase_exit;
1782 		}
1783 
1784 		this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
1785 
1786 		onenand_invalidate_bufferram(mtd, addr, block_size);
1787 
1788 		ret = this->wait(mtd, FL_ERASING);
1789 		/* Check, if it is write protected */
1790 		if (ret) {
1791 			if (ret == -EPERM)
1792 				MTDDEBUG (MTD_DEBUG_LEVEL0, "onenand_erase: "
1793 					  "Device is write protected!!!\n");
1794 			else
1795 				MTDDEBUG (MTD_DEBUG_LEVEL0, "onenand_erase: "
1796 					  "Failed erase, block %d\n",
1797 					onenand_block(this, addr));
1798 			instr->state = MTD_ERASE_FAILED;
1799 			instr->fail_addr = addr;
1800 
1801 			goto erase_exit;
1802 		}
1803 
1804 		len -= block_size;
1805 		addr += block_size;
1806 
1807 		if (addr == region_end) {
1808 			if (!len)
1809 				break;
1810 			region++;
1811 
1812 			block_size = region->erasesize;
1813 			region_end = region->offset
1814 				+ region->erasesize * region->numblocks;
1815 
1816 			if (len & (block_size - 1)) {
1817 				/* This has been checked at MTD
1818 				 * partitioning level. */
1819 				printk("onenand_erase: Unaligned address\n");
1820 				goto erase_exit;
1821 			}
1822 		}
1823 	}
1824 
1825 	instr->state = MTD_ERASE_DONE;
1826 
1827 erase_exit:
1828 
1829 	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1830 	/* Do call back function */
1831 	if (!ret)
1832 		mtd_erase_callback(instr);
1833 
1834 	/* Deselect and wake up anyone waiting on the device */
1835 	onenand_release_device(mtd);
1836 
1837 	return ret;
1838 }
1839 
1840 /**
1841  * onenand_sync - [MTD Interface] sync
1842  * @param mtd		MTD device structure
1843  *
1844  * Sync is actually a wait for chip ready function
1845  */
1846 void onenand_sync(struct mtd_info *mtd)
1847 {
1848 	MTDDEBUG (MTD_DEBUG_LEVEL3, "onenand_sync: called\n");
1849 
1850 	/* Grab the lock and see if the device is available */
1851 	onenand_get_device(mtd, FL_SYNCING);
1852 
1853 	/* Release it and go back */
1854 	onenand_release_device(mtd);
1855 }
1856 
1857 /**
1858  * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
1859  * @param mtd		MTD device structure
1860  * @param ofs		offset relative to mtd start
1861  *
1862  * Check whether the block is bad
1863  */
1864 int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
1865 {
1866 	int ret;
1867 
1868 	/* Check for invalid offset */
1869 	if (ofs > mtd->size)
1870 		return -EINVAL;
1871 
1872 	onenand_get_device(mtd, FL_READING);
1873 	ret = onenand_block_isbad_nolock(mtd,ofs, 0);
1874 	onenand_release_device(mtd);
1875 	return ret;
1876 }
1877 
1878 /**
1879  * onenand_default_block_markbad - [DEFAULT] mark a block bad
1880  * @param mtd           MTD device structure
1881  * @param ofs           offset from device start
1882  *
1883  * This is the default implementation, which can be overridden by
1884  * a hardware specific driver.
1885  */
1886 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
1887 {
1888 	struct onenand_chip *this = mtd->priv;
1889 	struct bbm_info *bbm = this->bbm;
1890 	u_char buf[2] = {0, 0};
1891 	struct mtd_oob_ops ops = {
1892 		.mode = MTD_OOB_PLACE,
1893 		.ooblen = 2,
1894 		.oobbuf = buf,
1895 		.ooboffs = 0,
1896 	};
1897 	int block;
1898 
1899 	/* Get block number */
1900 	block = onenand_block(this, ofs);
1901 	if (bbm->bbt)
1902 		bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1903 
1904 	/* We write two bytes, so we dont have to mess with 16 bit access */
1905 	ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
1906 	return onenand_write_oob_nolock(mtd, ofs, &ops);
1907 }
1908 
1909 /**
1910  * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
1911  * @param mtd		MTD device structure
1912  * @param ofs		offset relative to mtd start
1913  *
1914  * Mark the block as bad
1915  */
1916 int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1917 {
1918 	struct onenand_chip *this = mtd->priv;
1919 	int ret;
1920 
1921 	ret = onenand_block_isbad(mtd, ofs);
1922 	if (ret) {
1923 		/* If it was bad already, return success and do nothing */
1924 		if (ret > 0)
1925 			return 0;
1926 		return ret;
1927 	}
1928 
1929 	ret = this->block_markbad(mtd, ofs);
1930 	return ret;
1931 }
1932 
1933 /**
1934  * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
1935  * @param mtd           MTD device structure
1936  * @param ofs           offset relative to mtd start
1937  * @param len           number of bytes to lock or unlock
1938  * @param cmd           lock or unlock command
1939  *
1940  * Lock or unlock one or more blocks
1941  */
1942 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
1943 {
1944 	struct onenand_chip *this = mtd->priv;
1945 	int start, end, block, value, status;
1946 
1947 	start = onenand_block(this, ofs);
1948 	end = onenand_block(this, ofs + len);
1949 
1950 	/* Continuous lock scheme */
1951 	if (this->options & ONENAND_HAS_CONT_LOCK) {
1952 		/* Set start block address */
1953 		this->write_word(start,
1954 				 this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1955 		/* Set end block address */
1956 		this->write_word(end - 1,
1957 				 this->base + ONENAND_REG_END_BLOCK_ADDRESS);
1958 		/* Write unlock command */
1959 		this->command(mtd, cmd, 0, 0);
1960 
1961 		/* There's no return value */
1962 		this->wait(mtd, FL_UNLOCKING);
1963 
1964 		/* Sanity check */
1965 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1966 		       & ONENAND_CTRL_ONGO)
1967 			continue;
1968 
1969 		/* Check lock status */
1970 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1971 		if (!(status & ONENAND_WP_US))
1972 			printk(KERN_ERR "wp status = 0x%x\n", status);
1973 
1974 		return 0;
1975 	}
1976 
1977 	/* Block lock scheme */
1978 	for (block = start; block < end; block++) {
1979 		/* Set block address */
1980 		value = onenand_block_address(this, block);
1981 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1982 		/* Select DataRAM for DDP */
1983 		value = onenand_bufferram_address(this, block);
1984 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1985 
1986 		/* Set start block address */
1987 		this->write_word(block,
1988 				 this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1989 		/* Write unlock command */
1990 		this->command(mtd, ONENAND_CMD_UNLOCK, 0, 0);
1991 
1992 		/* There's no return value */
1993 		this->wait(mtd, FL_UNLOCKING);
1994 
1995 		/* Sanity check */
1996 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1997 		       & ONENAND_CTRL_ONGO)
1998 			continue;
1999 
2000 		/* Check lock status */
2001 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2002 		if (!(status & ONENAND_WP_US))
2003 			printk(KERN_ERR "block = %d, wp status = 0x%x\n",
2004 			       block, status);
2005 	}
2006 
2007 	return 0;
2008 }
2009 
2010 #ifdef ONENAND_LINUX
2011 /**
2012  * onenand_lock - [MTD Interface] Lock block(s)
2013  * @param mtd           MTD device structure
2014  * @param ofs           offset relative to mtd start
2015  * @param len           number of bytes to unlock
2016  *
2017  * Lock one or more blocks
2018  */
2019 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
2020 {
2021 	int ret;
2022 
2023 	onenand_get_device(mtd, FL_LOCKING);
2024 	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2025 	onenand_release_device(mtd);
2026 	return ret;
2027 }
2028 
2029 /**
2030  * onenand_unlock - [MTD Interface] Unlock block(s)
2031  * @param mtd           MTD device structure
2032  * @param ofs           offset relative to mtd start
2033  * @param len           number of bytes to unlock
2034  *
2035  * Unlock one or more blocks
2036  */
2037 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
2038 {
2039 	int ret;
2040 
2041 	onenand_get_device(mtd, FL_LOCKING);
2042 	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2043 	onenand_release_device(mtd);
2044 	return ret;
2045 }
2046 #endif
2047 
2048 /**
2049  * onenand_check_lock_status - [OneNAND Interface] Check lock status
2050  * @param this          onenand chip data structure
2051  *
2052  * Check lock status
2053  */
2054 static int onenand_check_lock_status(struct onenand_chip *this)
2055 {
2056 	unsigned int value, block, status;
2057 	unsigned int end;
2058 
2059 	end = this->chipsize >> this->erase_shift;
2060 	for (block = 0; block < end; block++) {
2061 		/* Set block address */
2062 		value = onenand_block_address(this, block);
2063 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2064 		/* Select DataRAM for DDP */
2065 		value = onenand_bufferram_address(this, block);
2066 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2067 		/* Set start block address */
2068 		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2069 
2070 		/* Check lock status */
2071 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2072 		if (!(status & ONENAND_WP_US)) {
2073 			printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
2074 			return 0;
2075 		}
2076 	}
2077 
2078 	return 1;
2079 }
2080 
2081 /**
2082  * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2083  * @param mtd           MTD device structure
2084  *
2085  * Unlock all blocks
2086  */
2087 static void onenand_unlock_all(struct mtd_info *mtd)
2088 {
2089 	struct onenand_chip *this = mtd->priv;
2090 	loff_t ofs = 0;
2091 	size_t len = mtd->size;
2092 
2093 	if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2094 		/* Set start block address */
2095 		this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2096 		/* Write unlock command */
2097 		this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2098 
2099 		/* There's no return value */
2100 		this->wait(mtd, FL_LOCKING);
2101 
2102 		/* Sanity check */
2103 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2104 				& ONENAND_CTRL_ONGO)
2105 			continue;
2106 
2107 		/* Check lock status */
2108 		if (onenand_check_lock_status(this))
2109 			return;
2110 
2111 		/* Workaround for all block unlock in DDP */
2112 		if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2113 			/* All blocks on another chip */
2114 			ofs = this->chipsize >> 1;
2115 			len = this->chipsize >> 1;
2116 		}
2117 	}
2118 
2119 	onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2120 }
2121 
2122 
2123 /**
2124  * onenand_check_features - Check and set OneNAND features
2125  * @param mtd           MTD data structure
2126  *
2127  * Check and set OneNAND features
2128  * - lock scheme
2129  * - two plane
2130  */
2131 static void onenand_check_features(struct mtd_info *mtd)
2132 {
2133 	struct onenand_chip *this = mtd->priv;
2134 	unsigned int density, process;
2135 
2136 	/* Lock scheme depends on density and process */
2137 	density = onenand_get_density(this->device_id);
2138 	process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
2139 
2140 	/* Lock scheme */
2141 	switch (density) {
2142 	case ONENAND_DEVICE_DENSITY_4Gb:
2143 		if (ONENAND_IS_DDP(this))
2144 			this->options |= ONENAND_HAS_2PLANE;
2145 		else
2146 			this->options |= ONENAND_HAS_4KB_PAGE;
2147 
2148 	case ONENAND_DEVICE_DENSITY_2Gb:
2149 		/* 2Gb DDP don't have 2 plane */
2150 		if (!ONENAND_IS_DDP(this))
2151 			this->options |= ONENAND_HAS_2PLANE;
2152 		this->options |= ONENAND_HAS_UNLOCK_ALL;
2153 
2154 	case ONENAND_DEVICE_DENSITY_1Gb:
2155 		/* A-Die has all block unlock */
2156 		if (process)
2157 			this->options |= ONENAND_HAS_UNLOCK_ALL;
2158 		break;
2159 
2160 	default:
2161 		/* Some OneNAND has continuous lock scheme */
2162 		if (!process)
2163 			this->options |= ONENAND_HAS_CONT_LOCK;
2164 		break;
2165 	}
2166 
2167 	if (ONENAND_IS_MLC(this))
2168 		this->options |= ONENAND_HAS_4KB_PAGE;
2169 
2170 	if (ONENAND_IS_4KB_PAGE(this))
2171 		this->options &= ~ONENAND_HAS_2PLANE;
2172 
2173 	if (FLEXONENAND(this)) {
2174 		this->options &= ~ONENAND_HAS_CONT_LOCK;
2175 		this->options |= ONENAND_HAS_UNLOCK_ALL;
2176 	}
2177 
2178 	if (this->options & ONENAND_HAS_CONT_LOCK)
2179 		printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
2180 	if (this->options & ONENAND_HAS_UNLOCK_ALL)
2181 		printk(KERN_DEBUG "Chip support all block unlock\n");
2182 	if (this->options & ONENAND_HAS_2PLANE)
2183 		printk(KERN_DEBUG "Chip has 2 plane\n");
2184 	if (this->options & ONENAND_HAS_4KB_PAGE)
2185 		printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
2186 
2187 }
2188 
2189 /**
2190  * onenand_print_device_info - Print device ID
2191  * @param device        device ID
2192  *
2193  * Print device ID
2194  */
2195 char *onenand_print_device_info(int device, int version)
2196 {
2197 	int vcc, demuxed, ddp, density, flexonenand;
2198 	char *dev_info = malloc(80);
2199 	char *p = dev_info;
2200 
2201 	vcc = device & ONENAND_DEVICE_VCC_MASK;
2202 	demuxed = device & ONENAND_DEVICE_IS_DEMUX;
2203 	ddp = device & ONENAND_DEVICE_IS_DDP;
2204 	density = onenand_get_density(device);
2205 	flexonenand = device & DEVICE_IS_FLEXONENAND;
2206 	p += sprintf(dev_info, "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)",
2207 	       demuxed ? "" : "Muxed ",
2208 	       flexonenand ? "Flex-" : "",
2209 	       ddp ? "(DDP)" : "",
2210 	       (16 << density), vcc ? "2.65/3.3" : "1.8", device);
2211 
2212 	sprintf(p, "\nOneNAND version = 0x%04x", version);
2213 	printk("%s\n", dev_info);
2214 
2215 	return dev_info;
2216 }
2217 
2218 static const struct onenand_manufacturers onenand_manuf_ids[] = {
2219 	{ONENAND_MFR_NUMONYX, "Numonyx"},
2220 	{ONENAND_MFR_SAMSUNG, "Samsung"},
2221 };
2222 
2223 /**
2224  * onenand_check_maf - Check manufacturer ID
2225  * @param manuf         manufacturer ID
2226  *
2227  * Check manufacturer ID
2228  */
2229 static int onenand_check_maf(int manuf)
2230 {
2231 	int size = ARRAY_SIZE(onenand_manuf_ids);
2232 	int i;
2233 #ifdef ONENAND_DEBUG
2234 	char *name;
2235 #endif
2236 
2237 	for (i = 0; i < size; i++)
2238 		if (manuf == onenand_manuf_ids[i].id)
2239 			break;
2240 
2241 #ifdef ONENAND_DEBUG
2242 	if (i < size)
2243 		name = onenand_manuf_ids[i].name;
2244 	else
2245 		name = "Unknown";
2246 
2247 	printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
2248 #endif
2249 
2250 	return i == size;
2251 }
2252 
2253 /**
2254 * flexonenand_get_boundary	- Reads the SLC boundary
2255 * @param onenand_info		- onenand info structure
2256 *
2257 * Fill up boundary[] field in onenand_chip
2258 **/
2259 static int flexonenand_get_boundary(struct mtd_info *mtd)
2260 {
2261 	struct onenand_chip *this = mtd->priv;
2262 	unsigned int die, bdry;
2263 	int syscfg, locked;
2264 
2265 	/* Disable ECC */
2266 	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2267 	this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
2268 
2269 	for (die = 0; die < this->dies; die++) {
2270 		this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
2271 		this->wait(mtd, FL_SYNCING);
2272 
2273 		this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
2274 		this->wait(mtd, FL_READING);
2275 
2276 		bdry = this->read_word(this->base + ONENAND_DATARAM);
2277 		if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
2278 			locked = 0;
2279 		else
2280 			locked = 1;
2281 		this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
2282 
2283 		this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2284 		this->wait(mtd, FL_RESETING);
2285 
2286 		printk(KERN_INFO "Die %d boundary: %d%s\n", die,
2287 		       this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
2288 	}
2289 
2290 	/* Enable ECC */
2291 	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2292 	return 0;
2293 }
2294 
2295 /**
2296  * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
2297  * 			  boundary[], diesize[], mtd->size, mtd->erasesize,
2298  * 			  mtd->eraseregions
2299  * @param mtd		- MTD device structure
2300  */
2301 static void flexonenand_get_size(struct mtd_info *mtd)
2302 {
2303 	struct onenand_chip *this = mtd->priv;
2304 	int die, i, eraseshift, density;
2305 	int blksperdie, maxbdry;
2306 	loff_t ofs;
2307 
2308 	density = onenand_get_density(this->device_id);
2309 	blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
2310 	blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
2311 	maxbdry = blksperdie - 1;
2312 	eraseshift = this->erase_shift - 1;
2313 
2314 	mtd->numeraseregions = this->dies << 1;
2315 
2316 	/* This fills up the device boundary */
2317 	flexonenand_get_boundary(mtd);
2318 	die = 0;
2319 	ofs = 0;
2320 	i = -1;
2321 	for (; die < this->dies; die++) {
2322 		if (!die || this->boundary[die-1] != maxbdry) {
2323 			i++;
2324 			mtd->eraseregions[i].offset = ofs;
2325 			mtd->eraseregions[i].erasesize = 1 << eraseshift;
2326 			mtd->eraseregions[i].numblocks =
2327 							this->boundary[die] + 1;
2328 			ofs += mtd->eraseregions[i].numblocks << eraseshift;
2329 			eraseshift++;
2330 		} else {
2331 			mtd->numeraseregions -= 1;
2332 			mtd->eraseregions[i].numblocks +=
2333 							this->boundary[die] + 1;
2334 			ofs += (this->boundary[die] + 1) << (eraseshift - 1);
2335 		}
2336 		if (this->boundary[die] != maxbdry) {
2337 			i++;
2338 			mtd->eraseregions[i].offset = ofs;
2339 			mtd->eraseregions[i].erasesize = 1 << eraseshift;
2340 			mtd->eraseregions[i].numblocks = maxbdry ^
2341 							 this->boundary[die];
2342 			ofs += mtd->eraseregions[i].numblocks << eraseshift;
2343 			eraseshift--;
2344 		} else
2345 			mtd->numeraseregions -= 1;
2346 	}
2347 
2348 	/* Expose MLC erase size except when all blocks are SLC */
2349 	mtd->erasesize = 1 << this->erase_shift;
2350 	if (mtd->numeraseregions == 1)
2351 		mtd->erasesize >>= 1;
2352 
2353 	printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
2354 	for (i = 0; i < mtd->numeraseregions; i++)
2355 		printk(KERN_INFO "[offset: 0x%08llx, erasesize: 0x%05x,"
2356 			" numblocks: %04u]\n", mtd->eraseregions[i].offset,
2357 			mtd->eraseregions[i].erasesize,
2358 			mtd->eraseregions[i].numblocks);
2359 
2360 	for (die = 0, mtd->size = 0; die < this->dies; die++) {
2361 		this->diesize[die] = (loff_t) (blksperdie << this->erase_shift);
2362 		this->diesize[die] -= (loff_t) (this->boundary[die] + 1)
2363 						 << (this->erase_shift - 1);
2364 		mtd->size += this->diesize[die];
2365 	}
2366 }
2367 
2368 /**
2369  * flexonenand_check_blocks_erased - Check if blocks are erased
2370  * @param mtd_info	- mtd info structure
2371  * @param start		- first erase block to check
2372  * @param end		- last erase block to check
2373  *
2374  * Converting an unerased block from MLC to SLC
2375  * causes byte values to change. Since both data and its ECC
2376  * have changed, reads on the block give uncorrectable error.
2377  * This might lead to the block being detected as bad.
2378  *
2379  * Avoid this by ensuring that the block to be converted is
2380  * erased.
2381  */
2382 static int flexonenand_check_blocks_erased(struct mtd_info *mtd,
2383 					int start, int end)
2384 {
2385 	struct onenand_chip *this = mtd->priv;
2386 	int i, ret;
2387 	int block;
2388 	struct mtd_oob_ops ops = {
2389 		.mode = MTD_OOB_PLACE,
2390 		.ooboffs = 0,
2391 		.ooblen	= mtd->oobsize,
2392 		.datbuf	= NULL,
2393 		.oobbuf	= this->oob_buf,
2394 	};
2395 	loff_t addr;
2396 
2397 	printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
2398 
2399 	for (block = start; block <= end; block++) {
2400 		addr = flexonenand_addr(this, block);
2401 		if (onenand_block_isbad_nolock(mtd, addr, 0))
2402 			continue;
2403 
2404 		/*
2405 		 * Since main area write results in ECC write to spare,
2406 		 * it is sufficient to check only ECC bytes for change.
2407 		 */
2408 		ret = onenand_read_oob_nolock(mtd, addr, &ops);
2409 		if (ret)
2410 			return ret;
2411 
2412 		for (i = 0; i < mtd->oobsize; i++)
2413 			if (this->oob_buf[i] != 0xff)
2414 				break;
2415 
2416 		if (i != mtd->oobsize) {
2417 			printk(KERN_WARNING "Block %d not erased.\n", block);
2418 			return 1;
2419 		}
2420 	}
2421 
2422 	return 0;
2423 }
2424 
2425 /**
2426  * flexonenand_set_boundary	- Writes the SLC boundary
2427  * @param mtd			- mtd info structure
2428  */
2429 int flexonenand_set_boundary(struct mtd_info *mtd, int die,
2430 				    int boundary, int lock)
2431 {
2432 	struct onenand_chip *this = mtd->priv;
2433 	int ret, density, blksperdie, old, new, thisboundary;
2434 	loff_t addr;
2435 
2436 	if (die >= this->dies)
2437 		return -EINVAL;
2438 
2439 	if (boundary == this->boundary[die])
2440 		return 0;
2441 
2442 	density = onenand_get_density(this->device_id);
2443 	blksperdie = ((16 << density) << 20) >> this->erase_shift;
2444 	blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
2445 
2446 	if (boundary >= blksperdie) {
2447 		printk("flexonenand_set_boundary:"
2448 			"Invalid boundary value. "
2449 			"Boundary not changed.\n");
2450 		return -EINVAL;
2451 	}
2452 
2453 	/* Check if converting blocks are erased */
2454 	old = this->boundary[die] + (die * this->density_mask);
2455 	new = boundary + (die * this->density_mask);
2456 	ret = flexonenand_check_blocks_erased(mtd, min(old, new)
2457 						+ 1, max(old, new));
2458 	if (ret) {
2459 		printk(KERN_ERR "flexonenand_set_boundary: Please erase blocks before boundary change\n");
2460 		return ret;
2461 	}
2462 
2463 	this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
2464 	this->wait(mtd, FL_SYNCING);
2465 
2466 	/* Check is boundary is locked */
2467 	this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
2468 	ret = this->wait(mtd, FL_READING);
2469 
2470 	thisboundary = this->read_word(this->base + ONENAND_DATARAM);
2471 	if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
2472 		printk(KERN_ERR "flexonenand_set_boundary: boundary locked\n");
2473 		goto out;
2474 	}
2475 
2476 	printk(KERN_INFO "flexonenand_set_boundary: Changing die %d boundary: %d%s\n",
2477 			die, boundary, lock ? "(Locked)" : "(Unlocked)");
2478 
2479 	boundary &= FLEXONENAND_PI_MASK;
2480 	boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
2481 
2482 	addr = die ? this->diesize[0] : 0;
2483 	this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
2484 	ret = this->wait(mtd, FL_ERASING);
2485 	if (ret) {
2486 		printk("flexonenand_set_boundary:"
2487 			"Failed PI erase for Die %d\n", die);
2488 		goto out;
2489 	}
2490 
2491 	this->write_word(boundary, this->base + ONENAND_DATARAM);
2492 	this->command(mtd, ONENAND_CMD_PROG, addr, 0);
2493 	ret = this->wait(mtd, FL_WRITING);
2494 	if (ret) {
2495 		printk("flexonenand_set_boundary:"
2496 			"Failed PI write for Die %d\n", die);
2497 		goto out;
2498 	}
2499 
2500 	this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
2501 	ret = this->wait(mtd, FL_WRITING);
2502 out:
2503 	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
2504 	this->wait(mtd, FL_RESETING);
2505 	if (!ret)
2506 		/* Recalculate device size on boundary change*/
2507 		flexonenand_get_size(mtd);
2508 
2509 	return ret;
2510 }
2511 
2512 /**
2513  * onenand_chip_probe - [OneNAND Interface] Probe the OneNAND chip
2514  * @param mtd		MTD device structure
2515  *
2516  * OneNAND detection method:
2517  *   Compare the the values from command with ones from register
2518  */
2519 static int onenand_chip_probe(struct mtd_info *mtd)
2520 {
2521 	struct onenand_chip *this = mtd->priv;
2522 	int bram_maf_id, bram_dev_id, maf_id, dev_id;
2523 	int syscfg;
2524 
2525 	/* Save system configuration 1 */
2526 	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2527 
2528 	/* Clear Sync. Burst Read mode to read BootRAM */
2529 	this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ),
2530 			 this->base + ONENAND_REG_SYS_CFG1);
2531 
2532 	/* Send the command for reading device ID from BootRAM */
2533 	this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
2534 
2535 	/* Read manufacturer and device IDs from BootRAM */
2536 	bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
2537 	bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
2538 
2539 	/* Reset OneNAND to read default register values */
2540 	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
2541 
2542 	/* Wait reset */
2543 	this->wait(mtd, FL_RESETING);
2544 
2545 	/* Restore system configuration 1 */
2546 	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2547 
2548 	/* Check manufacturer ID */
2549 	if (onenand_check_maf(bram_maf_id))
2550 		return -ENXIO;
2551 
2552 	/* Read manufacturer and device IDs from Register */
2553 	maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
2554 	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2555 
2556 	/* Check OneNAND device */
2557 	if (maf_id != bram_maf_id || dev_id != bram_dev_id)
2558 		return -ENXIO;
2559 
2560 	return 0;
2561 }
2562 
2563 /**
2564  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
2565  * @param mtd		MTD device structure
2566  *
2567  * OneNAND detection method:
2568  *   Compare the the values from command with ones from register
2569  */
2570 int onenand_probe(struct mtd_info *mtd)
2571 {
2572 	struct onenand_chip *this = mtd->priv;
2573 	int dev_id, ver_id;
2574 	int density;
2575 	int ret;
2576 
2577 	ret = this->chip_probe(mtd);
2578 	if (ret)
2579 		return ret;
2580 
2581 	/* Read device IDs from Register */
2582 	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2583 	ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
2584 	this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
2585 
2586 	/* Flash device information */
2587 	mtd->name = onenand_print_device_info(dev_id, ver_id);
2588 	this->device_id = dev_id;
2589 	this->version_id = ver_id;
2590 
2591 	/* Check OneNAND features */
2592 	onenand_check_features(mtd);
2593 
2594 	density = onenand_get_density(dev_id);
2595 	if (FLEXONENAND(this)) {
2596 		this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
2597 		/* Maximum possible erase regions */
2598 		mtd->numeraseregions = this->dies << 1;
2599 		mtd->eraseregions = malloc(sizeof(struct mtd_erase_region_info)
2600 					* (this->dies << 1));
2601 		if (!mtd->eraseregions)
2602 			return -ENOMEM;
2603 	}
2604 
2605 	/*
2606 	 * For Flex-OneNAND, chipsize represents maximum possible device size.
2607 	 * mtd->size represents the actual device size.
2608 	 */
2609 	this->chipsize = (16 << density) << 20;
2610 
2611 	/* OneNAND page size & block size */
2612 	/* The data buffer size is equal to page size */
2613 	mtd->writesize =
2614 	    this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
2615 	/* We use the full BufferRAM */
2616 	if (ONENAND_IS_4KB_PAGE(this))
2617 		mtd->writesize <<= 1;
2618 
2619 	mtd->oobsize = mtd->writesize >> 5;
2620 	/* Pagers per block is always 64 in OneNAND */
2621 	mtd->erasesize = mtd->writesize << 6;
2622 	/*
2623 	 * Flex-OneNAND SLC area has 64 pages per block.
2624 	 * Flex-OneNAND MLC area has 128 pages per block.
2625 	 * Expose MLC erase size to find erase_shift and page_mask.
2626 	 */
2627 	if (FLEXONENAND(this))
2628 		mtd->erasesize <<= 1;
2629 
2630 	this->erase_shift = ffs(mtd->erasesize) - 1;
2631 	this->page_shift = ffs(mtd->writesize) - 1;
2632 	this->ppb_shift = (this->erase_shift - this->page_shift);
2633 	this->page_mask = (mtd->erasesize / mtd->writesize) - 1;
2634 	/* Set density mask. it is used for DDP */
2635 	if (ONENAND_IS_DDP(this))
2636 		this->density_mask = this->chipsize >> (this->erase_shift + 1);
2637 	/* It's real page size */
2638 	this->writesize = mtd->writesize;
2639 
2640 	/* REVIST: Multichip handling */
2641 
2642 	if (FLEXONENAND(this))
2643 		flexonenand_get_size(mtd);
2644 	else
2645 		mtd->size = this->chipsize;
2646 
2647 	mtd->flags = MTD_CAP_NANDFLASH;
2648 	mtd->erase = onenand_erase;
2649 	mtd->read = onenand_read;
2650 	mtd->write = onenand_write;
2651 	mtd->read_oob = onenand_read_oob;
2652 	mtd->write_oob = onenand_write_oob;
2653 	mtd->sync = onenand_sync;
2654 	mtd->block_isbad = onenand_block_isbad;
2655 	mtd->block_markbad = onenand_block_markbad;
2656 
2657 	return 0;
2658 }
2659 
2660 /**
2661  * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
2662  * @param mtd		MTD device structure
2663  * @param maxchips	Number of chips to scan for
2664  *
2665  * This fills out all the not initialized function pointers
2666  * with the defaults.
2667  * The flash ID is read and the mtd/chip structures are
2668  * filled with the appropriate values.
2669  */
2670 int onenand_scan(struct mtd_info *mtd, int maxchips)
2671 {
2672 	int i;
2673 	struct onenand_chip *this = mtd->priv;
2674 
2675 	if (!this->read_word)
2676 		this->read_word = onenand_readw;
2677 	if (!this->write_word)
2678 		this->write_word = onenand_writew;
2679 
2680 	if (!this->command)
2681 		this->command = onenand_command;
2682 	if (!this->wait)
2683 		this->wait = onenand_wait;
2684 	if (!this->bbt_wait)
2685 		this->bbt_wait = onenand_bbt_wait;
2686 
2687 	if (!this->read_bufferram)
2688 		this->read_bufferram = onenand_read_bufferram;
2689 	if (!this->write_bufferram)
2690 		this->write_bufferram = onenand_write_bufferram;
2691 
2692 	if (!this->chip_probe)
2693 		this->chip_probe = onenand_chip_probe;
2694 
2695 	if (!this->block_markbad)
2696 		this->block_markbad = onenand_default_block_markbad;
2697 	if (!this->scan_bbt)
2698 		this->scan_bbt = onenand_default_bbt;
2699 
2700 	if (onenand_probe(mtd))
2701 		return -ENXIO;
2702 
2703 	/* Set Sync. Burst Read after probing */
2704 	if (this->mmcontrol) {
2705 		printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
2706 		this->read_bufferram = onenand_sync_read_bufferram;
2707 	}
2708 
2709 	/* Allocate buffers, if necessary */
2710 	if (!this->page_buf) {
2711 		this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
2712 		if (!this->page_buf) {
2713 			printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
2714 			return -ENOMEM;
2715 		}
2716 		this->options |= ONENAND_PAGEBUF_ALLOC;
2717 	}
2718 	if (!this->oob_buf) {
2719 		this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
2720 		if (!this->oob_buf) {
2721 			printk(KERN_ERR "onenand_scan: Can't allocate oob_buf\n");
2722 			if (this->options & ONENAND_PAGEBUF_ALLOC) {
2723 				this->options &= ~ONENAND_PAGEBUF_ALLOC;
2724 				kfree(this->page_buf);
2725 			}
2726 			return -ENOMEM;
2727 		}
2728 		this->options |= ONENAND_OOBBUF_ALLOC;
2729 	}
2730 
2731 	this->state = FL_READY;
2732 
2733 	/*
2734 	 * Allow subpage writes up to oobsize.
2735 	 */
2736 	switch (mtd->oobsize) {
2737 	case 128:
2738 		this->ecclayout = &onenand_oob_128;
2739 		mtd->subpage_sft = 0;
2740 		break;
2741 
2742 	case 64:
2743 		this->ecclayout = &onenand_oob_64;
2744 		mtd->subpage_sft = 2;
2745 		break;
2746 
2747 	case 32:
2748 		this->ecclayout = &onenand_oob_32;
2749 		mtd->subpage_sft = 1;
2750 		break;
2751 
2752 	default:
2753 		printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
2754 			mtd->oobsize);
2755 		mtd->subpage_sft = 0;
2756 		/* To prevent kernel oops */
2757 		this->ecclayout = &onenand_oob_32;
2758 		break;
2759 	}
2760 
2761 	this->subpagesize = mtd->writesize >> mtd->subpage_sft;
2762 
2763 	/*
2764 	 * The number of bytes available for a client to place data into
2765 	 * the out of band area
2766 	 */
2767 	this->ecclayout->oobavail = 0;
2768 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
2769 	    this->ecclayout->oobfree[i].length; i++)
2770 		this->ecclayout->oobavail +=
2771 			this->ecclayout->oobfree[i].length;
2772 	mtd->oobavail = this->ecclayout->oobavail;
2773 
2774 	mtd->ecclayout = this->ecclayout;
2775 
2776 	/* Unlock whole block */
2777 	onenand_unlock_all(mtd);
2778 
2779 	return this->scan_bbt(mtd);
2780 }
2781 
2782 /**
2783  * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
2784  * @param mtd		MTD device structure
2785  */
2786 void onenand_release(struct mtd_info *mtd)
2787 {
2788 }
2789