1 /*
2  *  linux/drivers/mtd/onenand/onenand_base.c
3  *
4  *  Copyright (C) 2005-2007 Samsung Electronics
5  *  Kyungmin Park <kyungmin.park@samsung.com>
6  *
7  *  Credits:
8  *      Adrian Hunter <ext-adrian.hunter@nokia.com>:
9  *      auto-placement support, read-while load support, various fixes
10  *      Copyright (C) Nokia Corporation, 2007
11  *
12  *      Rohit Hagargundgi <h.rohit at samsung.com>,
13  *      Amul Kumar Saha <amul.saha@samsung.com>:
14  *      Flex-OneNAND support
15  *      Copyright (C) Samsung Electronics, 2009
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License version 2 as
19  * published by the Free Software Foundation.
20  */
21 
22 #include <common.h>
23 #include <linux/compat.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/onenand.h>
26 
27 #include <asm/io.h>
28 #include <asm/errno.h>
29 #include <malloc.h>
30 
31 /* It should access 16-bit instead of 8-bit */
32 static void *memcpy_16(void *dst, const void *src, unsigned int len)
33 {
34 	void *ret = dst;
35 	short *d = dst;
36 	const short *s = src;
37 
38 	len >>= 1;
39 	while (len-- > 0)
40 		*d++ = *s++;
41 	return ret;
42 }
43 
44 /**
45  *  onenand_oob_128 - oob info for Flex-Onenand with 4KB page
46  *  For now, we expose only 64 out of 80 ecc bytes
47  */
48 static struct nand_ecclayout onenand_oob_128 = {
49 	.eccbytes	= 64,
50 	.eccpos		= {
51 		6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
52 		22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
53 		38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
54 		54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
55 		70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
56 		86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
57 		102, 103, 104, 105
58 		},
59 	.oobfree	= {
60 		{2, 4}, {18, 4}, {34, 4}, {50, 4},
61 		{66, 4}, {82, 4}, {98, 4}, {114, 4}
62 	}
63 };
64 
65 /**
66  * onenand_oob_64 - oob info for large (2KB) page
67  */
68 static struct nand_ecclayout onenand_oob_64 = {
69 	.eccbytes	= 20,
70 	.eccpos		= {
71 		8, 9, 10, 11, 12,
72 		24, 25, 26, 27, 28,
73 		40, 41, 42, 43, 44,
74 		56, 57, 58, 59, 60,
75 		},
76 	.oobfree	= {
77 		{2, 3}, {14, 2}, {18, 3}, {30, 2},
78 		{34, 3}, {46, 2}, {50, 3}, {62, 2}
79 	}
80 };
81 
82 /**
83  * onenand_oob_32 - oob info for middle (1KB) page
84  */
85 static struct nand_ecclayout onenand_oob_32 = {
86 	.eccbytes	= 10,
87 	.eccpos		= {
88 		8, 9, 10, 11, 12,
89 		24, 25, 26, 27, 28,
90 		},
91 	.oobfree	= { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
92 };
93 
94 static const unsigned char ffchars[] = {
95 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
96 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 16 */
97 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
98 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 32 */
99 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
100 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 48 */
101 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
102 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 64 */
103 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
104 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 80 */
105 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
106 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 96 */
107 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
108 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 112 */
109 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
110 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 128 */
111 };
112 
113 /**
114  * onenand_readw - [OneNAND Interface] Read OneNAND register
115  * @param addr		address to read
116  *
117  * Read OneNAND register
118  */
119 static unsigned short onenand_readw(void __iomem * addr)
120 {
121 	return readw(addr);
122 }
123 
124 /**
125  * onenand_writew - [OneNAND Interface] Write OneNAND register with value
126  * @param value		value to write
127  * @param addr		address to write
128  *
129  * Write OneNAND register with value
130  */
131 static void onenand_writew(unsigned short value, void __iomem * addr)
132 {
133 	writew(value, addr);
134 }
135 
136 /**
137  * onenand_block_address - [DEFAULT] Get block address
138  * @param device	the device id
139  * @param block		the block
140  * @return		translated block address if DDP, otherwise same
141  *
142  * Setup Start Address 1 Register (F100h)
143  */
144 static int onenand_block_address(struct onenand_chip *this, int block)
145 {
146 	/* Device Flash Core select, NAND Flash Block Address */
147 	if (block & this->density_mask)
148 		return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
149 
150 	return block;
151 }
152 
153 /**
154  * onenand_bufferram_address - [DEFAULT] Get bufferram address
155  * @param device	the device id
156  * @param block		the block
157  * @return		set DBS value if DDP, otherwise 0
158  *
159  * Setup Start Address 2 Register (F101h) for DDP
160  */
161 static int onenand_bufferram_address(struct onenand_chip *this, int block)
162 {
163 	/* Device BufferRAM Select */
164 	if (block & this->density_mask)
165 		return ONENAND_DDP_CHIP1;
166 
167 	return ONENAND_DDP_CHIP0;
168 }
169 
170 /**
171  * onenand_page_address - [DEFAULT] Get page address
172  * @param page		the page address
173  * @param sector	the sector address
174  * @return		combined page and sector address
175  *
176  * Setup Start Address 8 Register (F107h)
177  */
178 static int onenand_page_address(int page, int sector)
179 {
180 	/* Flash Page Address, Flash Sector Address */
181 	int fpa, fsa;
182 
183 	fpa = page & ONENAND_FPA_MASK;
184 	fsa = sector & ONENAND_FSA_MASK;
185 
186 	return ((fpa << ONENAND_FPA_SHIFT) | fsa);
187 }
188 
189 /**
190  * onenand_buffer_address - [DEFAULT] Get buffer address
191  * @param dataram1	DataRAM index
192  * @param sectors	the sector address
193  * @param count		the number of sectors
194  * @return		the start buffer value
195  *
196  * Setup Start Buffer Register (F200h)
197  */
198 static int onenand_buffer_address(int dataram1, int sectors, int count)
199 {
200 	int bsa, bsc;
201 
202 	/* BufferRAM Sector Address */
203 	bsa = sectors & ONENAND_BSA_MASK;
204 
205 	if (dataram1)
206 		bsa |= ONENAND_BSA_DATARAM1;	/* DataRAM1 */
207 	else
208 		bsa |= ONENAND_BSA_DATARAM0;	/* DataRAM0 */
209 
210 	/* BufferRAM Sector Count */
211 	bsc = count & ONENAND_BSC_MASK;
212 
213 	return ((bsa << ONENAND_BSA_SHIFT) | bsc);
214 }
215 
216 /**
217  * flexonenand_block - Return block number for flash address
218  * @param this		- OneNAND device structure
219  * @param addr		- Address for which block number is needed
220  */
221 static unsigned int flexonenand_block(struct onenand_chip *this, loff_t addr)
222 {
223 	unsigned int boundary, blk, die = 0;
224 
225 	if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
226 		die = 1;
227 		addr -= this->diesize[0];
228 	}
229 
230 	boundary = this->boundary[die];
231 
232 	blk = addr >> (this->erase_shift - 1);
233 	if (blk > boundary)
234 		blk = (blk + boundary + 1) >> 1;
235 
236 	blk += die ? this->density_mask : 0;
237 	return blk;
238 }
239 
240 unsigned int onenand_block(struct onenand_chip *this, loff_t addr)
241 {
242 	if (!FLEXONENAND(this))
243 		return addr >> this->erase_shift;
244 	return flexonenand_block(this, addr);
245 }
246 
247 /**
248  * flexonenand_addr - Return address of the block
249  * @this:		OneNAND device structure
250  * @block:		Block number on Flex-OneNAND
251  *
252  * Return address of the block
253  */
254 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
255 {
256 	loff_t ofs = 0;
257 	int die = 0, boundary;
258 
259 	if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
260 		block -= this->density_mask;
261 		die = 1;
262 		ofs = this->diesize[0];
263 	}
264 
265 	boundary = this->boundary[die];
266 	ofs += (loff_t) block << (this->erase_shift - 1);
267 	if (block > (boundary + 1))
268 		ofs += (loff_t) (block - boundary - 1)
269 			<< (this->erase_shift - 1);
270 	return ofs;
271 }
272 
273 loff_t onenand_addr(struct onenand_chip *this, int block)
274 {
275 	if (!FLEXONENAND(this))
276 		return (loff_t) block << this->erase_shift;
277 	return flexonenand_addr(this, block);
278 }
279 
280 /**
281  * flexonenand_region - [Flex-OneNAND] Return erase region of addr
282  * @param mtd		MTD device structure
283  * @param addr		address whose erase region needs to be identified
284  */
285 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
286 {
287 	int i;
288 
289 	for (i = 0; i < mtd->numeraseregions; i++)
290 		if (addr < mtd->eraseregions[i].offset)
291 			break;
292 	return i - 1;
293 }
294 
295 /**
296  * onenand_get_density - [DEFAULT] Get OneNAND density
297  * @param dev_id        OneNAND device ID
298  *
299  * Get OneNAND density from device ID
300  */
301 static inline int onenand_get_density(int dev_id)
302 {
303 	int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
304 	return (density & ONENAND_DEVICE_DENSITY_MASK);
305 }
306 
307 /**
308  * onenand_command - [DEFAULT] Send command to OneNAND device
309  * @param mtd		MTD device structure
310  * @param cmd		the command to be sent
311  * @param addr		offset to read from or write to
312  * @param len		number of bytes to read or write
313  *
314  * Send command to OneNAND device. This function is used for middle/large page
315  * devices (1KB/2KB Bytes per page)
316  */
317 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr,
318 			   size_t len)
319 {
320 	struct onenand_chip *this = mtd->priv;
321 	int value;
322 	int block, page;
323 
324 	/* Now we use page size operation */
325 	int sectors = 0, count = 0;
326 
327 	/* Address translation */
328 	switch (cmd) {
329 	case ONENAND_CMD_UNLOCK:
330 	case ONENAND_CMD_LOCK:
331 	case ONENAND_CMD_LOCK_TIGHT:
332 	case ONENAND_CMD_UNLOCK_ALL:
333 		block = -1;
334 		page = -1;
335 		break;
336 
337 	case FLEXONENAND_CMD_PI_ACCESS:
338 		/* addr contains die index */
339 		block = addr * this->density_mask;
340 		page = -1;
341 		break;
342 
343 	case ONENAND_CMD_ERASE:
344 	case ONENAND_CMD_BUFFERRAM:
345 		block = onenand_block(this, addr);
346 		page = -1;
347 		break;
348 
349 	case FLEXONENAND_CMD_READ_PI:
350 		cmd = ONENAND_CMD_READ;
351 		block = addr * this->density_mask;
352 		page = 0;
353 		break;
354 
355 	default:
356 		block = onenand_block(this, addr);
357 		page = (int) (addr
358 			- onenand_addr(this, block)) >> this->page_shift;
359 		page &= this->page_mask;
360 		break;
361 	}
362 
363 	/* NOTE: The setting order of the registers is very important! */
364 	if (cmd == ONENAND_CMD_BUFFERRAM) {
365 		/* Select DataRAM for DDP */
366 		value = onenand_bufferram_address(this, block);
367 		this->write_word(value,
368 				 this->base + ONENAND_REG_START_ADDRESS2);
369 
370 		if (ONENAND_IS_4KB_PAGE(this))
371 			ONENAND_SET_BUFFERRAM0(this);
372 		else
373 			/* Switch to the next data buffer */
374 			ONENAND_SET_NEXT_BUFFERRAM(this);
375 
376 		return 0;
377 	}
378 
379 	if (block != -1) {
380 		/* Write 'DFS, FBA' of Flash */
381 		value = onenand_block_address(this, block);
382 		this->write_word(value,
383 				 this->base + ONENAND_REG_START_ADDRESS1);
384 
385 		/* Select DataRAM for DDP */
386 		value = onenand_bufferram_address(this, block);
387 		this->write_word(value,
388 				 this->base + ONENAND_REG_START_ADDRESS2);
389 	}
390 
391 	if (page != -1) {
392 		int dataram;
393 
394 		switch (cmd) {
395 		case FLEXONENAND_CMD_RECOVER_LSB:
396 		case ONENAND_CMD_READ:
397 		case ONENAND_CMD_READOOB:
398 			if (ONENAND_IS_4KB_PAGE(this))
399 				dataram = ONENAND_SET_BUFFERRAM0(this);
400 			else
401 				dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
402 
403 			break;
404 
405 		default:
406 			dataram = ONENAND_CURRENT_BUFFERRAM(this);
407 			break;
408 		}
409 
410 		/* Write 'FPA, FSA' of Flash */
411 		value = onenand_page_address(page, sectors);
412 		this->write_word(value,
413 				 this->base + ONENAND_REG_START_ADDRESS8);
414 
415 		/* Write 'BSA, BSC' of DataRAM */
416 		value = onenand_buffer_address(dataram, sectors, count);
417 		this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
418 	}
419 
420 	/* Interrupt clear */
421 	this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
422 	/* Write command */
423 	this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
424 
425 	return 0;
426 }
427 
428 /**
429  * onenand_read_ecc - return ecc status
430  * @param this		onenand chip structure
431  */
432 static int onenand_read_ecc(struct onenand_chip *this)
433 {
434 	int ecc, i;
435 
436 	if (!FLEXONENAND(this))
437 		return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
438 
439 	for (i = 0; i < 4; i++) {
440 		ecc = this->read_word(this->base
441 				+ ((ONENAND_REG_ECC_STATUS + i) << 1));
442 		if (likely(!ecc))
443 			continue;
444 		if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
445 			return ONENAND_ECC_2BIT_ALL;
446 	}
447 
448 	return 0;
449 }
450 
451 /**
452  * onenand_wait - [DEFAULT] wait until the command is done
453  * @param mtd		MTD device structure
454  * @param state		state to select the max. timeout value
455  *
456  * Wait for command done. This applies to all OneNAND command
457  * Read can take up to 30us, erase up to 2ms and program up to 350us
458  * according to general OneNAND specs
459  */
460 static int onenand_wait(struct mtd_info *mtd, int state)
461 {
462 	struct onenand_chip *this = mtd->priv;
463 	unsigned int flags = ONENAND_INT_MASTER;
464 	unsigned int interrupt = 0;
465 	unsigned int ctrl;
466 
467 	while (1) {
468 		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
469 		if (interrupt & flags)
470 			break;
471 	}
472 
473 	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
474 
475 	if (interrupt & ONENAND_INT_READ) {
476 		int ecc = onenand_read_ecc(this);
477 		if (ecc & ONENAND_ECC_2BIT_ALL) {
478 			printk("onenand_wait: ECC error = 0x%04x\n", ecc);
479 			return -EBADMSG;
480 		}
481 	}
482 
483 	if (ctrl & ONENAND_CTRL_ERROR) {
484 		printk("onenand_wait: controller error = 0x%04x\n", ctrl);
485 		if (ctrl & ONENAND_CTRL_LOCK)
486 			printk("onenand_wait: it's locked error = 0x%04x\n",
487 				ctrl);
488 
489 		return -EIO;
490 	}
491 
492 
493 	return 0;
494 }
495 
496 /**
497  * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
498  * @param mtd		MTD data structure
499  * @param area		BufferRAM area
500  * @return		offset given area
501  *
502  * Return BufferRAM offset given area
503  */
504 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
505 {
506 	struct onenand_chip *this = mtd->priv;
507 
508 	if (ONENAND_CURRENT_BUFFERRAM(this)) {
509 		if (area == ONENAND_DATARAM)
510 			return mtd->writesize;
511 		if (area == ONENAND_SPARERAM)
512 			return mtd->oobsize;
513 	}
514 
515 	return 0;
516 }
517 
518 /**
519  * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
520  * @param mtd		MTD data structure
521  * @param area		BufferRAM area
522  * @param buffer	the databuffer to put/get data
523  * @param offset	offset to read from or write to
524  * @param count		number of bytes to read/write
525  *
526  * Read the BufferRAM area
527  */
528 static int onenand_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
529 				  unsigned char *buffer, int offset,
530 				  size_t count)
531 {
532 	struct onenand_chip *this = mtd->priv;
533 	void __iomem *bufferram;
534 
535 	bufferram = this->base + area;
536 	bufferram += onenand_bufferram_offset(mtd, area);
537 
538 	memcpy_16(buffer, bufferram + offset, count);
539 
540 	return 0;
541 }
542 
543 /**
544  * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
545  * @param mtd		MTD data structure
546  * @param area		BufferRAM area
547  * @param buffer	the databuffer to put/get data
548  * @param offset	offset to read from or write to
549  * @param count		number of bytes to read/write
550  *
551  * Read the BufferRAM area with Sync. Burst Mode
552  */
553 static int onenand_sync_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
554 				       unsigned char *buffer, int offset,
555 				       size_t count)
556 {
557 	struct onenand_chip *this = mtd->priv;
558 	void __iomem *bufferram;
559 
560 	bufferram = this->base + area;
561 	bufferram += onenand_bufferram_offset(mtd, area);
562 
563 	this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
564 
565 	memcpy_16(buffer, bufferram + offset, count);
566 
567 	this->mmcontrol(mtd, 0);
568 
569 	return 0;
570 }
571 
572 /**
573  * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
574  * @param mtd		MTD data structure
575  * @param area		BufferRAM area
576  * @param buffer	the databuffer to put/get data
577  * @param offset	offset to read from or write to
578  * @param count		number of bytes to read/write
579  *
580  * Write the BufferRAM area
581  */
582 static int onenand_write_bufferram(struct mtd_info *mtd, loff_t addr, int area,
583 				   const unsigned char *buffer, int offset,
584 				   size_t count)
585 {
586 	struct onenand_chip *this = mtd->priv;
587 	void __iomem *bufferram;
588 
589 	bufferram = this->base + area;
590 	bufferram += onenand_bufferram_offset(mtd, area);
591 
592 	memcpy_16(bufferram + offset, buffer, count);
593 
594 	return 0;
595 }
596 
597 /**
598  * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
599  * @param mtd		MTD data structure
600  * @param addr		address to check
601  * @return		blockpage address
602  *
603  * Get blockpage address at 2x program mode
604  */
605 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
606 {
607 	struct onenand_chip *this = mtd->priv;
608 	int blockpage, block, page;
609 
610 	/* Calculate the even block number */
611 	block = (int) (addr >> this->erase_shift) & ~1;
612 	/* Is it the odd plane? */
613 	if (addr & this->writesize)
614 		block++;
615 	page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
616 	blockpage = (block << 7) | page;
617 
618 	return blockpage;
619 }
620 
621 /**
622  * onenand_check_bufferram - [GENERIC] Check BufferRAM information
623  * @param mtd		MTD data structure
624  * @param addr		address to check
625  * @return		1 if there are valid data, otherwise 0
626  *
627  * Check bufferram if there is data we required
628  */
629 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
630 {
631 	struct onenand_chip *this = mtd->priv;
632 	int blockpage, found = 0;
633 	unsigned int i;
634 
635 	if (ONENAND_IS_2PLANE(this))
636 		blockpage = onenand_get_2x_blockpage(mtd, addr);
637 	else
638 		blockpage = (int) (addr >> this->page_shift);
639 
640 	/* Is there valid data? */
641 	i = ONENAND_CURRENT_BUFFERRAM(this);
642 	if (this->bufferram[i].blockpage == blockpage)
643 		found = 1;
644 	else {
645 		/* Check another BufferRAM */
646 		i = ONENAND_NEXT_BUFFERRAM(this);
647 		if (this->bufferram[i].blockpage == blockpage) {
648 			ONENAND_SET_NEXT_BUFFERRAM(this);
649 			found = 1;
650 		}
651 	}
652 
653 	if (found && ONENAND_IS_DDP(this)) {
654 		/* Select DataRAM for DDP */
655 		int block = onenand_block(this, addr);
656 		int value = onenand_bufferram_address(this, block);
657 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
658 	}
659 
660 	return found;
661 }
662 
663 /**
664  * onenand_update_bufferram - [GENERIC] Update BufferRAM information
665  * @param mtd		MTD data structure
666  * @param addr		address to update
667  * @param valid		valid flag
668  *
669  * Update BufferRAM information
670  */
671 static int onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
672 				    int valid)
673 {
674 	struct onenand_chip *this = mtd->priv;
675 	int blockpage;
676 	unsigned int i;
677 
678 	if (ONENAND_IS_2PLANE(this))
679 		blockpage = onenand_get_2x_blockpage(mtd, addr);
680 	else
681 		blockpage = (int)(addr >> this->page_shift);
682 
683 	/* Invalidate another BufferRAM */
684 	i = ONENAND_NEXT_BUFFERRAM(this);
685 	if (this->bufferram[i].blockpage == blockpage)
686 		this->bufferram[i].blockpage = -1;
687 
688 	/* Update BufferRAM */
689 	i = ONENAND_CURRENT_BUFFERRAM(this);
690 	if (valid)
691 		this->bufferram[i].blockpage = blockpage;
692 	else
693 		this->bufferram[i].blockpage = -1;
694 
695 	return 0;
696 }
697 
698 /**
699  * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
700  * @param mtd           MTD data structure
701  * @param addr          start address to invalidate
702  * @param len           length to invalidate
703  *
704  * Invalidate BufferRAM information
705  */
706 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
707 					 unsigned int len)
708 {
709 	struct onenand_chip *this = mtd->priv;
710 	int i;
711 	loff_t end_addr = addr + len;
712 
713 	/* Invalidate BufferRAM */
714 	for (i = 0; i < MAX_BUFFERRAM; i++) {
715 		loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
716 
717 		if (buf_addr >= addr && buf_addr < end_addr)
718 			this->bufferram[i].blockpage = -1;
719 	}
720 }
721 
722 /**
723  * onenand_get_device - [GENERIC] Get chip for selected access
724  * @param mtd		MTD device structure
725  * @param new_state	the state which is requested
726  *
727  * Get the device and lock it for exclusive access
728  */
729 static void onenand_get_device(struct mtd_info *mtd, int new_state)
730 {
731 	/* Do nothing */
732 }
733 
734 /**
735  * onenand_release_device - [GENERIC] release chip
736  * @param mtd		MTD device structure
737  *
738  * Deselect, release chip lock and wake up anyone waiting on the device
739  */
740 static void onenand_release_device(struct mtd_info *mtd)
741 {
742 	/* Do nothing */
743 }
744 
745 /**
746  * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
747  * @param mtd		MTD device structure
748  * @param buf		destination address
749  * @param column	oob offset to read from
750  * @param thislen	oob length to read
751  */
752 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf,
753 					int column, int thislen)
754 {
755 	struct onenand_chip *this = mtd->priv;
756 	struct nand_oobfree *free;
757 	int readcol = column;
758 	int readend = column + thislen;
759 	int lastgap = 0;
760 	unsigned int i;
761 	uint8_t *oob_buf = this->oob_buf;
762 
763 	free = this->ecclayout->oobfree;
764 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length;
765 	     i++, free++) {
766 		if (readcol >= lastgap)
767 			readcol += free->offset - lastgap;
768 		if (readend >= lastgap)
769 			readend += free->offset - lastgap;
770 		lastgap = free->offset + free->length;
771 	}
772 	this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
773 	free = this->ecclayout->oobfree;
774 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length;
775 	     i++, free++) {
776 		int free_end = free->offset + free->length;
777 		if (free->offset < readend && free_end > readcol) {
778 			int st = max_t(int,free->offset,readcol);
779 			int ed = min_t(int,free_end,readend);
780 			int n = ed - st;
781 			memcpy(buf, oob_buf + st, n);
782 			buf += n;
783 		} else if (column == 0)
784 			break;
785 	}
786 	return 0;
787 }
788 
789 /**
790  * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
791  * @param mtd		MTD device structure
792  * @param addr		address to recover
793  * @param status	return value from onenand_wait
794  *
795  * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
796  * lower page address and MSB page has higher page address in paired pages.
797  * If power off occurs during MSB page program, the paired LSB page data can
798  * become corrupt. LSB page recovery read is a way to read LSB page though page
799  * data are corrupted. When uncorrectable error occurs as a result of LSB page
800  * read after power up, issue LSB page recovery read.
801  */
802 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
803 {
804 	struct onenand_chip *this = mtd->priv;
805 	int i;
806 
807 	/* Recovery is only for Flex-OneNAND */
808 	if (!FLEXONENAND(this))
809 		return status;
810 
811 	/* check if we failed due to uncorrectable error */
812 	if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR)
813 		return status;
814 
815 	/* check if address lies in MLC region */
816 	i = flexonenand_region(mtd, addr);
817 	if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
818 		return status;
819 
820 	printk("onenand_recover_lsb:"
821 		"Attempting to recover from uncorrectable read\n");
822 
823 	/* Issue the LSB page recovery command */
824 	this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
825 	return this->wait(mtd, FL_READING);
826 }
827 
828 /**
829  * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
830  * @param mtd		MTD device structure
831  * @param from		offset to read from
832  * @param ops		oob operation description structure
833  *
834  * OneNAND read main and/or out-of-band data
835  */
836 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
837 		struct mtd_oob_ops *ops)
838 {
839 	struct onenand_chip *this = mtd->priv;
840 	struct mtd_ecc_stats stats;
841 	size_t len = ops->len;
842 	size_t ooblen = ops->ooblen;
843 	u_char *buf = ops->datbuf;
844 	u_char *oobbuf = ops->oobbuf;
845 	int read = 0, column, thislen;
846 	int oobread = 0, oobcolumn, thisooblen, oobsize;
847 	int ret = 0, boundary = 0;
848 	int writesize = this->writesize;
849 
850 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_read_ops_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
851 
852 	if (ops->mode == MTD_OPS_AUTO_OOB)
853 		oobsize = this->ecclayout->oobavail;
854 	else
855 		oobsize = mtd->oobsize;
856 
857 	oobcolumn = from & (mtd->oobsize - 1);
858 
859 	/* Do not allow reads past end of device */
860 	if ((from + len) > mtd->size) {
861 		printk(KERN_ERR "onenand_read_ops_nolock: Attempt read beyond end of device\n");
862 		ops->retlen = 0;
863 		ops->oobretlen = 0;
864 		return -EINVAL;
865 	}
866 
867 	stats = mtd->ecc_stats;
868 
869 	/* Read-while-load method */
870 	/* Note: We can't use this feature in MLC */
871 
872 	/* Do first load to bufferRAM */
873 	if (read < len) {
874 		if (!onenand_check_bufferram(mtd, from)) {
875 			this->main_buf = buf;
876 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
877 			ret = this->wait(mtd, FL_READING);
878 			if (unlikely(ret))
879 				ret = onenand_recover_lsb(mtd, from, ret);
880 			onenand_update_bufferram(mtd, from, !ret);
881 			if (ret == -EBADMSG)
882 				ret = 0;
883 		}
884 	}
885 
886 	thislen = min_t(int, writesize, len - read);
887 	column = from & (writesize - 1);
888 	if (column + thislen > writesize)
889 		thislen = writesize - column;
890 
891 	while (!ret) {
892 		/* If there is more to load then start next load */
893 		from += thislen;
894 		if (!ONENAND_IS_4KB_PAGE(this) && read + thislen < len) {
895 			this->main_buf = buf + thislen;
896 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
897 			/*
898 			 * Chip boundary handling in DDP
899 			 * Now we issued chip 1 read and pointed chip 1
900 			 * bufferam so we have to point chip 0 bufferam.
901 			 */
902 			if (ONENAND_IS_DDP(this) &&
903 					unlikely(from == (this->chipsize >> 1))) {
904 				this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
905 				boundary = 1;
906 			} else
907 				boundary = 0;
908 			ONENAND_SET_PREV_BUFFERRAM(this);
909 		}
910 
911 		/* While load is going, read from last bufferRAM */
912 		this->read_bufferram(mtd, from - thislen, ONENAND_DATARAM, buf, column, thislen);
913 
914 		/* Read oob area if needed */
915 		if (oobbuf) {
916 			thisooblen = oobsize - oobcolumn;
917 			thisooblen = min_t(int, thisooblen, ooblen - oobread);
918 
919 			if (ops->mode == MTD_OPS_AUTO_OOB)
920 				onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
921 			else
922 				this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
923 			oobread += thisooblen;
924 			oobbuf += thisooblen;
925 			oobcolumn = 0;
926 		}
927 
928 		if (ONENAND_IS_4KB_PAGE(this) && (read + thislen < len)) {
929 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
930 			ret = this->wait(mtd, FL_READING);
931 			if (unlikely(ret))
932 				ret = onenand_recover_lsb(mtd, from, ret);
933 			onenand_update_bufferram(mtd, from, !ret);
934 			if (mtd_is_eccerr(ret))
935 				ret = 0;
936 		}
937 
938 		/* See if we are done */
939 		read += thislen;
940 		if (read == len)
941 			break;
942 		/* Set up for next read from bufferRAM */
943 		if (unlikely(boundary))
944 			this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
945 		if (!ONENAND_IS_4KB_PAGE(this))
946 			ONENAND_SET_NEXT_BUFFERRAM(this);
947 		buf += thislen;
948 		thislen = min_t(int, writesize, len - read);
949 		column = 0;
950 
951 		if (!ONENAND_IS_4KB_PAGE(this)) {
952 			/* Now wait for load */
953 			ret = this->wait(mtd, FL_READING);
954 			onenand_update_bufferram(mtd, from, !ret);
955 			if (mtd_is_eccerr(ret))
956 				ret = 0;
957 		}
958 	}
959 
960 	/*
961 	 * Return success, if no ECC failures, else -EBADMSG
962 	 * fs driver will take care of that, because
963 	 * retlen == desired len and result == -EBADMSG
964 	 */
965 	ops->retlen = read;
966 	ops->oobretlen = oobread;
967 
968 	if (ret)
969 		return ret;
970 
971 	if (mtd->ecc_stats.failed - stats.failed)
972 		return -EBADMSG;
973 
974 	/* return max bitflips per ecc step; ONENANDs correct 1 bit only */
975 	return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
976 }
977 
978 /**
979  * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
980  * @param mtd		MTD device structure
981  * @param from		offset to read from
982  * @param ops		oob operation description structure
983  *
984  * OneNAND read out-of-band data from the spare area
985  */
986 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
987 		struct mtd_oob_ops *ops)
988 {
989 	struct onenand_chip *this = mtd->priv;
990 	struct mtd_ecc_stats stats;
991 	int read = 0, thislen, column, oobsize;
992 	size_t len = ops->ooblen;
993 	unsigned int mode = ops->mode;
994 	u_char *buf = ops->oobbuf;
995 	int ret = 0, readcmd;
996 
997 	from += ops->ooboffs;
998 
999 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
1000 
1001 	/* Initialize return length value */
1002 	ops->oobretlen = 0;
1003 
1004 	if (mode == MTD_OPS_AUTO_OOB)
1005 		oobsize = this->ecclayout->oobavail;
1006 	else
1007 		oobsize = mtd->oobsize;
1008 
1009 	column = from & (mtd->oobsize - 1);
1010 
1011 	if (unlikely(column >= oobsize)) {
1012 		printk(KERN_ERR "onenand_read_oob_nolock: Attempted to start read outside oob\n");
1013 		return -EINVAL;
1014 	}
1015 
1016 	/* Do not allow reads past end of device */
1017 	if (unlikely(from >= mtd->size ||
1018 		column + len > ((mtd->size >> this->page_shift) -
1019 				(from >> this->page_shift)) * oobsize)) {
1020 		printk(KERN_ERR "onenand_read_oob_nolock: Attempted to read beyond end of device\n");
1021 		return -EINVAL;
1022 	}
1023 
1024 	stats = mtd->ecc_stats;
1025 
1026 	readcmd = ONENAND_IS_4KB_PAGE(this) ?
1027 		ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1028 
1029 	while (read < len) {
1030 		thislen = oobsize - column;
1031 		thislen = min_t(int, thislen, len);
1032 
1033 		this->spare_buf = buf;
1034 		this->command(mtd, readcmd, from, mtd->oobsize);
1035 
1036 		onenand_update_bufferram(mtd, from, 0);
1037 
1038 		ret = this->wait(mtd, FL_READING);
1039 		if (unlikely(ret))
1040 			ret = onenand_recover_lsb(mtd, from, ret);
1041 
1042 		if (ret && ret != -EBADMSG) {
1043 			printk(KERN_ERR "onenand_read_oob_nolock: read failed = 0x%x\n", ret);
1044 			break;
1045 		}
1046 
1047 		if (mode == MTD_OPS_AUTO_OOB)
1048 			onenand_transfer_auto_oob(mtd, buf, column, thislen);
1049 		else
1050 			this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
1051 
1052 		read += thislen;
1053 
1054 		if (read == len)
1055 			break;
1056 
1057 		buf += thislen;
1058 
1059 		/* Read more? */
1060 		if (read < len) {
1061 			/* Page size */
1062 			from += mtd->writesize;
1063 			column = 0;
1064 		}
1065 	}
1066 
1067 	ops->oobretlen = read;
1068 
1069 	if (ret)
1070 		return ret;
1071 
1072 	if (mtd->ecc_stats.failed - stats.failed)
1073 		return -EBADMSG;
1074 
1075 	return 0;
1076 }
1077 
1078 /**
1079  * onenand_read - [MTD Interface] MTD compability function for onenand_read_ecc
1080  * @param mtd		MTD device structure
1081  * @param from		offset to read from
1082  * @param len		number of bytes to read
1083  * @param retlen	pointer to variable to store the number of read bytes
1084  * @param buf		the databuffer to put data
1085  *
1086  * This function simply calls onenand_read_ecc with oob buffer and oobsel = NULL
1087 */
1088 int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1089 		 size_t * retlen, u_char * buf)
1090 {
1091 	struct mtd_oob_ops ops = {
1092 		.len    = len,
1093 		.ooblen = 0,
1094 		.datbuf = buf,
1095 		.oobbuf = NULL,
1096 	};
1097 	int ret;
1098 
1099 	onenand_get_device(mtd, FL_READING);
1100 	ret = onenand_read_ops_nolock(mtd, from, &ops);
1101 	onenand_release_device(mtd);
1102 
1103 	*retlen = ops.retlen;
1104 	return ret;
1105 }
1106 
1107 /**
1108  * onenand_read_oob - [MTD Interface] OneNAND read out-of-band
1109  * @param mtd		MTD device structure
1110  * @param from		offset to read from
1111  * @param ops		oob operations description structure
1112  *
1113  * OneNAND main and/or out-of-band
1114  */
1115 int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1116 			struct mtd_oob_ops *ops)
1117 {
1118 	int ret;
1119 
1120 	switch (ops->mode) {
1121 	case MTD_OPS_PLACE_OOB:
1122 	case MTD_OPS_AUTO_OOB:
1123 		break;
1124 	case MTD_OPS_RAW:
1125 		/* Not implemented yet */
1126 	default:
1127 		return -EINVAL;
1128 	}
1129 
1130 	onenand_get_device(mtd, FL_READING);
1131 	if (ops->datbuf)
1132 		ret = onenand_read_ops_nolock(mtd, from, ops);
1133 	else
1134 		ret = onenand_read_oob_nolock(mtd, from, ops);
1135 	onenand_release_device(mtd);
1136 
1137 	return ret;
1138 }
1139 
1140 /**
1141  * onenand_bbt_wait - [DEFAULT] wait until the command is done
1142  * @param mtd		MTD device structure
1143  * @param state		state to select the max. timeout value
1144  *
1145  * Wait for command done.
1146  */
1147 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1148 {
1149 	struct onenand_chip *this = mtd->priv;
1150 	unsigned int flags = ONENAND_INT_MASTER;
1151 	unsigned int interrupt;
1152 	unsigned int ctrl;
1153 
1154 	while (1) {
1155 		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1156 		if (interrupt & flags)
1157 			break;
1158 	}
1159 
1160 	/* To get correct interrupt status in timeout case */
1161 	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1162 	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1163 
1164 	if (interrupt & ONENAND_INT_READ) {
1165 		int ecc = onenand_read_ecc(this);
1166 		if (ecc & ONENAND_ECC_2BIT_ALL) {
1167 			printk(KERN_INFO "onenand_bbt_wait: ecc error = 0x%04x"
1168 				", controller = 0x%04x\n", ecc, ctrl);
1169 			return ONENAND_BBT_READ_ERROR;
1170 		}
1171 	} else {
1172 		printk(KERN_ERR "onenand_bbt_wait: read timeout!"
1173 				"ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
1174 		return ONENAND_BBT_READ_FATAL_ERROR;
1175 	}
1176 
1177 	/* Initial bad block case: 0x2400 or 0x0400 */
1178 	if (ctrl & ONENAND_CTRL_ERROR) {
1179 		printk(KERN_DEBUG "onenand_bbt_wait: controller error = 0x%04x\n", ctrl);
1180 		return ONENAND_BBT_READ_ERROR;
1181 	}
1182 
1183 	return 0;
1184 }
1185 
1186 /**
1187  * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1188  * @param mtd		MTD device structure
1189  * @param from		offset to read from
1190  * @param ops		oob operation description structure
1191  *
1192  * OneNAND read out-of-band data from the spare area for bbt scan
1193  */
1194 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1195 		struct mtd_oob_ops *ops)
1196 {
1197 	struct onenand_chip *this = mtd->priv;
1198 	int read = 0, thislen, column;
1199 	int ret = 0, readcmd;
1200 	size_t len = ops->ooblen;
1201 	u_char *buf = ops->oobbuf;
1202 
1203 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_bbt_read_oob: from = 0x%08x, len = %zi\n", (unsigned int) from, len);
1204 
1205 	readcmd = ONENAND_IS_4KB_PAGE(this) ?
1206 		ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1207 
1208 	/* Initialize return value */
1209 	ops->oobretlen = 0;
1210 
1211 	/* Do not allow reads past end of device */
1212 	if (unlikely((from + len) > mtd->size)) {
1213 		printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n");
1214 		return ONENAND_BBT_READ_FATAL_ERROR;
1215 	}
1216 
1217 	/* Grab the lock and see if the device is available */
1218 	onenand_get_device(mtd, FL_READING);
1219 
1220 	column = from & (mtd->oobsize - 1);
1221 
1222 	while (read < len) {
1223 
1224 		thislen = mtd->oobsize - column;
1225 		thislen = min_t(int, thislen, len);
1226 
1227 		this->spare_buf = buf;
1228 		this->command(mtd, readcmd, from, mtd->oobsize);
1229 
1230 		onenand_update_bufferram(mtd, from, 0);
1231 
1232 		ret = this->bbt_wait(mtd, FL_READING);
1233 		if (unlikely(ret))
1234 			ret = onenand_recover_lsb(mtd, from, ret);
1235 
1236 		if (ret)
1237 			break;
1238 
1239 		this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
1240 		read += thislen;
1241 		if (read == len)
1242 			break;
1243 
1244 		buf += thislen;
1245 
1246 		/* Read more? */
1247 		if (read < len) {
1248 			/* Update Page size */
1249 			from += this->writesize;
1250 			column = 0;
1251 		}
1252 	}
1253 
1254 	/* Deselect and wake up anyone waiting on the device */
1255 	onenand_release_device(mtd);
1256 
1257 	ops->oobretlen = read;
1258 	return ret;
1259 }
1260 
1261 
1262 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1263 /**
1264  * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1265  * @param mtd           MTD device structure
1266  * @param buf           the databuffer to verify
1267  * @param to            offset to read from
1268  */
1269 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1270 {
1271 	struct onenand_chip *this = mtd->priv;
1272 	u_char *oob_buf = this->oob_buf;
1273 	int status, i, readcmd;
1274 
1275 	readcmd = ONENAND_IS_4KB_PAGE(this) ?
1276 		ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1277 
1278 	this->command(mtd, readcmd, to, mtd->oobsize);
1279 	onenand_update_bufferram(mtd, to, 0);
1280 	status = this->wait(mtd, FL_READING);
1281 	if (status)
1282 		return status;
1283 
1284 	this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1285 	for (i = 0; i < mtd->oobsize; i++)
1286 		if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1287 			return -EBADMSG;
1288 
1289 	return 0;
1290 }
1291 
1292 /**
1293  * onenand_verify - [GENERIC] verify the chip contents after a write
1294  * @param mtd          MTD device structure
1295  * @param buf          the databuffer to verify
1296  * @param addr         offset to read from
1297  * @param len          number of bytes to read and compare
1298  */
1299 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1300 {
1301 	struct onenand_chip *this = mtd->priv;
1302 	void __iomem *dataram;
1303 	int ret = 0;
1304 	int thislen, column;
1305 
1306 	while (len != 0) {
1307 		thislen = min_t(int, this->writesize, len);
1308 		column = addr & (this->writesize - 1);
1309 		if (column + thislen > this->writesize)
1310 			thislen = this->writesize - column;
1311 
1312 		this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1313 
1314 		onenand_update_bufferram(mtd, addr, 0);
1315 
1316 		ret = this->wait(mtd, FL_READING);
1317 		if (ret)
1318 			return ret;
1319 
1320 		onenand_update_bufferram(mtd, addr, 1);
1321 
1322 		dataram = this->base + ONENAND_DATARAM;
1323 		dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
1324 
1325 		if (memcmp(buf, dataram + column, thislen))
1326 			return -EBADMSG;
1327 
1328 		len -= thislen;
1329 		buf += thislen;
1330 		addr += thislen;
1331 	}
1332 
1333 	return 0;
1334 }
1335 #else
1336 #define onenand_verify(...)             (0)
1337 #define onenand_verify_oob(...)         (0)
1338 #endif
1339 
1340 #define NOTALIGNED(x)	((x & (this->subpagesize - 1)) != 0)
1341 
1342 /**
1343  * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
1344  * @param mtd           MTD device structure
1345  * @param oob_buf       oob buffer
1346  * @param buf           source address
1347  * @param column        oob offset to write to
1348  * @param thislen       oob length to write
1349  */
1350 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1351 		const u_char *buf, int column, int thislen)
1352 {
1353 	struct onenand_chip *this = mtd->priv;
1354 	struct nand_oobfree *free;
1355 	int writecol = column;
1356 	int writeend = column + thislen;
1357 	int lastgap = 0;
1358 	unsigned int i;
1359 
1360 	free = this->ecclayout->oobfree;
1361 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length;
1362 	     i++, free++) {
1363 		if (writecol >= lastgap)
1364 			writecol += free->offset - lastgap;
1365 		if (writeend >= lastgap)
1366 			writeend += free->offset - lastgap;
1367 		lastgap = free->offset + free->length;
1368 	}
1369 	free = this->ecclayout->oobfree;
1370 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length;
1371 	     i++, free++) {
1372 		int free_end = free->offset + free->length;
1373 		if (free->offset < writeend && free_end > writecol) {
1374 			int st = max_t(int,free->offset,writecol);
1375 			int ed = min_t(int,free_end,writeend);
1376 			int n = ed - st;
1377 			memcpy(oob_buf + st, buf, n);
1378 			buf += n;
1379 		} else if (column == 0)
1380 			break;
1381 	}
1382 	return 0;
1383 }
1384 
1385 /**
1386  * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1387  * @param mtd           MTD device structure
1388  * @param to            offset to write to
1389  * @param ops           oob operation description structure
1390  *
1391  * Write main and/or oob with ECC
1392  */
1393 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1394 		struct mtd_oob_ops *ops)
1395 {
1396 	struct onenand_chip *this = mtd->priv;
1397 	int written = 0, column, thislen, subpage;
1398 	int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1399 	size_t len = ops->len;
1400 	size_t ooblen = ops->ooblen;
1401 	const u_char *buf = ops->datbuf;
1402 	const u_char *oob = ops->oobbuf;
1403 	u_char *oobbuf;
1404 	int ret = 0;
1405 
1406 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_write_ops_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1407 
1408 	/* Initialize retlen, in case of early exit */
1409 	ops->retlen = 0;
1410 	ops->oobretlen = 0;
1411 
1412 	/* Reject writes, which are not page aligned */
1413 	if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1414 		printk(KERN_ERR "onenand_write_ops_nolock: Attempt to write not page aligned data\n");
1415 		return -EINVAL;
1416 	}
1417 
1418 	if (ops->mode == MTD_OPS_AUTO_OOB)
1419 		oobsize = this->ecclayout->oobavail;
1420 	else
1421 		oobsize = mtd->oobsize;
1422 
1423 	oobcolumn = to & (mtd->oobsize - 1);
1424 
1425 	column = to & (mtd->writesize - 1);
1426 
1427 	/* Loop until all data write */
1428 	while (written < len) {
1429 		u_char *wbuf = (u_char *) buf;
1430 
1431 		thislen = min_t(int, mtd->writesize - column, len - written);
1432 		thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1433 
1434 		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1435 
1436 		/* Partial page write */
1437 		subpage = thislen < mtd->writesize;
1438 		if (subpage) {
1439 			memset(this->page_buf, 0xff, mtd->writesize);
1440 			memcpy(this->page_buf + column, buf, thislen);
1441 			wbuf = this->page_buf;
1442 		}
1443 
1444 		this->write_bufferram(mtd, to, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1445 
1446 		if (oob) {
1447 			oobbuf = this->oob_buf;
1448 
1449 			/* We send data to spare ram with oobsize
1450 			 *                          * to prevent byte access */
1451 			memset(oobbuf, 0xff, mtd->oobsize);
1452 			if (ops->mode == MTD_OPS_AUTO_OOB)
1453 				onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1454 			else
1455 				memcpy(oobbuf + oobcolumn, oob, thisooblen);
1456 
1457 			oobwritten += thisooblen;
1458 			oob += thisooblen;
1459 			oobcolumn = 0;
1460 		} else
1461 			oobbuf = (u_char *) ffchars;
1462 
1463 		this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1464 
1465 		this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1466 
1467 		ret = this->wait(mtd, FL_WRITING);
1468 
1469 		/* In partial page write we don't update bufferram */
1470 		onenand_update_bufferram(mtd, to, !ret && !subpage);
1471 		if (ONENAND_IS_2PLANE(this)) {
1472 			ONENAND_SET_BUFFERRAM1(this);
1473 			onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1474 		}
1475 
1476 		if (ret) {
1477 			printk(KERN_ERR "onenand_write_ops_nolock: write filaed %d\n", ret);
1478 			break;
1479 		}
1480 
1481 		/* Only check verify write turn on */
1482 		ret = onenand_verify(mtd, buf, to, thislen);
1483 		if (ret) {
1484 			printk(KERN_ERR "onenand_write_ops_nolock: verify failed %d\n", ret);
1485 			break;
1486 		}
1487 
1488 		written += thislen;
1489 
1490 		if (written == len)
1491 			break;
1492 
1493 		column = 0;
1494 		to += thislen;
1495 		buf += thislen;
1496 	}
1497 
1498 	ops->retlen = written;
1499 
1500 	return ret;
1501 }
1502 
1503 /**
1504  * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
1505  * @param mtd           MTD device structure
1506  * @param to            offset to write to
1507  * @param len           number of bytes to write
1508  * @param retlen        pointer to variable to store the number of written bytes
1509  * @param buf           the data to write
1510  * @param mode          operation mode
1511  *
1512  * OneNAND write out-of-band
1513  */
1514 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1515 		struct mtd_oob_ops *ops)
1516 {
1517 	struct onenand_chip *this = mtd->priv;
1518 	int column, ret = 0, oobsize;
1519 	int written = 0, oobcmd;
1520 	u_char *oobbuf;
1521 	size_t len = ops->ooblen;
1522 	const u_char *buf = ops->oobbuf;
1523 	unsigned int mode = ops->mode;
1524 
1525 	to += ops->ooboffs;
1526 
1527 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1528 
1529 	/* Initialize retlen, in case of early exit */
1530 	ops->oobretlen = 0;
1531 
1532 	if (mode == MTD_OPS_AUTO_OOB)
1533 		oobsize = this->ecclayout->oobavail;
1534 	else
1535 		oobsize = mtd->oobsize;
1536 
1537 	column = to & (mtd->oobsize - 1);
1538 
1539 	if (unlikely(column >= oobsize)) {
1540 		printk(KERN_ERR "onenand_write_oob_nolock: Attempted to start write outside oob\n");
1541 		return -EINVAL;
1542 	}
1543 
1544 	/* For compatibility with NAND: Do not allow write past end of page */
1545 	if (unlikely(column + len > oobsize)) {
1546 		printk(KERN_ERR "onenand_write_oob_nolock: "
1547 				"Attempt to write past end of page\n");
1548 		return -EINVAL;
1549 	}
1550 
1551 	/* Do not allow reads past end of device */
1552 	if (unlikely(to >= mtd->size ||
1553 				column + len > ((mtd->size >> this->page_shift) -
1554 					(to >> this->page_shift)) * oobsize)) {
1555 		printk(KERN_ERR "onenand_write_oob_nolock: Attempted to write past end of device\n");
1556 		return -EINVAL;
1557 	}
1558 
1559 	oobbuf = this->oob_buf;
1560 
1561 	oobcmd = ONENAND_IS_4KB_PAGE(this) ?
1562 		ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
1563 
1564 	/* Loop until all data write */
1565 	while (written < len) {
1566 		int thislen = min_t(int, oobsize, len - written);
1567 
1568 		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
1569 
1570 		/* We send data to spare ram with oobsize
1571 		 * to prevent byte access */
1572 		memset(oobbuf, 0xff, mtd->oobsize);
1573 		if (mode == MTD_OPS_AUTO_OOB)
1574 			onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
1575 		else
1576 			memcpy(oobbuf + column, buf, thislen);
1577 		this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1578 
1579 		if (ONENAND_IS_4KB_PAGE(this)) {
1580 			/* Set main area of DataRAM to 0xff*/
1581 			memset(this->page_buf, 0xff, mtd->writesize);
1582 			this->write_bufferram(mtd, 0, ONENAND_DATARAM,
1583 				this->page_buf,	0, mtd->writesize);
1584 		}
1585 
1586 		this->command(mtd, oobcmd, to, mtd->oobsize);
1587 
1588 		onenand_update_bufferram(mtd, to, 0);
1589 		if (ONENAND_IS_2PLANE(this)) {
1590 			ONENAND_SET_BUFFERRAM1(this);
1591 			onenand_update_bufferram(mtd, to + this->writesize, 0);
1592 		}
1593 
1594 		ret = this->wait(mtd, FL_WRITING);
1595 		if (ret) {
1596 			printk(KERN_ERR "onenand_write_oob_nolock: write failed %d\n", ret);
1597 			break;
1598 		}
1599 
1600 		ret = onenand_verify_oob(mtd, oobbuf, to);
1601 		if (ret) {
1602 			printk(KERN_ERR "onenand_write_oob_nolock: verify failed %d\n", ret);
1603 			break;
1604 		}
1605 
1606 		written += thislen;
1607 		if (written == len)
1608 			break;
1609 
1610 		to += mtd->writesize;
1611 		buf += thislen;
1612 		column = 0;
1613 	}
1614 
1615 	ops->oobretlen = written;
1616 
1617 	return ret;
1618 }
1619 
1620 /**
1621  * onenand_write - [MTD Interface] compability function for onenand_write_ecc
1622  * @param mtd		MTD device structure
1623  * @param to		offset to write to
1624  * @param len		number of bytes to write
1625  * @param retlen	pointer to variable to store the number of written bytes
1626  * @param buf		the data to write
1627  *
1628  * Write with ECC
1629  */
1630 int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
1631 		  size_t * retlen, const u_char * buf)
1632 {
1633 	struct mtd_oob_ops ops = {
1634 		.len    = len,
1635 		.ooblen = 0,
1636 		.datbuf = (u_char *) buf,
1637 		.oobbuf = NULL,
1638 	};
1639 	int ret;
1640 
1641 	onenand_get_device(mtd, FL_WRITING);
1642 	ret = onenand_write_ops_nolock(mtd, to, &ops);
1643 	onenand_release_device(mtd);
1644 
1645 	*retlen = ops.retlen;
1646 	return ret;
1647 }
1648 
1649 /**
1650  * onenand_write_oob - [MTD Interface] OneNAND write out-of-band
1651  * @param mtd		MTD device structure
1652  * @param to		offset to write to
1653  * @param ops		oob operation description structure
1654  *
1655  * OneNAND write main and/or out-of-band
1656  */
1657 int onenand_write_oob(struct mtd_info *mtd, loff_t to,
1658 			struct mtd_oob_ops *ops)
1659 {
1660 	int ret;
1661 
1662 	switch (ops->mode) {
1663 	case MTD_OPS_PLACE_OOB:
1664 	case MTD_OPS_AUTO_OOB:
1665 		break;
1666 	case MTD_OPS_RAW:
1667 		/* Not implemented yet */
1668 	default:
1669 		return -EINVAL;
1670 	}
1671 
1672 	onenand_get_device(mtd, FL_WRITING);
1673 	if (ops->datbuf)
1674 		ret = onenand_write_ops_nolock(mtd, to, ops);
1675 	else
1676 		ret = onenand_write_oob_nolock(mtd, to, ops);
1677 	onenand_release_device(mtd);
1678 
1679 	return ret;
1680 
1681 }
1682 
1683 /**
1684  * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
1685  * @param mtd		MTD device structure
1686  * @param ofs		offset from device start
1687  * @param allowbbt	1, if its allowed to access the bbt area
1688  *
1689  * Check, if the block is bad, Either by reading the bad block table or
1690  * calling of the scan function.
1691  */
1692 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
1693 {
1694 	struct onenand_chip *this = mtd->priv;
1695 	struct bbm_info *bbm = this->bbm;
1696 
1697 	/* Return info from the table */
1698 	return bbm->isbad_bbt(mtd, ofs, allowbbt);
1699 }
1700 
1701 
1702 /**
1703  * onenand_erase - [MTD Interface] erase block(s)
1704  * @param mtd		MTD device structure
1705  * @param instr		erase instruction
1706  *
1707  * Erase one ore more blocks
1708  */
1709 int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
1710 {
1711 	struct onenand_chip *this = mtd->priv;
1712 	unsigned int block_size;
1713 	loff_t addr = instr->addr;
1714 	unsigned int len = instr->len;
1715 	int ret = 0, i;
1716 	struct mtd_erase_region_info *region = NULL;
1717 	unsigned int region_end = 0;
1718 
1719 	MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n",
1720 			(unsigned int) addr, len);
1721 
1722 	if (FLEXONENAND(this)) {
1723 		/* Find the eraseregion of this address */
1724 		i = flexonenand_region(mtd, addr);
1725 		region = &mtd->eraseregions[i];
1726 
1727 		block_size = region->erasesize;
1728 		region_end = region->offset
1729 			+ region->erasesize * region->numblocks;
1730 
1731 		/* Start address within region must align on block boundary.
1732 		 * Erase region's start offset is always block start address.
1733 		 */
1734 		if (unlikely((addr - region->offset) & (block_size - 1))) {
1735 			MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:"
1736 				" Unaligned address\n");
1737 			return -EINVAL;
1738 		}
1739 	} else {
1740 		block_size = 1 << this->erase_shift;
1741 
1742 		/* Start address must align on block boundary */
1743 		if (unlikely(addr & (block_size - 1))) {
1744 			MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:"
1745 						"Unaligned address\n");
1746 			return -EINVAL;
1747 		}
1748 	}
1749 
1750 	/* Length must align on block boundary */
1751 	if (unlikely(len & (block_size - 1))) {
1752 		MTDDEBUG (MTD_DEBUG_LEVEL0,
1753 			 "onenand_erase: Length not block aligned\n");
1754 		return -EINVAL;
1755 	}
1756 
1757 	/* Grab the lock and see if the device is available */
1758 	onenand_get_device(mtd, FL_ERASING);
1759 
1760 	/* Loop throught the pages */
1761 	instr->state = MTD_ERASING;
1762 
1763 	while (len) {
1764 
1765 		/* Check if we have a bad block, we do not erase bad blocks */
1766 		if (instr->priv == 0 && onenand_block_isbad_nolock(mtd, addr, 0)) {
1767 			printk(KERN_WARNING "onenand_erase: attempt to erase"
1768 				" a bad block at addr 0x%08x\n",
1769 				(unsigned int) addr);
1770 			instr->state = MTD_ERASE_FAILED;
1771 			goto erase_exit;
1772 		}
1773 
1774 		this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
1775 
1776 		onenand_invalidate_bufferram(mtd, addr, block_size);
1777 
1778 		ret = this->wait(mtd, FL_ERASING);
1779 		/* Check, if it is write protected */
1780 		if (ret) {
1781 			if (ret == -EPERM)
1782 				MTDDEBUG (MTD_DEBUG_LEVEL0, "onenand_erase: "
1783 					  "Device is write protected!!!\n");
1784 			else
1785 				MTDDEBUG (MTD_DEBUG_LEVEL0, "onenand_erase: "
1786 					  "Failed erase, block %d\n",
1787 					onenand_block(this, addr));
1788 			instr->state = MTD_ERASE_FAILED;
1789 			instr->fail_addr = addr;
1790 
1791 			goto erase_exit;
1792 		}
1793 
1794 		len -= block_size;
1795 		addr += block_size;
1796 
1797 		if (addr == region_end) {
1798 			if (!len)
1799 				break;
1800 			region++;
1801 
1802 			block_size = region->erasesize;
1803 			region_end = region->offset
1804 				+ region->erasesize * region->numblocks;
1805 
1806 			if (len & (block_size - 1)) {
1807 				/* This has been checked at MTD
1808 				 * partitioning level. */
1809 				printk("onenand_erase: Unaligned address\n");
1810 				goto erase_exit;
1811 			}
1812 		}
1813 	}
1814 
1815 	instr->state = MTD_ERASE_DONE;
1816 
1817 erase_exit:
1818 
1819 	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1820 	/* Do call back function */
1821 	if (!ret)
1822 		mtd_erase_callback(instr);
1823 
1824 	/* Deselect and wake up anyone waiting on the device */
1825 	onenand_release_device(mtd);
1826 
1827 	return ret;
1828 }
1829 
1830 /**
1831  * onenand_sync - [MTD Interface] sync
1832  * @param mtd		MTD device structure
1833  *
1834  * Sync is actually a wait for chip ready function
1835  */
1836 void onenand_sync(struct mtd_info *mtd)
1837 {
1838 	MTDDEBUG (MTD_DEBUG_LEVEL3, "onenand_sync: called\n");
1839 
1840 	/* Grab the lock and see if the device is available */
1841 	onenand_get_device(mtd, FL_SYNCING);
1842 
1843 	/* Release it and go back */
1844 	onenand_release_device(mtd);
1845 }
1846 
1847 /**
1848  * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
1849  * @param mtd		MTD device structure
1850  * @param ofs		offset relative to mtd start
1851  *
1852  * Check whether the block is bad
1853  */
1854 int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
1855 {
1856 	int ret;
1857 
1858 	/* Check for invalid offset */
1859 	if (ofs > mtd->size)
1860 		return -EINVAL;
1861 
1862 	onenand_get_device(mtd, FL_READING);
1863 	ret = onenand_block_isbad_nolock(mtd,ofs, 0);
1864 	onenand_release_device(mtd);
1865 	return ret;
1866 }
1867 
1868 /**
1869  * onenand_default_block_markbad - [DEFAULT] mark a block bad
1870  * @param mtd           MTD device structure
1871  * @param ofs           offset from device start
1872  *
1873  * This is the default implementation, which can be overridden by
1874  * a hardware specific driver.
1875  */
1876 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
1877 {
1878 	struct onenand_chip *this = mtd->priv;
1879 	struct bbm_info *bbm = this->bbm;
1880 	u_char buf[2] = {0, 0};
1881 	struct mtd_oob_ops ops = {
1882 		.mode = MTD_OPS_PLACE_OOB,
1883 		.ooblen = 2,
1884 		.oobbuf = buf,
1885 		.ooboffs = 0,
1886 	};
1887 	int block;
1888 
1889 	/* Get block number */
1890 	block = onenand_block(this, ofs);
1891 	if (bbm->bbt)
1892 		bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1893 
1894 	/* We write two bytes, so we dont have to mess with 16 bit access */
1895 	ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
1896 	return onenand_write_oob_nolock(mtd, ofs, &ops);
1897 }
1898 
1899 /**
1900  * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
1901  * @param mtd		MTD device structure
1902  * @param ofs		offset relative to mtd start
1903  *
1904  * Mark the block as bad
1905  */
1906 int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1907 {
1908 	int ret;
1909 
1910 	ret = onenand_block_isbad(mtd, ofs);
1911 	if (ret) {
1912 		/* If it was bad already, return success and do nothing */
1913 		if (ret > 0)
1914 			return 0;
1915 		return ret;
1916 	}
1917 
1918 	ret = mtd_block_markbad(mtd, ofs);
1919 	return ret;
1920 }
1921 
1922 /**
1923  * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
1924  * @param mtd           MTD device structure
1925  * @param ofs           offset relative to mtd start
1926  * @param len           number of bytes to lock or unlock
1927  * @param cmd           lock or unlock command
1928  *
1929  * Lock or unlock one or more blocks
1930  */
1931 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
1932 {
1933 	struct onenand_chip *this = mtd->priv;
1934 	int start, end, block, value, status;
1935 
1936 	start = onenand_block(this, ofs);
1937 	end = onenand_block(this, ofs + len);
1938 
1939 	/* Continuous lock scheme */
1940 	if (this->options & ONENAND_HAS_CONT_LOCK) {
1941 		/* Set start block address */
1942 		this->write_word(start,
1943 				 this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1944 		/* Set end block address */
1945 		this->write_word(end - 1,
1946 				 this->base + ONENAND_REG_END_BLOCK_ADDRESS);
1947 		/* Write unlock command */
1948 		this->command(mtd, cmd, 0, 0);
1949 
1950 		/* There's no return value */
1951 		this->wait(mtd, FL_UNLOCKING);
1952 
1953 		/* Sanity check */
1954 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1955 		       & ONENAND_CTRL_ONGO)
1956 			continue;
1957 
1958 		/* Check lock status */
1959 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1960 		if (!(status & ONENAND_WP_US))
1961 			printk(KERN_ERR "wp status = 0x%x\n", status);
1962 
1963 		return 0;
1964 	}
1965 
1966 	/* Block lock scheme */
1967 	for (block = start; block < end; block++) {
1968 		/* Set block address */
1969 		value = onenand_block_address(this, block);
1970 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1971 		/* Select DataRAM for DDP */
1972 		value = onenand_bufferram_address(this, block);
1973 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1974 
1975 		/* Set start block address */
1976 		this->write_word(block,
1977 				 this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1978 		/* Write unlock command */
1979 		this->command(mtd, ONENAND_CMD_UNLOCK, 0, 0);
1980 
1981 		/* There's no return value */
1982 		this->wait(mtd, FL_UNLOCKING);
1983 
1984 		/* Sanity check */
1985 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1986 		       & ONENAND_CTRL_ONGO)
1987 			continue;
1988 
1989 		/* Check lock status */
1990 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1991 		if (!(status & ONENAND_WP_US))
1992 			printk(KERN_ERR "block = %d, wp status = 0x%x\n",
1993 			       block, status);
1994 	}
1995 
1996 	return 0;
1997 }
1998 
1999 #ifdef ONENAND_LINUX
2000 /**
2001  * onenand_lock - [MTD Interface] Lock block(s)
2002  * @param mtd           MTD device structure
2003  * @param ofs           offset relative to mtd start
2004  * @param len           number of bytes to unlock
2005  *
2006  * Lock one or more blocks
2007  */
2008 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
2009 {
2010 	int ret;
2011 
2012 	onenand_get_device(mtd, FL_LOCKING);
2013 	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2014 	onenand_release_device(mtd);
2015 	return ret;
2016 }
2017 
2018 /**
2019  * onenand_unlock - [MTD Interface] Unlock block(s)
2020  * @param mtd           MTD device structure
2021  * @param ofs           offset relative to mtd start
2022  * @param len           number of bytes to unlock
2023  *
2024  * Unlock one or more blocks
2025  */
2026 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
2027 {
2028 	int ret;
2029 
2030 	onenand_get_device(mtd, FL_LOCKING);
2031 	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2032 	onenand_release_device(mtd);
2033 	return ret;
2034 }
2035 #endif
2036 
2037 /**
2038  * onenand_check_lock_status - [OneNAND Interface] Check lock status
2039  * @param this          onenand chip data structure
2040  *
2041  * Check lock status
2042  */
2043 static int onenand_check_lock_status(struct onenand_chip *this)
2044 {
2045 	unsigned int value, block, status;
2046 	unsigned int end;
2047 
2048 	end = this->chipsize >> this->erase_shift;
2049 	for (block = 0; block < end; block++) {
2050 		/* Set block address */
2051 		value = onenand_block_address(this, block);
2052 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2053 		/* Select DataRAM for DDP */
2054 		value = onenand_bufferram_address(this, block);
2055 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2056 		/* Set start block address */
2057 		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2058 
2059 		/* Check lock status */
2060 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2061 		if (!(status & ONENAND_WP_US)) {
2062 			printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
2063 			return 0;
2064 		}
2065 	}
2066 
2067 	return 1;
2068 }
2069 
2070 /**
2071  * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2072  * @param mtd           MTD device structure
2073  *
2074  * Unlock all blocks
2075  */
2076 static void onenand_unlock_all(struct mtd_info *mtd)
2077 {
2078 	struct onenand_chip *this = mtd->priv;
2079 	loff_t ofs = 0;
2080 	size_t len = mtd->size;
2081 
2082 	if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2083 		/* Set start block address */
2084 		this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2085 		/* Write unlock command */
2086 		this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2087 
2088 		/* There's no return value */
2089 		this->wait(mtd, FL_LOCKING);
2090 
2091 		/* Sanity check */
2092 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2093 				& ONENAND_CTRL_ONGO)
2094 			continue;
2095 
2096 		/* Check lock status */
2097 		if (onenand_check_lock_status(this))
2098 			return;
2099 
2100 		/* Workaround for all block unlock in DDP */
2101 		if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2102 			/* All blocks on another chip */
2103 			ofs = this->chipsize >> 1;
2104 			len = this->chipsize >> 1;
2105 		}
2106 	}
2107 
2108 	onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2109 }
2110 
2111 
2112 /**
2113  * onenand_check_features - Check and set OneNAND features
2114  * @param mtd           MTD data structure
2115  *
2116  * Check and set OneNAND features
2117  * - lock scheme
2118  * - two plane
2119  */
2120 static void onenand_check_features(struct mtd_info *mtd)
2121 {
2122 	struct onenand_chip *this = mtd->priv;
2123 	unsigned int density, process;
2124 
2125 	/* Lock scheme depends on density and process */
2126 	density = onenand_get_density(this->device_id);
2127 	process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
2128 
2129 	/* Lock scheme */
2130 	switch (density) {
2131 	case ONENAND_DEVICE_DENSITY_4Gb:
2132 		if (ONENAND_IS_DDP(this))
2133 			this->options |= ONENAND_HAS_2PLANE;
2134 		else
2135 			this->options |= ONENAND_HAS_4KB_PAGE;
2136 
2137 	case ONENAND_DEVICE_DENSITY_2Gb:
2138 		/* 2Gb DDP don't have 2 plane */
2139 		if (!ONENAND_IS_DDP(this))
2140 			this->options |= ONENAND_HAS_2PLANE;
2141 		this->options |= ONENAND_HAS_UNLOCK_ALL;
2142 
2143 	case ONENAND_DEVICE_DENSITY_1Gb:
2144 		/* A-Die has all block unlock */
2145 		if (process)
2146 			this->options |= ONENAND_HAS_UNLOCK_ALL;
2147 		break;
2148 
2149 	default:
2150 		/* Some OneNAND has continuous lock scheme */
2151 		if (!process)
2152 			this->options |= ONENAND_HAS_CONT_LOCK;
2153 		break;
2154 	}
2155 
2156 	if (ONENAND_IS_MLC(this))
2157 		this->options |= ONENAND_HAS_4KB_PAGE;
2158 
2159 	if (ONENAND_IS_4KB_PAGE(this))
2160 		this->options &= ~ONENAND_HAS_2PLANE;
2161 
2162 	if (FLEXONENAND(this)) {
2163 		this->options &= ~ONENAND_HAS_CONT_LOCK;
2164 		this->options |= ONENAND_HAS_UNLOCK_ALL;
2165 	}
2166 
2167 	if (this->options & ONENAND_HAS_CONT_LOCK)
2168 		printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
2169 	if (this->options & ONENAND_HAS_UNLOCK_ALL)
2170 		printk(KERN_DEBUG "Chip support all block unlock\n");
2171 	if (this->options & ONENAND_HAS_2PLANE)
2172 		printk(KERN_DEBUG "Chip has 2 plane\n");
2173 	if (this->options & ONENAND_HAS_4KB_PAGE)
2174 		printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
2175 
2176 }
2177 
2178 /**
2179  * onenand_print_device_info - Print device ID
2180  * @param device        device ID
2181  *
2182  * Print device ID
2183  */
2184 char *onenand_print_device_info(int device, int version)
2185 {
2186 	int vcc, demuxed, ddp, density, flexonenand;
2187 	char *dev_info = malloc(80);
2188 	char *p = dev_info;
2189 
2190 	vcc = device & ONENAND_DEVICE_VCC_MASK;
2191 	demuxed = device & ONENAND_DEVICE_IS_DEMUX;
2192 	ddp = device & ONENAND_DEVICE_IS_DDP;
2193 	density = onenand_get_density(device);
2194 	flexonenand = device & DEVICE_IS_FLEXONENAND;
2195 	p += sprintf(dev_info, "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)",
2196 	       demuxed ? "" : "Muxed ",
2197 	       flexonenand ? "Flex-" : "",
2198 	       ddp ? "(DDP)" : "",
2199 	       (16 << density), vcc ? "2.65/3.3" : "1.8", device);
2200 
2201 	sprintf(p, "\nOneNAND version = 0x%04x", version);
2202 	printk("%s\n", dev_info);
2203 
2204 	return dev_info;
2205 }
2206 
2207 static const struct onenand_manufacturers onenand_manuf_ids[] = {
2208 	{ONENAND_MFR_NUMONYX, "Numonyx"},
2209 	{ONENAND_MFR_SAMSUNG, "Samsung"},
2210 };
2211 
2212 /**
2213  * onenand_check_maf - Check manufacturer ID
2214  * @param manuf         manufacturer ID
2215  *
2216  * Check manufacturer ID
2217  */
2218 static int onenand_check_maf(int manuf)
2219 {
2220 	int size = ARRAY_SIZE(onenand_manuf_ids);
2221 	int i;
2222 #ifdef ONENAND_DEBUG
2223 	char *name;
2224 #endif
2225 
2226 	for (i = 0; i < size; i++)
2227 		if (manuf == onenand_manuf_ids[i].id)
2228 			break;
2229 
2230 #ifdef ONENAND_DEBUG
2231 	if (i < size)
2232 		name = onenand_manuf_ids[i].name;
2233 	else
2234 		name = "Unknown";
2235 
2236 	printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
2237 #endif
2238 
2239 	return i == size;
2240 }
2241 
2242 /**
2243 * flexonenand_get_boundary	- Reads the SLC boundary
2244 * @param onenand_info		- onenand info structure
2245 *
2246 * Fill up boundary[] field in onenand_chip
2247 **/
2248 static int flexonenand_get_boundary(struct mtd_info *mtd)
2249 {
2250 	struct onenand_chip *this = mtd->priv;
2251 	unsigned int die, bdry;
2252 	int syscfg, locked;
2253 
2254 	/* Disable ECC */
2255 	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2256 	this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
2257 
2258 	for (die = 0; die < this->dies; die++) {
2259 		this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
2260 		this->wait(mtd, FL_SYNCING);
2261 
2262 		this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
2263 		this->wait(mtd, FL_READING);
2264 
2265 		bdry = this->read_word(this->base + ONENAND_DATARAM);
2266 		if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
2267 			locked = 0;
2268 		else
2269 			locked = 1;
2270 		this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
2271 
2272 		this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2273 		this->wait(mtd, FL_RESETING);
2274 
2275 		printk(KERN_INFO "Die %d boundary: %d%s\n", die,
2276 		       this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
2277 	}
2278 
2279 	/* Enable ECC */
2280 	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2281 	return 0;
2282 }
2283 
2284 /**
2285  * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
2286  * 			  boundary[], diesize[], mtd->size, mtd->erasesize,
2287  * 			  mtd->eraseregions
2288  * @param mtd		- MTD device structure
2289  */
2290 static void flexonenand_get_size(struct mtd_info *mtd)
2291 {
2292 	struct onenand_chip *this = mtd->priv;
2293 	int die, i, eraseshift, density;
2294 	int blksperdie, maxbdry;
2295 	loff_t ofs;
2296 
2297 	density = onenand_get_density(this->device_id);
2298 	blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
2299 	blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
2300 	maxbdry = blksperdie - 1;
2301 	eraseshift = this->erase_shift - 1;
2302 
2303 	mtd->numeraseregions = this->dies << 1;
2304 
2305 	/* This fills up the device boundary */
2306 	flexonenand_get_boundary(mtd);
2307 	die = 0;
2308 	ofs = 0;
2309 	i = -1;
2310 	for (; die < this->dies; die++) {
2311 		if (!die || this->boundary[die-1] != maxbdry) {
2312 			i++;
2313 			mtd->eraseregions[i].offset = ofs;
2314 			mtd->eraseregions[i].erasesize = 1 << eraseshift;
2315 			mtd->eraseregions[i].numblocks =
2316 							this->boundary[die] + 1;
2317 			ofs += mtd->eraseregions[i].numblocks << eraseshift;
2318 			eraseshift++;
2319 		} else {
2320 			mtd->numeraseregions -= 1;
2321 			mtd->eraseregions[i].numblocks +=
2322 							this->boundary[die] + 1;
2323 			ofs += (this->boundary[die] + 1) << (eraseshift - 1);
2324 		}
2325 		if (this->boundary[die] != maxbdry) {
2326 			i++;
2327 			mtd->eraseregions[i].offset = ofs;
2328 			mtd->eraseregions[i].erasesize = 1 << eraseshift;
2329 			mtd->eraseregions[i].numblocks = maxbdry ^
2330 							 this->boundary[die];
2331 			ofs += mtd->eraseregions[i].numblocks << eraseshift;
2332 			eraseshift--;
2333 		} else
2334 			mtd->numeraseregions -= 1;
2335 	}
2336 
2337 	/* Expose MLC erase size except when all blocks are SLC */
2338 	mtd->erasesize = 1 << this->erase_shift;
2339 	if (mtd->numeraseregions == 1)
2340 		mtd->erasesize >>= 1;
2341 
2342 	printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
2343 	for (i = 0; i < mtd->numeraseregions; i++)
2344 		printk(KERN_INFO "[offset: 0x%08llx, erasesize: 0x%05x,"
2345 			" numblocks: %04u]\n", mtd->eraseregions[i].offset,
2346 			mtd->eraseregions[i].erasesize,
2347 			mtd->eraseregions[i].numblocks);
2348 
2349 	for (die = 0, mtd->size = 0; die < this->dies; die++) {
2350 		this->diesize[die] = (loff_t) (blksperdie << this->erase_shift);
2351 		this->diesize[die] -= (loff_t) (this->boundary[die] + 1)
2352 						 << (this->erase_shift - 1);
2353 		mtd->size += this->diesize[die];
2354 	}
2355 }
2356 
2357 /**
2358  * flexonenand_check_blocks_erased - Check if blocks are erased
2359  * @param mtd_info	- mtd info structure
2360  * @param start		- first erase block to check
2361  * @param end		- last erase block to check
2362  *
2363  * Converting an unerased block from MLC to SLC
2364  * causes byte values to change. Since both data and its ECC
2365  * have changed, reads on the block give uncorrectable error.
2366  * This might lead to the block being detected as bad.
2367  *
2368  * Avoid this by ensuring that the block to be converted is
2369  * erased.
2370  */
2371 static int flexonenand_check_blocks_erased(struct mtd_info *mtd,
2372 					int start, int end)
2373 {
2374 	struct onenand_chip *this = mtd->priv;
2375 	int i, ret;
2376 	int block;
2377 	struct mtd_oob_ops ops = {
2378 		.mode = MTD_OPS_PLACE_OOB,
2379 		.ooboffs = 0,
2380 		.ooblen	= mtd->oobsize,
2381 		.datbuf	= NULL,
2382 		.oobbuf	= this->oob_buf,
2383 	};
2384 	loff_t addr;
2385 
2386 	printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
2387 
2388 	for (block = start; block <= end; block++) {
2389 		addr = flexonenand_addr(this, block);
2390 		if (onenand_block_isbad_nolock(mtd, addr, 0))
2391 			continue;
2392 
2393 		/*
2394 		 * Since main area write results in ECC write to spare,
2395 		 * it is sufficient to check only ECC bytes for change.
2396 		 */
2397 		ret = onenand_read_oob_nolock(mtd, addr, &ops);
2398 		if (ret)
2399 			return ret;
2400 
2401 		for (i = 0; i < mtd->oobsize; i++)
2402 			if (this->oob_buf[i] != 0xff)
2403 				break;
2404 
2405 		if (i != mtd->oobsize) {
2406 			printk(KERN_WARNING "Block %d not erased.\n", block);
2407 			return 1;
2408 		}
2409 	}
2410 
2411 	return 0;
2412 }
2413 
2414 /**
2415  * flexonenand_set_boundary	- Writes the SLC boundary
2416  * @param mtd			- mtd info structure
2417  */
2418 int flexonenand_set_boundary(struct mtd_info *mtd, int die,
2419 				    int boundary, int lock)
2420 {
2421 	struct onenand_chip *this = mtd->priv;
2422 	int ret, density, blksperdie, old, new, thisboundary;
2423 	loff_t addr;
2424 
2425 	if (die >= this->dies)
2426 		return -EINVAL;
2427 
2428 	if (boundary == this->boundary[die])
2429 		return 0;
2430 
2431 	density = onenand_get_density(this->device_id);
2432 	blksperdie = ((16 << density) << 20) >> this->erase_shift;
2433 	blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
2434 
2435 	if (boundary >= blksperdie) {
2436 		printk("flexonenand_set_boundary:"
2437 			"Invalid boundary value. "
2438 			"Boundary not changed.\n");
2439 		return -EINVAL;
2440 	}
2441 
2442 	/* Check if converting blocks are erased */
2443 	old = this->boundary[die] + (die * this->density_mask);
2444 	new = boundary + (die * this->density_mask);
2445 	ret = flexonenand_check_blocks_erased(mtd, min(old, new)
2446 						+ 1, max(old, new));
2447 	if (ret) {
2448 		printk(KERN_ERR "flexonenand_set_boundary: Please erase blocks before boundary change\n");
2449 		return ret;
2450 	}
2451 
2452 	this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
2453 	this->wait(mtd, FL_SYNCING);
2454 
2455 	/* Check is boundary is locked */
2456 	this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
2457 	ret = this->wait(mtd, FL_READING);
2458 
2459 	thisboundary = this->read_word(this->base + ONENAND_DATARAM);
2460 	if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
2461 		printk(KERN_ERR "flexonenand_set_boundary: boundary locked\n");
2462 		goto out;
2463 	}
2464 
2465 	printk(KERN_INFO "flexonenand_set_boundary: Changing die %d boundary: %d%s\n",
2466 			die, boundary, lock ? "(Locked)" : "(Unlocked)");
2467 
2468 	boundary &= FLEXONENAND_PI_MASK;
2469 	boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
2470 
2471 	addr = die ? this->diesize[0] : 0;
2472 	this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
2473 	ret = this->wait(mtd, FL_ERASING);
2474 	if (ret) {
2475 		printk("flexonenand_set_boundary:"
2476 			"Failed PI erase for Die %d\n", die);
2477 		goto out;
2478 	}
2479 
2480 	this->write_word(boundary, this->base + ONENAND_DATARAM);
2481 	this->command(mtd, ONENAND_CMD_PROG, addr, 0);
2482 	ret = this->wait(mtd, FL_WRITING);
2483 	if (ret) {
2484 		printk("flexonenand_set_boundary:"
2485 			"Failed PI write for Die %d\n", die);
2486 		goto out;
2487 	}
2488 
2489 	this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
2490 	ret = this->wait(mtd, FL_WRITING);
2491 out:
2492 	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
2493 	this->wait(mtd, FL_RESETING);
2494 	if (!ret)
2495 		/* Recalculate device size on boundary change*/
2496 		flexonenand_get_size(mtd);
2497 
2498 	return ret;
2499 }
2500 
2501 /**
2502  * onenand_chip_probe - [OneNAND Interface] Probe the OneNAND chip
2503  * @param mtd		MTD device structure
2504  *
2505  * OneNAND detection method:
2506  *   Compare the the values from command with ones from register
2507  */
2508 static int onenand_chip_probe(struct mtd_info *mtd)
2509 {
2510 	struct onenand_chip *this = mtd->priv;
2511 	int bram_maf_id, bram_dev_id, maf_id, dev_id;
2512 	int syscfg;
2513 
2514 	/* Save system configuration 1 */
2515 	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2516 
2517 	/* Clear Sync. Burst Read mode to read BootRAM */
2518 	this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ),
2519 			 this->base + ONENAND_REG_SYS_CFG1);
2520 
2521 	/* Send the command for reading device ID from BootRAM */
2522 	this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
2523 
2524 	/* Read manufacturer and device IDs from BootRAM */
2525 	bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
2526 	bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
2527 
2528 	/* Reset OneNAND to read default register values */
2529 	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
2530 
2531 	/* Wait reset */
2532 	this->wait(mtd, FL_RESETING);
2533 
2534 	/* Restore system configuration 1 */
2535 	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2536 
2537 	/* Check manufacturer ID */
2538 	if (onenand_check_maf(bram_maf_id))
2539 		return -ENXIO;
2540 
2541 	/* Read manufacturer and device IDs from Register */
2542 	maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
2543 	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2544 
2545 	/* Check OneNAND device */
2546 	if (maf_id != bram_maf_id || dev_id != bram_dev_id)
2547 		return -ENXIO;
2548 
2549 	return 0;
2550 }
2551 
2552 /**
2553  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
2554  * @param mtd		MTD device structure
2555  *
2556  * OneNAND detection method:
2557  *   Compare the the values from command with ones from register
2558  */
2559 int onenand_probe(struct mtd_info *mtd)
2560 {
2561 	struct onenand_chip *this = mtd->priv;
2562 	int dev_id, ver_id;
2563 	int density;
2564 	int ret;
2565 
2566 	ret = this->chip_probe(mtd);
2567 	if (ret)
2568 		return ret;
2569 
2570 	/* Read device IDs from Register */
2571 	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2572 	ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
2573 	this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
2574 
2575 	/* Flash device information */
2576 	mtd->name = onenand_print_device_info(dev_id, ver_id);
2577 	this->device_id = dev_id;
2578 	this->version_id = ver_id;
2579 
2580 	/* Check OneNAND features */
2581 	onenand_check_features(mtd);
2582 
2583 	density = onenand_get_density(dev_id);
2584 	if (FLEXONENAND(this)) {
2585 		this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
2586 		/* Maximum possible erase regions */
2587 		mtd->numeraseregions = this->dies << 1;
2588 		mtd->eraseregions = malloc(sizeof(struct mtd_erase_region_info)
2589 					* (this->dies << 1));
2590 		if (!mtd->eraseregions)
2591 			return -ENOMEM;
2592 	}
2593 
2594 	/*
2595 	 * For Flex-OneNAND, chipsize represents maximum possible device size.
2596 	 * mtd->size represents the actual device size.
2597 	 */
2598 	this->chipsize = (16 << density) << 20;
2599 
2600 	/* OneNAND page size & block size */
2601 	/* The data buffer size is equal to page size */
2602 	mtd->writesize =
2603 	    this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
2604 	/* We use the full BufferRAM */
2605 	if (ONENAND_IS_4KB_PAGE(this))
2606 		mtd->writesize <<= 1;
2607 
2608 	mtd->oobsize = mtd->writesize >> 5;
2609 	/* Pagers per block is always 64 in OneNAND */
2610 	mtd->erasesize = mtd->writesize << 6;
2611 	/*
2612 	 * Flex-OneNAND SLC area has 64 pages per block.
2613 	 * Flex-OneNAND MLC area has 128 pages per block.
2614 	 * Expose MLC erase size to find erase_shift and page_mask.
2615 	 */
2616 	if (FLEXONENAND(this))
2617 		mtd->erasesize <<= 1;
2618 
2619 	this->erase_shift = ffs(mtd->erasesize) - 1;
2620 	this->page_shift = ffs(mtd->writesize) - 1;
2621 	this->ppb_shift = (this->erase_shift - this->page_shift);
2622 	this->page_mask = (mtd->erasesize / mtd->writesize) - 1;
2623 	/* Set density mask. it is used for DDP */
2624 	if (ONENAND_IS_DDP(this))
2625 		this->density_mask = this->chipsize >> (this->erase_shift + 1);
2626 	/* It's real page size */
2627 	this->writesize = mtd->writesize;
2628 
2629 	/* REVIST: Multichip handling */
2630 
2631 	if (FLEXONENAND(this))
2632 		flexonenand_get_size(mtd);
2633 	else
2634 		mtd->size = this->chipsize;
2635 
2636 	mtd->flags = MTD_CAP_NANDFLASH;
2637 	mtd->_erase = onenand_erase;
2638 	mtd->_read = onenand_read;
2639 	mtd->_write = onenand_write;
2640 	mtd->_read_oob = onenand_read_oob;
2641 	mtd->_write_oob = onenand_write_oob;
2642 	mtd->_sync = onenand_sync;
2643 	mtd->_block_isbad = onenand_block_isbad;
2644 	mtd->_block_markbad = onenand_block_markbad;
2645 
2646 	return 0;
2647 }
2648 
2649 /**
2650  * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
2651  * @param mtd		MTD device structure
2652  * @param maxchips	Number of chips to scan for
2653  *
2654  * This fills out all the not initialized function pointers
2655  * with the defaults.
2656  * The flash ID is read and the mtd/chip structures are
2657  * filled with the appropriate values.
2658  */
2659 int onenand_scan(struct mtd_info *mtd, int maxchips)
2660 {
2661 	int i;
2662 	struct onenand_chip *this = mtd->priv;
2663 
2664 	if (!this->read_word)
2665 		this->read_word = onenand_readw;
2666 	if (!this->write_word)
2667 		this->write_word = onenand_writew;
2668 
2669 	if (!this->command)
2670 		this->command = onenand_command;
2671 	if (!this->wait)
2672 		this->wait = onenand_wait;
2673 	if (!this->bbt_wait)
2674 		this->bbt_wait = onenand_bbt_wait;
2675 
2676 	if (!this->read_bufferram)
2677 		this->read_bufferram = onenand_read_bufferram;
2678 	if (!this->write_bufferram)
2679 		this->write_bufferram = onenand_write_bufferram;
2680 
2681 	if (!this->chip_probe)
2682 		this->chip_probe = onenand_chip_probe;
2683 
2684 	if (!this->block_markbad)
2685 		this->block_markbad = onenand_default_block_markbad;
2686 	if (!this->scan_bbt)
2687 		this->scan_bbt = onenand_default_bbt;
2688 
2689 	if (onenand_probe(mtd))
2690 		return -ENXIO;
2691 
2692 	/* Set Sync. Burst Read after probing */
2693 	if (this->mmcontrol) {
2694 		printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
2695 		this->read_bufferram = onenand_sync_read_bufferram;
2696 	}
2697 
2698 	/* Allocate buffers, if necessary */
2699 	if (!this->page_buf) {
2700 		this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
2701 		if (!this->page_buf) {
2702 			printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
2703 			return -ENOMEM;
2704 		}
2705 		this->options |= ONENAND_PAGEBUF_ALLOC;
2706 	}
2707 	if (!this->oob_buf) {
2708 		this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
2709 		if (!this->oob_buf) {
2710 			printk(KERN_ERR "onenand_scan: Can't allocate oob_buf\n");
2711 			if (this->options & ONENAND_PAGEBUF_ALLOC) {
2712 				this->options &= ~ONENAND_PAGEBUF_ALLOC;
2713 				kfree(this->page_buf);
2714 			}
2715 			return -ENOMEM;
2716 		}
2717 		this->options |= ONENAND_OOBBUF_ALLOC;
2718 	}
2719 
2720 	this->state = FL_READY;
2721 
2722 	/*
2723 	 * Allow subpage writes up to oobsize.
2724 	 */
2725 	switch (mtd->oobsize) {
2726 	case 128:
2727 		this->ecclayout = &onenand_oob_128;
2728 		mtd->subpage_sft = 0;
2729 		break;
2730 
2731 	case 64:
2732 		this->ecclayout = &onenand_oob_64;
2733 		mtd->subpage_sft = 2;
2734 		break;
2735 
2736 	case 32:
2737 		this->ecclayout = &onenand_oob_32;
2738 		mtd->subpage_sft = 1;
2739 		break;
2740 
2741 	default:
2742 		printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
2743 			mtd->oobsize);
2744 		mtd->subpage_sft = 0;
2745 		/* To prevent kernel oops */
2746 		this->ecclayout = &onenand_oob_32;
2747 		break;
2748 	}
2749 
2750 	this->subpagesize = mtd->writesize >> mtd->subpage_sft;
2751 
2752 	/*
2753 	 * The number of bytes available for a client to place data into
2754 	 * the out of band area
2755 	 */
2756 	this->ecclayout->oobavail = 0;
2757 
2758 	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE &&
2759 	    this->ecclayout->oobfree[i].length; i++)
2760 		this->ecclayout->oobavail +=
2761 			this->ecclayout->oobfree[i].length;
2762 	mtd->oobavail = this->ecclayout->oobavail;
2763 
2764 	mtd->ecclayout = this->ecclayout;
2765 
2766 	/* Unlock whole block */
2767 	onenand_unlock_all(mtd);
2768 
2769 	return this->scan_bbt(mtd);
2770 }
2771 
2772 /**
2773  * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
2774  * @param mtd		MTD device structure
2775  */
2776 void onenand_release(struct mtd_info *mtd)
2777 {
2778 }
2779