1 /* 2 * linux/drivers/mtd/onenand/onenand_base.c 3 * 4 * Copyright (C) 2005-2007 Samsung Electronics 5 * Kyungmin Park <kyungmin.park@samsung.com> 6 * 7 * Credits: 8 * Adrian Hunter <ext-adrian.hunter@nokia.com>: 9 * auto-placement support, read-while load support, various fixes 10 * Copyright (C) Nokia Corporation, 2007 11 * 12 * Rohit Hagargundgi <h.rohit at samsung.com>, 13 * Amul Kumar Saha <amul.saha@samsung.com>: 14 * Flex-OneNAND support 15 * Copyright (C) Samsung Electronics, 2009 16 * 17 * This program is free software; you can redistribute it and/or modify 18 * it under the terms of the GNU General Public License version 2 as 19 * published by the Free Software Foundation. 20 */ 21 22 #include <common.h> 23 #include <linux/compat.h> 24 #include <linux/mtd/mtd.h> 25 #include <linux/mtd/onenand.h> 26 27 #include <asm/io.h> 28 #include <asm/errno.h> 29 #include <malloc.h> 30 31 /* It should access 16-bit instead of 8-bit */ 32 static void *memcpy_16(void *dst, const void *src, unsigned int len) 33 { 34 void *ret = dst; 35 short *d = dst; 36 const short *s = src; 37 38 len >>= 1; 39 while (len-- > 0) 40 *d++ = *s++; 41 return ret; 42 } 43 44 /** 45 * onenand_oob_128 - oob info for Flex-Onenand with 4KB page 46 * For now, we expose only 64 out of 80 ecc bytes 47 */ 48 static struct nand_ecclayout onenand_oob_128 = { 49 .eccbytes = 64, 50 .eccpos = { 51 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 52 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 53 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 54 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 55 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 56 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 57 102, 103, 104, 105 58 }, 59 .oobfree = { 60 {2, 4}, {18, 4}, {34, 4}, {50, 4}, 61 {66, 4}, {82, 4}, {98, 4}, {114, 4} 62 } 63 }; 64 65 /** 66 * onenand_oob_64 - oob info for large (2KB) page 67 */ 68 static struct nand_ecclayout onenand_oob_64 = { 69 .eccbytes = 20, 70 .eccpos = { 71 8, 9, 10, 11, 12, 72 24, 25, 26, 27, 28, 73 40, 41, 42, 43, 44, 74 56, 57, 58, 59, 60, 75 }, 76 .oobfree = { 77 {2, 3}, {14, 2}, {18, 3}, {30, 2}, 78 {34, 3}, {46, 2}, {50, 3}, {62, 2} 79 } 80 }; 81 82 /** 83 * onenand_oob_32 - oob info for middle (1KB) page 84 */ 85 static struct nand_ecclayout onenand_oob_32 = { 86 .eccbytes = 10, 87 .eccpos = { 88 8, 9, 10, 11, 12, 89 24, 25, 26, 27, 28, 90 }, 91 .oobfree = { {2, 3}, {14, 2}, {18, 3}, {30, 2} } 92 }; 93 94 /* 95 * Warning! This array is used with the memcpy_16() function, thus 96 * it must be aligned to 2 bytes. GCC can make this array unaligned 97 * as the array is made of unsigned char, which memcpy16() doesn't 98 * like and will cause unaligned access. 99 */ 100 static const unsigned char __aligned(2) ffchars[] = { 101 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 102 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */ 103 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 104 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */ 105 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 106 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */ 107 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 108 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */ 109 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 110 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */ 111 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 112 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */ 113 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 114 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */ 115 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 116 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */ 117 }; 118 119 /** 120 * onenand_readw - [OneNAND Interface] Read OneNAND register 121 * @param addr address to read 122 * 123 * Read OneNAND register 124 */ 125 static unsigned short onenand_readw(void __iomem * addr) 126 { 127 return readw(addr); 128 } 129 130 /** 131 * onenand_writew - [OneNAND Interface] Write OneNAND register with value 132 * @param value value to write 133 * @param addr address to write 134 * 135 * Write OneNAND register with value 136 */ 137 static void onenand_writew(unsigned short value, void __iomem * addr) 138 { 139 writew(value, addr); 140 } 141 142 /** 143 * onenand_block_address - [DEFAULT] Get block address 144 * @param device the device id 145 * @param block the block 146 * @return translated block address if DDP, otherwise same 147 * 148 * Setup Start Address 1 Register (F100h) 149 */ 150 static int onenand_block_address(struct onenand_chip *this, int block) 151 { 152 /* Device Flash Core select, NAND Flash Block Address */ 153 if (block & this->density_mask) 154 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask); 155 156 return block; 157 } 158 159 /** 160 * onenand_bufferram_address - [DEFAULT] Get bufferram address 161 * @param device the device id 162 * @param block the block 163 * @return set DBS value if DDP, otherwise 0 164 * 165 * Setup Start Address 2 Register (F101h) for DDP 166 */ 167 static int onenand_bufferram_address(struct onenand_chip *this, int block) 168 { 169 /* Device BufferRAM Select */ 170 if (block & this->density_mask) 171 return ONENAND_DDP_CHIP1; 172 173 return ONENAND_DDP_CHIP0; 174 } 175 176 /** 177 * onenand_page_address - [DEFAULT] Get page address 178 * @param page the page address 179 * @param sector the sector address 180 * @return combined page and sector address 181 * 182 * Setup Start Address 8 Register (F107h) 183 */ 184 static int onenand_page_address(int page, int sector) 185 { 186 /* Flash Page Address, Flash Sector Address */ 187 int fpa, fsa; 188 189 fpa = page & ONENAND_FPA_MASK; 190 fsa = sector & ONENAND_FSA_MASK; 191 192 return ((fpa << ONENAND_FPA_SHIFT) | fsa); 193 } 194 195 /** 196 * onenand_buffer_address - [DEFAULT] Get buffer address 197 * @param dataram1 DataRAM index 198 * @param sectors the sector address 199 * @param count the number of sectors 200 * @return the start buffer value 201 * 202 * Setup Start Buffer Register (F200h) 203 */ 204 static int onenand_buffer_address(int dataram1, int sectors, int count) 205 { 206 int bsa, bsc; 207 208 /* BufferRAM Sector Address */ 209 bsa = sectors & ONENAND_BSA_MASK; 210 211 if (dataram1) 212 bsa |= ONENAND_BSA_DATARAM1; /* DataRAM1 */ 213 else 214 bsa |= ONENAND_BSA_DATARAM0; /* DataRAM0 */ 215 216 /* BufferRAM Sector Count */ 217 bsc = count & ONENAND_BSC_MASK; 218 219 return ((bsa << ONENAND_BSA_SHIFT) | bsc); 220 } 221 222 /** 223 * flexonenand_block - Return block number for flash address 224 * @param this - OneNAND device structure 225 * @param addr - Address for which block number is needed 226 */ 227 static unsigned int flexonenand_block(struct onenand_chip *this, loff_t addr) 228 { 229 unsigned int boundary, blk, die = 0; 230 231 if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) { 232 die = 1; 233 addr -= this->diesize[0]; 234 } 235 236 boundary = this->boundary[die]; 237 238 blk = addr >> (this->erase_shift - 1); 239 if (blk > boundary) 240 blk = (blk + boundary + 1) >> 1; 241 242 blk += die ? this->density_mask : 0; 243 return blk; 244 } 245 246 unsigned int onenand_block(struct onenand_chip *this, loff_t addr) 247 { 248 if (!FLEXONENAND(this)) 249 return addr >> this->erase_shift; 250 return flexonenand_block(this, addr); 251 } 252 253 /** 254 * flexonenand_addr - Return address of the block 255 * @this: OneNAND device structure 256 * @block: Block number on Flex-OneNAND 257 * 258 * Return address of the block 259 */ 260 static loff_t flexonenand_addr(struct onenand_chip *this, int block) 261 { 262 loff_t ofs = 0; 263 int die = 0, boundary; 264 265 if (ONENAND_IS_DDP(this) && block >= this->density_mask) { 266 block -= this->density_mask; 267 die = 1; 268 ofs = this->diesize[0]; 269 } 270 271 boundary = this->boundary[die]; 272 ofs += (loff_t) block << (this->erase_shift - 1); 273 if (block > (boundary + 1)) 274 ofs += (loff_t) (block - boundary - 1) 275 << (this->erase_shift - 1); 276 return ofs; 277 } 278 279 loff_t onenand_addr(struct onenand_chip *this, int block) 280 { 281 if (!FLEXONENAND(this)) 282 return (loff_t) block << this->erase_shift; 283 return flexonenand_addr(this, block); 284 } 285 286 /** 287 * flexonenand_region - [Flex-OneNAND] Return erase region of addr 288 * @param mtd MTD device structure 289 * @param addr address whose erase region needs to be identified 290 */ 291 int flexonenand_region(struct mtd_info *mtd, loff_t addr) 292 { 293 int i; 294 295 for (i = 0; i < mtd->numeraseregions; i++) 296 if (addr < mtd->eraseregions[i].offset) 297 break; 298 return i - 1; 299 } 300 301 /** 302 * onenand_get_density - [DEFAULT] Get OneNAND density 303 * @param dev_id OneNAND device ID 304 * 305 * Get OneNAND density from device ID 306 */ 307 static inline int onenand_get_density(int dev_id) 308 { 309 int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT; 310 return (density & ONENAND_DEVICE_DENSITY_MASK); 311 } 312 313 /** 314 * onenand_command - [DEFAULT] Send command to OneNAND device 315 * @param mtd MTD device structure 316 * @param cmd the command to be sent 317 * @param addr offset to read from or write to 318 * @param len number of bytes to read or write 319 * 320 * Send command to OneNAND device. This function is used for middle/large page 321 * devices (1KB/2KB Bytes per page) 322 */ 323 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, 324 size_t len) 325 { 326 struct onenand_chip *this = mtd->priv; 327 int value; 328 int block, page; 329 330 /* Now we use page size operation */ 331 int sectors = 0, count = 0; 332 333 /* Address translation */ 334 switch (cmd) { 335 case ONENAND_CMD_UNLOCK: 336 case ONENAND_CMD_LOCK: 337 case ONENAND_CMD_LOCK_TIGHT: 338 case ONENAND_CMD_UNLOCK_ALL: 339 block = -1; 340 page = -1; 341 break; 342 343 case FLEXONENAND_CMD_PI_ACCESS: 344 /* addr contains die index */ 345 block = addr * this->density_mask; 346 page = -1; 347 break; 348 349 case ONENAND_CMD_ERASE: 350 case ONENAND_CMD_BUFFERRAM: 351 block = onenand_block(this, addr); 352 page = -1; 353 break; 354 355 case FLEXONENAND_CMD_READ_PI: 356 cmd = ONENAND_CMD_READ; 357 block = addr * this->density_mask; 358 page = 0; 359 break; 360 361 default: 362 block = onenand_block(this, addr); 363 page = (int) (addr 364 - onenand_addr(this, block)) >> this->page_shift; 365 page &= this->page_mask; 366 break; 367 } 368 369 /* NOTE: The setting order of the registers is very important! */ 370 if (cmd == ONENAND_CMD_BUFFERRAM) { 371 /* Select DataRAM for DDP */ 372 value = onenand_bufferram_address(this, block); 373 this->write_word(value, 374 this->base + ONENAND_REG_START_ADDRESS2); 375 376 if (ONENAND_IS_4KB_PAGE(this)) 377 ONENAND_SET_BUFFERRAM0(this); 378 else 379 /* Switch to the next data buffer */ 380 ONENAND_SET_NEXT_BUFFERRAM(this); 381 382 return 0; 383 } 384 385 if (block != -1) { 386 /* Write 'DFS, FBA' of Flash */ 387 value = onenand_block_address(this, block); 388 this->write_word(value, 389 this->base + ONENAND_REG_START_ADDRESS1); 390 391 /* Select DataRAM for DDP */ 392 value = onenand_bufferram_address(this, block); 393 this->write_word(value, 394 this->base + ONENAND_REG_START_ADDRESS2); 395 } 396 397 if (page != -1) { 398 int dataram; 399 400 switch (cmd) { 401 case FLEXONENAND_CMD_RECOVER_LSB: 402 case ONENAND_CMD_READ: 403 case ONENAND_CMD_READOOB: 404 if (ONENAND_IS_4KB_PAGE(this)) 405 dataram = ONENAND_SET_BUFFERRAM0(this); 406 else 407 dataram = ONENAND_SET_NEXT_BUFFERRAM(this); 408 409 break; 410 411 default: 412 dataram = ONENAND_CURRENT_BUFFERRAM(this); 413 break; 414 } 415 416 /* Write 'FPA, FSA' of Flash */ 417 value = onenand_page_address(page, sectors); 418 this->write_word(value, 419 this->base + ONENAND_REG_START_ADDRESS8); 420 421 /* Write 'BSA, BSC' of DataRAM */ 422 value = onenand_buffer_address(dataram, sectors, count); 423 this->write_word(value, this->base + ONENAND_REG_START_BUFFER); 424 } 425 426 /* Interrupt clear */ 427 this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT); 428 /* Write command */ 429 this->write_word(cmd, this->base + ONENAND_REG_COMMAND); 430 431 return 0; 432 } 433 434 /** 435 * onenand_read_ecc - return ecc status 436 * @param this onenand chip structure 437 */ 438 static int onenand_read_ecc(struct onenand_chip *this) 439 { 440 int ecc, i; 441 442 if (!FLEXONENAND(this)) 443 return this->read_word(this->base + ONENAND_REG_ECC_STATUS); 444 445 for (i = 0; i < 4; i++) { 446 ecc = this->read_word(this->base 447 + ((ONENAND_REG_ECC_STATUS + i) << 1)); 448 if (likely(!ecc)) 449 continue; 450 if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR) 451 return ONENAND_ECC_2BIT_ALL; 452 } 453 454 return 0; 455 } 456 457 /** 458 * onenand_wait - [DEFAULT] wait until the command is done 459 * @param mtd MTD device structure 460 * @param state state to select the max. timeout value 461 * 462 * Wait for command done. This applies to all OneNAND command 463 * Read can take up to 30us, erase up to 2ms and program up to 350us 464 * according to general OneNAND specs 465 */ 466 static int onenand_wait(struct mtd_info *mtd, int state) 467 { 468 struct onenand_chip *this = mtd->priv; 469 unsigned int flags = ONENAND_INT_MASTER; 470 unsigned int interrupt = 0; 471 unsigned int ctrl; 472 473 while (1) { 474 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); 475 if (interrupt & flags) 476 break; 477 } 478 479 ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS); 480 481 if (interrupt & ONENAND_INT_READ) { 482 int ecc = onenand_read_ecc(this); 483 if (ecc & ONENAND_ECC_2BIT_ALL) { 484 printk("onenand_wait: ECC error = 0x%04x\n", ecc); 485 return -EBADMSG; 486 } 487 } 488 489 if (ctrl & ONENAND_CTRL_ERROR) { 490 printk("onenand_wait: controller error = 0x%04x\n", ctrl); 491 if (ctrl & ONENAND_CTRL_LOCK) 492 printk("onenand_wait: it's locked error = 0x%04x\n", 493 ctrl); 494 495 return -EIO; 496 } 497 498 499 return 0; 500 } 501 502 /** 503 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset 504 * @param mtd MTD data structure 505 * @param area BufferRAM area 506 * @return offset given area 507 * 508 * Return BufferRAM offset given area 509 */ 510 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area) 511 { 512 struct onenand_chip *this = mtd->priv; 513 514 if (ONENAND_CURRENT_BUFFERRAM(this)) { 515 if (area == ONENAND_DATARAM) 516 return mtd->writesize; 517 if (area == ONENAND_SPARERAM) 518 return mtd->oobsize; 519 } 520 521 return 0; 522 } 523 524 /** 525 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area 526 * @param mtd MTD data structure 527 * @param area BufferRAM area 528 * @param buffer the databuffer to put/get data 529 * @param offset offset to read from or write to 530 * @param count number of bytes to read/write 531 * 532 * Read the BufferRAM area 533 */ 534 static int onenand_read_bufferram(struct mtd_info *mtd, loff_t addr, int area, 535 unsigned char *buffer, int offset, 536 size_t count) 537 { 538 struct onenand_chip *this = mtd->priv; 539 void __iomem *bufferram; 540 541 bufferram = this->base + area; 542 bufferram += onenand_bufferram_offset(mtd, area); 543 544 memcpy_16(buffer, bufferram + offset, count); 545 546 return 0; 547 } 548 549 /** 550 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode 551 * @param mtd MTD data structure 552 * @param area BufferRAM area 553 * @param buffer the databuffer to put/get data 554 * @param offset offset to read from or write to 555 * @param count number of bytes to read/write 556 * 557 * Read the BufferRAM area with Sync. Burst Mode 558 */ 559 static int onenand_sync_read_bufferram(struct mtd_info *mtd, loff_t addr, int area, 560 unsigned char *buffer, int offset, 561 size_t count) 562 { 563 struct onenand_chip *this = mtd->priv; 564 void __iomem *bufferram; 565 566 bufferram = this->base + area; 567 bufferram += onenand_bufferram_offset(mtd, area); 568 569 this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ); 570 571 memcpy_16(buffer, bufferram + offset, count); 572 573 this->mmcontrol(mtd, 0); 574 575 return 0; 576 } 577 578 /** 579 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area 580 * @param mtd MTD data structure 581 * @param area BufferRAM area 582 * @param buffer the databuffer to put/get data 583 * @param offset offset to read from or write to 584 * @param count number of bytes to read/write 585 * 586 * Write the BufferRAM area 587 */ 588 static int onenand_write_bufferram(struct mtd_info *mtd, loff_t addr, int area, 589 const unsigned char *buffer, int offset, 590 size_t count) 591 { 592 struct onenand_chip *this = mtd->priv; 593 void __iomem *bufferram; 594 595 bufferram = this->base + area; 596 bufferram += onenand_bufferram_offset(mtd, area); 597 598 memcpy_16(bufferram + offset, buffer, count); 599 600 return 0; 601 } 602 603 /** 604 * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode 605 * @param mtd MTD data structure 606 * @param addr address to check 607 * @return blockpage address 608 * 609 * Get blockpage address at 2x program mode 610 */ 611 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr) 612 { 613 struct onenand_chip *this = mtd->priv; 614 int blockpage, block, page; 615 616 /* Calculate the even block number */ 617 block = (int) (addr >> this->erase_shift) & ~1; 618 /* Is it the odd plane? */ 619 if (addr & this->writesize) 620 block++; 621 page = (int) (addr >> (this->page_shift + 1)) & this->page_mask; 622 blockpage = (block << 7) | page; 623 624 return blockpage; 625 } 626 627 /** 628 * onenand_check_bufferram - [GENERIC] Check BufferRAM information 629 * @param mtd MTD data structure 630 * @param addr address to check 631 * @return 1 if there are valid data, otherwise 0 632 * 633 * Check bufferram if there is data we required 634 */ 635 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr) 636 { 637 struct onenand_chip *this = mtd->priv; 638 int blockpage, found = 0; 639 unsigned int i; 640 641 if (ONENAND_IS_2PLANE(this)) 642 blockpage = onenand_get_2x_blockpage(mtd, addr); 643 else 644 blockpage = (int) (addr >> this->page_shift); 645 646 /* Is there valid data? */ 647 i = ONENAND_CURRENT_BUFFERRAM(this); 648 if (this->bufferram[i].blockpage == blockpage) 649 found = 1; 650 else { 651 /* Check another BufferRAM */ 652 i = ONENAND_NEXT_BUFFERRAM(this); 653 if (this->bufferram[i].blockpage == blockpage) { 654 ONENAND_SET_NEXT_BUFFERRAM(this); 655 found = 1; 656 } 657 } 658 659 if (found && ONENAND_IS_DDP(this)) { 660 /* Select DataRAM for DDP */ 661 int block = onenand_block(this, addr); 662 int value = onenand_bufferram_address(this, block); 663 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); 664 } 665 666 return found; 667 } 668 669 /** 670 * onenand_update_bufferram - [GENERIC] Update BufferRAM information 671 * @param mtd MTD data structure 672 * @param addr address to update 673 * @param valid valid flag 674 * 675 * Update BufferRAM information 676 */ 677 static int onenand_update_bufferram(struct mtd_info *mtd, loff_t addr, 678 int valid) 679 { 680 struct onenand_chip *this = mtd->priv; 681 int blockpage; 682 unsigned int i; 683 684 if (ONENAND_IS_2PLANE(this)) 685 blockpage = onenand_get_2x_blockpage(mtd, addr); 686 else 687 blockpage = (int)(addr >> this->page_shift); 688 689 /* Invalidate another BufferRAM */ 690 i = ONENAND_NEXT_BUFFERRAM(this); 691 if (this->bufferram[i].blockpage == blockpage) 692 this->bufferram[i].blockpage = -1; 693 694 /* Update BufferRAM */ 695 i = ONENAND_CURRENT_BUFFERRAM(this); 696 if (valid) 697 this->bufferram[i].blockpage = blockpage; 698 else 699 this->bufferram[i].blockpage = -1; 700 701 return 0; 702 } 703 704 /** 705 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information 706 * @param mtd MTD data structure 707 * @param addr start address to invalidate 708 * @param len length to invalidate 709 * 710 * Invalidate BufferRAM information 711 */ 712 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr, 713 unsigned int len) 714 { 715 struct onenand_chip *this = mtd->priv; 716 int i; 717 loff_t end_addr = addr + len; 718 719 /* Invalidate BufferRAM */ 720 for (i = 0; i < MAX_BUFFERRAM; i++) { 721 loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift; 722 723 if (buf_addr >= addr && buf_addr < end_addr) 724 this->bufferram[i].blockpage = -1; 725 } 726 } 727 728 /** 729 * onenand_get_device - [GENERIC] Get chip for selected access 730 * @param mtd MTD device structure 731 * @param new_state the state which is requested 732 * 733 * Get the device and lock it for exclusive access 734 */ 735 static void onenand_get_device(struct mtd_info *mtd, int new_state) 736 { 737 /* Do nothing */ 738 } 739 740 /** 741 * onenand_release_device - [GENERIC] release chip 742 * @param mtd MTD device structure 743 * 744 * Deselect, release chip lock and wake up anyone waiting on the device 745 */ 746 static void onenand_release_device(struct mtd_info *mtd) 747 { 748 /* Do nothing */ 749 } 750 751 /** 752 * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer 753 * @param mtd MTD device structure 754 * @param buf destination address 755 * @param column oob offset to read from 756 * @param thislen oob length to read 757 */ 758 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, 759 int column, int thislen) 760 { 761 struct onenand_chip *this = mtd->priv; 762 struct nand_oobfree *free; 763 int readcol = column; 764 int readend = column + thislen; 765 int lastgap = 0; 766 unsigned int i; 767 uint8_t *oob_buf = this->oob_buf; 768 769 free = this->ecclayout->oobfree; 770 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length; 771 i++, free++) { 772 if (readcol >= lastgap) 773 readcol += free->offset - lastgap; 774 if (readend >= lastgap) 775 readend += free->offset - lastgap; 776 lastgap = free->offset + free->length; 777 } 778 this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize); 779 free = this->ecclayout->oobfree; 780 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length; 781 i++, free++) { 782 int free_end = free->offset + free->length; 783 if (free->offset < readend && free_end > readcol) { 784 int st = max_t(int,free->offset,readcol); 785 int ed = min_t(int,free_end,readend); 786 int n = ed - st; 787 memcpy(buf, oob_buf + st, n); 788 buf += n; 789 } else if (column == 0) 790 break; 791 } 792 return 0; 793 } 794 795 /** 796 * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data 797 * @param mtd MTD device structure 798 * @param addr address to recover 799 * @param status return value from onenand_wait 800 * 801 * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has 802 * lower page address and MSB page has higher page address in paired pages. 803 * If power off occurs during MSB page program, the paired LSB page data can 804 * become corrupt. LSB page recovery read is a way to read LSB page though page 805 * data are corrupted. When uncorrectable error occurs as a result of LSB page 806 * read after power up, issue LSB page recovery read. 807 */ 808 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status) 809 { 810 struct onenand_chip *this = mtd->priv; 811 int i; 812 813 /* Recovery is only for Flex-OneNAND */ 814 if (!FLEXONENAND(this)) 815 return status; 816 817 /* check if we failed due to uncorrectable error */ 818 if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR) 819 return status; 820 821 /* check if address lies in MLC region */ 822 i = flexonenand_region(mtd, addr); 823 if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift)) 824 return status; 825 826 printk("onenand_recover_lsb:" 827 "Attempting to recover from uncorrectable read\n"); 828 829 /* Issue the LSB page recovery command */ 830 this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize); 831 return this->wait(mtd, FL_READING); 832 } 833 834 /** 835 * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band 836 * @param mtd MTD device structure 837 * @param from offset to read from 838 * @param ops oob operation description structure 839 * 840 * OneNAND read main and/or out-of-band data 841 */ 842 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from, 843 struct mtd_oob_ops *ops) 844 { 845 struct onenand_chip *this = mtd->priv; 846 struct mtd_ecc_stats stats; 847 size_t len = ops->len; 848 size_t ooblen = ops->ooblen; 849 u_char *buf = ops->datbuf; 850 u_char *oobbuf = ops->oobbuf; 851 int read = 0, column, thislen; 852 int oobread = 0, oobcolumn, thisooblen, oobsize; 853 int ret = 0, boundary = 0; 854 int writesize = this->writesize; 855 856 MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_read_ops_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len); 857 858 if (ops->mode == MTD_OPS_AUTO_OOB) 859 oobsize = this->ecclayout->oobavail; 860 else 861 oobsize = mtd->oobsize; 862 863 oobcolumn = from & (mtd->oobsize - 1); 864 865 /* Do not allow reads past end of device */ 866 if ((from + len) > mtd->size) { 867 printk(KERN_ERR "onenand_read_ops_nolock: Attempt read beyond end of device\n"); 868 ops->retlen = 0; 869 ops->oobretlen = 0; 870 return -EINVAL; 871 } 872 873 stats = mtd->ecc_stats; 874 875 /* Read-while-load method */ 876 /* Note: We can't use this feature in MLC */ 877 878 /* Do first load to bufferRAM */ 879 if (read < len) { 880 if (!onenand_check_bufferram(mtd, from)) { 881 this->main_buf = buf; 882 this->command(mtd, ONENAND_CMD_READ, from, writesize); 883 ret = this->wait(mtd, FL_READING); 884 if (unlikely(ret)) 885 ret = onenand_recover_lsb(mtd, from, ret); 886 onenand_update_bufferram(mtd, from, !ret); 887 if (ret == -EBADMSG) 888 ret = 0; 889 } 890 } 891 892 thislen = min_t(int, writesize, len - read); 893 column = from & (writesize - 1); 894 if (column + thislen > writesize) 895 thislen = writesize - column; 896 897 while (!ret) { 898 /* If there is more to load then start next load */ 899 from += thislen; 900 if (!ONENAND_IS_4KB_PAGE(this) && read + thislen < len) { 901 this->main_buf = buf + thislen; 902 this->command(mtd, ONENAND_CMD_READ, from, writesize); 903 /* 904 * Chip boundary handling in DDP 905 * Now we issued chip 1 read and pointed chip 1 906 * bufferam so we have to point chip 0 bufferam. 907 */ 908 if (ONENAND_IS_DDP(this) && 909 unlikely(from == (this->chipsize >> 1))) { 910 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2); 911 boundary = 1; 912 } else 913 boundary = 0; 914 ONENAND_SET_PREV_BUFFERRAM(this); 915 } 916 917 /* While load is going, read from last bufferRAM */ 918 this->read_bufferram(mtd, from - thislen, ONENAND_DATARAM, buf, column, thislen); 919 920 /* Read oob area if needed */ 921 if (oobbuf) { 922 thisooblen = oobsize - oobcolumn; 923 thisooblen = min_t(int, thisooblen, ooblen - oobread); 924 925 if (ops->mode == MTD_OPS_AUTO_OOB) 926 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen); 927 else 928 this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen); 929 oobread += thisooblen; 930 oobbuf += thisooblen; 931 oobcolumn = 0; 932 } 933 934 if (ONENAND_IS_4KB_PAGE(this) && (read + thislen < len)) { 935 this->command(mtd, ONENAND_CMD_READ, from, writesize); 936 ret = this->wait(mtd, FL_READING); 937 if (unlikely(ret)) 938 ret = onenand_recover_lsb(mtd, from, ret); 939 onenand_update_bufferram(mtd, from, !ret); 940 if (mtd_is_eccerr(ret)) 941 ret = 0; 942 } 943 944 /* See if we are done */ 945 read += thislen; 946 if (read == len) 947 break; 948 /* Set up for next read from bufferRAM */ 949 if (unlikely(boundary)) 950 this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2); 951 if (!ONENAND_IS_4KB_PAGE(this)) 952 ONENAND_SET_NEXT_BUFFERRAM(this); 953 buf += thislen; 954 thislen = min_t(int, writesize, len - read); 955 column = 0; 956 957 if (!ONENAND_IS_4KB_PAGE(this)) { 958 /* Now wait for load */ 959 ret = this->wait(mtd, FL_READING); 960 onenand_update_bufferram(mtd, from, !ret); 961 if (mtd_is_eccerr(ret)) 962 ret = 0; 963 } 964 } 965 966 /* 967 * Return success, if no ECC failures, else -EBADMSG 968 * fs driver will take care of that, because 969 * retlen == desired len and result == -EBADMSG 970 */ 971 ops->retlen = read; 972 ops->oobretlen = oobread; 973 974 if (ret) 975 return ret; 976 977 if (mtd->ecc_stats.failed - stats.failed) 978 return -EBADMSG; 979 980 /* return max bitflips per ecc step; ONENANDs correct 1 bit only */ 981 return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0; 982 } 983 984 /** 985 * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band 986 * @param mtd MTD device structure 987 * @param from offset to read from 988 * @param ops oob operation description structure 989 * 990 * OneNAND read out-of-band data from the spare area 991 */ 992 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from, 993 struct mtd_oob_ops *ops) 994 { 995 struct onenand_chip *this = mtd->priv; 996 struct mtd_ecc_stats stats; 997 int read = 0, thislen, column, oobsize; 998 size_t len = ops->ooblen; 999 unsigned int mode = ops->mode; 1000 u_char *buf = ops->oobbuf; 1001 int ret = 0, readcmd; 1002 1003 from += ops->ooboffs; 1004 1005 MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len); 1006 1007 /* Initialize return length value */ 1008 ops->oobretlen = 0; 1009 1010 if (mode == MTD_OPS_AUTO_OOB) 1011 oobsize = this->ecclayout->oobavail; 1012 else 1013 oobsize = mtd->oobsize; 1014 1015 column = from & (mtd->oobsize - 1); 1016 1017 if (unlikely(column >= oobsize)) { 1018 printk(KERN_ERR "onenand_read_oob_nolock: Attempted to start read outside oob\n"); 1019 return -EINVAL; 1020 } 1021 1022 /* Do not allow reads past end of device */ 1023 if (unlikely(from >= mtd->size || 1024 column + len > ((mtd->size >> this->page_shift) - 1025 (from >> this->page_shift)) * oobsize)) { 1026 printk(KERN_ERR "onenand_read_oob_nolock: Attempted to read beyond end of device\n"); 1027 return -EINVAL; 1028 } 1029 1030 stats = mtd->ecc_stats; 1031 1032 readcmd = ONENAND_IS_4KB_PAGE(this) ? 1033 ONENAND_CMD_READ : ONENAND_CMD_READOOB; 1034 1035 while (read < len) { 1036 thislen = oobsize - column; 1037 thislen = min_t(int, thislen, len); 1038 1039 this->spare_buf = buf; 1040 this->command(mtd, readcmd, from, mtd->oobsize); 1041 1042 onenand_update_bufferram(mtd, from, 0); 1043 1044 ret = this->wait(mtd, FL_READING); 1045 if (unlikely(ret)) 1046 ret = onenand_recover_lsb(mtd, from, ret); 1047 1048 if (ret && ret != -EBADMSG) { 1049 printk(KERN_ERR "onenand_read_oob_nolock: read failed = 0x%x\n", ret); 1050 break; 1051 } 1052 1053 if (mode == MTD_OPS_AUTO_OOB) 1054 onenand_transfer_auto_oob(mtd, buf, column, thislen); 1055 else 1056 this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen); 1057 1058 read += thislen; 1059 1060 if (read == len) 1061 break; 1062 1063 buf += thislen; 1064 1065 /* Read more? */ 1066 if (read < len) { 1067 /* Page size */ 1068 from += mtd->writesize; 1069 column = 0; 1070 } 1071 } 1072 1073 ops->oobretlen = read; 1074 1075 if (ret) 1076 return ret; 1077 1078 if (mtd->ecc_stats.failed - stats.failed) 1079 return -EBADMSG; 1080 1081 return 0; 1082 } 1083 1084 /** 1085 * onenand_read - [MTD Interface] MTD compability function for onenand_read_ecc 1086 * @param mtd MTD device structure 1087 * @param from offset to read from 1088 * @param len number of bytes to read 1089 * @param retlen pointer to variable to store the number of read bytes 1090 * @param buf the databuffer to put data 1091 * 1092 * This function simply calls onenand_read_ecc with oob buffer and oobsel = NULL 1093 */ 1094 int onenand_read(struct mtd_info *mtd, loff_t from, size_t len, 1095 size_t * retlen, u_char * buf) 1096 { 1097 struct mtd_oob_ops ops = { 1098 .len = len, 1099 .ooblen = 0, 1100 .datbuf = buf, 1101 .oobbuf = NULL, 1102 }; 1103 int ret; 1104 1105 onenand_get_device(mtd, FL_READING); 1106 ret = onenand_read_ops_nolock(mtd, from, &ops); 1107 onenand_release_device(mtd); 1108 1109 *retlen = ops.retlen; 1110 return ret; 1111 } 1112 1113 /** 1114 * onenand_read_oob - [MTD Interface] OneNAND read out-of-band 1115 * @param mtd MTD device structure 1116 * @param from offset to read from 1117 * @param ops oob operations description structure 1118 * 1119 * OneNAND main and/or out-of-band 1120 */ 1121 int onenand_read_oob(struct mtd_info *mtd, loff_t from, 1122 struct mtd_oob_ops *ops) 1123 { 1124 int ret; 1125 1126 switch (ops->mode) { 1127 case MTD_OPS_PLACE_OOB: 1128 case MTD_OPS_AUTO_OOB: 1129 break; 1130 case MTD_OPS_RAW: 1131 /* Not implemented yet */ 1132 default: 1133 return -EINVAL; 1134 } 1135 1136 onenand_get_device(mtd, FL_READING); 1137 if (ops->datbuf) 1138 ret = onenand_read_ops_nolock(mtd, from, ops); 1139 else 1140 ret = onenand_read_oob_nolock(mtd, from, ops); 1141 onenand_release_device(mtd); 1142 1143 return ret; 1144 } 1145 1146 /** 1147 * onenand_bbt_wait - [DEFAULT] wait until the command is done 1148 * @param mtd MTD device structure 1149 * @param state state to select the max. timeout value 1150 * 1151 * Wait for command done. 1152 */ 1153 static int onenand_bbt_wait(struct mtd_info *mtd, int state) 1154 { 1155 struct onenand_chip *this = mtd->priv; 1156 unsigned int flags = ONENAND_INT_MASTER; 1157 unsigned int interrupt; 1158 unsigned int ctrl; 1159 1160 while (1) { 1161 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); 1162 if (interrupt & flags) 1163 break; 1164 } 1165 1166 /* To get correct interrupt status in timeout case */ 1167 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); 1168 ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS); 1169 1170 if (interrupt & ONENAND_INT_READ) { 1171 int ecc = onenand_read_ecc(this); 1172 if (ecc & ONENAND_ECC_2BIT_ALL) { 1173 printk(KERN_INFO "onenand_bbt_wait: ecc error = 0x%04x" 1174 ", controller = 0x%04x\n", ecc, ctrl); 1175 return ONENAND_BBT_READ_ERROR; 1176 } 1177 } else { 1178 printk(KERN_ERR "onenand_bbt_wait: read timeout!" 1179 "ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt); 1180 return ONENAND_BBT_READ_FATAL_ERROR; 1181 } 1182 1183 /* Initial bad block case: 0x2400 or 0x0400 */ 1184 if (ctrl & ONENAND_CTRL_ERROR) { 1185 printk(KERN_DEBUG "onenand_bbt_wait: controller error = 0x%04x\n", ctrl); 1186 return ONENAND_BBT_READ_ERROR; 1187 } 1188 1189 return 0; 1190 } 1191 1192 /** 1193 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan 1194 * @param mtd MTD device structure 1195 * @param from offset to read from 1196 * @param ops oob operation description structure 1197 * 1198 * OneNAND read out-of-band data from the spare area for bbt scan 1199 */ 1200 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from, 1201 struct mtd_oob_ops *ops) 1202 { 1203 struct onenand_chip *this = mtd->priv; 1204 int read = 0, thislen, column; 1205 int ret = 0, readcmd; 1206 size_t len = ops->ooblen; 1207 u_char *buf = ops->oobbuf; 1208 1209 MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_bbt_read_oob: from = 0x%08x, len = %zi\n", (unsigned int) from, len); 1210 1211 readcmd = ONENAND_IS_4KB_PAGE(this) ? 1212 ONENAND_CMD_READ : ONENAND_CMD_READOOB; 1213 1214 /* Initialize return value */ 1215 ops->oobretlen = 0; 1216 1217 /* Do not allow reads past end of device */ 1218 if (unlikely((from + len) > mtd->size)) { 1219 printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n"); 1220 return ONENAND_BBT_READ_FATAL_ERROR; 1221 } 1222 1223 /* Grab the lock and see if the device is available */ 1224 onenand_get_device(mtd, FL_READING); 1225 1226 column = from & (mtd->oobsize - 1); 1227 1228 while (read < len) { 1229 1230 thislen = mtd->oobsize - column; 1231 thislen = min_t(int, thislen, len); 1232 1233 this->spare_buf = buf; 1234 this->command(mtd, readcmd, from, mtd->oobsize); 1235 1236 onenand_update_bufferram(mtd, from, 0); 1237 1238 ret = this->bbt_wait(mtd, FL_READING); 1239 if (unlikely(ret)) 1240 ret = onenand_recover_lsb(mtd, from, ret); 1241 1242 if (ret) 1243 break; 1244 1245 this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen); 1246 read += thislen; 1247 if (read == len) 1248 break; 1249 1250 buf += thislen; 1251 1252 /* Read more? */ 1253 if (read < len) { 1254 /* Update Page size */ 1255 from += this->writesize; 1256 column = 0; 1257 } 1258 } 1259 1260 /* Deselect and wake up anyone waiting on the device */ 1261 onenand_release_device(mtd); 1262 1263 ops->oobretlen = read; 1264 return ret; 1265 } 1266 1267 1268 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE 1269 /** 1270 * onenand_verify_oob - [GENERIC] verify the oob contents after a write 1271 * @param mtd MTD device structure 1272 * @param buf the databuffer to verify 1273 * @param to offset to read from 1274 */ 1275 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to) 1276 { 1277 struct onenand_chip *this = mtd->priv; 1278 u_char *oob_buf = this->oob_buf; 1279 int status, i, readcmd; 1280 1281 readcmd = ONENAND_IS_4KB_PAGE(this) ? 1282 ONENAND_CMD_READ : ONENAND_CMD_READOOB; 1283 1284 this->command(mtd, readcmd, to, mtd->oobsize); 1285 onenand_update_bufferram(mtd, to, 0); 1286 status = this->wait(mtd, FL_READING); 1287 if (status) 1288 return status; 1289 1290 this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize); 1291 for (i = 0; i < mtd->oobsize; i++) 1292 if (buf[i] != 0xFF && buf[i] != oob_buf[i]) 1293 return -EBADMSG; 1294 1295 return 0; 1296 } 1297 1298 /** 1299 * onenand_verify - [GENERIC] verify the chip contents after a write 1300 * @param mtd MTD device structure 1301 * @param buf the databuffer to verify 1302 * @param addr offset to read from 1303 * @param len number of bytes to read and compare 1304 */ 1305 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len) 1306 { 1307 struct onenand_chip *this = mtd->priv; 1308 void __iomem *dataram; 1309 int ret = 0; 1310 int thislen, column; 1311 1312 while (len != 0) { 1313 thislen = min_t(int, this->writesize, len); 1314 column = addr & (this->writesize - 1); 1315 if (column + thislen > this->writesize) 1316 thislen = this->writesize - column; 1317 1318 this->command(mtd, ONENAND_CMD_READ, addr, this->writesize); 1319 1320 onenand_update_bufferram(mtd, addr, 0); 1321 1322 ret = this->wait(mtd, FL_READING); 1323 if (ret) 1324 return ret; 1325 1326 onenand_update_bufferram(mtd, addr, 1); 1327 1328 dataram = this->base + ONENAND_DATARAM; 1329 dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM); 1330 1331 if (memcmp(buf, dataram + column, thislen)) 1332 return -EBADMSG; 1333 1334 len -= thislen; 1335 buf += thislen; 1336 addr += thislen; 1337 } 1338 1339 return 0; 1340 } 1341 #else 1342 #define onenand_verify(...) (0) 1343 #define onenand_verify_oob(...) (0) 1344 #endif 1345 1346 #define NOTALIGNED(x) ((x & (this->subpagesize - 1)) != 0) 1347 1348 /** 1349 * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer 1350 * @param mtd MTD device structure 1351 * @param oob_buf oob buffer 1352 * @param buf source address 1353 * @param column oob offset to write to 1354 * @param thislen oob length to write 1355 */ 1356 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf, 1357 const u_char *buf, int column, int thislen) 1358 { 1359 struct onenand_chip *this = mtd->priv; 1360 struct nand_oobfree *free; 1361 int writecol = column; 1362 int writeend = column + thislen; 1363 int lastgap = 0; 1364 unsigned int i; 1365 1366 free = this->ecclayout->oobfree; 1367 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length; 1368 i++, free++) { 1369 if (writecol >= lastgap) 1370 writecol += free->offset - lastgap; 1371 if (writeend >= lastgap) 1372 writeend += free->offset - lastgap; 1373 lastgap = free->offset + free->length; 1374 } 1375 free = this->ecclayout->oobfree; 1376 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length; 1377 i++, free++) { 1378 int free_end = free->offset + free->length; 1379 if (free->offset < writeend && free_end > writecol) { 1380 int st = max_t(int,free->offset,writecol); 1381 int ed = min_t(int,free_end,writeend); 1382 int n = ed - st; 1383 memcpy(oob_buf + st, buf, n); 1384 buf += n; 1385 } else if (column == 0) 1386 break; 1387 } 1388 return 0; 1389 } 1390 1391 /** 1392 * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band 1393 * @param mtd MTD device structure 1394 * @param to offset to write to 1395 * @param ops oob operation description structure 1396 * 1397 * Write main and/or oob with ECC 1398 */ 1399 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to, 1400 struct mtd_oob_ops *ops) 1401 { 1402 struct onenand_chip *this = mtd->priv; 1403 int written = 0, column, thislen, subpage; 1404 int oobwritten = 0, oobcolumn, thisooblen, oobsize; 1405 size_t len = ops->len; 1406 size_t ooblen = ops->ooblen; 1407 const u_char *buf = ops->datbuf; 1408 const u_char *oob = ops->oobbuf; 1409 u_char *oobbuf; 1410 int ret = 0; 1411 1412 MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_write_ops_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len); 1413 1414 /* Initialize retlen, in case of early exit */ 1415 ops->retlen = 0; 1416 ops->oobretlen = 0; 1417 1418 /* Reject writes, which are not page aligned */ 1419 if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) { 1420 printk(KERN_ERR "onenand_write_ops_nolock: Attempt to write not page aligned data\n"); 1421 return -EINVAL; 1422 } 1423 1424 if (ops->mode == MTD_OPS_AUTO_OOB) 1425 oobsize = this->ecclayout->oobavail; 1426 else 1427 oobsize = mtd->oobsize; 1428 1429 oobcolumn = to & (mtd->oobsize - 1); 1430 1431 column = to & (mtd->writesize - 1); 1432 1433 /* Loop until all data write */ 1434 while (written < len) { 1435 u_char *wbuf = (u_char *) buf; 1436 1437 thislen = min_t(int, mtd->writesize - column, len - written); 1438 thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten); 1439 1440 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen); 1441 1442 /* Partial page write */ 1443 subpage = thislen < mtd->writesize; 1444 if (subpage) { 1445 memset(this->page_buf, 0xff, mtd->writesize); 1446 memcpy(this->page_buf + column, buf, thislen); 1447 wbuf = this->page_buf; 1448 } 1449 1450 this->write_bufferram(mtd, to, ONENAND_DATARAM, wbuf, 0, mtd->writesize); 1451 1452 if (oob) { 1453 oobbuf = this->oob_buf; 1454 1455 /* We send data to spare ram with oobsize 1456 * * to prevent byte access */ 1457 memset(oobbuf, 0xff, mtd->oobsize); 1458 if (ops->mode == MTD_OPS_AUTO_OOB) 1459 onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen); 1460 else 1461 memcpy(oobbuf + oobcolumn, oob, thisooblen); 1462 1463 oobwritten += thisooblen; 1464 oob += thisooblen; 1465 oobcolumn = 0; 1466 } else 1467 oobbuf = (u_char *) ffchars; 1468 1469 this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize); 1470 1471 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize); 1472 1473 ret = this->wait(mtd, FL_WRITING); 1474 1475 /* In partial page write we don't update bufferram */ 1476 onenand_update_bufferram(mtd, to, !ret && !subpage); 1477 if (ONENAND_IS_2PLANE(this)) { 1478 ONENAND_SET_BUFFERRAM1(this); 1479 onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage); 1480 } 1481 1482 if (ret) { 1483 printk(KERN_ERR "onenand_write_ops_nolock: write filaed %d\n", ret); 1484 break; 1485 } 1486 1487 /* Only check verify write turn on */ 1488 ret = onenand_verify(mtd, buf, to, thislen); 1489 if (ret) { 1490 printk(KERN_ERR "onenand_write_ops_nolock: verify failed %d\n", ret); 1491 break; 1492 } 1493 1494 written += thislen; 1495 1496 if (written == len) 1497 break; 1498 1499 column = 0; 1500 to += thislen; 1501 buf += thislen; 1502 } 1503 1504 ops->retlen = written; 1505 1506 return ret; 1507 } 1508 1509 /** 1510 * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band 1511 * @param mtd MTD device structure 1512 * @param to offset to write to 1513 * @param len number of bytes to write 1514 * @param retlen pointer to variable to store the number of written bytes 1515 * @param buf the data to write 1516 * @param mode operation mode 1517 * 1518 * OneNAND write out-of-band 1519 */ 1520 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to, 1521 struct mtd_oob_ops *ops) 1522 { 1523 struct onenand_chip *this = mtd->priv; 1524 int column, ret = 0, oobsize; 1525 int written = 0, oobcmd; 1526 u_char *oobbuf; 1527 size_t len = ops->ooblen; 1528 const u_char *buf = ops->oobbuf; 1529 unsigned int mode = ops->mode; 1530 1531 to += ops->ooboffs; 1532 1533 MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len); 1534 1535 /* Initialize retlen, in case of early exit */ 1536 ops->oobretlen = 0; 1537 1538 if (mode == MTD_OPS_AUTO_OOB) 1539 oobsize = this->ecclayout->oobavail; 1540 else 1541 oobsize = mtd->oobsize; 1542 1543 column = to & (mtd->oobsize - 1); 1544 1545 if (unlikely(column >= oobsize)) { 1546 printk(KERN_ERR "onenand_write_oob_nolock: Attempted to start write outside oob\n"); 1547 return -EINVAL; 1548 } 1549 1550 /* For compatibility with NAND: Do not allow write past end of page */ 1551 if (unlikely(column + len > oobsize)) { 1552 printk(KERN_ERR "onenand_write_oob_nolock: " 1553 "Attempt to write past end of page\n"); 1554 return -EINVAL; 1555 } 1556 1557 /* Do not allow reads past end of device */ 1558 if (unlikely(to >= mtd->size || 1559 column + len > ((mtd->size >> this->page_shift) - 1560 (to >> this->page_shift)) * oobsize)) { 1561 printk(KERN_ERR "onenand_write_oob_nolock: Attempted to write past end of device\n"); 1562 return -EINVAL; 1563 } 1564 1565 oobbuf = this->oob_buf; 1566 1567 oobcmd = ONENAND_IS_4KB_PAGE(this) ? 1568 ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB; 1569 1570 /* Loop until all data write */ 1571 while (written < len) { 1572 int thislen = min_t(int, oobsize, len - written); 1573 1574 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize); 1575 1576 /* We send data to spare ram with oobsize 1577 * to prevent byte access */ 1578 memset(oobbuf, 0xff, mtd->oobsize); 1579 if (mode == MTD_OPS_AUTO_OOB) 1580 onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen); 1581 else 1582 memcpy(oobbuf + column, buf, thislen); 1583 this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize); 1584 1585 if (ONENAND_IS_4KB_PAGE(this)) { 1586 /* Set main area of DataRAM to 0xff*/ 1587 memset(this->page_buf, 0xff, mtd->writesize); 1588 this->write_bufferram(mtd, 0, ONENAND_DATARAM, 1589 this->page_buf, 0, mtd->writesize); 1590 } 1591 1592 this->command(mtd, oobcmd, to, mtd->oobsize); 1593 1594 onenand_update_bufferram(mtd, to, 0); 1595 if (ONENAND_IS_2PLANE(this)) { 1596 ONENAND_SET_BUFFERRAM1(this); 1597 onenand_update_bufferram(mtd, to + this->writesize, 0); 1598 } 1599 1600 ret = this->wait(mtd, FL_WRITING); 1601 if (ret) { 1602 printk(KERN_ERR "onenand_write_oob_nolock: write failed %d\n", ret); 1603 break; 1604 } 1605 1606 ret = onenand_verify_oob(mtd, oobbuf, to); 1607 if (ret) { 1608 printk(KERN_ERR "onenand_write_oob_nolock: verify failed %d\n", ret); 1609 break; 1610 } 1611 1612 written += thislen; 1613 if (written == len) 1614 break; 1615 1616 to += mtd->writesize; 1617 buf += thislen; 1618 column = 0; 1619 } 1620 1621 ops->oobretlen = written; 1622 1623 return ret; 1624 } 1625 1626 /** 1627 * onenand_write - [MTD Interface] compability function for onenand_write_ecc 1628 * @param mtd MTD device structure 1629 * @param to offset to write to 1630 * @param len number of bytes to write 1631 * @param retlen pointer to variable to store the number of written bytes 1632 * @param buf the data to write 1633 * 1634 * Write with ECC 1635 */ 1636 int onenand_write(struct mtd_info *mtd, loff_t to, size_t len, 1637 size_t * retlen, const u_char * buf) 1638 { 1639 struct mtd_oob_ops ops = { 1640 .len = len, 1641 .ooblen = 0, 1642 .datbuf = (u_char *) buf, 1643 .oobbuf = NULL, 1644 }; 1645 int ret; 1646 1647 onenand_get_device(mtd, FL_WRITING); 1648 ret = onenand_write_ops_nolock(mtd, to, &ops); 1649 onenand_release_device(mtd); 1650 1651 *retlen = ops.retlen; 1652 return ret; 1653 } 1654 1655 /** 1656 * onenand_write_oob - [MTD Interface] OneNAND write out-of-band 1657 * @param mtd MTD device structure 1658 * @param to offset to write to 1659 * @param ops oob operation description structure 1660 * 1661 * OneNAND write main and/or out-of-band 1662 */ 1663 int onenand_write_oob(struct mtd_info *mtd, loff_t to, 1664 struct mtd_oob_ops *ops) 1665 { 1666 int ret; 1667 1668 switch (ops->mode) { 1669 case MTD_OPS_PLACE_OOB: 1670 case MTD_OPS_AUTO_OOB: 1671 break; 1672 case MTD_OPS_RAW: 1673 /* Not implemented yet */ 1674 default: 1675 return -EINVAL; 1676 } 1677 1678 onenand_get_device(mtd, FL_WRITING); 1679 if (ops->datbuf) 1680 ret = onenand_write_ops_nolock(mtd, to, ops); 1681 else 1682 ret = onenand_write_oob_nolock(mtd, to, ops); 1683 onenand_release_device(mtd); 1684 1685 return ret; 1686 1687 } 1688 1689 /** 1690 * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad 1691 * @param mtd MTD device structure 1692 * @param ofs offset from device start 1693 * @param allowbbt 1, if its allowed to access the bbt area 1694 * 1695 * Check, if the block is bad, Either by reading the bad block table or 1696 * calling of the scan function. 1697 */ 1698 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt) 1699 { 1700 struct onenand_chip *this = mtd->priv; 1701 struct bbm_info *bbm = this->bbm; 1702 1703 /* Return info from the table */ 1704 return bbm->isbad_bbt(mtd, ofs, allowbbt); 1705 } 1706 1707 1708 /** 1709 * onenand_erase - [MTD Interface] erase block(s) 1710 * @param mtd MTD device structure 1711 * @param instr erase instruction 1712 * 1713 * Erase one ore more blocks 1714 */ 1715 int onenand_erase(struct mtd_info *mtd, struct erase_info *instr) 1716 { 1717 struct onenand_chip *this = mtd->priv; 1718 unsigned int block_size; 1719 loff_t addr = instr->addr; 1720 unsigned int len = instr->len; 1721 int ret = 0, i; 1722 struct mtd_erase_region_info *region = NULL; 1723 unsigned int region_end = 0; 1724 1725 MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n", 1726 (unsigned int) addr, len); 1727 1728 if (FLEXONENAND(this)) { 1729 /* Find the eraseregion of this address */ 1730 i = flexonenand_region(mtd, addr); 1731 region = &mtd->eraseregions[i]; 1732 1733 block_size = region->erasesize; 1734 region_end = region->offset 1735 + region->erasesize * region->numblocks; 1736 1737 /* Start address within region must align on block boundary. 1738 * Erase region's start offset is always block start address. 1739 */ 1740 if (unlikely((addr - region->offset) & (block_size - 1))) { 1741 MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:" 1742 " Unaligned address\n"); 1743 return -EINVAL; 1744 } 1745 } else { 1746 block_size = 1 << this->erase_shift; 1747 1748 /* Start address must align on block boundary */ 1749 if (unlikely(addr & (block_size - 1))) { 1750 MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:" 1751 "Unaligned address\n"); 1752 return -EINVAL; 1753 } 1754 } 1755 1756 /* Length must align on block boundary */ 1757 if (unlikely(len & (block_size - 1))) { 1758 MTDDEBUG (MTD_DEBUG_LEVEL0, 1759 "onenand_erase: Length not block aligned\n"); 1760 return -EINVAL; 1761 } 1762 1763 /* Grab the lock and see if the device is available */ 1764 onenand_get_device(mtd, FL_ERASING); 1765 1766 /* Loop throught the pages */ 1767 instr->state = MTD_ERASING; 1768 1769 while (len) { 1770 1771 /* Check if we have a bad block, we do not erase bad blocks */ 1772 if (instr->priv == 0 && onenand_block_isbad_nolock(mtd, addr, 0)) { 1773 printk(KERN_WARNING "onenand_erase: attempt to erase" 1774 " a bad block at addr 0x%08x\n", 1775 (unsigned int) addr); 1776 instr->state = MTD_ERASE_FAILED; 1777 goto erase_exit; 1778 } 1779 1780 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size); 1781 1782 onenand_invalidate_bufferram(mtd, addr, block_size); 1783 1784 ret = this->wait(mtd, FL_ERASING); 1785 /* Check, if it is write protected */ 1786 if (ret) { 1787 if (ret == -EPERM) 1788 MTDDEBUG (MTD_DEBUG_LEVEL0, "onenand_erase: " 1789 "Device is write protected!!!\n"); 1790 else 1791 MTDDEBUG (MTD_DEBUG_LEVEL0, "onenand_erase: " 1792 "Failed erase, block %d\n", 1793 onenand_block(this, addr)); 1794 instr->state = MTD_ERASE_FAILED; 1795 instr->fail_addr = addr; 1796 1797 goto erase_exit; 1798 } 1799 1800 len -= block_size; 1801 addr += block_size; 1802 1803 if (addr == region_end) { 1804 if (!len) 1805 break; 1806 region++; 1807 1808 block_size = region->erasesize; 1809 region_end = region->offset 1810 + region->erasesize * region->numblocks; 1811 1812 if (len & (block_size - 1)) { 1813 /* This has been checked at MTD 1814 * partitioning level. */ 1815 printk("onenand_erase: Unaligned address\n"); 1816 goto erase_exit; 1817 } 1818 } 1819 } 1820 1821 instr->state = MTD_ERASE_DONE; 1822 1823 erase_exit: 1824 1825 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO; 1826 /* Do call back function */ 1827 if (!ret) 1828 mtd_erase_callback(instr); 1829 1830 /* Deselect and wake up anyone waiting on the device */ 1831 onenand_release_device(mtd); 1832 1833 return ret; 1834 } 1835 1836 /** 1837 * onenand_sync - [MTD Interface] sync 1838 * @param mtd MTD device structure 1839 * 1840 * Sync is actually a wait for chip ready function 1841 */ 1842 void onenand_sync(struct mtd_info *mtd) 1843 { 1844 MTDDEBUG (MTD_DEBUG_LEVEL3, "onenand_sync: called\n"); 1845 1846 /* Grab the lock and see if the device is available */ 1847 onenand_get_device(mtd, FL_SYNCING); 1848 1849 /* Release it and go back */ 1850 onenand_release_device(mtd); 1851 } 1852 1853 /** 1854 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad 1855 * @param mtd MTD device structure 1856 * @param ofs offset relative to mtd start 1857 * 1858 * Check whether the block is bad 1859 */ 1860 int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs) 1861 { 1862 int ret; 1863 1864 /* Check for invalid offset */ 1865 if (ofs > mtd->size) 1866 return -EINVAL; 1867 1868 onenand_get_device(mtd, FL_READING); 1869 ret = onenand_block_isbad_nolock(mtd,ofs, 0); 1870 onenand_release_device(mtd); 1871 return ret; 1872 } 1873 1874 /** 1875 * onenand_default_block_markbad - [DEFAULT] mark a block bad 1876 * @param mtd MTD device structure 1877 * @param ofs offset from device start 1878 * 1879 * This is the default implementation, which can be overridden by 1880 * a hardware specific driver. 1881 */ 1882 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs) 1883 { 1884 struct onenand_chip *this = mtd->priv; 1885 struct bbm_info *bbm = this->bbm; 1886 u_char buf[2] = {0, 0}; 1887 struct mtd_oob_ops ops = { 1888 .mode = MTD_OPS_PLACE_OOB, 1889 .ooblen = 2, 1890 .oobbuf = buf, 1891 .ooboffs = 0, 1892 }; 1893 int block; 1894 1895 /* Get block number */ 1896 block = onenand_block(this, ofs); 1897 if (bbm->bbt) 1898 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1); 1899 1900 /* We write two bytes, so we dont have to mess with 16 bit access */ 1901 ofs += mtd->oobsize + (bbm->badblockpos & ~0x01); 1902 return onenand_write_oob_nolock(mtd, ofs, &ops); 1903 } 1904 1905 /** 1906 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad 1907 * @param mtd MTD device structure 1908 * @param ofs offset relative to mtd start 1909 * 1910 * Mark the block as bad 1911 */ 1912 int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs) 1913 { 1914 int ret; 1915 1916 ret = onenand_block_isbad(mtd, ofs); 1917 if (ret) { 1918 /* If it was bad already, return success and do nothing */ 1919 if (ret > 0) 1920 return 0; 1921 return ret; 1922 } 1923 1924 ret = mtd_block_markbad(mtd, ofs); 1925 return ret; 1926 } 1927 1928 /** 1929 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s) 1930 * @param mtd MTD device structure 1931 * @param ofs offset relative to mtd start 1932 * @param len number of bytes to lock or unlock 1933 * @param cmd lock or unlock command 1934 * 1935 * Lock or unlock one or more blocks 1936 */ 1937 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd) 1938 { 1939 struct onenand_chip *this = mtd->priv; 1940 int start, end, block, value, status; 1941 1942 start = onenand_block(this, ofs); 1943 end = onenand_block(this, ofs + len); 1944 1945 /* Continuous lock scheme */ 1946 if (this->options & ONENAND_HAS_CONT_LOCK) { 1947 /* Set start block address */ 1948 this->write_word(start, 1949 this->base + ONENAND_REG_START_BLOCK_ADDRESS); 1950 /* Set end block address */ 1951 this->write_word(end - 1, 1952 this->base + ONENAND_REG_END_BLOCK_ADDRESS); 1953 /* Write unlock command */ 1954 this->command(mtd, cmd, 0, 0); 1955 1956 /* There's no return value */ 1957 this->wait(mtd, FL_UNLOCKING); 1958 1959 /* Sanity check */ 1960 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS) 1961 & ONENAND_CTRL_ONGO) 1962 continue; 1963 1964 /* Check lock status */ 1965 status = this->read_word(this->base + ONENAND_REG_WP_STATUS); 1966 if (!(status & ONENAND_WP_US)) 1967 printk(KERN_ERR "wp status = 0x%x\n", status); 1968 1969 return 0; 1970 } 1971 1972 /* Block lock scheme */ 1973 for (block = start; block < end; block++) { 1974 /* Set block address */ 1975 value = onenand_block_address(this, block); 1976 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1); 1977 /* Select DataRAM for DDP */ 1978 value = onenand_bufferram_address(this, block); 1979 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); 1980 1981 /* Set start block address */ 1982 this->write_word(block, 1983 this->base + ONENAND_REG_START_BLOCK_ADDRESS); 1984 /* Write unlock command */ 1985 this->command(mtd, ONENAND_CMD_UNLOCK, 0, 0); 1986 1987 /* There's no return value */ 1988 this->wait(mtd, FL_UNLOCKING); 1989 1990 /* Sanity check */ 1991 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS) 1992 & ONENAND_CTRL_ONGO) 1993 continue; 1994 1995 /* Check lock status */ 1996 status = this->read_word(this->base + ONENAND_REG_WP_STATUS); 1997 if (!(status & ONENAND_WP_US)) 1998 printk(KERN_ERR "block = %d, wp status = 0x%x\n", 1999 block, status); 2000 } 2001 2002 return 0; 2003 } 2004 2005 #ifdef ONENAND_LINUX 2006 /** 2007 * onenand_lock - [MTD Interface] Lock block(s) 2008 * @param mtd MTD device structure 2009 * @param ofs offset relative to mtd start 2010 * @param len number of bytes to unlock 2011 * 2012 * Lock one or more blocks 2013 */ 2014 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len) 2015 { 2016 int ret; 2017 2018 onenand_get_device(mtd, FL_LOCKING); 2019 ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK); 2020 onenand_release_device(mtd); 2021 return ret; 2022 } 2023 2024 /** 2025 * onenand_unlock - [MTD Interface] Unlock block(s) 2026 * @param mtd MTD device structure 2027 * @param ofs offset relative to mtd start 2028 * @param len number of bytes to unlock 2029 * 2030 * Unlock one or more blocks 2031 */ 2032 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len) 2033 { 2034 int ret; 2035 2036 onenand_get_device(mtd, FL_LOCKING); 2037 ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK); 2038 onenand_release_device(mtd); 2039 return ret; 2040 } 2041 #endif 2042 2043 /** 2044 * onenand_check_lock_status - [OneNAND Interface] Check lock status 2045 * @param this onenand chip data structure 2046 * 2047 * Check lock status 2048 */ 2049 static int onenand_check_lock_status(struct onenand_chip *this) 2050 { 2051 unsigned int value, block, status; 2052 unsigned int end; 2053 2054 end = this->chipsize >> this->erase_shift; 2055 for (block = 0; block < end; block++) { 2056 /* Set block address */ 2057 value = onenand_block_address(this, block); 2058 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1); 2059 /* Select DataRAM for DDP */ 2060 value = onenand_bufferram_address(this, block); 2061 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); 2062 /* Set start block address */ 2063 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS); 2064 2065 /* Check lock status */ 2066 status = this->read_word(this->base + ONENAND_REG_WP_STATUS); 2067 if (!(status & ONENAND_WP_US)) { 2068 printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status); 2069 return 0; 2070 } 2071 } 2072 2073 return 1; 2074 } 2075 2076 /** 2077 * onenand_unlock_all - [OneNAND Interface] unlock all blocks 2078 * @param mtd MTD device structure 2079 * 2080 * Unlock all blocks 2081 */ 2082 static void onenand_unlock_all(struct mtd_info *mtd) 2083 { 2084 struct onenand_chip *this = mtd->priv; 2085 loff_t ofs = 0; 2086 size_t len = mtd->size; 2087 2088 if (this->options & ONENAND_HAS_UNLOCK_ALL) { 2089 /* Set start block address */ 2090 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS); 2091 /* Write unlock command */ 2092 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0); 2093 2094 /* There's no return value */ 2095 this->wait(mtd, FL_LOCKING); 2096 2097 /* Sanity check */ 2098 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS) 2099 & ONENAND_CTRL_ONGO) 2100 continue; 2101 2102 /* Check lock status */ 2103 if (onenand_check_lock_status(this)) 2104 return; 2105 2106 /* Workaround for all block unlock in DDP */ 2107 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) { 2108 /* All blocks on another chip */ 2109 ofs = this->chipsize >> 1; 2110 len = this->chipsize >> 1; 2111 } 2112 } 2113 2114 onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK); 2115 } 2116 2117 2118 /** 2119 * onenand_check_features - Check and set OneNAND features 2120 * @param mtd MTD data structure 2121 * 2122 * Check and set OneNAND features 2123 * - lock scheme 2124 * - two plane 2125 */ 2126 static void onenand_check_features(struct mtd_info *mtd) 2127 { 2128 struct onenand_chip *this = mtd->priv; 2129 unsigned int density, process; 2130 2131 /* Lock scheme depends on density and process */ 2132 density = onenand_get_density(this->device_id); 2133 process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT; 2134 2135 /* Lock scheme */ 2136 switch (density) { 2137 case ONENAND_DEVICE_DENSITY_4Gb: 2138 if (ONENAND_IS_DDP(this)) 2139 this->options |= ONENAND_HAS_2PLANE; 2140 else 2141 this->options |= ONENAND_HAS_4KB_PAGE; 2142 2143 case ONENAND_DEVICE_DENSITY_2Gb: 2144 /* 2Gb DDP don't have 2 plane */ 2145 if (!ONENAND_IS_DDP(this)) 2146 this->options |= ONENAND_HAS_2PLANE; 2147 this->options |= ONENAND_HAS_UNLOCK_ALL; 2148 2149 case ONENAND_DEVICE_DENSITY_1Gb: 2150 /* A-Die has all block unlock */ 2151 if (process) 2152 this->options |= ONENAND_HAS_UNLOCK_ALL; 2153 break; 2154 2155 default: 2156 /* Some OneNAND has continuous lock scheme */ 2157 if (!process) 2158 this->options |= ONENAND_HAS_CONT_LOCK; 2159 break; 2160 } 2161 2162 if (ONENAND_IS_MLC(this)) 2163 this->options |= ONENAND_HAS_4KB_PAGE; 2164 2165 if (ONENAND_IS_4KB_PAGE(this)) 2166 this->options &= ~ONENAND_HAS_2PLANE; 2167 2168 if (FLEXONENAND(this)) { 2169 this->options &= ~ONENAND_HAS_CONT_LOCK; 2170 this->options |= ONENAND_HAS_UNLOCK_ALL; 2171 } 2172 2173 if (this->options & ONENAND_HAS_CONT_LOCK) 2174 printk(KERN_DEBUG "Lock scheme is Continuous Lock\n"); 2175 if (this->options & ONENAND_HAS_UNLOCK_ALL) 2176 printk(KERN_DEBUG "Chip support all block unlock\n"); 2177 if (this->options & ONENAND_HAS_2PLANE) 2178 printk(KERN_DEBUG "Chip has 2 plane\n"); 2179 if (this->options & ONENAND_HAS_4KB_PAGE) 2180 printk(KERN_DEBUG "Chip has 4KiB pagesize\n"); 2181 2182 } 2183 2184 /** 2185 * onenand_print_device_info - Print device ID 2186 * @param device device ID 2187 * 2188 * Print device ID 2189 */ 2190 char *onenand_print_device_info(int device, int version) 2191 { 2192 int vcc, demuxed, ddp, density, flexonenand; 2193 char *dev_info = malloc(80); 2194 char *p = dev_info; 2195 2196 vcc = device & ONENAND_DEVICE_VCC_MASK; 2197 demuxed = device & ONENAND_DEVICE_IS_DEMUX; 2198 ddp = device & ONENAND_DEVICE_IS_DDP; 2199 density = onenand_get_density(device); 2200 flexonenand = device & DEVICE_IS_FLEXONENAND; 2201 p += sprintf(dev_info, "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)", 2202 demuxed ? "" : "Muxed ", 2203 flexonenand ? "Flex-" : "", 2204 ddp ? "(DDP)" : "", 2205 (16 << density), vcc ? "2.65/3.3" : "1.8", device); 2206 2207 sprintf(p, "\nOneNAND version = 0x%04x", version); 2208 printk("%s\n", dev_info); 2209 2210 return dev_info; 2211 } 2212 2213 static const struct onenand_manufacturers onenand_manuf_ids[] = { 2214 {ONENAND_MFR_NUMONYX, "Numonyx"}, 2215 {ONENAND_MFR_SAMSUNG, "Samsung"}, 2216 }; 2217 2218 /** 2219 * onenand_check_maf - Check manufacturer ID 2220 * @param manuf manufacturer ID 2221 * 2222 * Check manufacturer ID 2223 */ 2224 static int onenand_check_maf(int manuf) 2225 { 2226 int size = ARRAY_SIZE(onenand_manuf_ids); 2227 int i; 2228 #ifdef ONENAND_DEBUG 2229 char *name; 2230 #endif 2231 2232 for (i = 0; i < size; i++) 2233 if (manuf == onenand_manuf_ids[i].id) 2234 break; 2235 2236 #ifdef ONENAND_DEBUG 2237 if (i < size) 2238 name = onenand_manuf_ids[i].name; 2239 else 2240 name = "Unknown"; 2241 2242 printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf); 2243 #endif 2244 2245 return i == size; 2246 } 2247 2248 /** 2249 * flexonenand_get_boundary - Reads the SLC boundary 2250 * @param onenand_info - onenand info structure 2251 * 2252 * Fill up boundary[] field in onenand_chip 2253 **/ 2254 static int flexonenand_get_boundary(struct mtd_info *mtd) 2255 { 2256 struct onenand_chip *this = mtd->priv; 2257 unsigned int die, bdry; 2258 int syscfg, locked; 2259 2260 /* Disable ECC */ 2261 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1); 2262 this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1); 2263 2264 for (die = 0; die < this->dies; die++) { 2265 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0); 2266 this->wait(mtd, FL_SYNCING); 2267 2268 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0); 2269 this->wait(mtd, FL_READING); 2270 2271 bdry = this->read_word(this->base + ONENAND_DATARAM); 2272 if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3) 2273 locked = 0; 2274 else 2275 locked = 1; 2276 this->boundary[die] = bdry & FLEXONENAND_PI_MASK; 2277 2278 this->command(mtd, ONENAND_CMD_RESET, 0, 0); 2279 this->wait(mtd, FL_RESETING); 2280 2281 printk(KERN_INFO "Die %d boundary: %d%s\n", die, 2282 this->boundary[die], locked ? "(Locked)" : "(Unlocked)"); 2283 } 2284 2285 /* Enable ECC */ 2286 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1); 2287 return 0; 2288 } 2289 2290 /** 2291 * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info 2292 * boundary[], diesize[], mtd->size, mtd->erasesize, 2293 * mtd->eraseregions 2294 * @param mtd - MTD device structure 2295 */ 2296 static void flexonenand_get_size(struct mtd_info *mtd) 2297 { 2298 struct onenand_chip *this = mtd->priv; 2299 int die, i, eraseshift, density; 2300 int blksperdie, maxbdry; 2301 loff_t ofs; 2302 2303 density = onenand_get_density(this->device_id); 2304 blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift); 2305 blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0; 2306 maxbdry = blksperdie - 1; 2307 eraseshift = this->erase_shift - 1; 2308 2309 mtd->numeraseregions = this->dies << 1; 2310 2311 /* This fills up the device boundary */ 2312 flexonenand_get_boundary(mtd); 2313 die = 0; 2314 ofs = 0; 2315 i = -1; 2316 for (; die < this->dies; die++) { 2317 if (!die || this->boundary[die-1] != maxbdry) { 2318 i++; 2319 mtd->eraseregions[i].offset = ofs; 2320 mtd->eraseregions[i].erasesize = 1 << eraseshift; 2321 mtd->eraseregions[i].numblocks = 2322 this->boundary[die] + 1; 2323 ofs += mtd->eraseregions[i].numblocks << eraseshift; 2324 eraseshift++; 2325 } else { 2326 mtd->numeraseregions -= 1; 2327 mtd->eraseregions[i].numblocks += 2328 this->boundary[die] + 1; 2329 ofs += (this->boundary[die] + 1) << (eraseshift - 1); 2330 } 2331 if (this->boundary[die] != maxbdry) { 2332 i++; 2333 mtd->eraseregions[i].offset = ofs; 2334 mtd->eraseregions[i].erasesize = 1 << eraseshift; 2335 mtd->eraseregions[i].numblocks = maxbdry ^ 2336 this->boundary[die]; 2337 ofs += mtd->eraseregions[i].numblocks << eraseshift; 2338 eraseshift--; 2339 } else 2340 mtd->numeraseregions -= 1; 2341 } 2342 2343 /* Expose MLC erase size except when all blocks are SLC */ 2344 mtd->erasesize = 1 << this->erase_shift; 2345 if (mtd->numeraseregions == 1) 2346 mtd->erasesize >>= 1; 2347 2348 printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions); 2349 for (i = 0; i < mtd->numeraseregions; i++) 2350 printk(KERN_INFO "[offset: 0x%08llx, erasesize: 0x%05x," 2351 " numblocks: %04u]\n", mtd->eraseregions[i].offset, 2352 mtd->eraseregions[i].erasesize, 2353 mtd->eraseregions[i].numblocks); 2354 2355 for (die = 0, mtd->size = 0; die < this->dies; die++) { 2356 this->diesize[die] = (loff_t) (blksperdie << this->erase_shift); 2357 this->diesize[die] -= (loff_t) (this->boundary[die] + 1) 2358 << (this->erase_shift - 1); 2359 mtd->size += this->diesize[die]; 2360 } 2361 } 2362 2363 /** 2364 * flexonenand_check_blocks_erased - Check if blocks are erased 2365 * @param mtd_info - mtd info structure 2366 * @param start - first erase block to check 2367 * @param end - last erase block to check 2368 * 2369 * Converting an unerased block from MLC to SLC 2370 * causes byte values to change. Since both data and its ECC 2371 * have changed, reads on the block give uncorrectable error. 2372 * This might lead to the block being detected as bad. 2373 * 2374 * Avoid this by ensuring that the block to be converted is 2375 * erased. 2376 */ 2377 static int flexonenand_check_blocks_erased(struct mtd_info *mtd, 2378 int start, int end) 2379 { 2380 struct onenand_chip *this = mtd->priv; 2381 int i, ret; 2382 int block; 2383 struct mtd_oob_ops ops = { 2384 .mode = MTD_OPS_PLACE_OOB, 2385 .ooboffs = 0, 2386 .ooblen = mtd->oobsize, 2387 .datbuf = NULL, 2388 .oobbuf = this->oob_buf, 2389 }; 2390 loff_t addr; 2391 2392 printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end); 2393 2394 for (block = start; block <= end; block++) { 2395 addr = flexonenand_addr(this, block); 2396 if (onenand_block_isbad_nolock(mtd, addr, 0)) 2397 continue; 2398 2399 /* 2400 * Since main area write results in ECC write to spare, 2401 * it is sufficient to check only ECC bytes for change. 2402 */ 2403 ret = onenand_read_oob_nolock(mtd, addr, &ops); 2404 if (ret) 2405 return ret; 2406 2407 for (i = 0; i < mtd->oobsize; i++) 2408 if (this->oob_buf[i] != 0xff) 2409 break; 2410 2411 if (i != mtd->oobsize) { 2412 printk(KERN_WARNING "Block %d not erased.\n", block); 2413 return 1; 2414 } 2415 } 2416 2417 return 0; 2418 } 2419 2420 /** 2421 * flexonenand_set_boundary - Writes the SLC boundary 2422 * @param mtd - mtd info structure 2423 */ 2424 int flexonenand_set_boundary(struct mtd_info *mtd, int die, 2425 int boundary, int lock) 2426 { 2427 struct onenand_chip *this = mtd->priv; 2428 int ret, density, blksperdie, old, new, thisboundary; 2429 loff_t addr; 2430 2431 if (die >= this->dies) 2432 return -EINVAL; 2433 2434 if (boundary == this->boundary[die]) 2435 return 0; 2436 2437 density = onenand_get_density(this->device_id); 2438 blksperdie = ((16 << density) << 20) >> this->erase_shift; 2439 blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0; 2440 2441 if (boundary >= blksperdie) { 2442 printk("flexonenand_set_boundary:" 2443 "Invalid boundary value. " 2444 "Boundary not changed.\n"); 2445 return -EINVAL; 2446 } 2447 2448 /* Check if converting blocks are erased */ 2449 old = this->boundary[die] + (die * this->density_mask); 2450 new = boundary + (die * this->density_mask); 2451 ret = flexonenand_check_blocks_erased(mtd, min(old, new) 2452 + 1, max(old, new)); 2453 if (ret) { 2454 printk(KERN_ERR "flexonenand_set_boundary: Please erase blocks before boundary change\n"); 2455 return ret; 2456 } 2457 2458 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0); 2459 this->wait(mtd, FL_SYNCING); 2460 2461 /* Check is boundary is locked */ 2462 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0); 2463 ret = this->wait(mtd, FL_READING); 2464 2465 thisboundary = this->read_word(this->base + ONENAND_DATARAM); 2466 if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) { 2467 printk(KERN_ERR "flexonenand_set_boundary: boundary locked\n"); 2468 goto out; 2469 } 2470 2471 printk(KERN_INFO "flexonenand_set_boundary: Changing die %d boundary: %d%s\n", 2472 die, boundary, lock ? "(Locked)" : "(Unlocked)"); 2473 2474 boundary &= FLEXONENAND_PI_MASK; 2475 boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT); 2476 2477 addr = die ? this->diesize[0] : 0; 2478 this->command(mtd, ONENAND_CMD_ERASE, addr, 0); 2479 ret = this->wait(mtd, FL_ERASING); 2480 if (ret) { 2481 printk("flexonenand_set_boundary:" 2482 "Failed PI erase for Die %d\n", die); 2483 goto out; 2484 } 2485 2486 this->write_word(boundary, this->base + ONENAND_DATARAM); 2487 this->command(mtd, ONENAND_CMD_PROG, addr, 0); 2488 ret = this->wait(mtd, FL_WRITING); 2489 if (ret) { 2490 printk("flexonenand_set_boundary:" 2491 "Failed PI write for Die %d\n", die); 2492 goto out; 2493 } 2494 2495 this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0); 2496 ret = this->wait(mtd, FL_WRITING); 2497 out: 2498 this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND); 2499 this->wait(mtd, FL_RESETING); 2500 if (!ret) 2501 /* Recalculate device size on boundary change*/ 2502 flexonenand_get_size(mtd); 2503 2504 return ret; 2505 } 2506 2507 /** 2508 * onenand_chip_probe - [OneNAND Interface] Probe the OneNAND chip 2509 * @param mtd MTD device structure 2510 * 2511 * OneNAND detection method: 2512 * Compare the the values from command with ones from register 2513 */ 2514 static int onenand_chip_probe(struct mtd_info *mtd) 2515 { 2516 struct onenand_chip *this = mtd->priv; 2517 int bram_maf_id, bram_dev_id, maf_id, dev_id; 2518 int syscfg; 2519 2520 /* Save system configuration 1 */ 2521 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1); 2522 2523 /* Clear Sync. Burst Read mode to read BootRAM */ 2524 this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ), 2525 this->base + ONENAND_REG_SYS_CFG1); 2526 2527 /* Send the command for reading device ID from BootRAM */ 2528 this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM); 2529 2530 /* Read manufacturer and device IDs from BootRAM */ 2531 bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0); 2532 bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2); 2533 2534 /* Reset OneNAND to read default register values */ 2535 this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM); 2536 2537 /* Wait reset */ 2538 this->wait(mtd, FL_RESETING); 2539 2540 /* Restore system configuration 1 */ 2541 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1); 2542 2543 /* Check manufacturer ID */ 2544 if (onenand_check_maf(bram_maf_id)) 2545 return -ENXIO; 2546 2547 /* Read manufacturer and device IDs from Register */ 2548 maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID); 2549 dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID); 2550 2551 /* Check OneNAND device */ 2552 if (maf_id != bram_maf_id || dev_id != bram_dev_id) 2553 return -ENXIO; 2554 2555 return 0; 2556 } 2557 2558 /** 2559 * onenand_probe - [OneNAND Interface] Probe the OneNAND device 2560 * @param mtd MTD device structure 2561 * 2562 * OneNAND detection method: 2563 * Compare the the values from command with ones from register 2564 */ 2565 int onenand_probe(struct mtd_info *mtd) 2566 { 2567 struct onenand_chip *this = mtd->priv; 2568 int dev_id, ver_id; 2569 int density; 2570 int ret; 2571 2572 ret = this->chip_probe(mtd); 2573 if (ret) 2574 return ret; 2575 2576 /* Read device IDs from Register */ 2577 dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID); 2578 ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID); 2579 this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY); 2580 2581 /* Flash device information */ 2582 mtd->name = onenand_print_device_info(dev_id, ver_id); 2583 this->device_id = dev_id; 2584 this->version_id = ver_id; 2585 2586 /* Check OneNAND features */ 2587 onenand_check_features(mtd); 2588 2589 density = onenand_get_density(dev_id); 2590 if (FLEXONENAND(this)) { 2591 this->dies = ONENAND_IS_DDP(this) ? 2 : 1; 2592 /* Maximum possible erase regions */ 2593 mtd->numeraseregions = this->dies << 1; 2594 mtd->eraseregions = malloc(sizeof(struct mtd_erase_region_info) 2595 * (this->dies << 1)); 2596 if (!mtd->eraseregions) 2597 return -ENOMEM; 2598 } 2599 2600 /* 2601 * For Flex-OneNAND, chipsize represents maximum possible device size. 2602 * mtd->size represents the actual device size. 2603 */ 2604 this->chipsize = (16 << density) << 20; 2605 2606 /* OneNAND page size & block size */ 2607 /* The data buffer size is equal to page size */ 2608 mtd->writesize = 2609 this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE); 2610 /* We use the full BufferRAM */ 2611 if (ONENAND_IS_4KB_PAGE(this)) 2612 mtd->writesize <<= 1; 2613 2614 mtd->oobsize = mtd->writesize >> 5; 2615 /* Pagers per block is always 64 in OneNAND */ 2616 mtd->erasesize = mtd->writesize << 6; 2617 /* 2618 * Flex-OneNAND SLC area has 64 pages per block. 2619 * Flex-OneNAND MLC area has 128 pages per block. 2620 * Expose MLC erase size to find erase_shift and page_mask. 2621 */ 2622 if (FLEXONENAND(this)) 2623 mtd->erasesize <<= 1; 2624 2625 this->erase_shift = ffs(mtd->erasesize) - 1; 2626 this->page_shift = ffs(mtd->writesize) - 1; 2627 this->ppb_shift = (this->erase_shift - this->page_shift); 2628 this->page_mask = (mtd->erasesize / mtd->writesize) - 1; 2629 /* Set density mask. it is used for DDP */ 2630 if (ONENAND_IS_DDP(this)) 2631 this->density_mask = this->chipsize >> (this->erase_shift + 1); 2632 /* It's real page size */ 2633 this->writesize = mtd->writesize; 2634 2635 /* REVIST: Multichip handling */ 2636 2637 if (FLEXONENAND(this)) 2638 flexonenand_get_size(mtd); 2639 else 2640 mtd->size = this->chipsize; 2641 2642 mtd->flags = MTD_CAP_NANDFLASH; 2643 mtd->_erase = onenand_erase; 2644 mtd->_read = onenand_read; 2645 mtd->_write = onenand_write; 2646 mtd->_read_oob = onenand_read_oob; 2647 mtd->_write_oob = onenand_write_oob; 2648 mtd->_sync = onenand_sync; 2649 mtd->_block_isbad = onenand_block_isbad; 2650 mtd->_block_markbad = onenand_block_markbad; 2651 2652 return 0; 2653 } 2654 2655 /** 2656 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device 2657 * @param mtd MTD device structure 2658 * @param maxchips Number of chips to scan for 2659 * 2660 * This fills out all the not initialized function pointers 2661 * with the defaults. 2662 * The flash ID is read and the mtd/chip structures are 2663 * filled with the appropriate values. 2664 */ 2665 int onenand_scan(struct mtd_info *mtd, int maxchips) 2666 { 2667 int i; 2668 struct onenand_chip *this = mtd->priv; 2669 2670 if (!this->read_word) 2671 this->read_word = onenand_readw; 2672 if (!this->write_word) 2673 this->write_word = onenand_writew; 2674 2675 if (!this->command) 2676 this->command = onenand_command; 2677 if (!this->wait) 2678 this->wait = onenand_wait; 2679 if (!this->bbt_wait) 2680 this->bbt_wait = onenand_bbt_wait; 2681 2682 if (!this->read_bufferram) 2683 this->read_bufferram = onenand_read_bufferram; 2684 if (!this->write_bufferram) 2685 this->write_bufferram = onenand_write_bufferram; 2686 2687 if (!this->chip_probe) 2688 this->chip_probe = onenand_chip_probe; 2689 2690 if (!this->block_markbad) 2691 this->block_markbad = onenand_default_block_markbad; 2692 if (!this->scan_bbt) 2693 this->scan_bbt = onenand_default_bbt; 2694 2695 if (onenand_probe(mtd)) 2696 return -ENXIO; 2697 2698 /* Set Sync. Burst Read after probing */ 2699 if (this->mmcontrol) { 2700 printk(KERN_INFO "OneNAND Sync. Burst Read support\n"); 2701 this->read_bufferram = onenand_sync_read_bufferram; 2702 } 2703 2704 /* Allocate buffers, if necessary */ 2705 if (!this->page_buf) { 2706 this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL); 2707 if (!this->page_buf) { 2708 printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n"); 2709 return -ENOMEM; 2710 } 2711 this->options |= ONENAND_PAGEBUF_ALLOC; 2712 } 2713 if (!this->oob_buf) { 2714 this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL); 2715 if (!this->oob_buf) { 2716 printk(KERN_ERR "onenand_scan: Can't allocate oob_buf\n"); 2717 if (this->options & ONENAND_PAGEBUF_ALLOC) { 2718 this->options &= ~ONENAND_PAGEBUF_ALLOC; 2719 kfree(this->page_buf); 2720 } 2721 return -ENOMEM; 2722 } 2723 this->options |= ONENAND_OOBBUF_ALLOC; 2724 } 2725 2726 this->state = FL_READY; 2727 2728 /* 2729 * Allow subpage writes up to oobsize. 2730 */ 2731 switch (mtd->oobsize) { 2732 case 128: 2733 this->ecclayout = &onenand_oob_128; 2734 mtd->subpage_sft = 0; 2735 break; 2736 2737 case 64: 2738 this->ecclayout = &onenand_oob_64; 2739 mtd->subpage_sft = 2; 2740 break; 2741 2742 case 32: 2743 this->ecclayout = &onenand_oob_32; 2744 mtd->subpage_sft = 1; 2745 break; 2746 2747 default: 2748 printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n", 2749 mtd->oobsize); 2750 mtd->subpage_sft = 0; 2751 /* To prevent kernel oops */ 2752 this->ecclayout = &onenand_oob_32; 2753 break; 2754 } 2755 2756 this->subpagesize = mtd->writesize >> mtd->subpage_sft; 2757 2758 /* 2759 * The number of bytes available for a client to place data into 2760 * the out of band area 2761 */ 2762 this->ecclayout->oobavail = 0; 2763 2764 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && 2765 this->ecclayout->oobfree[i].length; i++) 2766 this->ecclayout->oobavail += 2767 this->ecclayout->oobfree[i].length; 2768 mtd->oobavail = this->ecclayout->oobavail; 2769 2770 mtd->ecclayout = this->ecclayout; 2771 2772 /* Unlock whole block */ 2773 onenand_unlock_all(mtd); 2774 2775 return this->scan_bbt(mtd); 2776 } 2777 2778 /** 2779 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device 2780 * @param mtd MTD device structure 2781 */ 2782 void onenand_release(struct mtd_info *mtd) 2783 { 2784 } 2785